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Abstract
Efficiently optimizing the internal structure of 3D printing models is a critical focus in the field of industrial manufacturing,
particularly when designing self-supporting structures that offer high stiffness and lightweight characteristics. To tackle this
challenge, this research introduces a novel approach featuring a self-supporting polyhedral structure and an efficient opti-
mization algorithm. Specifically, the internal space of the model is filled with a combination of self-supporting octahedrons
and tetrahedrons, strategically arranged to maximize structural integrity. Our algorithm optimizes the wall thickness of the
polyhedron elements to satisfy specific stiffness requirements, while ensuring efficient alignment of the filled structures in finite
element calculations. Our approach results in a considerable decrease in optimization time. The optimization process is sta-
ble, converges rapidly, and consistently delivers effective results. Through a series of experiments, we have demonstrated the
effectiveness and efficiency of our method in achieving the desired design objectives.

CCS Concepts
• Computing methodologies → Modeling and simulation; Model development and analysis; • Applied computing →
Computer-aided design;

1. Introduction

Additive manufacturing technology offers a distinct advantage over
traditional subtractive manufacturing by enabling the creation of in-
tricate internal structures. Consequently, optimizing the design of
these internal structures has emerged as a significant focus within
the field. Several structures have been proposed [PP19], including
the Skin-frame structure [WWY∗13], the Honeycomb-cell struc-
ture [LSZ∗14], the Media-axis structure [ZXW∗15], the Polyhedral
Voronoi [MHSL18], and Crossfill [KWW19]. These methods aim
to achieve lightweight and high-stiffness outcomes. However, it is
important to note that some of these solutions overlook the print-
ability of the internal structure. Hence, algorithm designers must
also consider the inclusion of supporting structures to ensure suc-
cessful fabrication.

Although 3D printing software is capable of detecting and
adding support structures to ensure printability, it is important to
address the issue of closed cavity structures that may cause the
internal support structure to remain after printing. This can have
a detrimental impact on the model and hinder the optimization
process. To tackle this challenge, experts have proposed various
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solutions, including Rhombic [WWZW16], Support-free hollow-
ing [WQL∗17], Elliptic hollowing [LFR∗18] and Periodically hol-
lowing [XLY∗21]. The underlying concept of these methods is to
ensure the self-supporting nature of each cavity to enable success-
ful printing. However, it is worth noting that most of these meth-
ods require a high-quality finite element mesh during the optimiza-
tion phase to avoid jaggedness. This requirement poses a significant
computational burden, making the optimization process more com-
plex and time-consuming.

We have created a new approach to address the difficulties previ-
ously mentioned, which involves optimizing the internal structure.
Our approach focuses on ensuring self-supporting characteristics
within the model while addressing the computational cost associ-
ated with stiffness optimization. As depicted in Fig. 1, we initiate
the process with an initial model and discretize its internal space
using regular polyhedron elements. Through iterative optimization
of the wall thickness of these elements, marked in yellow regions,
we generate self-supporting cavities. This iterative optimization al-
lows us to substantially reduce the optimization time. By utilizing
self-supporting polyhedron elements that align with the elements in
finite element calculations, we avoid jaggedness and enable faster
computations. Next, we optimize the topology of the structure by
merging redundant elements based on the results of the thickness
optimization. The final optimized structure demonstrates improved
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Figure 1: Illustration of the optimization process. (a) Input model. (b) The thickness optimization. (c) The topology optimization. (d) Com-
parison of stiffness results between the optimized structure and a uniformly filled structure, and the convergence curve of compliance and
volume fraction during optimization.

stiffness compared to a uniformly infilled structure. Overall, our
method effectively achieves self-supporting characteristics within
the model and significantly reduces computational costs. Addition-
ally, the optimized structure exhibits enhanced stiffness properties
compared to those of traditional uniformly filled structures.

The main contributions of our approach can be summarized as
follows:

• Utilization of a Self-Supporting Octahedral-Tetrahedral Struc-
ture: We employ a self-supporting octahedral-tetrahedral struc-
ture to fill the model. This choice facilitates efficient generation
and fusion of the elements, resulting in a structure that is com-
patible with fast finite element calculations.

• Efficient Optimization Strategy for Finite Element Analysis: We
propose an efficient optimization strategy for the finite element
analysis of the structure. This strategy includes both thickness
optimization and topology optimization, ensuring the overall op-
timization process is effective and time-efficient.

By combining these contributions, our approach enables the cre-
ation of optimized structures with improved performance and re-
duced computational costs.

