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Figure 1: We present GA-Sketching, a novel interactive system designed for novice users to create 3D objects through an iterative multi-view sketching
process. Users can intuitively customize desired 3D objects by progressively drawing sketches from any number of viewpoints.

Abstract

Sketch-based shape modeling aims to bridge the gap between 2D drawing and 3D modeling by providing an intuitive and
accessible approach to create 3D shapes from 2D sketches. However, existing methods still suffer from limitations in recon-
struction quality and multi-view interaction friendliness, hindering their practical application. This paper proposes a faithful
and user-friendly iterative solution to tackle these limitations by learning geometry-aligned deep implicit functions from one or
multiple sketches. Our method lifts 2D sketches to volume-based feature tensors, which align strongly with the output 3D shape,
enabling accurate reconstruction and faithful editing. Such a geometry-aligned feature encoding technique is well-suited to
iterative modeling since features from different viewpoints can be easily memorized or aggregated. Based on these advantages,
we design a unified interactive system for sketch-based shape modeling. It enables users to generate the desired geometry iter-
atively by drawing sketches from any number of viewpoints. In addition, it allows users to edit the generated surface by making
a few local modifications. We demonstrate the effectiveness and practicality of our method with extensive experiments and user
studies, where we found that our method outperformed existing methods in terms of accuracy, efficiency, and user satisfaction.
The source code of this project is available at https://github.com/LordLiang/GA-Sketching.

CCS Concepts

¢ Computing methodologies — Graphics systems and interfaces; Shape modeling;

1. Introduction

Sketching has been an intuitive way for humans to depict 3D shapes
since prehistoric times. In modern society, sketches are still widely
used by various users, including fashion designers and architectural
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engineers, to express their ideas. Designers also repeatedly modify
details and iterate between sketches and corresponding 3D models
until the desired shapes are achieved. While shape modeling from
a single sketch has been well explored in recent years [ZGG21,
GRYF21,GYS"22,ZPW*23], a single sketch may not capture all
geometric details due to occluded regions and the inherent ambi-
guity of sparse line drawings. Sometimes, it is difficult for humans
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to imagine 3D structures from a single sketch. To reduce inher-
ent ambiguity and achieve more visual cues, seeking help from
multi-view sketches is an easy solution that comes to mind. Shape
modeling from multi-view sketches involves generating a 3D shape
using sketches drawn from different viewpoints. Existing methods
for shape modeling from multi-view sketches often utilize multi-
branch inputs with fixed viewpoints [LGK*17,ZQG*20, DHF*20]
or employ an iterative refinement strategy [DAI*18, CWC*22] to
improve modeling quality. However, these methods still suffer from
limitations such as the inability to retain faithful details depicted by
input sketches [DAI*18, CWC*22] and the inefficiency of multi-
view interaction [LGK*17, LPL*18]. These methods may work
well to reconstruct simple shape prototypes but are far from a prac-
tical design tool.

We believe that a successful solution for sketch-based model-
ing should satisfy two properties: faithfulness and user-friendliness.
Faithfulness refers to high-quality reconstruction and faithful local
editing. The generated shapes should be as consistent as possible
with the input sketches. User-friendliness entails a simple and in-
tuitive interface with readily available tools, enabling users to cre-
ate and modify the desired 3D models promptly. Common editing
operations, such as adding, removing, or changing a component,
should generate accurate modification for the editing region and
keep the remaining region unaffected. We aim to provide an inter-
active system for sketch-based shape modeling that meets the above
two properties.

We speculate that the low faithfulness of previous methods
is due to their adopted feature encoding technique. Some exist-
ing methods [LGK*17, DAI*18, CWC*22] often encode the in-
put sketch as a global feature, typically, a compact latent code
vector, which is not strictly aligned with the 2D input, failing to
preserve spatial details of the input sketches. Furthermore, due
to the nature of dimension reduction, global feature encoding is
a bottleneck for shape editing. It can be challenging for a flat-
tened vector to provide local controllability and strong general-
izability to unseen shape variations. To address this issue, some
methods [SHN™19, XWC* 19] extract pixel-aligned features to pre-
serve local details. LAS-Diffusion [ZPW*23], a concurrent work
with ours, employs local patch features to guide feature learn-
ing. Slightly differently, we encode an input sketch as geometry-
aligned features by using a predicted depth map as a prior to pre-
serve more accurate local details. The low-quality reconstruction
of previous methods is also possibly due to their adopted shape
representations. Recently, deep implicit functions have emerged
as promising methods for representing complex and irregular sur-
faces [MON™19, PFS* 19, CAPM20]. Compared with other shape
representations (image-based [LGK*17,LPL*18,ZQG"20], mesh-
based [DHF*20,ZGG21], voxel-based [DAI* 18, DCLB19,JFD20],
and point-based [GYS*22, WLY *23]), deep implicit functions are
lightweight and not limited in resolution, making them an attrac-
tive option for surface reconstruction. Based on the above discus-
sion, we propose a novel method to generate 3D shapes from 2D
sketches by learning geometry-aligned deep implicit functions. We
encode the input sketches as volume-based feature tensors strongly
aligned with both input 2D sketches and output 3D surfaces. Then,
we learn deep implicit functions from these feature tensors to gen-
erate the final continuous surfaces. Compared with the global latent

code vector, the volume-based feature tensor is naturally capable
of memorizing and fusing features from different views, which is
profitable for faithful local editing and iterative modeling.

Dealing with multi-view inputs is non-trivial as it involves many
design options, such as the input order and aggregation strategies.
Some methods [LGK*17,ZQG™*20, DHF*20] directly take a com-
plete set of multi-view sketches with fixed viewpoints as inputs,
which means that sketches drawn from different views are fed into
the model simultaneously. Such a setting is inflexible as users need
to re-draw multi-view sketches once they change their ideas. There-
fore, we adopt an iterative modeling pipeline by feeding multi-
view sketches sequentially. When aggregating features from differ-
ent viewpoints, some image-based methods [HMK™* 18, SHN*19]
handle this issue by simple pooling operations, e.g., max/average
pooling, which are unsuitable for iterative modeling, since the later
sketches are more important and thus should have higher weights.
Besides, these methods struggle to preserve view consistency
among different sketches as the misalignment in each iteration will
accumulate. Some incremental methods [DAI*18, CWC*22] use
iterative refinement strategies to handle this issue, but still face
challenges in achieving accurate and faithful results. To handle the
above issues, we design an iterative feature aggregation module
that aggregates two adjacent feature tensors into an integrated one
through an iterative process. Additionally, we have implemented a
masked editing strategy to ensure the consistency of the reconstruc-
tion results with the most recent sketch.

