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Abstract
Aiming at enhancing the rationality and robustness of the results of single-view image-based human reconstruction and acquir-
ing richer surface details, we propose a multi-level reconstruction framework based on implicit functions.This framework first
utilizes the predicted SMPL model (Skinned Multi-Person Linear Model) as a prior to further predict consistent 2.5D sketches
(depth map and normal map), and then obtains a coarse reconstruction result through an Implicit Function fitting network
(IF-Net). Subsequently, with a pixel-aligned feature extraction module and a fine IF-Net, the strong constraints imposed by
SMPL are relaxed to add more surface details to the reconstruction result and remove noise. Finally, to address the trade-off
between surface details and rationality under complex poses, we propose a novel fusion repair algorithm that reuses existing
information. This algorithm compensates for the missing parts of the fine reconstruction results with the coarse reconstruction
results, leading to a robust, rational, and richly detailed reconstruction. The final experiments prove the effectiveness of our
method and demonstrate that it achieves the richest surface details while ensuring rationality. The project website can be found
at https://github.com/MXKKK/2.5D-MLIF.

CCS Concepts
• Computing methodologies → Computer vision; Shape modeling;

1. Introduction

Image-based human 3D reconstruction is a key problem in com-
puter vision and graphics research, with widespread applications in
VR/AR content creation [CPW∗18], entertainment, video editing
and enhancement [HTCH15, FP09], holographic [OERF∗16], vir-
tual dressing [PMPHB17], and more. In the past, to obtain human
3D models, expensive scanning equipment was required, as well as
the expenditure of time and labor for scanning and various post-
processing algorithms to fill scanning gaps, improve mesh quality,
and so on. With technological advancements and the rise of deep
learning, image-based human 3D reconstruction has gradually be-
come a research hotspot. Its objective is to provide single or mul-
tiple human body images from different angles as input and obtain
3D mesh reconstructions of the human body for downstream ap-
plications. Based on the number of input images, it can be divided
into multi-view human 3D reconstruction and single-view human
3D reconstruction.

In the field of human 3D reconstruction, single-view human 3D

† Significant Science And Technology Project of Nanjing under Grant No.
202209003

reconstruction is more important because a photo containing hu-
man is generally taken from one direction, and the quality require-
ments for reconstruction are relatively higher. This includes accu-
rately reconstructing facial features as well as the folds of clothing.
Consequently, deep learning methods have gradually become the
mainstream approach for human 3D reconstruction.

In recent years, numerous methods for single-view human body
reconstruction have emerged. Methods based on parametric human
body models first appeared [BKL∗16, APMTM19]. These para-
metric models condense the human body into dozens of param-
eters [LMR∗15], significantly reducing the learning difficulty for
neural networks and yielding reasonable reconstruction results. In
the past two years, there have been numerous advancements and
extensions in explicit methods, leading to more accurate parameter-
ized human body model estimation [CPMAMN22] and clothed hu-
man body reconstruction [MNSL22]. However, such methods can
only reconstruct predefined human bodies and severely lack details,
such as clothing folds. Voxel-based methods [ZYW∗19, VCR∗18]
have also gained popularity in recent years due to their compati-
bility with deep learning techniques. The biggest issue with these
methods is the selection of voxel resolution. Choosing a lower res-
olution results in a lack of detail in the reconstruction, while choos-
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Figure 1: The pipeline of our method

ing a higher resolution leads to memory overuse and reconstruction
failure.

There are also point cloud-based human body reconstruction
methods [GFM∗19]. These methods seem to underperform due to
the non-uniqueness of point cloud representations (i.e., the same
triangular mesh can be represented by different point clouds). Im-
plicit function methods have achieved great success. These meth-
ods first extract features from the input image and then use a neu-
ral network to fit an implicit function. Given any point in space
as input, the occupancy value of that point is obtained, indicating
whether the point is inside or outside the reconstructed 3D object.
This approach solves the resolution limitation problem of voxel-
based methods, with the reconstruction resolution determined by
the input query points. Since the obtained implicit function is con-
tinuous, points can be requested arbitrarily in space and their im-
plicit function values calculated, allowing surface reconstruction
using the MarchingCubes algorithm [LC87]. The performance of
such methods depends on the accuracy of the implicit function ob-
tained, with representative methods including PIFu [SHN∗19], PI-
FuHD [SSSJ20], and TetraTSDF [OHT∗20].

Implicit function-based methods can reconstruct detailed human
body surfaces, but their biggest issue is under-constraint, meaning
the input image does not provide enough information and there is
no suitable parametric model. This leads to a lack of detail in invis-
ible parts and even produces unreasonable reconstruction results.
Currently, fully utilizing the limited information from image in-
puts, providing sufficient constraints for reconstruction results, and
achieving reasonable, high-quality reconstructions remain pressing
problems to be solved.

At present, single-view human 3D reconstruction based on im-
ages still mainly relies on implicit function-based methods. The
current research trend is to provide prior constraints for implicit
function fitting using various techniques, such as using predicted
SMPL models as priors [ZYLD21, XYTB22], predicting front and

back normal maps as priors [SSSJ20], predicting voxel reconstruc-
tions as priors [HCJS20], and so on. However, some of these meth-
ods cannot reconstruct complex human body poses, some still lack
detail, and some produce cluttered and unreasonable surface recon-
structions. Many existing methods use the SMPL model as a prior
constraint, aiming to obtain reasonable reconstructions for various
complex posture inputs. However, the overly strong constraint of
the SMPL model on the reconstruction results limits the presenta-
tion of surface details. How to enhance the presentation of surface
details while ensuring the rationality of the reconstruction results is
still an unresolved issue.