2. Related Work

In recent years, the field of 3D printing has witnessed the emer-
gence of numerous methods that cater to diverse geometric and
structural requirements. Our study focuses specifically on three
key areas of research: lightweight infill structures, self-supporting
structures, and structure optimization [LSWW14, GZR∗15]. These
areas are of particular relevance to our investigation and will serve
as the primary areas of focus for our research.

2.1. Lightweight infill structures

Several optimization methods have been proposed for designing
the internal structure of 3D models, taking into consideration var-
ious requirements such as stiffness [SVB∗12], stability, printabil-
ity, and material usage efficiency. Wang et al. [WWY∗13] intro-
duced a sparse optimization approach that generates a skin-frame
structure, considering multiple constraints in 3D models. Zhang

et al. [ZXW∗15] utilized the medial axis as an alternative to the
frame structure, enabling effective transfer of external loads to
the inner core structure. Lu et al. [LSZ∗14] and Sá et al. [SM-
REC15] employed honeycomb-cell structures, which strike a bal-
ance between material utilization and stiffness performance. In-
spired by nature, porous structures have also been explored for their
lightweight and strong structural properties. Wu et al. [WAWS18]
proposed a method for generating bone-like porous structures us-
ing topology optimization. Martínez et al. [MHSL18] and Kuipers
et al. [KWW19] presented microstructures designed to achieve spe-
cific elastic properties. In addition, Hu et al. [HWL∗20] employed
Triply Periodic Minimal Surface (TPMS) to generate lightweight
structures with high stiffness by efficiently controlling the function.
Similarly, Zhang et al. [ZWL∗22] controlled the function to cre-
ate cavities, allowing for a reduction in weight while maintaining
stiffness. However, the structures proposed in [WWY∗13,LSZ∗14,
ZXW∗15,ZWL∗22,SMREC15,WAWS18] are not self-supporting.
Consequently, additional support structures may be required during
the printing process, leading to difficulties in their removal.

2.2. Self-supporting structures

To eliminate the need for additional support structures during print-
ing, the development of self-supporting structures for filling the in-
terior of models has been explored in various studies [LGC∗18,
BAH11, ZZW∗21, VGB14a]. Luo et al. [LBRM12] proposed the
Chopper framework which breaks down a large 3D object into
smaller parts that can be printed. J. Vanek et al. [VGB∗14b] also
follows a comparable strategy (PackMerger) for decomposition. In
the case of PackMerger, it divides 3D objects into various shell
components and then optimizes the process to minimize the re-
quirement for support materials and printing duration. Gaynor et
al. [GG16] achieved self-supporting printing by applying a series
of projection operations that enforce minimum length scale re-
quirements. Similar approaches were also employed by Zhou et
al. [ZSZ21] and Luo et al. [LSLL20] to address self-supporting
printing. Leary et al. [LMT∗14] proposed a post-processing method
that evaluates manufacturing time and component mass to ensure
self-supportability by identifying feasible orientations. Reiner and
Lefebvre. [RL16] developed an interactive modeling tool for de-
signing self-supporting models. Wu et al. [WWZW16] introduced

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Shengfa Wang & Zheng Liu & Jiangbei Hu & Na Lei & Zhongxuan Luo / An Efficient Self-supporting Infill Structure for Computational Fabrication 3 of 13

the rhombic structure, which is adaptively refined based on phys-
ical properties such as the center of mass and stress distribution.
Wang et al. [WLW∗18] generated sparser structures through hol-
lowing. They also proposed a sparsity optimization framework with
overhanging constraints for generating support-free frame struc-
tures [WQL∗17]. Yang et al. [YCF18] presented a simple hollow-
to-fill algorithm for generating support-free inner surfaces using
shape optimization. Xie and Chen [XC17] proposed a polyhedron
element-based approach for creating support-free interior cavities.
Lee et al. [LFR∗18] introduced a support-free elliptic hollowing
method. Bi et al. [BTX20] derived a self-supporting topology opti-
mization method based on BESO [HX08] that controls the support
relationship between elements in the upper and lower layers. How-
ever, many of these self-supporting structures require high-quality
finite elements in the calculations to avoid jaggedness, resulting in
significant computational costs.

2.3. Structure optimization

Structure optimization aims to control the material distribution
within a design domain to achieve desired physical properties.
Since the introduction of topology optimization (TO) in the
1980s [BK88], various TO methods have been successfully em-
ployed in many fields for structure optimization [ZZG16]. These
methods include the homogenization method [BK88, SK91], solid
isotropic material with penalization (SIMP) [Ben89,Roz01,ZR91],
level set method [SW00, WWmG03], evolutionary structural opti-
mization (ESO) [XS93], Bi-directional ESO [HX08], moving mor-
phable component (MMC) method [GZZ14], and moving mor-
phable void (MMV) [ZYZ∗17]. A comprehensive overview of
these methods can be found in [SM13,ZNLC14]. With the advance-
ment of 3D printing technologies [PAHA18,WM17,TKF15], there
is an increasing demand for efficient structure optimization meth-
ods that can generate more complex structures with superior phys-
ical properties.

