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Figure 1: Face swapping results generated by our approach. Compared to existing GAN-based face swapping approaches, our method effectively embeds
the identity information from the source image, maintains the attributes from the target image, and generates images with enhanced realism.

Abstract
Face swapping is a technique that replaces a face in a target media with another face of a different identity from a source face
image. Currently, research on the effective utilisation of prior knowledge and semantic guidance for photo-realistic face swap-
ping remains limited, despite the impressive synthesis quality achieved by recent generative models. In this paper, we propose a
novel conditional Denoising Diffusion Probabilistic Model (DDPM) enforced by a two-level face prior guidance. Specifically,
it includes (i) an image-level condition generated by a 3D Morphable Model (3DMM), and (ii) a high-semantic level guidance
driven by information extracted from several pre-trained attribute classifiers, for high-quality face image synthesis. Although
swapped face image from 3DMM does not achieve photo-realistic quality on its own, it provides a strong image-level prior, in
parallel with high-level face semantics, to guide the DDPM for high fidelity image generation. The experimental results demon-
strate that our method outperforms state-of-the-art face swapping methods on benchmark datasets in terms of its synthesis
quality, and capability to preserve the target face attributes and swap the source face identity.

CCS Concepts
• Computing methodologies → Computer graphics; Image manipulation; Computational photography;

† ∗Corresponding authors: Jian Zhang and Hui Fang

1. Introduction

Face swapping is a technique that transfers associated facial iden-
tity from a source image to a target media (which can be an im-
age frame or a video clip); while preserving facial attributes of
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the target media, including pose, expressions, lighting condition,
and background [NNN∗22]. Since the last decade, face swapping
has attracted significant research attention [LBY∗19, ZFW∗20,
XYH∗21, LPG∗23], due to its various applications in film-making
[Ver20], virtual human creation [ML21], and privacy protection
[NNN∗22], etc.

Recently, many methods have been proposed for high-fidelity
face swapping, including 3D Morphable Model (3DMM) fitting
[NMT∗18, NKH19, JLW∗20] and Generative adversarial networks
(GANs) [CCNG20,WCZ∗21]. 3DMM [BV03], one of the most tra-
ditional face representations, has been applied to disentangle and
parameterise face identity and other attributes of two facial images,
as a means to blend source identity into a target image. However,
the quality of the synthesised face is far from desirable due to its
linear approximation assumption of the 3DMM [BV03]. In con-
trast, GANs are more capable of generating high-quality swapped
face images, as the result of the constant adversarial competition
between a generator network and a discriminator network. How-
ever, GANs often suffer from training instabilities, which leads to
oscillations during optimization and convergence issues [BSSE21].

Denoising Diffusion Probabilistic Models (DDPMs) [DN21,
ND21,PCWS22,RBL∗22] have emerged as an alternative to GANs
[CWD∗18]. As evidenced in [BSSE21], on the one hand, in terms
of high synthesis quality and diversity, DDPMs outperform GANs
in various applications. On the other hand, synthesis diversity hin-
ders the embedding of desired high semantics into their synthe-
sised images. To tackle this issue, recently, conditional denoising
diffusion probabilistic models utilise classifier guidance [DN21] or
text-embeddings [SCS∗22], in order to provide prior knowledge as
a constraint to facilitate the preservation of high semantics in those
synthesised images. Nevertheless, research on the effective utilisa-
tion of semantic guidance in actual applications remains limited.

In this paper, we propose a novel conditional DDPM-based face
swapping approach to achieve high-fidelity face synthesis and; at
the same time, to embed extra face semantics, e.g., facial iden-
tity, into the synthesised image by using multiple prior guidance.
Specifically, at the model training stage, we utilise a 3DMM to
generate a swapped face image as an image-level condition to
facilitate the effective convergence of our DDPM model. At the
model inference stage, besides the image-level condition, we have
used high-level face semantics extracted from several pre-trained
attribute classifiers, as a means to provide further guidance to en-
hance identity embedding and attribute preservation in the diffu-
sion process. As illustrated in Figure 1, compared to state-of-the-
art (SoTA) methods, especially GAN-based models, our approach
is capable of producing photo-realistic face images with embedded
identity information from the source images. Our contributions can
be summarised as follows:

• To our best knowledge, we are the first to introduce a condi-
tional DDPM approach enforced by multiple semantic guidance
for face swapping. Although we are aware of the fact that some
previous work either used image condition in DDPM or used
semantic guidance to achieve generic synthesis, we have not dis-
covered any other work that use these two components simulta-
neously in this field.