Existing sketch-based modeling systems typically support shape
editing with a series of predefined operations, thus lacking flex-
ibility. For example, SimpModeling [LZZ*21] provided several
shape editing function buttons, such as extrusion, add-control-curve
and handle-deformation. DeepSketch2Face [HGY 17] designed 10
gesture-based interactions to allow users to manipulate initial face
models generated from the first sketch. However, preset functions
may not satisfy users’ requirements for editing. Moreover, remem-
bering these functions could be a burden for users. Therefore, we
design a unified interactive system for 3D shape generation and
editing to provide users with an intuitive and flexible interface, as
shown in Figure 1. Our system not only allows users to generate a
3D shape from drawn sketches but also supports them in editing the
shape in a free-form way. That is, users can edit by erasing unsatis-
factory parts and directly drawing new ones. It is worth noting that
our system can automatically render a reference sketch from the 3D
shape for users to edit, relieving them of the burden of redrawing a
sketch from scratch.

To summarize, we make the following contributions:

e We propose a novel iterative solution to generate 3D shapes
from 2D sketches by learning geometry-aligned deep implicit
functions. To our knowledge, our method is the first to use
geometry-aligned feature encoding for multi-view sketch-based
shape modeling.

e We design a unified interactive system for sketch-based shape
generation and editing. Our system enables users to generate or
edit a 3D shape by drawing and modifying sketches from arbi-
trary viewpoints.

© 2023 Eurographics - The European Association
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2. Related Work

We will focus on discussing the existing efforts for multi-view
sketch-based modeling.

2.1. Traditional Sketch-based Modeling

Since sketch-based modeling has a long history dating back to early
Sutherland’s SketchPad system [Sut64], it is worthwhile to revisit
some classic traditional methods. Starting with Teddy [IMT99],
traditional methods often involved algorithms for recognizing and
interpreting 2D sketches as closed polylines [KHO06] or implicit
functions [KHRO2, TZF04, SWSJO7] and then using these inter-
pretations to create smooth 3D models. To reduce the ambiguity
of 2D sketches, FiberMesh [NISAQ7] allows users to model free-
form surfaces by sketching and manipulating 3D curves. Schmidt
et al. [SSO8] proposed layered procedural surface editing opera-
tions to make 3D modeling more efficient. However, these tradi-
tional systems may produce over-smooth or unrealistic results and
require significant manual effort to specify complex geometry, due
to the lack of domain knowledge of 3D objects.

2.2. Data-driven Sketch-based Modeling

In recent years, data-driven methods have emerged, enabling the
direct creation of 3D models from 2D sketches without geo-
metric constraints or shape grammars. Early data-driven meth-
ods [XXM*13, FWX*13] relied on an input sketch as a query
to retrieve the most similar pre-existing models from a shape
repository and then deformed these models to better fit the con-
tours specified in the sketch. However, these methods are easily
limited by the size and diversity of the shape repository. Some
methods [HKYM16, HGY17] learned CNN-based deep regres-
sion networks to map sketches to parameters, which are used
to deform a morphable model. Later methods moved beyond
morphable models and utilized deep networks to learn various
shape representations directly. For example, image-based represen-
tations [LGK*17, LPL*18,ZQG*20] inferred the depth and nor-
mal maps representing the underlying surface, followed by compli-
cated post-processing to fuse these maps to a completed 3D model.
Mesh-based representations [DHF*20] typically learned to deform
an initial convex template and hence failed to represent complex
topologies. Volumetric representations [DAI* 18, DCLB19, JFD20]
were computationally expensive and memory-intensive, severely
limiting the resolution of the output shapes. Recent advances in
the use of deep implicit functions [LZZ*21,CWC*22] have shown
great promise in representing complex and irregular surfaces. We
combine deep implicit functions with geometry-aligned feature en-
coding to represent implicit surfaces, which has not been used in
previous multi-view sketch-based modeling.

3. User Interface

In this section, we will introduce the user interface of our iterative
multi-view sketch-based modeling system.

3.1. User Interface Design

Figure 2 shows the main user interface with two working spaces.
The left is a canvas space for sketch drawing, and the right is

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

¥ %O

Eraser size: 20 = Pon size: 5 Azimuth Angle: -45 = " Elevation Angle: 30— Category: |Chai

(a) Initial Sketching

Eraser size: 20 = Pen size: 5 = Asimuth Angle: -45 == Elevation Angle: 30 = Catagory: |Chai

(b) Initial Shape Generation

Figure 2: The user interface of our system. (a) An initial sketch of a chair
drawn by the user. (b) Click the Y button to generate the initial 3D shape.
Some colorful points sampled from the initial shape are visualized to pro-
vide spatial perception for subsequent editing.

a viewer space to examine the reconstructed shape. Users can
freely change viewpoints for these two working spaces. Consid-
ering users’ drawing habits, we limit the elevation angle of the
canvas space between —15° and 45° (though our method supports
any elevation angle) and allow the azimuth angle to cover all 360°.
Inspired by ShadowDraw [LZC11], we use a shadow sketch as a
background to help users to draw the first sketch. The toolbar at the
top provides four basic drawing tools (including free-form curve,
straight line, eraser, and editing mask) and three function buttons,
including the clear button for clearing the drawing, the lock button
for locking and unlocking the viewpoint, and the generation button
for 3D shape generation. Below the toolbar are four sliders to ad-
just the brush sizes and angles of shadow images, updated based on
a user-selected shape category.

3.2. Sketch-based Shape Generation

After completing the first sketch, the user can click the genera-
tion button to get the current reconstructed shape. Some colorful
points sampled from the reconstructed surface is visualized to pro-
vide spatial perception. The user can rotate the reconstructed mesh
freely in the viewer space to check whether some components need
to be refined. This is often needed to address the ambiguity in
sketches, particularly single-view sketches. After the user changes
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Figure 3: The illustration of generation/refinement operations supported by our interactive system. The user can first draw an initial sketch and generate an
initial 3D shape. Next the user can rotate the initial generation to a novel viewpoint and a reference sketch will be rendered automatically. The user can do

some modification on the reference sketch to refine the shape.