3. Self-Supporting Polyhedral Structure for Fast Calculation

The infilling structure of the model is composed of a periodic mixed
structure consisting of octahedra and tetrahedra. This unique struc-
ture meets the self-supporting requirements while also facilitat-
ing regular rearrangement and division. It proves advantageous in
both the construction and optimization of the overall structure. Fur-
thermore, the integration of this structure with the finite element
method allows for algorithmic adjustments that enable faster calcu-
lations, greatly enhancing optimization efficiency.

3.1. Polyhedron elements

Our approach utilizes regular octahedrons and tetrahedrons as pe-
riodic polyhedron elements. Each of these polyhedrons can be fur-
ther subdivided into smaller, similar octahedrons and tetrahedrons,
as shown in Fig. 2. This characteristic proves advantageous for both
the initialization and optimization of the structures. Specifically,
we employ a large octahedron that encompasses the entire model
as an initial structure. Then, we proceed to fill the model’s inte-
rior with regular polyhedron elements using the aforementioned
method. By employing this approach, we only need to calculate

Figure 2: Illustration of the octahedron and tetrahedron division.
(a) A regular octahedron can be divided into six identical small
octahedrons and eight identical small tetrahedrons. (b) A regu-
lar tetrahedron can be divided into one small octahedron and four
identical small tetrahedrons.

the volume fraction of each individual polyhedron element dur-
ing the optimization process. Subsequently, we can generate self-
supporting cavities within the polyhedron elements, facilitating the
overall structure optimization of the model.

3.2. Self-supporting structure

The self-supporting capability of the structure refers to its abil-
ity to support itself, including both the polyhedral elements and
the model shell. In order to simplify the analysis, we will primar-
ily concentrate on the octahedron, as it shares similarities with the
tetrahedron.

The self-supporting nature of a polyhedral element depends on
the alignment between the normal direction of its inner surface and
the printing direction. Illustrated in Figure 3, for a face with a nor-
mal vector nFace and a unit vector representing the printing direc-
tion nPrint , the following condition must be satisfied

arccos
nFace ·nPrint

| nFace || nPrint |
≤ π

2
+α, (1)

where α is the maximum angle of overhang allowed by the 3D
printer, and is set to α = π

4 by default. The self-supporting can also
be controlled directly by the shape parameters of the polyhedron:

h
w

≥ tanα, (2)

where h and w are two axial lengths of the outer surface of a octa-
hedron, respectively.

In cases where certain sections of the model shell lack self-
supporting properties, internal support is necessary. The process
involves examining all the polyhedron elements and determining if
any of them intersect with the triangles comprising the outer sur-
face of the model. If a triangular facet is identified as non-self-
supporting, the internal cavity of the corresponding polyhedron el-
ement needs to be adjusted to provide the required support.
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Taking advantage of the viscosity of the 3D printing material
during extrusion, we can ensure that a short suspended length does
not result in material collapse. Utilizing this principle, we regu-
late the cavity size of the polyhedral elements that intersect with
non-self-supporting shells. In Fig. 3, the axial length w of the poly-
hedral element and the horizontal wall thickness t of a cavity are
determined based on the maximum unsupported length εmax. If the
calculated ε is smaller than the maximum unsupported length per-
mitted by the printer, it indicates self-supporting capability and can
be expressed as follows:

ε =
√

2(2w−2t)< εmax. (3)

It is clear that, given the size of the polyhedron element w and the
maximum unsupported length εmax, the minimum volume rate of
the polyhedron element can be obtained:

xmin =
Vmin

Vp
= 1− (

w− tmin

w
)3 = 1− (

√
2εmax

4w
)3, (4)

where Vp represents the volume of the polyhedron element, and
Vmin represents the smallest volume by removing a cavity inside
the polyhedron element. Therefore, by partitioning the polyhedron
elements at the boundaries, we ensure that the outer shell can be
printed without the need for any support structures.

The self-supporting structure most akin to ours is the one cre-
ated by Wu et al. [WWZW16]. Nevertheless, their design employs
2D shapes extruded into 3D infills. This approach comes with con-
straints on design adaptability and boundary cohesion, which cur-
tails its capacity for achieving lightweight structures. In contradis-
tinction, our designed structures are fundamentally self-supporting
in three dimensions. Illustrated in Figure 2, our methodology per-
mits smooth subdivision or fusion of elements, enabling us to en-
hance strength and decrease volume.