• We exploit an image-level condition generated by a 3DMM to
exploit prior knowledge for effective face swapping.

• We make use of a high-semantic level guidance driven by infor-
mation extracted from several pre-trained attribute classifiers to
achieve high-quality face image synthesis.

The remainder of the paper is organised as follows. Next, related
work is discussed in Section 2. In Section 3, we explain the details
of our proposed approach. Section 4 presents the experimental re-
sults to demonstrate that the proposed method outperforms SoTA
benchmarks. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Face Swapping

Face swapping aims to change the facial identity of a target im-
age but to keep its other facial attributes. Early attempts require
manual interactions with 3D-based models to synthesise a new
face image [BKD∗08, BSVS04, CTL∗09]. To address this limita-
tion, Face2Face [TZS∗16] fits a 3DMM to both source and target
faces, which enables automatic face swapping. Further, Nirkin et
al. [NMT∗18] have combined 3DMM and face segmentation model
to achieve a robust face swapping approach under uncontrolled
conditions. However, due to inherent linear approximation charac-
teristics, 3DMM fitting approaches cannot produce photo-realistic
synthesis.

Face swapping approaches have been dominated by GAN-based
models [BCW∗18,LBY∗19,ZLW∗21]. IPGAN [BCW∗18] applies
two encoders to disentangle identity from the source face and at-
tributes from the target face, and recombine these two vectors as an
input of a generator to swap faces. Similarly, SimSwap [CCNG20]
presents an ID injection module as a conditional input of a gen-
erator to embed identity into the synthesised face. While in FS-
GAN [NKH19], two generators, named a reenactment generator
and a segmentation generator, are used to produce the reenacted
source face and the background target image. They are further com-
bined by using an inpainting generator and a blending generator,
to synthesise new faces. To handle facial occlusions, FaceShifter
[LBY∗19] designs a second stage to refine occluded face regions
by identifying them in a self-supervised manner.

Sharing the most similarity to our work, HifiFace [WCZ∗21] ex-
tracts conditional facial representations from a 3DMM [BV99] as
an extra input of a generator of GANs to produce 3D shape-aware
identity face synthesis. Our method distinguishes from it in two as-
pects: (i) we utilise a DDPM to generate more realistic face swap-
ping images, and (ii) we apply an image-level condition generated
from 3DMM for finer synthesis guidance of our DDPM.

2.2. Diffusion Model

Diffusion model, as an emerging generative model, is able to grad-
ually denoise and produce high-quality synthesised images through
learning a reversed diffusion process [SDWMG15, HJA20]. It ex-
ploits a deep neural network to learn the reverse trajectory in or-
der to recover high-quality data samples from noisy images, as-
suming a data distribution can be converted into a simple distri-
bution, e.g., Gaussian distribution, by adding noises step by step,
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Figure 2: The overview of our approach. We use 3DMM to extract coefficients of the source and target faces to obtain fsrc and ftar . We then recombine the
identity parameters from fsrc and the other parameters from ftar to achieve f f use. Subsequently, we reconstruct and render the face image xrecon using f f use.
In the sampling process, xrecon serves as an image-level condition input for our conditional DDPM, while multiple additional facial attribute classifiers are
deployed to guide the generation of the conditional DDPM.

i.e., diffusion process. Upon demonstrating its potential to gener-
ate photo-realistic image samples [HJA20], DDPM has been ap-
plied in various image processing tasks, including image super-
resolution [SHC∗22], text-to-image generation [NDR∗21], and im-
age editing [MHS∗21], etc.

Different models of conditional DDPMs are proposed to enforce
conditions to preserve high semantics in targeted synthesised im-
ages. For instance, In [DN21], classifier guidance is proposed to
use gradients to guide diffusion sampling toward a random class.
This strategy has further improved the FID metric for image syn-
thesis. In a super-resolution task, Saharia et al. [SHC∗22] utilise
low-resolution images as the condition of a DDPM to generate their
corresponding high-resolution images. Furthermore, conditional
DDPMs have also been widely applied to text-to-image genera-
tion [NDR∗21, RBL∗22] and text-guided image editing [ALF22]
by injecting text representations. Our model of conditional DDPM
investigates different types of conditions, including image-level
conditions and high-semantic conditions, to apply the conditional
DDPM to a specific application, i.e., face swapping, for the first
time.