(a) Add New Components

(b) Remove Existing Components

(¢) Change Existing Components

[ ———

(e) Editing after Scaling

Figure 4: The illustration of editing operations supported by our interactive system. Users need first mark out a local region for editing and then modify the
geometry by sketching within this region. Here we show a representative iterative editing process: (a) Add New Components, (b) Remove Existing Components,

(c) Change Existing Components, (d) Scaling and (e) Editing after Scaling.

to a new viewpoint by rotating the current sketch, the system will
generate a reference sketch from the current shape under this new
viewpoint. The user can modify the reference sketch and click the
generation button again to get a refined shape, as illustrated in Fig-
ure 3. If the reference sketch is far from the desired sketch under
the novel viewpoint, the user can click the clear button to empty the
canvas and draw a sketch from scratch.

3.3. Sketch-based Shape Editing

It is important to distinguish between shape editing and shape re-
finement, as both involve making changes to the current shape.
Shape refinement refers to the slight modification of the coarse gen-
eration from a novel viewpoint, with the goal of resolving any am-
biguity during shape inference from sketches. On the other hand,
shape editing involves changing the geometric structure of the cur-

rent shape, which typically occurs when designers want to modify
their original design ideas, e.g., removing a leg from a chair, adding
a tail wing to an airplane, or changing the upper edge of a chair back
from a straight line to a curved one.

Our method supports the following shape editing operations, as
shown in Figure 4 (a)-(c): adding new components, removing exist-
ing components, or changing existing components. Specifically, we
ask the user to mark out a 2D binary mask and modify the sketch
only within the editing region. In addition, our method also sup-
ports proportionally global scaling up/down, as shown in Figure 4
(d). The user can use the mouse wheel to zoom the current refer-
ence sketch in or out, and then our system will scale up/down the
volume-based feature tensors correspondingly by trilinear interpo-
lation. The scaled shape can be seamlessly integrated into the next
refinement or editing step, as shown in Figure 4 (e).

© 2023 Eurographics - The European Association
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Figure 5: Our method includes three stages: view-aware depth prediction, geometry-aligned feature tensor encoding, and implicit surface prediction. Firstly,
the input sketches are fed into a Sketch2Depth translator to generate depth prediction for information richness. Then, we feed the predicted depths as well as
the input sketches into a lifting encoder to generate geometry-aligned feature tensors. The feature tensors from different viewpoints are iteratively aggregated
using our aggregation module. Finally, the aggregated feature tensor is fed into an IF-Net to predict occupancy values for query points.

4. Method

Given one or more input sketches, our method aims to gener-
ate a high-quality 3D shape and allows fine-grained shape edit-
ing. The pipeline of our method mainly consists of three stages,
as shown in Figure 5. Firstly, the input sketches are fed into a
Sketch2Depth translator to generate depth prediction for informa-
tion richness (Section 4.1). Then we concatenate predicted depths
with the input sketches and feed them into a lifting encoder to
generate geometry-aligned feature tensors. These feature tensors
are then iteratively aggregated using an aggregation module (Sec-
tion 4.2). Subsequently, the aggregated feature tensor is fed into an
IF-Net [CAPM20] to predict an occupancy value for each query
point (Section 4.3). In this section, we will introduce these three
stages in detail.

4.1. View-aware Depth Prediction

Due to a large domain gap between 2D sketches and 3D shapes, we
attempt to compensate the missing information by translating an in-
put sketch S; to a predicted depth D;. Our Sketch2Depth translator
is based on a classic U-Net [RFB15] structure. We add the cam-
era parameter 6; to the bottom-most of the network to add view
awareness. In order to take full advantage of the characteristics of
iterative modeling, we also enhance the Sketch2Depth translator by
introducing the rendered depth as a reference. This is a hidden trick
used in our interactive system to enhance the stability of depth pre-
diction. Let M;_ be the intermediate shape reconstruction and S;
is the current sketch from the i-th view. We use a depth renderer
Rp [JRR*20] to render the depth d; from M;_; by

d;i =Rp(M;_1, 6;) 1)
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where 0; is the camera parameter of the i-th view. Then d; serves as
a reference for the more precise prediction of D;. We get D; by

(S, 6) i=0;
D’f{r*(&-,d,-,ei) i>1, @

where #(-) is the initial Sketch2Depth translation model and t* () is
the enhanced Sketch2Depth translation model incorporating itera-
tive depth reference.

4.2. Geometry-aligned Feature Tensor Encoding

Feature Lifting. Given 2D features I; = {S;,D;} € RF>W>*2 (ie,
sketches and predicted depth maps), the role of our lifting encoder
is to map ; to a canonical 3D feature space RV*NXNXC yhere €
is the feature dimension. We first uniformly sample N x N x N 3D
points within the 3D space. For any point X, let x be its 2D projec-
tion location on the camera plane, and z(X) be its distance to the
camera plane. We obtain 2D feature values /;(x) of point X from /;
by bilinear interpolation. Following PIFu [SHN*19], we concate-
nate /;(x) and z(X) to construct an initial 3D volume tensor X; of
size N X N X N x 3. Then we feed AX; into a two-layer 3D convolu-
tional network (as shown in Figure 6) to learn the geometry-aligned
feature tensor V; € RVXNXNXC we yse N = 64 and C = 16 to
achieve interactive speed.

Iterative Feature Aggregation. We propose an iterative feature ag-
gregation module to support iterative shape refinement. Let 4; be
the aggregated feature tensor of the i-th view. Then we have

W i=0;
A= { agg(Ai—1, Vi) i>1, ®

where agg(-) is our iterative feature aggregation module. The ag-
gregation module is composed of three stacked 3D convolutional
blocks. We first concatenate the aggregated feature tensor of the
(i — 1)-th view A;_| and the new feature tensor of the i-th view V;
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Figure 6: The illustration of our geometry-aligned feature tensor encoding. We first uniformly sample N X N X N 3D points within the 3D space. For any
point X, let x be its 2D projection location on the camera plane and z(X) is the distance to the camera plane. We obtain 2D feature values I;(x) of point X from
I; by bilinear interpolation. Then we concatenate z(X) and I;(x) to construct an initial 3D volume tensor. Then we feed X; into a two-layer 3D convolutional

network to learn the geometry-aligned feature tensor V;.
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Figure 7: The 2D illustration of the affected vertical depth range. The blue
shaded area indicates the affected vertical depth range.

and then feed it into the aggregation module to get the aggregated
feature tensor of the i-th view A;.