3.3. Polyhedral structure for fast calculation

In order to accurately analyze and calculate the structure and its
thickness, the finite element method is employed, which typically
involves multiple iterations and can be computationally demand-
ing. However, leveraging the unique geometric properties of the
polyhedron element structure allows for a reduction in computa-
tional burden.

By coupling the structure with hexahedral finite elements, the
local intricate structure can be simplified into a local equivalent
material density. This simplification facilitates the determination of
the volume fraction for each polyhedral element and the equivalent
material density for each finite element. This approach not only ac-
celerates the computation process, but also eliminates jaggedness,
resulting in reduced hardware requirements and optimization time.
For further information on the calculation methodology, please re-
fer to Section 4 of this study.

4. Modeling and optimization

4.1. Stiffness problem modeling

The objective of our approach is to generate self-supporting inte-
rior structures while maximizing stiffness. In classical structural

Figure 3: Illustration of the self-supporting of the cavities and the
shell. (a) Self-supporting polyhedron element with a cavity (yellow)
and a cross-section (red). The black arrow represents the normal
direction of the inner surface and the yellow arrow represents the
printing direction. (b) Self-supporting of the shell (green) and the
cross-section.

optimization problems, the optimization objective is typically de-
fined in terms of structural compliance. The optimization problem
can be formulated as follows:

min C =
1
2

uT Ku, (5)

s.t.

N

∑
k=1

vkxk <Vtarget , (6)

xk =

{
xmin, for void element,
1, for solid element,

(7)

where C is the overall compliance, u is the displacement matrix, K
is the overall stiffness matrix, Vtarget is the target volume, vk is the
volume of the i-th hexahedral element, and xk is the state of the k-th
hexahedral element.

In this approach, since we fill the interior of the model with poly-
hedron elements, the aforementioned expression can be reformu-
lated as follows:

min C =
ne

∑
i=1

Ci =
n

∑
j=1

uT
i jKi jui j, (8)
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Figure 4: Volume evolution of octahedral polyhedron elements. From left to right, the octahedral polyhedron elements have a gradual change
in its volume from solid to empty. The process is divided into 6 levels, and the volume change between each adjacent stage is constant at 0.2.

s.t.

Vtarget =
N

∑
i=1

vixi, (9)

xi =

{
xmin, for void element,
1, for solid element,

(10)

where the total compliance C is represented by the sum of the com-
pliance of ne polyhedron elements, Ki j represents the element stiff-
ness matrix of the j-th hexahedral element that composes the i-th
polyhedron element, and ui j represents the displacement of the cor-
responding element.

The cavity within the polyhedron elements is regulated by ad-
justing the wall thickness, which is equivalent to modifying the
volume fraction of each element. By adopting this approach, the
optimization emphasis shifts from individual hexahedral units to
the polyhedron elements residing within the model. This enables
the implementation of efficient and well-founded design schemes
through subsequent algorithmic optimization processes.

4.2. Wall-thickness optimization

The wall thickness of the polyhedral elements is a critical factor
influencing both the volume and structural stiffness of the model.
Hence, our optimization approach places significant emphasis on
optimizing the wall thickness. Subsequently, the topology of the
structure is adjusted based on the optimized wall thicknesses. To
ensure the rationality of the optimization process, we adopt a direct
method that involves iteratively optimizing the volume fraction of
the polyhedral elements. This optimization is carried out in con-
junction with finite element analysis, enabling iterative refinement
of the volume fraction to meet the desired design objectives.

To accelerate the calculations, we initially discretize the wall
thicknesses of octahedron and tetrahedron elements into multiple
thickness levels, as shown in Fig. 4. While increasing the number
of levels may enhance optimization results, it also entails greater
computational costs. To strike a balance between optimization effi-
ciency and accuracy, we conducted experiments where we divided
the thickness levels into six discrete levels. This ensured a satisfac-
tory level of precision in the optimization process.

During the optimization process, the compliance of all polyhe-

dral elements is sorted from high to low. Subsequently, the thick-
ness of certain polyhedral elements is adjusted accordingly. This
iterative process continues until the objective function converges,
resulting in a well-distributed internal material arrangement within
the model and a stable volume ratio. To initialize the volume frac-
tion value of all polyhedral elements, a value of 1 is assigned.
The thickening ratio and thinning ratio of each element are then
determined based on the target volume fraction and the current
model volume fraction. These ratios indicate the rate at which
the wall thickness of each polyhedral element will be increased
or decreased in each iteration. The optimization process is based
on the Bidirectional Evolutionary Structural Optimization (BESO)
method [HX08], which provides stable solutions for the thickening
ratio (padd) and thinning ratio (pdec) of each polyhedral element.
We classify the cases of Vtarget and Vnow into five categories, each
associated with a specific calculation method to determine the val-
ues of padd and pdec, as shown in Table 1,