Figure 3: The process of using 3DMM to obtain the reconstructed im-
age xrecon.

3. Conditional DDPM for face swapping

As illustrated in Figure 2, our approach utilises 3DMM model fit-
ting to generate an initialised swapped face image (Subsection. 3.1)
as an image-level condition to guide the diffusion process. In ad-
dition to the image-level condition, after training the conditional
DDPM, three high-semantic classifiers, including identity, expres-
sion and pose extractors, are used to provide our model of con-
ditional DDPM with further guidance. The actual training process
of the conditional DDPM is explained in Subsection 3.2. In Sub-
section 3.3, we detail the high-semantics guidance at the inference
stage.
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3.1. Image-level condition generation by 3DMM

3DMM is a linear 3D-aware facial model that disentangles and pa-
rameterised a 2D face image into a list of parameters, which can
be used to reconstruct the image. In our work, we deploy a pre-
trained 3DMM model from [DYX∗19]. Given an input face image,
the 3DMM regresses a vector v = (α, β, δ, γ, p) ∈ R257, where α

∈ R80 , β ∈ R64, δ ∈ R80, γ ∈ R27 and p ∈ R6 to represent the
identity, the expression, the texture, the illumination and the pose,
respectively. Using these parameters, the 3D face shape (S) and its
texture (T) can be represented through two linear equations:

S = S(α,β) = S+Bidα+Bexpβ (1)

T = T(δ) = T+Btδ (2)

where (i) S and T are the average face shape and texture; (ii)
Bid , Bexp, and Bt , scaled with standard deviations, are the PCA
bases of identity, expression, and texture, respectively; and (iii) α,
β, and δ are the corresponding coefficient vectors for generating a
3D reconstructed face.

To generate the image-level condition from 3DMM, as illus-
trated in Figure 2, we fit both the source image and the target image
to the 3DMM model, so as to extract two sets of parameters, fsrc
and ftar. After generating f f use via recombining identity parame-
ters from the source image and other attributes from the target im-
age, the conditional image of our DDPM xrecon is synthesised by
combining the rendered face region xsyn and the target background
image xbg. The conditional image generation can be formulated as:

xrecon = P
(
xbg,RR(Swap(F3d (xsrc) ,F3d (xtar)))

)
(3)

where (i) P(·) is linear fusion function; (ii) xsrc is the source
image; (iii) xtar is the target image; (iv) xbg is the background im-
age for star; (v) RR(·) refers to 3D reconstruction and rendering;
(vi) Swap(·) is a parameter swap function; and (vii) the F3d(·) is
the 3DMM. An example of the conditional image is illustrated in
Figure 3. Although photo-realistic quality has not been achieved,
the reconstructed face offers a reasonable condition to guide the
DDPM model, as a means to generate the swapped face with all
desired attributes.

3.2. Training process of the conditional DDPM

Diffusion models generate a realistic image from a standard Gaus-
sian distribution by reversing a recurrent noising process. We for-
mulate our problem statement as learning a parametric approxi-
mation to p(x|xrecon) through a stochastic iterative refinement that
maps a 3D reconstructed image xrecon to a photo-realistic image
x ∈ Rd . Subsequently, the problem is approached by adapting the
DDPM in [HJA20] to a conditional image generation model. Fol-
lowing the work in [HJA20], we first define a forward Markovian
diffusion process q that gradually adds Gaussian noise to image x0
over T iterations as shown in the following equation:

Figure 4: Training process of conditional DDPM. The ground truth im-
age xGT is passed through the 3D reconstruction model to obtain the recon-
structed image xrecon, xGT and xrecon are paired into the conditional DDPM
for training, where xrecon is the condition.

q(xt | xt−1) =N
(
xt |
√

αtxt−1,(1−αt)I
)