Local Editing with 3D Mask. For shape editing, we propose a
masked editing strategy to directly update the features in the edit-
ing region without affecting the features in the remaining region.
Specifically, we ask the user to mark out a 2D binary mask M,ZD
(for each pixel, 1 for editing and 0 for non-editing) and modify the
sketch only within the editing region. Then, we need to determine
the corresponding 3D editing mask M?D . Just like we obtain the
volume of a cylinder by multiplying its base area with its height,
we obtain the 3D editing mask by multiplying the 2D editing mask
and the affected vertical depth range. As described in Section 4.1,
we can get the predicted depth D; by our Sketch2Depth translator.
Also, we can use our depth renderer Rp to render a front depth
d'if and a back depth df’ from M;_1, and they satisfy the follow-
ing relationship: 0 < dif < df’ < 1. For computational convenience,
we normalize all depth values between 0 and 1 (0 means where the
camera is, and 1 means the farthest from the camera). As illustrated
in Figure 7, D;, d‘lf , and df’ together determine the affected vertical
depth range [D"™" D], where D" is the affected starting depth
and D" is the affected ending depth. Finally we get M3° by

M3 = 2P s (D — plrimy,
,D;nin _ min(Di, dif)7 €
D" = min(max(D;, dlf), dlh)

To mitigate the boundary disturbance caused by the direct fea-
ture replacement operation, we perform morphological dilation
dilate(-) on M?P to get a dilated 3D mask M?P with the kernel
size k (we use k = 5 in our implementation):

3P = dilate(M3P | k). 5)

Finally, we update the old feature tensor A;_; to a new feature
tensor A; by replacing the feature within M,-3 b.

Al = (=) Ay + 08P,
Af' = agg(A}, V), ©)
A= (1=0P) A+ AT

Note that we use a sandwich-like replace-aggregate-replace strat-
egy to improve the robustness of masked editing. The first replace-
ment operation replaces old features within the editing region with
new features. The next aggregation operation is intended to smooth
the neighborhood surrounding the editing region. No further train-
ing is needed, and we use the same agg(-) as Section 4.2. The fol-
lowing second replacement operation aims to keep the remaining
region unchanged.

4.3. Implicit Surface Prediction

We represent the surface as the occupied/unoccupied space deci-
sion boundary of continuous occupancy fields and apply the March-
ing Cube algorithm [LC87] to recover the target meshes. Given the
aggregated volume-based feature tensors A of size 64 X 64 x 64 x
16, we use a multi-scale encoder to extract multi-scale deep feature
grids inspired by IF-Net [CAPM20]. Applying 3D convolution and
max-pooling recursively three times on .4, we get multi-scale deep
feature grids Fy, F1, F>, and F3. The corresponding decreasing res-
olutions are 64, 32, 16, and 8. The corresponding feature channel
dimensions are 32, 64, 128, and 128. Given any query point p € R,
we extract the learned deep features Fy(p), ..., F3(p) from Fy, ..., F3
by trilinear interpolation. To reduce the computation cost, we make
the network as simple as possible by removing the neighbor dis-
placement scheme used by IF-Net. Finally, we concatenate F(p),
..., F3(p) and the coordinate location together and then feed them
into a point-wise decoder f(-), parameterized by a fully connected

© 2023 Eurographics - The European Association
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neural network, to predict if the query point p lies inside (clas-
sification as 1) or outside (classification as 0) the surface. Then
the surface is implicitly represented as the points on the decision
boundary, {p € R*|f(Fy(p), ..., F3(p), p) = G} with a threshold pa-
rameter ¢ (we use ¢ = (.5).

5. Experiments and Discussion
5.1. Implementation Details

Metrics. To measure reconstruction quality quantitatively, we con-
sider three established metrics:

e IoU: volumetric intersection over union measuring how well the
defined volumes match (higher is better).

e CD: Chamfer distance measuring the accuracy and completeness
of the surface (lower is better).

e NC: normal consistency measuring the accuracy and complete-
ness of the shape normals (higher is better).

Datasets. We conduct all experiments and evaluations on ShapeNet
chairs and airplanes [CFG*15]. Airplanes are representative ob-
jects with simple structures, and they are basically spindle-shaped.
While chairs are representative objects with complex structures,
and their structures have wider variations and are more difficult
to reconstruct from 2D sketches. In order to compute ground truth
occupancies, we make the ShapeNet models watertight and simpli-
fied through TSDF fusion [SG18]. We use the same training and
test splits as 3D-R2N2 [CXG*16]. We generate synthetic sketches
for training by rendering depth maps using Pytorch3D [RRN*20]
and then extracting lines using the adaptive threshold algorithm in
OpenCV [Ope28]. We also use this method to automatically gener-
ate reference sketches in our interactive system. In order to enable
our method to handle continuous viewpoints, we generate training
sketches from 120 different viewpoints (the combinations of 24 az-
imuth angles (0° ~ 345°) and 5 elevation angles (—15° ~ 45°)
with 15° as interval).

Training Settings. Some training settings for our experiments
are given. We train our sketch-to-depth translator similarly to
pix2pix [IZZE17] does but add a normal loss to improve the accu-
racy of depth prediction in areas near lines. We derive the normal
from the predicted depth and then compute L1 loss between the
derived normal and GT normal. The normal loss provides more su-
pervision on the edge parts of the predicted depth. We first train our
single-view network, referred to as "Ours-Single", for 200 epochs.
Subsequently, we freeze all parameters of "Ours-Single" and exclu-
sively train our aggregation module for an additional 200 epochs.
We use the Adam optimizer with the learning rate 1e —4 and batch
size 4 in all experiments. All experiments are conducted on a single
NVIDIA GeForce RTX 2080 Ti gpu.

5.2. Qualitative Comparison
5.2.1. Single-view Reconstruction

As the old adage goes, "Well begun is half done." Selecting an ap-
propriate viewpoint for the first sketch is of great importance since
it impacts the reconstruction quality of the subsequent sketches. We

© 2023 Eurographics - The European Association
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assessed the performance of our method in single-view reconstruc-
tion from 28 distinct viewpoints, as shown in Table 1. Based on the
statistics, we can draw several noteworthy conclusions:

e For the chair category, an elevation angle of 15° is recom-
mended, and extreme azimuth angles that are multiples of 90°
should be avoided.

e For the airplane category, high accuracies are obtained from ele-
vation angles of 30°. Users should avoid the horizontal elevation
angle where the airplane wings are barely visible.