In response to these issues, we make the following contributions:

1. In order to enhance surface details while ensuring the ratio-
nality of the reconstruction, we propose a novel multi-level recon-
struction framework. We first obtain a reasonable and robust re-
construction through the coarse implicit function fitting network
guided by SMPL models. Then, by using a fine implicit function
fitting network based on relaxing SMPL model priors, we reduce
the influence of the SMPL model on the results while ensuring the
rationality of the reconstruction, thereby achieving a reconstruction
with richer surface details.

2. To address the issue of possible missing hands and feet in
reconstruction results under complex poses with high-precision re-
construction, we propose a coarse-fine occupancy field fusion and
repair algorithm. This algorithm detects missing parts and fills them
in with smoothed coarse occupancy fields, further enhancing the
reasonableness of the reconstruction.

The pipeline of our method is shown in Figure 1. First, a coarse
implicit function fitting network (coarse IF-Net) guided by the
SMPL model is proposed, using the predicted SMPL model and
2.5D sketches as input to obtain a reasonable and robust initial re-
construction for various input poses. This part is elaborated in Sec-
tion 3. Furthermore, in order to add surface details, a fine IF-Net
aimed at relaxing the constraints of the SMPL model is designed.
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It guides the reconstruction results towards more detailed direc-
tions by extracting pixel-aligned features from the 2.5D sketches.
All SMPL model-related features are replaced, retaining only the
global features obtained from the coarse IF-Net, allowing the re-
construction results to break through the limitations of the SMPL
model, and achieve more detailed reconstruction. This part is elab-
orated in Section 4.

In Section 5, experimental results show that the reconstruction
method proposed in this paper is advanced and effective.

2. Related Work

Single-View Image Based 3D Reconstruction: Single-view im-
age based 3D reconstruction is an ill-posed problem due to its
ambiguous nature. Unlike multi-view image-based 3D reconstruc-
tion, single-view image-based 3D reconstruction often requires
strong priors. In recent years, deep learning-based approaches
have demonstrated promising and exciting results. Wang et al.
[WZL∗18] employed an initial ellipsoid mesh to deform into a
final mesh. Several methods [WSK∗15, CXG∗16, TZEM17] at-
tempted to recover a voxel representation from a single image.
To mitigate the memory footprint caused by high-resolution vox-
els, space partitioning techniques (e.g., octree) were employed
[ROUG17,HTM19,TDB17]. In order to further achieve infinite res-
olution, signed distance fields (SDF) [PFS∗19,XWC∗19,BTFB21,
MON∗19] were utilized, and the surface was extracted using the
marching cubes algorithm [LC87]. In general, single-view image-
based 3D reconstruction can be summarized as encoding input im-
ages into a specific feature space and then decoding them into var-
ious 3D representations (such as point clouds [YSR∗20], voxels,
SDF, etc.).

Image Based Human Reconstruction:Image-based human re-
construction can be divided into template methods and template-
free methods. Template methods attempt to regress the parameters
of a predefined template. SMPL [LMR∗15] and STAR [OBB20]
are commonly used human body templates, and several studies
[BKL∗16] have attempted to fit a human body template into a sin-
gle RGB image. Template-free methods have achieved significant
success in recent years and are mainly divided into voxel-based
methods, point cloud-based methods, and implicit function-based
methods.Voxel-based methods typically obtain a voxel space of
the human body through an encoder-decoder structure (e.g., U-Net
[RFB15], 3D U-Net [ÇAL∗16]) and then carry out a series of post-
processing steps (such as minimizing the reprojection loss) to ob-
tain the 3D reconstruction of the human body [VCR∗18,ZYW∗19].
Gabeur et al. [GFM∗19] infer the front and back depth maps and
perform point cloud sampling, while Jinka et al. [JCSN20] ob-
tain more depth information by simulating light propagation. Both
of these methods perform Poisson reconstruction [KBH06] to re-
construct human bodies from point clouds. Saito et al. [SHN∗19]
introduced the first method that uses an implicit function for hu-
man body reconstruction, and many implicit function-based meth-
ods have followed [HXL∗20, SSSJ20]. Recently, several methods
have combined two of the four representations mentioned above.
[ZYLD21, XYTB22] combined the SMPL model with implicit
function-based methods, while He et al. [HCJS20] combined voxel-

based methods with implicit functions. Hong et al. [HZJ∗21] uti-
lized multi-view stereo to achieve better results.

With the significant success of NeRF [MST∗21] in recent years,
there have also been NeRF-Based methods [SYZR21, SBR22] that
produce high-quality reconstruction results through neural render-
ing.

3. Coarse Implicit Function Fitting Guided by the SMPL
Model

The process of coarse implicit function fitting guided by the SMPL
model follows steps similar to those in the ICON [XYTB22]
method, with a key distinction: during ICON’s normal prediction
stage, our method adds a depth map prediction that is consistent
with the normal map. This addition enhances the rationality of the
reconstruction results. Moreover, the prediction of the depth map
plays a crucial role in relaxing the SMPL constraints. Overall, this
part first predicts the SMPL model, then predicts the normal map
based on the SMPL model, and next conducts a cooperative opti-
mization of the SMPL model parameters and the normal map. Ul-
timately,a consistent depth map prediction is achieved based on the
normal map prediction. In the subsequent implicit function fitting
phase, we use the SMPL features and the 2.5D sketches features
as inputs to the implicit function, thereby obtaining a coarse occu-
pancy field.