(4)

where the scalar parameters αt are hyper-parameters, subject to
0 < αt < 1, which determines the variance of the noise added at
each iteration. Inference under our model is defined as a reverse
Markovian process, which is expressed as:

pθ (xt−1 | xt ,xrecon) =N
(

xt−1 | µθ (xt ,xrecon, t) ,σ2
t I
)

(5)

where xrecon is the conditional image, µθ(·) and σt(·) represent
the mean and variance of the distribution, which can be parameter-
ized by using deep neural networks. In practice, it is well known
that the use of noise approximation model fθ works best instead of
using µθ(·) [HJA20]. Thus, µθ(xt ,xrecon) can be expressed as:

µθ (xt ,xrecon, t) =
1√
αt

(
xt −

1−αt√
1− ᾱt

fθ (xt ,xrecon, t)
)

(6)

where ᾱt = ∏
t
i=1 αi and we set the variance of

pθ (xt−1 | xt ,xrecon) to (1−αt), a default given by the variance of
the forward process in [PPSRHR16]. With these definitions, each
iteration of the iterative refinement under our model is expressed
as:

xt−1←
1√
αt

(
xt −

1−αt√
1− ᾱt

fθ (xt ,xrecon, t)
)
+
√

1−αtεt (7)

where εt ∼N (0,I). Given xt , the reverse process of the diffusion
model outputs xt−1. After iterations, a high-quality synthesised im-
age x̂0 is obtained as the final output.

The training process is illustrated in Figure 4. After generating
the condition image from 3DMM described in the previous subsec-
tion, it is applied as a condition of the DDPM to learn the denoising
neural network. Notably, at the training stage, different from the
inference stage, we adopt a self-supervised technique to train the
conditional DDPM. In doing so, we generate the conditional image
by synthesising the face patch via the 3DMM, and subsequently
render it with the same image background. The denoising model
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Algorithm 1: Training the Conditional DDPM
Data: Groundtruth image xGT

1 Begin
2 xbg← xGT
3 xrecon = P

(
xbg,RR(F3d (xGT ))

)
4 repeat
5 (xrecon,x0)∼ p(xrecon,x)
6 ε∼N (0,I)
7 Take a gradient descent step on
8 ∇θ ∥ fθ (xt ,xrecon, t)− ε∥2

2
9 until converged

10 End

fθ (xt ,xrecon, t) takes the conditional image xrecon and the noise im-
age xt as input, and is trained to predict the noise vector for iterative
recovery. The proposed loss function for training fθ is:

L = ∥ fθ (xt ,xrecon, t)− ε∥2
2 (8)

where xt is a noisy version of input image xGT at timestep t using
Equation 4. The pseudocode for training the conditional DDPM is
shown in Algorithm 1.

3.3. High-semantic Guidance at the inference stage

The use of guidance has become a popular technique to embed fur-
ther semantics into a diffusion model. To embed one high semantic
attribute y, a classifier p(y|xt , t) is used in noised images to compute
the probability of y [DN21]. Subsequently, its gradient is derived to
guide the diffusion model for sampling in the next iteration. This
process can be formulated as:

pθ (xt−1 | xt ,y) =N (µ+ sσ∇xt log pθ (y | xt) ,σI) (9)

where s is a constant to represent the guidance scale, y is class
label, and µ and σ are mean and variance of the data distribution.
Since the guidance at the early iterations of the diffusion process
is weak, we deploy the method in [SHC∗22] to estimate x̂0 and
use the estimated output to compute the guidance gradients. This
strategy has made the diffusion model converge more efficiently.
The estimated x̂0 is computed using the following equation:

x̂0 =
1√
ᾱt

(
xt −
√

1− ᾱt fθ (xt ,xrecon, t)
)

(10)

where fθ (xt ,xrecon, t) represents the denoising model. To en-
hance the effect of the face swapping, we utilise features, including
identity embedding subspace from Arcface [DGXZ19], pose esti-
mator from [DGV∗20], and expression extractors from [NHSC19],
as the semantic guidance during the diffusion sampling process.
Features from these pre-trained models are used instead of 3DMM
parameters as guidance because (i) they are more distinctive se-
mantic features compared to the 3DMM parameters, and (ii) the

Algorithm 2: High-semantics Guidance for Conditional
DDPM

Data: source image xsrc, target image xtar
Result: output x0 includes the identity information of the
xsrc and the attribute information of the xtar