‘We can find that more informative viewpoints tend to generate bet-
ter reconstruction results. We encourage the users to use informa-
tive viewpoints to reduce ambiguity by showing the 3D object with
minimal foreshortening on all sides.

To evaluate the superiority of our method on single-view recon-
struction, we selected four existing representative methods that use
different feature encoding techniques (i.e., global or local features)
and different representations of the 3D shape (i.e., explicit mesh
or implicit function) for comparison: Sketch2Model [ZGG21],
Pixel2Mesh [WZL*18], OccNet [MON*19], and single-view
PIFu [SHN™19]. The experiment was conducted using the open-
source code provided by these methods. Table 2 and Figure 8 show
the results of this comparison. As seen from Table 2, methods based
on implicit functions (i.e., OccNet, PIFu, and ours) have superior
representation abilities compared to those based on explicit mesh
deformation (i.e., Sketch2Model and Pixel2Mesh). Furthermore, it
shows that our method’s use of geometry-aligned features results
in superior performance compared to PIFu’s use of pixel-aligned
features. Figure 8 demonstrates that local feature-based methods
(i.e., Pixel2Mesh, PIFu, and ours) produce more precise surfaces
than global feature-based methods (i.e., Sketch2Model and Occ-
Net). Our method takes advantage of both implicit representations
and local geometry-aligned features, which results in superior per-
formance compared to all existing methods in generating accurate
3D geometries. Both qualitative and quantitative results demon-
strate the superiority of our method.

5.2.2. Multi-view Reconstruction

To verify the performance of our method on multi-view recon-
struction, we compare our approach with two methods most
related to our method: Delanoy et al. [DAI*18] and multi-
view PIFu [SHN*19]. We use 3 sketches from randomly se-
lected viewpoints to evaluate each method. Based on the recom-
mended viewpoints discussed in Section 5.2.1 and the sugges-
tion of Delanoy et al. (imposing a 3/4 view as the first draw-
ing to significantly reduce ambiguity), the viewpoint of the first
sketch is selected from some informative viewpoints, avoiding
accidental viewpoints. For the method proposed by Delanoy et
al., we re-implement their method and perform 5 iterations for
refinement. For multi-view PIFu, we adopt their open-source
code (https://github.com/shunsukesaito/PIFu). Table 3 presents
the quantitative comparisons of the three methods mentioned
above. We also provide qualitative comparisons in Figure 9. Both
the quantitative and qualitative results indicate that our method
achieves the highest performance in geometry inference and pro-
duces reconstructions that are closer to the ground truth.


https://github.com/shunsukesaito/PIFu
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Category EL AZ 0° 30° 60° 90° 120° 150° 180°
0° 0.867 0.290 0308 0599 0351 0371 1.207

Chair 15° 0771  0.263 0221 0465 0.241 0.285 0974
30° 0910 0.271 0249 0451 0.250 0.278 0.981

45° 1.207 0372 0331 0472 0307 0338 0973

0° 0979 0461 0.719 0587 0454 0548 1.121

Airplane 15° 0.337 0.137 0.191 0224 0.187 0.155 0.342
P 30° 0287 0125 0.149 0.193 0.146 0.142 0312
45° 0363 0.182 0.159 0.187 0.170 0.189 0.374

Table 1: Chamfer distance (x1073) for single-view reconstruction from different viewpoints. AZ and EL represent the azimuth and elevation angles.

Method Representation Feature Encoding ToUT ((::l;;lr NCT | ToUT Algl);jne NCT
Sketch2Model [ZGG21] | mesh deformation | global (latent code vector) | 0.210 | 4.153 | 0.657 | 0.292 | 2.503 | 0.691
Pixel2Mesh [WZL* 18] mesh deformation | local (pixel-aligned) 0.280 | 0.817 | 0.739 | 0.487 | 0.381 | 0.776
OccNet [MON*19] implicit function global (latent code vector) | 0.534 | 5.661 | 0.719 | 0.520 | 0.434 | 0.839
PIFu-Single [SHN*19] implicit function local (pixel-aligned) 0.582 | 0.546 | 0.838 | 0.656 | 0.433 | 0.855
Ours-Single implicit function local (geometry-aligned) 0.590 | 0.378 | 0.853 | 0.703 | 0.330 | 0.879

Table 2: Single-view quantitative evaluations of different methods on ShapeNet chairs and airplanes. The unit of CD is 1073, "PIFu-Single" and "Ours-
Single" refer to the sing-view versions of "PIFu" and "Ours".

(@ Input | (b) SketchZModelé (c) Pixel2Mesh (d) OccNet | (¢)PIFuSingle |  (f)Ours-Single | (g) Ground Truth

Figure 8: Qualitative comparisons of our method with four previous methods for Single-view Reconstruction. "PIFu-Single" and "Ours-Single" refer to the
single-view versions of "PIFu" and "Ours".

© 2023 Eurographics - The European Association
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1st View 2nd View 3rd View
Category | Method ToUT | CDJ | NCT | ToUT | CDJ | NCT | ToUT | CDJ | NCT
Delanoy et al. [DAI*18] | 0.413 | 3.232 | 0.777 | 0.387 | 4.553 | 0.761 | 0.385 | 3.914 | 0.762
Chair PIFu [SHN*19] 0.570 | 0.375 | 0.814 | 0.606 | 1.585 | 0.805 | 0.674 | 0.553 | 0.846
Ours 0.631 | 0.230 | 0.876 | 0.705 | 0.160 | 0.904 | 0.741 | 0.124 | 0.918
Delanoy et al. [DAT*18] | 0.562 | 2.090 | 0.814 | 0.556 | 1.975 | 0.818 | 0.562 | 2.384 | 0.817
Airplane | PIFu [SHN*19] 0.637 | 0.236 | 0.849 | 0.727 | 0.275 | 0.865 | 0.778 | 0.160 | 0.890
Ours 0.730 | 0.131 | 0.896 | 0.797 | 0.083 | 0.916 | 0.821 | 0.077 | 0.924

Table 3: Multi-view quantitative evaluations of different methods on ShapeNet chairs and airplanes. The unit of CD is 1073,
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Figure 9: Qualitative comparisons of our method with two previous methods for iterative Multi-view Reconstruction. The sketches are rendered from the
ground truth meshes from three random viewpoints to imitate iterative sketching. In each case, the first row displays the results obtained from View-1 sketch,
while the second row shows the results from View-1 and View-2 sketches. The third row displays the results from View-1, View-2, and View-3 sketches.
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Figure 10: Some examples when provided with "contour-only” and
"suggestive-contour" sketches.