3.1. Implicit Functions and Occupancy Fields

First, we define the occupancy field as in Equation (1). Given a
query point X in the reconstruction space, the occupancy field value
is 0 when X is outside the 3D object, and 1 in all other cases:

O(X) =

{
0, if X outside the surface
1, else (1)

We want to fit an implicit function f to obtain this occupancy
field O, as shown in Equation (2):

f (S(Fvis,Finvis,X),Fquery) = O(X) (2)

where Fquery is the query point features which are independent of
the visibility, and Fvis and Finvis are the visible and invisible part
features, respectively. As shown in Figure 2, the visible part fea-
tures are obtained from the features extracted from the image in the
view direction, while the invisible part features are extracted from
the image predicted in the opposite direction of the view. Fquery
represents certain features inherent in the query point itself. During
the coarse implict function fitting phase where the SMPL model is
used as a prior constraint, Fquery is denoted as Fcoarse

query and takes the
form of Equation (3):

Fcoarse
query (X) = [Fs(X),Fb

n (X)] (3)

Here, Fs(X) is the signed distance from a query point X to the clos-
est point Xb on the SMPL model, and Fb

n is the barycentric surface
normal of Xb. As the SMPL constraints are relaxed in the fine im-
plict function fitting stage, Fquery will take a different form and will
discuss later in Section 4.2.
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Figure 2: The visible and invisible part features

S in Equation (2) is a selection function related to how to deal
with visible and invisible part features. In the coarse IF-Net, we
use SMPL visibility for selection, as in Equation (4).

Scoarse(Fvis,Finvis,X) =

{
Fvis, if Xb is visible
Finvis, else

(4)

Taking Fvis as an example, it is calculated as in Equation (5), and
Finvis has a similar form:

Fvis = Φ(x,D,N) (5)

where x is the projection of X in the pixel space, usually tak-
ing the first two components of the X coordinate. D and N are the
previously predicted normal and depth maps. In the coarse implicit
function fitting phase, Φ, denoted as Φ

coarse , simply takes out the
corresponding values from the depth and normal maps, as in Equa-
tion (6). While in the subsequent fine implicit function fitting phase,
Φ

f ine represents the pixel-aligned feature extractor, as discussed in
Section 4.1 and Equation (9) .

Φ
coarse = [D(x),N(x)] (6)

3.2. SMPL Model Prediction

The SMPL model [LMR∗15] is a parameterized human skin trian-
gle mesh that can describe a human body with 10 shape parame-
ters and 24 pose parameters. It provides a strong prior constraint
for the reconstruction results. Just like many methods [ZYLD21,
XYTB22], we use SMPL model to guide our coarse reconstruction
result.

The prediction of the SMPL model uses the PyMaf method
[ZTZ∗21], which can predict a reasonable SMPL model from a
single image and align its triangular mesh with the original image.
This method extracts features at different scales and gradually re-
fines the prediction results from coarse to fine granularity, aligning
the mesh with the image.

In our implementation, the SMPL model prediction network di-
rectly uses the pre-trained network provided by PyMaf. Once the
SMPL model is obtained, we render it into visible and invisible
part normal maps, as well as their signed distance fields for later
use. The input image and its corresponding SMPL model normal
map are shown in Figure 3.

Figure 3: SMPL model prediction

3.3. 2.5D Sketches Prediction

2.5D sketches refer to 2D images that can express some 3D infor-
mation. Some typical 2.5D sketches are shown in Figure 4, includ-
ing the following types:

• Depth map: a single-channel grayscale image, with each pixel
storing the depth of the 3D object in the current camera space
(i.e., the Z-axis coordinate). The darker the color, the closer it
is to the camera; the lighter the color, the farther it is from the
camera.

• Normal map: a three-channel image, with each pixel storing the
local normal direction of the 3D object at that pixel point. The
surface details of the 3D object can be seen from the normal map.

• Silhouette map: a mask with only two values, 0 and 1, indicat-
ing whether a pixel point belongs to the 3D object. It plays an
essential role when the background is complex or there are mul-
tiple objects.

[GFM∗19] demonstrated the effectiveness of predicting depth
maps, [SSSJ20] proved that predicting normal maps could enhance
the details of reconstruction results. And silhouette maps are indis-
pensable for complex backgrounds.

At this stage, we extract the silhouette map of the human body
and further predict the visible part normal and depth maps, and the
invisible part normal and depth maps. These images are collectively
referred to as 2.5D sketches for later use. The silhouette map can
be predicted using image segmentation techniques, and we focus
on predicting depth and normal maps. The 2.5D sketches predic-
tion process proposed in this paper is shown in Figure 5. The 2.5D
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Figure 4: 2.5D sketches

sketches prediction network has a similar structure to the genera-
tor of the Pix2PixHD [WLZ∗18]. Since invisible part prediction is
required, we concatenate the SMPL normal map obtained in the
SMPL feature extraction stage with the input image and input it
into the prediction network to obtain visible and invisible part nor-
mal predictions. Subsequently, to ensure the consistency between
SMPL model predictions and normal predictions, SMPL refine-
ment [XYTB22] is used. SMPL refinement optimizes the SMPL
model parameters as variables, using the rendered SMPL model
normal maps and silhouette maps as loss terms. This process helps
bring the predicted SMPL model closer to the input images, thereby
further enhancing the quality of the reconstruction. Following that,
to ensure the consistency between depth and normal predictions,
the input image and predicted normals are concatenated and input
into the depth prediction network, resulting in visible and invisible
part depth predictions.

The 2.5D sketches prediction network has a loss function as
shown in Equation (7):

E = El1(NGT ,NP)+Evgg(NGT ,NP) (7)

It consists of an L1 loss and a VGG loss, where NGT represents
the actual depth or normal map, and NP represents the depth or
normal map predicted by the 2.5D sketches prediction network. In
our implementation, the depth prediction network uses only the L1
loss. The training of the 2.5D sketches prediction network is con-
ducted separately. In the training set, we have real normal maps,
depth maps, and accurate SMPL models, thus making the training
of the 2.5D sketches prediction network relatively straightforward.