1 Begin
2 xT ∼N (0,I)
3 xbg← xtar
4 xrecon = P

(
xbg,RR(Swap(F3d (xsrc) , F3d (xtar)))

)
5 for t = T , · · · , 1 do
6 x̂0 =

1√
αt

(
xt −
√

1−αt fθ (xt ,xrecon, t)
)

7 ϕid ← cos(Did (x̂0) ,Did (xsrc))

8 ϕexp ← ||FN(Dexp(x̂0))−FN(Dexp(xtar))||22
9 ϕpose ← ||FN(Dpose(x̂0))−FN(Dpose(xtar))||22

10 ϕMG ← λidϕid−λexpϕexp−λposeϕpose
11 x̂t−1 N (µ+ σ∇xt ϕMG ,σ)
12 End for
13 Return x0
14 End

two-level conditions could complement each other by reducing re-
dundancy, which could be introduced if the 3DMM parameters are
used.

Identity Guidance. To enhance the source identity information
in the generated images, we ensure that the identity vectors ex-
tracted from both source and generated images are close to each
other in the Arcface embedding subspace. The identity similarity
we use as guidance is:

ϕid = cos(Did(xsrc), Did(x̂0)) (11)

where Did is the identity extractor [DGXZ19], xsrc is the source
image and x̂0 is obtained by the Equation 10.

Expression Guidance. To align the facial expression of the gen-
erated image to the one in the target image, we use the MLCR
model [NHSC19] and compute the l2 distance between the expres-
sion vectors from the paired images to guide the conditional DDPM
sampling process:

ϕexp = ∥F(Dexp(xtar))−F(Dexp(x̂0))∥2
2 (12)

where Dexp is the expression extractor [NHSC19], and F(·) is
the normalization function.

Pose Guidance. Pose plays a crucial role in face swapping, and
most existing face swapping methods cannot preserve the pose of
the target face very well. Thus, some deepfake detection methods
use head pose as a cue for the detection of face swapping [YLL19].
Bearing this in the mind, we incorporate pose guidance into the
sampling process of the conditional DDPM to ensure head pose
preservation in the target image. In specific, we deploy the pose
estimator proposed in [DGV∗20] to extract pose vectors of the tar-
get face xtar and the denoised image by localising their key fiducial
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Method \Metric ID Retrieval ↑ ID Cos ↑ Exp. Error ↓ Pose. Error↓
FaceSwap 54.19% 0.330 ± 0.16 0.14± 0.06 2.48 ± 1.92
Deepfakes 81.96% 0.437 ± 0.13 0.19 ± 0.06 4.24 ± 2.60
HiFiface 92.17% 0.565 ± 0.09 0.30 ± 0.06 2.94 ± 1.64
Simswap 93.07% 0.597 ± 0.08 0.12 ± 0.04 2.40 ± 1.40
FSGANv2 94.60% 0.589 ± 0.10 0.13 ± 0.05 2.40 ± 2.24
Ours 96.01% 0.614± 0.08 0.12 ± 0.04 2.24 ± 1.13

Table 1: Quantitative comparison on FF++ dataset. We compare out approach with other SOTA methods based on ID retrieval, ID cosine similarity,
expression error and pose error , respectively. Here, ↑: the higher the better; ↓: the lower the better.The expression error and pose error are evaluated based
on the L2 distances generated by expression feature extractor [VA19] and pose estimator [RCR18]. Note that the model used for testing is different from the
model used in the semantic guidance in our approach.

Figure 5: Comparison to other SoTA methods. The methods we compare include: FaceSwap, Deepfakes, HiFiFace, SimSwap, FSGANv2. Here, Src repre-
sents the source image, Tar represents the target image. From the generated results, our method can preserve the identity information of the source image and
the attribute information of the target image, and generate higher-quality images at the same time.

points. We then compute the l2 distance between xtar and the pose
vector of xt to enhance their consistency:

ϕpose = ∥F(Dpose(xtar))−F(Dpose(x̂0))∥2
2 (13)

where Dpose is the key points extractor implemented in
[DGV∗20]. To guide the diffusion sampling process towards the
desired images, we integrate gradients from these multiple guid-
ance modules formulated as follows:

xt−1 ∼N (µ+σ∇xt ϕMG,σ)