5.3. Ablation Study
5.3.1. Effectiveness of Depth Prior

To show the effectiveness of our view-aware depth prior, we re-
move the depth prediction branch as a vanilla version called "Ours-
no-DP". Table 4 shows that depth prior does bring some nice-to-
have improvements by offering richer features. On the other hand,
our method works well even for only sparse sketch information.

5.3.2. Effectiveness of Iterative Feature Aggregation

In order to show the effectiveness of our iterative feature ag-
gregation module, we compare it with average pooling used
by [SHN*19] and the iterative updater proposed by Delanoy et
al. [DAI*18]. We replace our iterative feature aggregation module
with average pooling and the iterative updater [DAI*18]. We call
the two variants "Ours-AVG" and "Ours-Updater". For a fair com-
parison, "Ours-AVG", "Ours-Updater" and "Ours" share the same
lifting encoder parameters. It can be observed from Table 5 that tak-
ing the three metrics into consideration, "Ours" achieves a greater
improvement than two variants as the number of viewpoints in-
creases. This means our iterative feature aggregation module has
better support for iterative modeling.

5.3.3. Different Initial Sketches

As an interactive system, the robustness to different types of initial
sketches needs to be considered. In Figure 10, we compare the re-
sults when provided with "contour only" and "suggestive-contour”
sketches. Our method can generate reasonable results even with
"contour-only" sketches lacking internal structures. Nevertheless,
we encourage users to draw more details. In Figure 11, we pro-
vide some freehand-sketch-conditioned results. Because we train
our networks with synthesis sketches, which have a significant do-
main gap with freehand sketches, our method may not perform well
with too abstract sketches. However, our method still tends to gen-
erate faithful results that reflect users’ real intentions. While the ini-
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Figure 11: Some examples of freehand-sketch-conditioned shape genera-
tion of our method.

tial shape reconstruction may be poor when provided with a poorly
drawn initial sketch, our interactive system allows users to refine or
edit the reconstructed surface iteratively.

5.4. User Study

We have conducted two informal user studies, i.e., the Usability
Study and the Perceptive Study, to evaluate the usability and effec-
tiveness of our system and the quality of results generated by our
method.

5.4.1. Usability Study

The main purpose of our work is to design a user-friendly 3D
modeling system specifically tailored for amateur users without
3D modeling experience. To verify the usability of our system,
we recruited 8 participants (P1-P8), aged 18 to 28, from various
departments at a local university. Based on the pre-study survey,
none of these participants had experience in 3D modeling. Four of
them (P2, P3, P6, P8) had professional 2D drawing experience, and
the rest had limited drawing experience. Before the usability study,
each participant was provided with an 8-minute video demonstrat-
ing the basic operations of our system. Subsequently, each user was
given 15 minutes to become familiar with our system. After the tu-
torial session, each participant was tasked with freely creating at
least two models (a chair and an airplane) without any constraint
on diversity, quality or drawing time. Figure 12 shows represen-
tative results created by these participants with our system. It can
be seen from this figure that our system supports amateur users to
create objects with diversified shapes.

At the end of the modeling session, each participant was required
to fill in a System Usability Scale (SUS) questionnaire and a NASA
Task Load Index (NASA-TLX) questionnaire to evaluate the us-
ability and workload of our system. Figure 13 illustrates the average
score for each question in the SUS questionnaire. For the questions
with the odd numbers, the higher the SUS scores, the better; for the
rest of the questions, the lower the SUS scores, the better. The high
scores of Q3, Q5, Q7, as well as the low scores of Q2, Q4, Q6, Q8,
and Q10, suggest that our system effectively supports amateur users
in easily and intuitively creating 3D objects, indicating good user-
friendliness and usability of our system. The high scores of Q1 and
QO show that most participants were satisfied with the models gen-
erated by our system. Figure 14 illustrates the mean score for each

© 2023 Eurographics - The European Association
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Category | Mehtod 1st View 2nd View 3rd View
ToU?T CDJ NCt IoU?T CDJ NC?t IoU?T CDJ NCt
Chair Ours-no-DP | 0.521 | 0.619 | 0.798 | 0.655 | 0.247 | 0.875 | 0.695 | 0.180 | 0.894
Ours 0.631 | 0.230 | 0.876 | 0.705 | 0.160 | 0.904 | 0.741 | 0.124 | 0.918
Airplane Ours-no-DP | 0.666 | 0.292 | 0.862 | 0.764 | 0.184 | 0.903 | 0.787 | 0.070 | 0.913
Ours 0.730 | 0.131 | 0.896 | 0.797 | 0.083 | 0.916 | 0.821 | 0.077 | 0.924

11 of 15

Table 4: Ablation studies about the effectiveness of depth prior. "Ours-no-DP" refers to a variant of "Ours" in which the depth prediction branch has been

removed. The unit of CD is 1073

Category | Mehtod 1st View 2nd View 3rd View
ToU?T CDhJ NCt | IoU?t CDJ NCt IoU?T CDJ NCt
Ours-AVG 0.631 | 0.230 | 0.876 | 0.697 | 0.164 | 0.904 | 0.732 | 0.132 | 0.918
Chair Ours-Updater | 0.631 | 0.230 | 0.876 | 0.699 | 0.158 | 0.905 | 0.726 | 0.122 | 0.918
Ours 0.631 | 0.230 | 0.876 | 0.705 | 0.160 | 0.904 | 0.741 | 0.124 | 0.918
Ours-AVG 0.730 | 0.131 | 0.896 | 0.790 | 0.096 | 0916 | 0.815 | 0.083 | 0.924
Airplane | Ours-Updater | 0.730 | 0.131 | 0.896 | 0.788 | 0.086 | 0.917 | 0.797 | 0.079 | 0.922
Ours 0.730 | 0.131 | 0.896 | 0.797 | 0.083 | 0916 | 0.821 | 0.077 | 0.924