Cases padd pdec

Vnow
Vall

≤ Vtarget
Vall

−5% Vtarget−Vnow
Vall

padd
2

Vtarget
Vall

−5% < Vnow
Vall

<
Vtarget

Vall
5% 2.5%

Vnow
Vall

≈ Vtarget
Vall

2.5% 2.5%

Vtarget
Vall

< Vnow
Vall

<
Vtarget

Vall
+5% 2.5% 5%

Vnow
Vall

≥ Vtarget
Vall

+5% pdec
2

Vtarget−Vnow
Vall

Table 1: Calculation of padd and pdec

In instances where the difference between Vtarget and Vnow is sub-
stantial, we dynamically adjust the values of padd and pdec based
on this difference to minimize the number of iterations required.
Conversely, when the difference between Vtarget and Vnow is negli-
gible, maintaining optimization accuracy necessitates setting stable
and small values for padd and pdec. If Vtarget and Vnow are similar, it
indicates that the current volume ratio has reached the desired tar-
get value. Therefore, during the iteration process, it is essential to
avoid further changes in the volume ratio by setting padd and pdec
to the same value. This helps maintain the stability of the optimiza-
tion process.
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Figure 5: Illustration of efficient multi-scale finite element calculation. (a) The design domain is discretized with super elements and back-
ground elements, and the structure of a single super element is displayed in detail. (b) A 3D demonstration shows the fitting and volume
relationship between the periodic polyhedron elements and the elements in finite element calculation.

4.3. Fast finite element calculation

Efficiency in finite element analysis is crucial for determining the
overall efficiency of the optimization algorithm, particularly when
fine structure optimization utilizing the finite element method is
involved. Such optimization often demands high mesh density, re-
sulting in significant computational burdens that strain computing
resources and prolong the optimization process. To address this
challenge, we integrate the finite element method with the polyhe-
dron element structure. This integration reduces the mesh density
requirement, thereby alleviating the computational burden associ-
ated with the optimization task.

Earlier research, as cited in references [NPSL10, WZZD22,
HWL∗20], has employed a multi-scale methodology to reduce
computational costs. This approach strikes a balance between cal-
culation efficiency and accuracy by dividing the model into regu-
lar hexahedral elements known as super elements, which are fur-
ther subdivided into smaller regular hexahedral elements called
background elements, as shown in Fig 5 (a). The coarse finite ele-
ments (super elements) are utilized to interpolate the displacement
field, while the refined background finite elements (background el-
ements) capture the high-resolution structural geometry. By repre-
senting the model using super and background elements, the stiff-
ness matrix of the i-th super element can be expressed as follows:

Ki =
∫

Ωi

BT DiBdV ≈
nb

∑
j=1

Ei jB(ri j)
T D0B(ri j)vb, (11)

where Ωi is the region of the i-th super element, B is the strain ma-
trix, Di is the constitutive matrix, nb is the number of background
elements in a super element, D0 corresponds to the constitutive ma-
trix of the solid material with unit Young’s modulus, ri j is the the
coordinate of the j-th background element in i-th super element, vb
is the volume of the background element, and Ei j is the Young’s
modulus of the j-th background element in the i-th super element.

Ki can be expressed using the alternative material model [Ben89]

as: 
Ki =

nb

∑
j=1

1
8

8

∑
l=1

(H(φi jl))
qK0,

H(φi jl) = 1, i f φi jl ∈ solid,

H(φi jl) = 0, i f φi jl ∈ empty,

(12)

where K0 is the stiffness matrix of the background element in initial
case, φi jl represents the coordinate of the l-th vertex on the j-th
background element in the i-th super element, and q is the penalty
coefficient, which is set to 2 by default.

By taking into account the case of infinitely subdividing the
background elements while keeping the super elements unchanged,
we can refine the previous formula. As the number of background
elements within each super element approaches infinity, the size of
each background element tends to zero. Consequently, the coordi-
nates of the eight points on each background element φi jl converge
towards the center coordinates φi jcenter of the background element

Ki =
∞
∑
j=1

(H(φi j_center))
qK0,

H(φi j_center) = 1, i f φi j_center ∈ solid,

H(φi j_cnter) = 0, i f φi j_center ∈ empty.