µ = µθ (xt ,xrecon, t) ,σ = (1−αt)

ϕMG = λidϕid−λexpϕexp−λposeϕpose

(14)

where µθ(·) and σ represent the mean and variance of
pθ (xt ,xrecon, t), λs are weights to balance these items and they are
set heuristically as: λid=1000, λexp=200, λpose=100. The pseudo-
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Figure 6: Face matrix generated by our approach. These images are randomly picked from the Internet. All the target and source images are excluded from
the training set. The results show that our method can embed the identity of the source face while preserving the attributes of the target face.

code of conditional DDPM with multiple facial guidance is sum-
marized in Algorithm 2.

4. Experiment

4.1. Implementation Details

To optimize the conditional DDPM for our task, we first construct a
new dataset derived from two commonly-used face datasets, which
are CelebaHQ [KALL17] and VGGFace2 [CSX∗18]. Secondly, we
train the conditional DDPM using the new dataset, after aligning
and cropping faces to 224 * 224. More specifically, we execute a
3D reconstruction and rendering process on the images from Cele-
baHQ and VGGFace2 via F3d to obtain reconstructed correspond-

ing images. During the training process, we fed both the original
and reconstructed images into the conditional DDPM. The new
dataset comprises 30k pairs of original and reconstructed images,
each with a resolution of 224*224. We implement our network us-
ing PyTorch [PGM∗19]. Adam optimizer [KB14] is used for train-
ing, and the learning rate is set to 0.0001. Our model is trained at
2000 epochs.

Competing Methods. We compare our model with state-of-the-
art face swap methods. These include FaceSwap [Fac12] and Deep-
fakes [Dee12], which are famous open-sourced tools; and Sim-
Swap [CCNG20], HiFiFace [WCZ∗21], and FSGANv2 [NKH22],
which are all face swapping methods based on GANs. We use
the officially released FaceSwap and Deepfakes results from the

© 2023 Eurographics - The European Association
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FF++ [RCV∗19] dataset, and the officially released codes and mod-
els for producing swapped results of other methods.

4.2. Quantitative Comparisons

We conduct quantitative experiments on the FF++ dataset
[RCV∗19]. Following the approach outlined in [LBY∗19], we uni-
formly sample 10 frames from the 280 videos to obtain 2800 faces
for evaluation. We utilise four commonly used metrics: the iden-
tity (ID) cosine similarity and ID retrieval scores are measured be-
tween the swapped results, and the source uses an independent pre-
trained identity-recognition network [WWZ∗18]. Specifically, the
computation process of the ID retrieval score is identical to that
in [LBY∗19]. To evaluate the extent to which the generated results
preserve other attributes of the target image, we calculate the ex-
pression error and pose error based on the L2 distances generated
by expression [VA19] and pose extractors [RCR18]. To ensure eval-
uation fairness, the pose and expression extractor models for eval-
uation are different and independent to the ones used for guidance
in our approach.

As shown in Table 1, our method achieved the best performance
when compared to other SoTA methods. In terms of source ID em-
bedding, the ID retrieval of our method reaches 96.01% which is
1.41% better than the runner-up. Similarly, the average ID cosine
similarity between our synthesised faces and source faces reaches
0.614, which is the best performance in all the competing methods.
For the preservation of expression from target faces, ours is equiva-
lent to SimSwap but better than any other method. In terms of pose
preservation, the average error between the target faces and synthe-
sised faces is 2.24, which is also the best among all the methods.

4.3. Qualitative Evaluation

The qualitative results are illustrated in Figure 5 and Figure 6. As
shown in Figure 5, we compare our results with FaceSwap [Fac12],
Deepfakes [Dee12], SimSwap [CCNG20], HiFiFace [WCZ∗21]
and the latest work FSGANv2 [NKH22]. The comparisons are
based on the test data provided by FF++. As can be observed,
the image generated by SimSwap effectively retains the identity
information of the source image. However, it falls short of ade-
quately preserving attribute information, such as expressions, from
the target image. Similarly, the image created by FSGANv2 faces
the same challenges, including inconsistencies in the positioning
of the eyes in the generated image relative to the target. Moreover,
the unnatural lighting detracts from the realism of the generated
results. In contrast, our method can achieve a better balance be-
tween identity information and attribute information retention. The
generated image not only embeds the identity information of the
source image; but also preserves the attributes of the target image,
e.g., expression, pose and background. Furthermore, our method is
able to generate more realistic results when compared to other face
swapping methods.