Table 5: Ablation studies about the effectiveness of iterative feature aggregation. "Ours-AVG" and "Ours-Updater" refer to two variants of "Ours" in
which the iterative feature aggregation module has been replaced by average pooling operation and iterative updater (proposed by Delanoy et,al. [DAI* 18])

respectively. The unit of CD is 10~
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Figure 12: The gallery of our results. All models are created by amateur users who are trained to use our system with a tutorial. Thanks to the easy-to-use

modeling design, most users can complete each model design with 2-3 views.

question in the NASA-FLX questionnaire. The results for NASA-
TLX are also positive, as indicated by the extremely low levels
of mental demand, physical demand, temporal demand, effort, and
frustration, along with a relatively high-performance score. It sug-
gests that our system enables users to effortlessly customize desired
3D objects.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

5.4.2. Perceptive Study

To further evaluate the effectiveness and superiority of our method,
we conducted a perceptive/subjective user study. We invited 40 in-
dividuals to participate in this subjective evaluation through an on-
line questionnaire. Most of them had no experience in 3D model-
ing, and none had taken part in the usability study. For multi-view
reconstruction, we randomly selected a set of results from the test
set and the usability study, which included 8 groups of multi-view
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System Usability Scale (SUS)
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Figure 13: Mean scores of SUS in a 5-point scale. For the questions with

the odd numbers, the higher the scores are the better; for the rest of the
questions, the lower the scores are the better.
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Figure 14: Mean scores of NASA-TLX in a 5-point scale. Q1: Mental
Demand, Q2: Physical Demand, Q3: Temporal Demand, Q4: Performance,
Q5: Effort, Q6: Frustration.
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Figure 15: Mean scores of Perceptive Study on Multi-view Reconstruction
in a 10-point scale. The higher the scores are the better.

sketches (4 selected from the test set and 4 drawn by users, with
each group containing 2-3 views), along with the corresponding
models generated by different methods in Section 5.2.2. For single-
view reconstruction, we selected 12 sketches from the test set and

J. Zhou et al. / GA-Sketching: Shape Modeling from Multi-View Sketching with Geometry-Aligned Deep Implicit Functions
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Figure 16: Mean scores of Perceptive Study on Single-view Reconstruc-
tion in a 10-point scale. The higher the scores are the better.

the corresponding results generated by different methods discussed
in Section 5.2.1. Each case in the questionnaire showed the input
single-view/multi-view sketch/sketches and the models generated
by different methods, placed side by side in random order. All sub-
jects were also asked to evaluate the faithfulness of each model (i.e.,
the degree of fitness to input sketch/sketches) on a ten-point Likert
scale (1 = lowest fitness to 10 = highest fitness). Figure 15 and Fig-
ure 16 show the results for this study. As observed from these two
figures, the models generated by our method achieved significantly
higher scores compared to all existing methods in both multi-view
reconstruction and single-view reconstruction.

6. Application
6.1. Sketch-guided Point Cloud Completion

Due to our geometry-aligned feature encoding, our method is
perfectly compatible with the 3D shape completion task because
the volume-based feature tensors are aligned with the real-world
scanned point clouds. We extend our method to sketch-guided point
completion by adding a voxelized point cloud as an additional fea-
ture channel (the dimension of X; is N X N x N x 4). Figure 17
shows some completed examples from scanned point clouds which
are brought from ScanObjectNN [UPH" 19].

6.2. Sketch-based Cartoon Animal Head Modeling

We also extend our method to animal-like 3D character head mod-
eling with iterative sketching. The sampled examples are brought
from AnimalHead dataset proposed by SimpModeling [LZZ*21].
As shown in Figure 18, we use SimpModeling and our method to
model a "rabit" head, a "tiger" head and a "goat" head. Compared to
SimpModeling which separates coarse shape design and geometric
detail specification into two stages and respectively provide differ-
ent sketching means, our system allows for intuitive 3D modeling
from 2D sketches, without complex 3D interactions.

7. Conclusion

To sum up, we have introduced a novel iterative approach for gen-
erating 3D shapes from 2D sketches by utilizing geometry-aligned

© 2023 Eurographics - The European Association
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Figure 17: Application on sketch-guided point cloud completion.

deep implicit functions. Furthermore, we have developed a unified
interactive system that enables sketch-based shape generation and
editing. Our extensive experiments and user study demonstrate that
our proposed solution has the potential to advance the field of 3D
modeling and enhance the user experience for designers, artists,
and even beginners.

The limitations of our method should be acknowledged. Firstly,
the robustness to imprecise sketches still need to be improved, as
shown in Figure 11. Furthermore, the surfaces generated by our
method may exhibit some noise. To enhance the quality of the re-
construction, additional post-processing techniques such as those
described in [VMM99, DMSB99] can be applied. Finally, in our
method, the 3D editing mask is achieved through approximate
mathematical computation, and a more elegant strategy, such as
using deep networks to predict the 3D editing mask, could be ex-
plored to improve this aspect of the method. In the future, we plan
to improve the reliability of our system by incorporating datasets
of freehand sketches. Furthermore, we may explore the possibility
of texturing the generated shape using text-to-image models such
as [CSL*23,RMA*23].

Acknowledgements

We thank the anonymous reviewers for their constructive com-
ments and the user study participants for their time. This pa-
per was supported by grants from the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China (No.
11212119), the National Natural Science Foundation of China (No.
62002012, No. 62172348), Outstanding Young Fund of Guang-
dong Province (No. 2023B1515020055), Shenzhen General Project

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

13 of 15

(No. JCYJ20220530143604010) and the Centre for Applied Com-
puting and Interactive Media (ACIM) of School of Creative Media,
CityU.