3.4. Coarse Implicit Function Fitting

The IF-Net is composed of a Multilayer Perceptron (MLP) that
generates an occupancy value output for each query point. That

Figure 5: 2.5D sketches prediction process

is, the function f in Equation (2) is approximated using MLP. The
MLP has a loss function as shown in Equation (8):

L =
1
n

n

∑
i=1

( f (Xi)− f ∗(Xi))
2 (8)

where f (Xi) is the actual occupancy value of the query point, and
f ∗(Xi) is the predicted occupancy value of the query point after
passing through the implicit function fitting network.

4. Fine Implicit Function Fitting by Relaxing the Prior
Constraints Imposed by the SMPL Model

As shown in the first and second rows of Figure 6, the coarse re-
construction results still retain some of the original features of the
SMPL model, and there is a discrepancy in the surface details with
the predicted normal map. We aim to achieve a reconstruction with
richer surface details. We attempted to enhance the surface details
of the reconstruction result using a multi-level structure, but the re-
sult is as shown in the third row of Figure 6. The reconstruction
seems to be agonizingly choosing between the SMPL model and
the normal map, resulting in chaotic outcomes. Thus, a method is
needed to relax the overly strong constraints of the SMPL model

© 2023 Eurographics - The European Association
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Figure 6: SMPL prior constraints limit surface details

to achieve a reconstruction that is rich in surface details without
losing robustness.

This chapter introduces the multi-level structure we used, using
pixel-aligned features and query point depth to replace the SMPL
model priors, thereby relaxing the constraints of the SMPL model.
In Section 5.6, we also elaborate on the trade-off between surface
details and rationality that we discovered during the experiments.

4.1. Using Pixel Aligned Feature to Emphasize 2.5D Sketches

Pixel-aligned feature was first proposed by [SHN∗19]. It represents
a feature space where a corresponding feature vector can be ob-
tained for each point in the input image space, thereby contributing
to the prediction of the final implicit function values. In order to
bring the reconstruction results closer to the 2.5D sketches with
rich details, we use a pixel-aligned feature extractor to separately
extract features from the visible and invisible parts of the 2.5D
sketches. We use a stacked hourglass network as the pixel-aligned
feature extractor [SHN∗19]. During the reconstruction process, the
Φ in Equation (5) becomes the pixel-aligned feature extractor. See
Equation (9). Given the projection x of the query point X , and the
2.5D sketches D and N, the pixel-aligned feature of the query point
can be obtained. θ represents the parameters of the pixel-aligned
feature extractor. The obtained pixel-aligned feature can be used
for subsequent fine reconstruction. Note that features from visible

(Fvis) and invisible parts (Finvis) are extracted separately. This is
achieved through two independent pixel-aligned feature extractors.

Φ
f ine = θ(x,D,N) (9)

4.2. Using Query Point Depth Instead of SMPL Model Prior

Recalling Equation (3), Fcoarse
query is a series of information obtained

by projecting the query point onto the closest face of the SMPL
model, which carries strong priors of the SMPL model. To relax
the priors of the SMPL model in the fine implicit function fitting
stage, its form must be changed. As shown in Equation (10), we
replace it with the depth value of the query point (since the (x, y)
coordinates of the query point are already reflected in the projected
point x of the pixel-aligned feature). Moreover, in order to further
reduce the prior nature of the SMPL features, the feature selection
using SMPL visibility is also removed in the fine IF-Net, and the
visible and invisible parts are concatenated, as shown in Equation
(11).

F f ine
query(X(x,y,z)) = z (10)

S f ine(Fvis,Finvis,X) = [Fvis,Finvis] (11)
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4.3. Coarse IF-Net as Global Feature Extractor

However, the robustness provided by the SMPL model as a prior
for the reconstruction of various complex posture input images is
also necessary. We cannot completely disregard the SMPL priors.
Therefore, we extract the intermediate layer of the Coarse IF-Net as
the global feature of the query point, retaining some, but not strong,
SMPL priors. This maintains the rationality and robustness of the
reconstruction results. Thus, Equation (10) further changes to:

F f ine
query(X(x,y,z)) = [z, f 4

Coarse(X)] (12)

where f 4
Coarse(X) delegate to extract the fourth layer of coarse

IF-Net.

4.4. Fusion and Repair of Coarse and Fine Occupancy Fields

The strategy mentioned above also cause some problems, as shown
in Figure 8. When the pose of the input image is too complex, es-
pecially when the pose is not covered in the training set, the recon-
struction result may miss parts of the hands and feet. We speculate
that this is why the P2S indicator in the comparison experiment in
Section 5.4.1 is slightly higher for our method. This problem can
be solved naturally by using a larger-scale and higher-quality train-
ing set. However, we noticed that the coarse reconstruction result,
which uses the SMPL feature as input, can obtain a more complete
reconstruction but lacks details and has more noise. Therefore, we
propose a fusion and repair algorithm for coarse and fine occu-
pancy fields. The algorithm process is shown in Algorithm 1. By
detecting missing blocks in the fine occupancy field on the depth
axis of the occupancy field (rather than finding the noisy part of

Algorithm 1: The Fusion and Repair Algorithm
Input: FineOccu, CoarseOccu
Output: FineOccu
CoarseOccu = smooth(CoarseOccu);
for i,j in Width(CoarseOccu), Height(CoarseOccu) do

start = -1;
fineConut = 0;
for k in Depth(CoarseOccu) do

if Entering Coarse Surface then
start = k;
fineCount = 0;

end
if InsideFineOccu(i,j,k) then

fineCount++;
end
if Exiting Coarse Surface then

coarseCount = k - start;
if fineCount / coarseCount < threshold then

merge(CoarseOccu, FineOccu, i, j, start, k);
end

end
end

end

Figure 7: Fusion and repair algorithm visualization

Figure 8: Fusion and repair of coarse and fine occupancy fields

the coarse occupancy field), we replace them with the smoothed
coarse occupancy field to fill in the missing parts of the fine recon-
struction result and achieve a more reasonable reconstruction. The
merge function in Algorithm 1 blends the coarse occupancy field
with the fine occupancy field smoothly.