We further produce a visualisation matrix to illustrate the synthe-
sis quality by swapping a set of source faces with another set of tar-
get faces in Figure 6. Here, we randomly pick eight source images
and eight target images to avoid cherry-picking illustrations. This
matrix demonstrates that our approach has successfully swapped
faces with a generalised capability.

Method ID Similarity↑ Att.Preservation ↑ Naturalness↑
3DMM 2.67 ± 0.56 2.56 ± 0.57 2.29 ± 0.55
FaceSwap 2.73 ± 0.55 2.67 ± 0.56 2.67 ± 0.57
Deepfakes 2.84 ± 0.50 2.76 ± 0.55 2.62 ± 0.56
HiFiface 3.13 ± 0.52 3.18 ± 0.54 3.33 ± 0.60
SimSwap 3.58 ± 0.61 3.36 ± 0.58 3.62 ± 0.57
FSGANv2 3.24 ± 0.58 3.38 ± 0.58 3.67 ± 0.54
Ours 3.67 ± 0.56 3.51 ± 0.58 3.89 ± 0.43

Table 2: User Study’s Ranking Scores. Higher scores indicate more real-
istic results generated by the method

4.4. User Evaluation

We conducted a user study on the FF++ dataset with 45 participants
with normal vision (25 male, 20 female; aged 20 to 52, average age
26.91±6.36 ) to further compare the synthesised image quality of
the face swapping methods. Participants were informed about the
purpose of the study but not about any of our hypotheses. Partici-
pants were given the dataset of source images, target images, and
the face swapping results generated by these methods. Then, they
were asked to rank the quality of the fake images based on the fol-
lowing criteria: (i) identity similarity with the source images; (ii)
attribute preservation, which includes expressions and backgrounds
consistent with the target images; and (iii) naturalness, which indi-
cates whether there are visible artefacts on the synthesised face and
whether the figures resemble real faces. Prior to the evaluation, de-
tailed instructions were provided to the participants. We devised a
scoring system with the highest score being 5 and the lowest being
1 for each case.

The results reported in Table 2 are based on the responses of
the 45 participants. We can observe that GAN-based methods out-
perform traditional methods, such as FaceSwap and Deepfakes,
with large margins. Regarding the GAN-based methods, the iden-
tity preservation score of Simswap is higher than that of HiFi-
face and FSGANv2, but SimSwap does not perform very well
on attribute preservation of target images. Although the Identity
Similarity score of FSGANv2 is lower than SimSwap, the score
of attribute preservation is higher than SimSwap. In contrast, our
method achieved the best results in all the evaluation questions.
It demonstrates that our conditional DDPM outperforms GAN-
based methods to generate higher quality images, and the guidance
strategy we proposed during the sampling process of the diffusion
model does work effectively. In addition, we can also find the im-
ages directly generated by 3DMM is far from photo-realistic due
to its dimension reduction and linear approximation characteris-
tics [EST∗20,ZGC∗21]. Note that the detailed user-study compari-
son results for specific individual persons are provided in our Sup-
plemental Material.

4.5. Ablation Study and Analysis

In this section, ablation studies are carried out qualitatively and
quantitatively to demonstrate the superiority of our method by us-
ing the two-stage conditional guided DDPM framework. In Figure
7, some qualitative examples are illustrated (with more qualitative
results provided in our Supplemental Material). Further, quantita-
tive results are presented in Table 3.

Conditional DDPM without Guidance. By comparing the third
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Figure 7: Ablation study for high-semantics guidance. The third column represents the results constructed by 3DMM; the fourth column represents the
results generated without guidance; the fifth column represents the results guided by identity only; the sixth column represents the results guided by both
identity and expression; and the seventh column represents the results guided by identity, expression, and pose. The guidance effectively embeds identity
information of source faces and preserves other attributes of target faces in the face swapping results.

and fourth columns in Figure 7, we can observe that the use of
conditional DDPM produces synthesised faces with much higher
visual quality. This is also confirmed by the results in Table 2.