(13)

Taking into account the straightforward geometry of our self-
supporting infill structure, resulting in a nearly consistent material
distribution within each solid component, it follows that when the
discretized super elements and background elements are adequately
diminutive, we can recast the aforementioned formula in relation to
volume fraction in the subsequent manner:

Ki ≈
vs_solid
vs_whole

K0, (14)

where vs_solid is the volume of the entity structure in the super ele-
ment and vs_whole denotes the total volume of the super element, as
depicted in Fig 5. By using a coarser mesh, we can easily calculate
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vs_solid and vs_whole, and thus represent the fine structure. Hence,
we combine the periodic polyhedron element structure with the su-
per element finite element grids, resulting in:

Ki = ai

4

∑
j=1

bi j
Vsolid, j

Vpolyhedron, j
K0, (15)

where ai denotes the proportion of the initial model in the i-th su-
per element (0 ≤ ai ≤ 1), bi j is the proportion of the j-th polyhe-
dron element in the i-th super element. For octahedral polyhedron
elements, bi j is equal to 1

3 , while for tetrahedral polyhedron ele-

ments, it is 1
6 . Moreover, Vsolid, j

Vpolyhedron, j
represents the volume fraction

of the polyhedron element. By aligning the periodic polyhedron el-
ement structure with the super element, we can readily determine
the values of ai and bi j . This enables us to employ a coarser mesh
to represent the fine structure, leading to significant improvements
in computational efficiency.

To calculate the compliance of each polyhedral polyhedron ele-
ment, we employ a local homogenization method. In this approach,
the polyhedron element is formed by combining portions of mul-
tiple hexahedral elements. Therefore, we only require the compli-
ance values of the hexahedral elements that make up the polyhe-
dron element. By summing these compliance values, we can de-
termine the compliance of the polyhedral polyhedron element, de-
noted as C j. Specifically, we assume that the compliance values
of all background elements within the super element are uniform.
Hence, we obtain C j by summing these compliance values

C j =
k

∑
i=1

Ci j =
k

∑
i=1

bi jci j, (16)

where Ci j denotes the partial compliance contributed by the i-th
super element that forms the j-th polyhedron element, while ci j is
the compliance of the i-th super element within the j-th polyhedron
element.

The horse head model is optimized in our study by applying a
pressure load on its top surface and fixing the bottom surface, as
depicted in Fig 6. Throughout the optimization process, the volume
fraction continuously decreases. As the volume approaches the tar-
get volume, the rate of volume reduction gradually slows down.
Our method employs an accelerated volume reduction strategy in
the early stages of optimization to reduce the number of iterations.
In the later stages, when precise adjustments to the model’s struc-
ture are required, the algorithm slows down the rate of volume re-
duction to ensure the accuracy of the optimized result. This ap-
proach ensures a steady convergence towards meeting the design
requirements, as observed in the overall trend of the optimization
process.

4.4. Topology Optimization

As some polyhedron elements may have a volume fraction close to
zero, corresponding to a very small wall-thickness. These polyhe-
dron elements should be removed or merged, which can be treated
as topology optimization. To guarantee manufacturability, a mini-
mum wall thickness Tmin is imposed on the structure based on the
capabilities of the 3D printers. Since each wall in the structure is
formed by the combination of walls from two adjacent polyhedron

elements, the relationship between the minimum volume fraction
Xmin of polyhedron elements and the minimum wall-thickness tmin
of the polyhedron elements can be expressed as

t ≥ tmin =
1
2

Tmin, (17)

X ≥ Xmin =
Vsolid

Vpolyhedron
= 1− (

w− tmin

w
)3. (18)

It is evident that the volume fraction of the polyhedron element
reaches its minimum value, Xmin, when the wall thickness equals
tmin. During the topology optimization process, polyhedron ele-
ments with a volume fraction below Xmin are merged by combining
small polyhedron elements into a larger polyhedron element. Fig-
ure 7 illustrates this process using a two-dimensional rhombus for
visualization purposes.

5. Experimental Results and Discussions

To demonstrate the effectiveness of our algorithm, we conducted
stiffness optimization experiments on models of different complex-
ities and compared the results with relevant methods. The experi-
ments were carried out on a standard desktop PC equipped with an
Intel-i7-9700K 3.6 GHz CPU and 32 GB RAM. Furthermore, we
fabricated some of the optimized models using a FDM based 3D
printer. For these experiments, we set the initial axial lengths of the
polyhedron elements to 2 mm and 4 mm for the two dimensions w
and h, respectively. The number of initial elements is related to the
complexity of 3D models and the required precision. While aug-
menting the element count would improve accuracy, it would also
elevate computational intricacy

5.1. The effect of polyhedron elements

To investigate the influence of the aspect ratio h
w of the polyhe-

dron elements on the optimization results, we conducted an exper-
iment where we varied the aspect ratio while keeping other condi-
tions constant. In Fig 8, we compared the optimization results by
performing mechanical experiments with aspect ratios of h

w = 1.5,
h
w = 2, and h

w = 2.5. All the models were subjected to a top pres-
sure of 0.9 MPa with the bottom fixed. The maximum Mises stress
values for the three models were 1.92 MPa, 2 MPa, and 1.97 MPa,
respectively. The stress diagrams indicate that the aspect ratio h

w
has a minimal effect on the optimization results due to the involve-
ment of the optimization algorithm. The stress concentration areas
in all three models are located at the bottom of the right side of the
root, which has been optimized into a solid body, yielding a similar
mechanical effect. However, considering the practicality of differ-
ent printing equipment and materials, we chose an aspect ratio of
h
w = 2.