In Figure 7, the visualization of the algorithm can be observed.
First, we find the segments inside the coarse surface (indicated by
the orange dashed lines) and study the proportion of points on this
segment that are located within the fine surface. On the left side
(the orange double-headed arrow), the proportion is relatively small
(<0.5), which is determined to be the missing part. In this case, we
use a fusion of the coarse occupancy field and the fine occupancy
field. On the right side (the blue double-headed arrow), the fine
occupancy field is preserved.

The effect of the fusion and repair method is shown in Figure
8 and Figure 9 provides a close-up view of the fusion part. It can
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Figure 9: Zoomed-in details of the merge part

be seen that our algorithm effectively fills in the missing parts and
minimizes the introduction of additional noise.

4.5. Training Strategy

Since our method is composed of multiple modules, the training
steps are also divided into several parts, specifically as follows:

1. Train the SMPL model prediction network (or use a pre-trained
model, metioned in Section 3.2), and train the 2.5D sketch pre-
diction network (metioned in Section 3.3) using the loss func-
tion as in Equation (7).

2. Train coarse IF-Net (metioned in Section 3.4) using the loss
function as in Equation (8).

3. Train fine IF-Net and pixel aligned feature extractor (metioned
in Section 4.1) together using the loss function as in Equation
(8).

5. Experiments

5.1. Datasets

We utilize THuman2.0 [YZG∗21] as the training set and CAPE
[MYR∗20] as the test set. The data quality of THuman2.0 is supe-
rior, whereas the CAPE dataset exhibits more complex input pos-
tures and contains a certain level of noise, making it extremely suit-
able for testing.

5.2. Implementation Details

The 2.5D sketches prediction network is trained separately. It con-
sists of four downsampling modules, four ResNetBlocks, and four
upsampling modules.

The coarse IF-Net is a MLP which has a dimension of (11,
256, 512, 256, 128, 1), and layers 3, 4, and 5 use residual con-
nections. Its input is consists of 7-dimensional SMPL features and
4-dimensional 2.5D sketches features selected by the SMPL model
visibility. The pixel-aligned feature extraction network uses the
stacked hourglass network described in Section 4.1, consisting of
two stacked hourglass networks. For each query point, visible and
invisible parts can extract 128-dimensional pixel-aligned features,
resulting in 256-dimensional pixel-aligned features. The fourth-
layer features of the coarse IF-Net are then extracted, resulting in
256-dimensional global features. These are concatenated with the
256-dimensional pixel-aligned features and 1-dimensional query

point depth to form a 513-dimensional vector, which is the input to
the fine IF-Net. The fine IF-Net has a dimension of (513, 512, 1024,
512, 256, 1). The third, fourth, and fifth layers use residual connec-
tions. During training, the RMSprop optimizer is used, the learning
rate is set to 1e-4, and no weight decay is set. Similar to [SHN∗19],
each group of training data uses 8000 query points, including points
uniformly sampled from the reconstruction space and points ob-
tained from importance sampling from the GroundTruth mesh sur-
face. For training, the standard deviation for coarse IF-Net is set to
0.5, while for fine reconstruction network it is set to 0.3.

When training the coarse IF-Net, we downsample the 2.5D
sketches to a size of 512 * 512. During the training of the fine
reconstruction network, we use a 512 * 512 window to randomly
crop the 2.5D sketches and then sample and train within the image
range.

All experiments were conducted using an RTX 3090 graphics
card with 24GB of VRAM. According to our observations, both the
training and testing phases require a minimum of 15GB of VRAM.

5.3. Quantitative Analysis Metrics

The reconstruction accuracy is evaluated using three quantitative
analysis metrics. To assess the global accuracy and rationality of
the reconstruction, the Chamfer Distance (CD) and Point to Surface
Distance (P2S) between the reconstructed mesh and the real mesh
are used as quantitative analysis indicators. The lower these two in-
dicators, the closer the reconstructed mesh is to the real mesh, and
the more reasonable the reconstruction. In addition, to evaluate the
level of detail of the reconstructed surface, the normal loss (Nl2)
is introduced as a quantitative analysis metric, which involves ren-
dering normal maps of the real mesh and the reconstructed mesh
from four directions and then calculating the L2 loss. The lower
the normal loss, the more detailed the reconstructed surface.

5.4. Comparative experiment

In this section, we compare our method with state-of-the-art meth-
ods in terms of quantitative and qualitative aspects, demonstrating
the superiority and effectiveness of our approach.

5.4.1. Quantitative Analysis

Table 1 quantitatively analyzes the performance of different meth-
ods on the CAPE dataset, comparing our method with several com-
monly used single-view human body reconstruction methods. It can
be seen that our method is significantly better than the current meth-
ods in terms of CD and Nl2, while slightly worse than the ICON
method in terms of P2S. As analyzed in Section 4.4, this may be
due to the missing limbs at the end when the input pose is very
complex, as is shown in Figure 10. However, the better CD indi-
cates that our method is robust and reasonable overall. After in-
troducing the fusion and repair algorithm proposed in Section 4.4,
all indicators, especially P2S, have been further improved, achiev-
ing state-of-the-art performance. Therefore, our method greatly im-
proves surface details while ensuring reasonable reconstruction re-
sults. This is also evident in the qualitative analysis of the recon-
struction quality in the following sections. For the ClothWild, being
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a parameterized model-based reconstruction approach, it achieves
excellent P2S metrics. However, its surface severely lacks details
that correspond to the input images, resulting in a poor Nl2 metric.
Further qualitative comparison is presented in Figure 11.