Identity Guidance. In the sampling process of conditional
DDPM, identity guidance is the most important factor to embed
the identity of a source image. To verify the effectiveness of iden-
tity guidance, we conduct an ablation study by using no guidance
and only the identity guidance to generate synthesised results in
the conditional DDPM sampling process. As shown in Figure 7, by
comparing the faces of the fourth and fifth columns, i.e. without
and with ID guidance, we can see that the use of source identity to
guide the conditional DDPM produces synthesised faces with vi-
sually similar featured characteristics of the source faces. Further-
more, it is observed from Table 3, when identity guidance is not
added, the identity cosine similarity between the generated image
and the source image is only 0.424, but the identity cosine similar-
ity between the generated image and the source image is improved
to 0.603 after we add the identity guidance. Obviously, identity
guidance is essential in the denoising process of DDPM for face
swapping.

Expression Guidance. To verify the effectiveness of expression
guidance, we make another experiment to show the results by using
combined identity and expression guidance. As illustrated in row 3
of Figure 7, the addition of the expression guidance leads to a better
preservation of the attribute from the target images when compared
to the results with identity guidance only. This is also evidenced

Guidence \Metric ID Cos ↑ Exp. Error ↓ Pose. Error↓
w/o 0.424 0.16 ± 0.06 2.40 ± 1.41
ID 0.603 0.18 ± 0.06 2.36 ± 1.35

ID + Exp 0.604 0.11 ± 0.07 2.35 ± 1.42
ID + Exp + Pose 0.614 0.12 ± 0.04 2.24 ± 1.31

Table 3: Quantitative ablation study. ’w/o’ signifies that no guidance is
implemented during the sampling process of the conditional DDPM.

in Table 3. After adding the identity guidance only, the ID Cos be-
comes better, but the expression error becomes larger. In contrast,
the use of both guidance terms can improve the preservation of ex-
pressions of target images without compromising the performance
of identity embedding.

Pose Guidance. Once we have the pose guidance added to our
approach, it can be observed that other attributes in the target im-
ages, such as eye gaze, can be preserved better, as illustrated in row
4 of Figure 7. The reason for this result is because fiducial points,
e.g., eye centres, are used in the pose guidance. In Table 3, the quan-
titative results confirm that the pose error is further improved. The
ablation study has proved the effectiveness of the high-semantics
guidance in our conditional DDPM face swapping model.

5. Failure cases and limitation

Although our method can generate high quality face-swapping re-
sults, it still has limitations and could generate some failure cases,
as illustrated in Figure 8. Since many facial attributes, e.g., wrinkles
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Figure 8: Failure cases of our method. The first row illustrates the uncom-
pleted swapping at hair region, second row with partial beard transfer, and
third row with faded eye glasses.

or facial hairing, could reflect identity information, our holistic fa-
cial model generated uncompleted swapping effects. Additionally,
the failure cases may also be due to the fact that 3DMM is a model
constructed based on a limited 3D facial dataset. Thus, our model
could be further enhanced to improve local facial attribute swap-
ping and synthesis diversity. Last but not the least, our model is
adapted from a standard diffusion model, which suffers from the
use of huge computational resources and long training time, which
makes its fine-tuning difficult.

6. Conclusion

In this paper, we have proposed a novel conditional DDPM for face
swapping. The model is implemented by two-level face prior guid-
ance to achieve photo-realistic synthesised face images. We use an
image-level condition reconstructed from a 3DMM to ensure the
effective convergence of our DDPM. Further, high-level face se-
mantics guidance is applied at the model inference stage to ensure
the identity embedding from a source image; and the preservation
of other semantic attributes of a target image. Experimental results
convincingly demonstrate that our method exhibits superior per-
formance compared to other SoTA methods. This is particularly
noticeable in the quality of image synthesis, as well as the faith-
ful preservation and swapping of face attributes and identity, re-
spectively. Nevertheless, despite these substantial improvements,
we must recognise the potential for further improvement and ex-
pansion of our model. Our future work will focus on refining the
high-level semantic guidance and exploring methods to augment
the image-level condition more effectively. We will also investigate
ways to make the model training more efficient to further improve
the performance of our model.
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