5.2. The effect of discrete thickness levels

To assess the impact of discrete thickness levels on our optimiza-
tion, we performed an optimization study on the molar model using
different thickness levels: 3, 6, 11, and 51. Figure 9 presents the
mechanical analysis results of the optimized models with varying
thickness levels (3, 6, 11, and 51) under the same volume frac-
tion of 50%, with identical external loads, constraint conditions,
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Figure 6: Illustration of the thickness optimization. (a) The models before and after optimization under a top load. (b) The convergence
curves of model compliance and volume fraction during the optimization process.

Table 2: Model optimization time (second) and volume fraction.

Preprocess (s)
Optimization

Postprocess (s) Total Time (s) Element number Result Volume Volume Fraction
Iteration Time (s) Total Time (s)

Bunny 36.9 28 8.56 239.6 63 339.5 37800 55714.75 43.3%

Kitten 16.9 31 7.3 226.9 28.5 272.3 32340 68746 52.6%

Horse head 16.6 35 2.47 86.4 51.6 154.6 18900 27976.2 47.3%

Molar(rate=1.5) 444 30 6.65 199.7 925.6 1569.3 21762 50129.1 44%

Molar(rate=2) 14.17 30 3.85 115.4 31 160.6 23436 50317.5 44.2%

Molar(rate=2.5) 14.13 33 2.28 75.36 30.2 119.7 18414 50775.3 44.6%

Shark (3 levels) 21.6 15 12.4 185.2 31.4 238.2 44550 33398.1 50.4%

Shark (6 levels) 21.3 27 13.15 354.9 30.9 407.1 44550 33023 50%

Shark (11 levels) 21.2 51 12.98 662.2 31.1 714.5 44550 33025.4 50%

Shark (51 levels) 20.9 224 13.1 2932.3 30.6 2983.8 44550 33142.9 50%

Unicorn 51.6 36 2.58 93.7 111 256.3 13662 12389.8 63.4%

Elephant 44.9 34 5 173 146.6 364.6 31185 49380.2 46.9%

Figure 7: Illustration of topology optimization in 2D. The red
rhombuses denote the polyhedron element providing support for the
overhang part of the model shell. The yellow rhombuses represent
the polyhedron elements with large volume fraction after stiffness
optimization, while the gray parts indicate the polyhedron element
with a volume fraction near zero. (b) illustrates the polyhedron el-
ement structure after element merging in topology optimization.

and material parameters. The corresponding Mises stress values are
6.93 MPa, 4.0 MPa, 3.847 MPa, and 3.909 MPa, respectively. It is
evident that the optimization result with six thickness levels dif-
fers significantly from the other three results. Notably, the maxi-
mum Mises stress value is considerably larger than that of the other
groups. However, there is no notable difference in the structural and
simulation results among the other three groups.

Furthermore, we compared the optimization times among the
four groups. When using 3 thickness levels, it required 15 iterations
and 185.2 seconds to complete the thickness optimization process.
With 6 thickness levels, it took 29 iterations and 372.3 seconds.
For 11 thickness levels, it required 51 iterations and 662.2 seconds.
Finally, with 51 thickness levels, it took 224 iterations and 2932.3
seconds for the thickness optimization. As the density of thickness
levels increases, more iterations are needed for optimization, while
the time per iteration remains constant. This leads to a significant
increase in the total time required for thickness optimization. How-
ever, if the density of thickness levels becomes too high, it does not
have a significant positive impact on the final optimization result
but significantly reduces the efficiency of the algorithm. Consid-
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Figure 8: Effect of the aspect ratio h
w . The molar model is processed with a volume fraction of 44%, and the optimization results of the aspect

ratio parameters h
w with 1.5, 2, and 2.5 are compared for mechanical analysis.

Figure 9: Effect of discrete thickness levels. The mechanical analysis results of optimized sharks with different thickness dispersion levels (3,
6, 11, and 51) under the same volume fraction of 50% with the same loading.

ering these factors, we have selected six levels of thickness as the
default option.