Figure 10: Almost the most severe condition of missing limbs

Table 1: Quantitative Comparison with Other Methods

Methods CD↓ P2S↓ Nl2↓
PIFu [SHN∗19] 2.03 1.58 0.117
PaMIR [ZYLD21] 1.68 1.44 0.119
ICON [XYTB22] 1.29 1.15 0.087
ClothWild [MNSL22] 1.21 0.86 0.135
LVD [CPMAMN22] 4.72 5.32 0.236
Ours 1.18 1.26 0.079
Ours Wi/Repair 1.14 1.12 0.078

5.4.2. Qualitative Analysis

Figure 11 presents a comparison between our method and the re-
construction results obtained by non-IF-Based methods. It is ev-
ident that our approach captures rich surface details, while also
faithfully preserving input image features, such as bare feet, hair,
and clothing wrinkles that align with the images.

Figure 12 presents a comparison of the reconstruction results be-
tween our method and other IF-Based methods. It can be seen that
our method demonstrates robustness for more complex poses, pro-
ducing reasonable results for various poses. Compared to the ICON
method, our method preserves rich details while greatly reducing
noise, resulting in clean and tidy outputs that can be used directly
without post-processing.

Figure 11: Comparison with non-IF-Based methods

5.5. Ablation Study

In this section, we prove the effectiveness of our designed multi-
layer IF-Net through quantitative and qualitative ablation studies.
There are five settings for the ablation studies: (1) Applying our
designed multi-level implicit function fitting network, denoted as:
Ours; (2) Using only the coarse implicit function fitting network,
denoted as: Coarse Only; (3) Using only the fine reconstruction
network, denoted as: Fine Only; (4) Using only the coarse implicit
function fitting network and adding the pixel-aligned feature ex-
tractor before the coarse implicit function fitting network, denoted
as: Coarse Only Wi/ PF; (5) Using the multi-level implicit function
fitting network and adding the pixel-aligned feature extractor be-
fore the coarse implicit function fitting network, denoted as: Ours
Wi/CoarsePF. All settings are trained on the THuman2.0 dataset
and tested on the CAPE dataset, yielding the quantitative metrics
shown in Table 2. Note that all the settings did not use the fusion
and repair algorithm.

Table 2: Quantitative Ablation Study

Settings CD↓ P2S↓ Nl2↓
Ours 1.18 1.26 0.079
Coarse Only 1.29 1.15 0.087
Fine Only 1.93 1.68 0.139
Coarse Only Wi/ PF 1.21 1.16 0.083
Ours Wi/CoarsePF 1.35 1.47 0.083

It can be seen that, except for the P2S metric analyzed before,

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 15 Xikai Ma & Jieyu Zhao & Yiqing Teng & Li Yao / Multi-Level Implicit Function for Detailed Human Reconstruction by Relaxing SMPL Constraints

Figure 12: Comparison with IF-Based methods
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Figure 13: Qualitative ablation study

our method performs significantly better than other settings on the
CD and Nl2 metrics, indicating that our multi-resolution network
structure is effective. The CD metric is better than other settings,
and the P2S metric is not far behind other settings, indicating that
our multi-resolution network structure effectively preserves the ro-
bustness and rationality of the single-layer network. The Nl2 nor-

Figure 14: Qualitative ablation study

mal loss is significantly lower than other settings, indicating that
our multi-resolution network structure can increase surface detail.

Figure 13 show the comparison of the reconstruction results ob-
tained from the five settings and the visualization of the Ground
Truth mesh. It can be seen that the Coarse Only setting results in
significant noise, and its surface appears chaotic; the Coarse Only
Wi/PF setting produces a more reasonable reconstruction, but its
surface lacks detail; the Fine Only setting focuses more on surface
details but lacks rationality; Ours Wi/CoarsePF, although increas-
ing the number of parameters, seems to lack rationality; Ours, while
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maintaining the rationality of the reconstruction results, obtains the
richest surface details. To further demonstrate the surface details of
the Ours setting, Figure 14 shows the comparison of surface details
with the Coarse Only Wi/PF setting.

5.6. Trade-off Between Surface Details and Rationality

We found a subtle trade-off between surface details and rationality.
Higher surface details mean closer to the predicted 2.5D sketches,
which is often accompanied by a decline in the rationality of the re-
construction, i.e., less conformity with the SMPL model prediction.
As shown in Figure 15, when we attempt to obtain better surface de-
tails using a pixel-aligned feature extractor with higher resolution,
very irrational conditions appear in the character’s head. However,
the reconstruction results are extremely close to the reconstructed
2.5D sketches (especially the normal map), and the surface has
more details. On the other hand, when not relaxing the SMPL con-
straints, we can see that all the details we want to add through the
multilevel network have turned into noise around the SMPL model,
but the overall reconstruction results are around the SMPL model,
and the proportions of the head are reasonable. In our approach,
we aim to add as much surface detail as possible without losing
rationality, and further ensuring rationality in some extreme cases
with the fusion repair algorithm. Even so, one of the problems that
need to be addressed in the future is how to ensure rationality while
optimizing surface details.

6. Discussion

We propose a multi-level single-view human 3D reconstruction
framework that utilizes SMPL features and 2.5D sketches features
as priors to constrain the plausibility of the reconstruction results.
Coarse IF-Net are used to add sufficient detail to the reconstruc-
tion results, which are further optimized and denoised through
fine IF-Net.Then, robust, reasonable, and detailed reconstructions
are achieved by using our fusion and repair algorithm to combine
coarse and fine occupancy fields. The effectiveness of our method is
demonstrated through comparative experiments and ablation stud-
ies.

Limitations and Future Work. Our method is still based on a sin-
gle image. If given a video sequence, one possible future research
direction is to leverage temporal relationships to achieve faster and
more consistent reconstructions.