5.3. Comparing with other structures

To evaluate the effectiveness of our algorithm, we conducted
a comparison between our optimized structures and other rele-
vant structures under identical conditions, including volume frac-
tion, loading, and material properties. In Figure 10, we com-
pared our optimized structure with two other self-supporting
structures from different studies. The first structure, optimized
in [WWZW16], achieved a volume ratio of 54%. The second
structure, from [XLY∗21], is not optimized due to its algorithm
limitations. Both structures were subjected to the same external
load, restraint conditions, and material parameters as our optimized
structure, using the kitten model. Our optimized structure demon-
strated a maximum stress of 1.2 MPa, which is significantly lower

than the maximum stresses of 3.35 MPa in [WWZW16] and 2.12
MPa in [XLY∗21]. These results indicate that our structure ex-
hibits superior mechanical performance compared to the other two
self-supporting structures. Moreover, by conserving a substantial
amount of material in these non-stress-concentrated regions, our
algorithm gains higher optimization flexibility. As a result, even
when maintaining the same overall volume ratio, our optimization
approach achieves superior results in terms of mechanical perfor-
mance.

In Figure 11, we present a comparison of the mechanical per-
formance between our optimized method and two other optimized
non-self-supporting structures. The comparison is conducted using
the shark model with a volume fraction of 44%, while maintaining
the same external load, constraint conditions, and material param-
eters. Our method demonstrates superior mechanical performance,
as indicated by the maximum stress value of 2.6 MPa. This value is
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Figure 10: Comparison with other self-supporting structures. Our structure (c) has better mechanical performance than the structure
in [WWZW16] (b) and Structure in [XLY∗21] (a) with a volume ratio of 54%.

Figure 11: Comparison with non-self-supporting structures. Our structure achieves a maximum stress of 2.6 MPa, which is significantly
lower than the maximum stress of 2.9 MPa for [HWL∗20] (a) and 3.4 MPa for [LSZ∗14] (b) with a volume ratio of 44%.

significantly lower than the maximum stresses obtained by the non-
self-supporting structures in [HWL∗20] (2.9 MPa) and [LSZ∗14]
(3.4 MPa). These results highlight the effectiveness of our opti-
mization approach in achieving enhanced structural strength and
load-bearing capabilities compared to the alternative methods.

Furthermore, we conducted a comparison between the mechan-
ical performance of structures before and after optimization, with
volume ratios of 47.3% (horse head) and 54.5% (kitten). The ini-
tial structures before optimization are depicted in Figures 12 (a)
and (c), while the optimized structures are shown in Figures 12 (b)
and (d). This comparison highlights the effectiveness of our opti-
mization approach in enhancing the mechanical performance of the
structures. The optimized structures exhibit lower maximum Mises
stress and a more uniform distribution of stress throughout the mod-
els. This improvement in mechanical performance is evident, as the
optimized structures are better able to withstand external loads and
maintain structural integrity.

5.4. More results

We recorded the time information and the volume fraction in op-
timization process in Table 2. The results show that our algorithm
can effectively optimize the stiffness and reduce the weight of the
model while ensuring good performance efficiency. To demonstrate
the applicability of our method, more optimized results are illus-
trated in Fig. 13. We selected models which are also manufactured
using FDM based 3D printing, as shown in Fig. 14. The printed
model has a maximum length of around 20cm, while the smallest
octahedral unit has a width of 4mm.

5.5. Limitation and future work

In this method, we improve the algorithm’s efficiency by establish-
ing a mapping relationship between finite element elements and
polyhedral elements. However, the current mapping approach is
based on segmenting and combining the flexibility values, which
limits the diversity of the resulting polyhedral structures.
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Figure 12: Comparison of structures before and after optimization
with volume ratios of 47.3% (horse head) and 54.5% (kitten). (a)
and (c) The initial structures before optimization. (b) and (d) The
optimized structures.

In future research, we aim to explore a more diverse range of
structures that can be efficiently calculated. By expanding the shape
possibilities of polyhedral elements and exploring alternative map-
ping strategies, we can further enhance the algorithm’s capabilities
and enable it to optimize a wider variety of structures in a fast and
efficient manner.

6. Conclusions

In this paper, we propose a novel approach to represent and
optimize a self-supporting structure. Compared to existing self-
supporting structure optimization methods, our approach incorpo-
rates adaptive improvements to the finite element calculation to en-
hance the algorithm’s efficiency. The resulting structure is a highly
robust, porous, and self-supporting surface. Our algorithm excels
in both computational efficiency and stiffness, and the optimized
models can be 3D printed without the need for any additional in-
ternal support. Various experimental results demonstrate the effec-
tiveness and robustness of our method.
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