Moreover, even we relax the SMPL constraints to incorporate
more surface details, the quality of SMPL model predictions re-
mains crucial to the reconstruction results. A flawed SMPL model
prediction can lead to reconstruction failures, and local inaccura-
cies in SMPL predictions may result in deviations between the re-
constructed output and the input images. Consequently, integrat-
ing a more robust and precise method for SMPL model prediction
would significantly enhance the accuracy of our method.

Additionally, this paper employs a fusion and repair method to
address the potential absence of limbs in fine reconstructions. Due
to the rich details and diverse poses of limbs, especially hands,
there are still issues with generating unreasonable results even in
the state-of-the-art image generation field. Currently, digital human

technology and many explicit human body reconstruction tech-
niques are emerging. High-quality implicit and explicit reconstruc-
tions can complement each other and serve as priors to enhance the
reconstruction quality. For example, implicit function methods can
be used to reconstruct clothing and wrinkles, while explicit mod-
els can be employed for reconstructing faces, hands, and feet, thus
achieving more refined and reasonable reconstructions.
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Figure 15: Trade-off between surface details and rationality

References

[APMTM19] ALLDIECK T., PONS-MOLL G., THEOBALT C., MAGNOR
M.: Tex2shape: Detailed full human body geometry from a single image.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (2019), pp. 2293–2303. 1

[BKL∗16] BOGO F., KANAZAWA A., LASSNER C., GEHLER P.,
ROMERO J., BLACK M. J.: Keep it smpl: Automatic estimation of 3d
human pose and shape from a single image. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part V 14 (2016), Springer, pp. 561–578.
1, 3

[BTFB21] BECHTOLD J., TATARCHENKO M., FISCHER V., BROX T.:
Fostering generalization in single-view 3d reconstruction by learning
a hierarchy of local and global shape priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 15880–15889. 3

[ÇAL∗16] ÇIÇEK Ö., ABDULKADIR A., LIENKAMP S. S., BROX T.,
RONNEBERGER O.: 3d u-net: learning dense volumetric segmentation
from sparse annotation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2016: 19th International Conference,

Athens, Greece, October 17-21, 2016, Proceedings, Part II 19 (2016),
Springer, pp. 424–432. 3

[CPMAMN22] CORONA E., PONS-MOLL G., ALENYÀ G., MORENO-
NOGUER F.: Learned vertex descent: A new direction for 3d human
model fitting. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022). 1, 9

[CPW∗18] CHA Y.-W., PRICE T., WEI Z., LU X., REWKOWSKI N.,
CHABRA R., QIN Z., KIM H., SU Z., LIU Y., ET AL.: Towards fully
mobile 3d face, body, and environment capture using only head-worn
cameras. IEEE transactions on visualization and computer graphics 24,
11 (2018), 2993–3004. 1

[CXG∗16] CHOY C. B., XU D., GWAK J., CHEN K., SAVARESE S.:
3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
VIII 14 (2016), Springer, pp. 628–644. 3

[FP09] FURUKAWA Y., PONCE J.: Accurate, dense, and robust multi-
view stereopsis. IEEE transactions on pattern analysis and machine
intelligence 32, 8 (2009), 1362–1376. 1

[GFM∗19] GABEUR V., FRANCO J.-S., MARTIN X., SCHMID C., RO-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



14 of 15 Xikai Ma & Jieyu Zhao & Yiqing Teng & Li Yao / Multi-Level Implicit Function for Detailed Human Reconstruction by Relaxing SMPL Constraints

GEZ G.: Moulding humans: Non-parametric 3d human shape estimation
from single images. In Proceedings of the IEEE/CVF international con-
ference on computer vision (2019), pp. 2232–2241. 2, 3, 4

[HCJS20] HE T., COLLOMOSSE J., JIN H., SOATTO S.: Geo-pifu: Ge-
ometry and pixel aligned implicit functions for single-view human re-
construction. Advances in Neural Information Processing Systems 33
(2020), 9276–9287. 2, 3

[HTCH15] HUANG P., TEJERA M., COLLOMOSSE J., HILTON A.: Hy-
brid skeletal-surface motion graphs for character animation from 4d per-
formance capture. ACM Transactions on Graphics (ToG) 34, 2 (2015),
1–14. 1

[HTM19] HÄNE C., TULSIANI S., MALIK J.: Hierarchical surface pre-
diction. IEEE transactions on pattern analysis and machine intelligence
42, 6 (2019), 1348–1361. 3

[HXL∗20] HUANG Z., XU Y., LASSNER C., LI H., TUNG T.: Arch:
Animatable reconstruction of clothed humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 3093–3102. 3

[HZJ∗21] HONG Y., ZHANG J., JIANG B., GUO Y., LIU L., BAO H.:
Stereopifu: Depth aware clothed human digitization via stereo vision.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 535–545. 3

[JCSN20] JINKA S. S., CHACKO R., SHARMA A., NARAYANAN P.:
Peeledhuman: Robust shape representation for textured 3d human body
reconstruction. In 2020 International Conference on 3D Vision (3DV)
(2020), IEEE, pp. 879–888. 3

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the fourth Eurographics symposium on
Geometry processing (2006), vol. 7, p. 0. 3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer graph-
ics 21, 4 (1987), 163–169. 2, 3

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: Smpl: A skinned multi-person linear model. ACM trans-
actions on graphics (TOG) 34, 6 (2015), 1–16. 1, 3, 4

[MNSL22] MOON G., NAM H., SHIRATORI T., LEE K. M.: 3d clothed
human reconstruction in the wild. In European Conference on Computer
Vision (ECCV) (2022). 1, 9

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2019), pp. 4460–4470. 3

[MST∗21] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. Communications of the ACM 65, 1
(2021), 99–106. 3

[MYR∗20] MA Q., YANG J., RANJAN A., PUJADES S., PONS-MOLL
G., TANG S., BLACK M. J.: Learning to dress 3d people in genera-
tive clothing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020), pp. 6469–6478. 8

[OBB20] OSMAN A. A., BOLKART T., BLACK M. J.: Star: Sparse
trained articulated human body regressor. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VI 16 (2020), Springer, pp. 598–613. 3

[OERF∗16] ORTS-ESCOLANO S., RHEMANN C., FANELLO S., CHANG
W., KOWDLE A., DEGTYAREV Y., KIM D., DAVIDSON P. L., KHAMIS
S., DOU M., ET AL.: Holoportation: Virtual 3d teleportation in real-
time. In Proceedings of the 29th annual symposium on user interface
software and technology (2016), pp. 741–754. 1

[OHT∗20] ONIZUKA H., HAYIRCI Z., THOMAS D., SUGIMOTO A.,
UCHIYAMA H., TANIGUCHI R.-I.: Tetratsdf: 3d human reconstruction
from a single image with a tetrahedral outer shell. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 6011–6020. 2

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition (2019), pp. 165–174.
3

[PMPHB17] PONS-MOLL G., PUJADES S., HU S., BLACK M. J.:
Clothcap: Seamless 4d clothing capture and retargeting. ACM Trans-
actions on Graphics (ToG) 36, 4 (2017), 1–15. 1

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th In-
ternational Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18 (2015), Springer, pp. 234–241. 3

[ROUG17] RIEGLER G., OSMAN ULUSOY A., GEIGER A.: Octnet:
Learning deep 3d representations at high resolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2017),
pp. 3577–3586. 3

[SBR22] SU S.-Y., BAGAUTDINOV T., RHODIN H.: Danbo: Disentan-
gled articulated neural body representations via graph neural networks.
In European Conference on Computer Vision (2022). 3

[SHN∗19] SAITO S., HUANG Z., NATSUME R., MORISHIMA S.,
KANAZAWA A., LI H.: Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In Proceedings of the IEEE/CVF
international conference on computer vision (2019), pp. 2304–2314. 2,
3, 6, 8, 9

[SSSJ20] SAITO S., SIMON T., SARAGIH J., JOO H.: Pifuhd: Multi-
level pixel-aligned implicit function for high-resolution 3d human digiti-
zation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020), pp. 84–93. 2, 3, 4

[SYZR21] SU S.-Y., YU F., ZOLLHOEFER M., RHODIN H.: A-nerf:
Surface-free human 3d pose refinement via neural rendering. arXiv
preprint arXiv:2102.06199 (2021). 3

[TDB17] TATARCHENKO M., DOSOVITSKIY A., BROX T.: Octree
generating networks: Efficient convolutional architectures for high-
resolution 3d outputs. In Proceedings of the IEEE international con-
ference on computer vision (2017), pp. 2088–2096. 3

[TZEM17] TULSIANI S., ZHOU T., EFROS A. A., MALIK J.: Multi-
view supervision for single-view reconstruction via differentiable ray
consistency. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2017), pp. 2626–2634. 3

[VCR∗18] VAROL G., CEYLAN D., RUSSELL B., YANG J., YUMER E.,
LAPTEV I., SCHMID C.: Bodynet: Volumetric inference of 3d human
body shapes. In Proceedings of the European conference on computer
vision (ECCV) (2018), pp. 20–36. 1, 3

[WLZ∗18] WANG T.-C., LIU M.-Y., ZHU J.-Y., TAO A., KAUTZ J.,
CATANZARO B.: High-resolution image synthesis and semantic manip-
ulation with conditional gans. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2018), pp. 8798–8807. 5

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG
X., XIAO J.: 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (2015), pp. 1912–1920. 3

[WZL∗18] WANG N., ZHANG Y., LI Z., FU Y., LIU W., JIANG Y.-
G.: Pixel2mesh: Generating 3d mesh models from single rgb images.
In Proceedings of the European conference on computer vision (ECCV)
(2018), pp. 52–67. 3

[XWC∗19] XU Q., WANG W., CEYLAN D., MECH R., NEUMANN U.:
Disn: Deep implicit surface network for high-quality single-view 3d re-
construction. Advances in neural information processing systems 32
(2019). 3

[XYTB22] XIU Y., YANG J., TZIONAS D., BLACK M. J.: Icon: im-
plicit clothed humans obtained from normals. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2022),
IEEE, pp. 13286–13296. 2, 3, 4, 5, 9

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Xikai Ma & Jieyu Zhao & Yiqing Teng & Li Yao / Multi-Level Implicit Function for Detailed Human Reconstruction by Relaxing SMPL Constraints 15 of 15

[YSR∗20] YAO Y., SCHERTLER N., ROSALES E., RHODIN H., SIGAL
L., SHEFFER A.: Front2back: Single view 3d shape reconstruction via
front to back prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020), pp. 531–540. 3

[YZG∗21] YU T., ZHENG Z., GUO K., LIU P., DAI Q., LIU Y.: Func-
tion4d: Real-time human volumetric capture from very sparse consumer
rgbd sensors. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2021), pp. 5746–5756. 8

[ZTZ∗21] ZHANG H., TIAN Y., ZHOU X., OUYANG W., LIU Y., WANG
L., SUN Z.: Pymaf: 3d human pose and shape regression with pyrami-
dal mesh alignment feedback loop. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (2021), pp. 11446–11456.
4

[ZYLD21] ZHENG Z., YU T., LIU Y., DAI Q.: Pamir: Parametric model-
conditioned implicit representation for image-based human reconstruc-
tion. IEEE transactions on pattern analysis and machine intelligence 44,
6 (2021), 3170–3184. 2, 3, 4, 9

[ZYW∗19] ZHENG Z., YU T., WEI Y., DAI Q., LIU Y.: Deephu-
man: 3d human reconstruction from a single image. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (2019),
pp. 7739–7749. 1, 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.