References

[CAPM20] CHIBANEJ., ALLDIECK T., PONS-MOLL G.: Implicit func-
tions in feature space for 3d shape reconstruction and completion. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(jun 2020), IEEE. 2,5, 6

[CFG*15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., L1 Z., SAVARESE S., SAVVA M., SONG S., SU H.,
ET AL.: Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 (2015). 7

[CSL*23] CHEN D. Z., SippIQUI Y., LEE H.-Y., TULYAKOV S.,
NIESSNER M.: Text2tex: Text-driven texture synthesis via diffusion
models. arXiv preprint arXiv:2303.11396 (2023). 13

[CWC*22] CHOWDHURY P. N., WANG T., CEYLAN D., SONG Y.-Z.,
GRYADITSKAYA Y.: Garment ideation: Iterative view-aware sketch-
based garment modeling. In 2022 International Conference on 3D Vision
(3DV) (2022), IEEE, pp. 22-31. 2,3

[CXG*16] CHOY C. B., XU D., GWAK J., CHEN K., SAVARESE S.:
3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In Computer Vision—ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
VIII 14 (2016), Springer, pp. 628—644. 7

[DAI*18] DELANOY J., AUBRY M., IsoLA P., EFROS A. A.,
BOUSSEAU A.: 3d sketching using multi-view deep volumetric predic-
tion. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1,1 (2018), 1-22. 2,3,7,9, 10, 11

[DCLB19] DELANOY J., COEURJOLLY D., LacHAUD J.-O.,
BOUSSEAU A.: Combining voxel and normal predictions for multi-view
3d sketching. Computers & Graphics 82 (2019), 65-72. 2, 3

[DHF*20] Du D., HAN X., FUH., WU F.,, YU Y, Cur S., Liu L.:
Sanihead: Sketching animal-like 3d character heads using a view-surface
collaborative mesh generative network. IEEE Transactions on Visualiza-
tion and Computer Graphics 28, 6 (2020), 2415-2429. 2,3

[DMSB99] DESBRUN M., MEYER M., SCHRODER P., BARR A. H.:
Implicit fairing of irregular meshes using diffusion and curvature flow.
In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques (1999), pp. 317-324. 13

[FWX*13] FAN L., WANG R., XU L., DENG J., L1U L.: Modeling by
drawing with shadow guidance. In Computer Graphics Forum (2013),
vol. 32, Wiley Online Library, pp. 157-166. 3

[GRYF21] GUILLARD B., REMELLI E., YVERNAY P., FuA P.
Sketch2mesh: Reconstructing and editing 3d shapes from sketches. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021), pp. 13023-13032. 1

[GYS*22] Gao C., YU Q., SHENG L., SONG Y.-Z., XU D.: Sketch-
sampler: Sketch-based 3d reconstruction via view-dependent depth sam-
pling. In Computer Vision-ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part I (2022), Springer,
pp. 464-479. 1,2

[HGY17] HAN X., GAO C., YU Y.: Deepsketch2face: a deep learning
based sketching system for 3d face and caricature modeling. ACM Trans-
actions on graphics (TOG) 36, 4 (2017), 1-12. 2,3

[HKYM16] HUANG H., KALOGERAKIS E., YUMER E., MECH R.:
Shape synthesis from sketches via procedural models and convolutional
networks. IEEE transactions on visualization and computer graphics 23,
8(2016), 2003-2013. 3

[HMK*18] HUANG P.-H., MATZEN K., KOPF J., AHUJA N., HUANG
J.-B.: Deepmvs: Learning multi-view stereopsis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp- 2821-2830. 2



14 of 15

(44

Rabit O

Q

QH

08

Tiger

/&
Ao e o 3
v V¥

+Stage-2

Goat

Stage-1

SimpModeling

’Q,O*,\»

y

J. Zhou et al. / GA-Sketching: Shape Modeling from Multi-View Sketching with Geometry-Aligned Deep Implicit Functions

X 2 Y
‘\&/B\a./

Y

TEY

View-1 +View-2

Ours

Figure 18: Comparison of SimpIModeling and our method for sketch-based cartoon animal head modeling.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a sketch-
ing interface for 3d freeform design. In ACM SIGGRAPH 1999 papers.
1999, pp. 409-416. 3

[IZZE17] 1soLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial networks. In Computer Vi-
sion and Pattern Recognition (CVPR), 2017 IEEE Conference on (2017).
7

[JFD20] JIN A., FU Q., DENG Z.: Contour-based 3d modeling through
joint embedding of shapes and contours. In Symposium on interactive
3D graphics and games (2020), pp. 1-10. 2,3

[JRR*20] JOHNSONJ., RAVIN., REIZENSTEIN J., NOVOTNY D., TUL-
SIANI S., LASSNER C., BRANSON S.: Accelerating 3d deep learning
with pytorch3d. In SIGGRAPH Asia 2020 Courses. 2020, pp. 1-1. 5

[KHO6] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d free-form
shapes from complex sketches. In ACM SIGGRAPH 2006 Papers. 2006,
pp. 589-598. 3

[KHR02] KARPENKO O., HUGHES J. F., RASKAR R.: Free-form
sketching with variational implicit surfaces. In Computer Graphics Fo-
rum (2002), vol. 21, Wiley Online Library, pp. 585-594. 3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer graph-
ics 21,4 (1987), 163-169. 6

[LGK*17] LUNZ., GADELHA M., KALOGERAKIS E., MAIJI S., WANG
R.: 3d shape reconstruction from sketches via multi-view convolutional
networks. In 2017 International Conference on 3D Vision (3DV) (2017),
IEEE, pp. 67-77. 2,3

[LPL*18] L1 C., PAN H., LIU Y., TONG X., SHEFFER A., WANG W.:
Robust flow-guided neural prediction for sketch-based freeform surface
modeling. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1-12. 2,
3

[LZC11] LEEY.J., ZiTNICK C. L., COHEN M. F.: Shadowdraw: real-
time user guidance for freehand drawing. ACM Transactions on Graph-
ics (ToG) 30, 4 (2011), 1-10. 3

[LZZ*21] Luo Z.,ZHou J., ZHU H., Du D., HAN X., Fu H.: Simp-
modeling: Sketching implicit field to guide mesh modeling for 3d ani-
malmorphic head design. In The 34th Annual ACM Symposium on User
Interface Software and Technology (2021), pp. 854-863. 2, 3, 12

[MON*19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in

function space. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2019), pp. 4460-4470. 2,7, 8

[NISAO7] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Fiber-
mesh: designing freeform surfaces with 3d curves. In ACM SIGGRAPH
2007 papers. 2007, pp. 41-es. 3

[Ope28] OPENCV: OpenCV: Open source computer vision library.
https://opencv.org/, Accessed 2023-03-28. 7

[PFS*19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition (2019), pp. 165-174.
2

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—-MICCAI 2015: 18th In-
ternational Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18 (2015), Springer, pp. 234-241. 5

[RMA*23] RICHARDSON E., METZER G., ALALUF Y., GIRYES R.,
COHEN-OR D.: Texture: Text-guided texturing of 3d shapes. arXiv
preprint arXiv:2302.01721 (2023). 13

[RRN*20] RAVI N., REIZENSTEIN J., NOVOTNY D., GORDON T., LO
W.-Y., JOHNSON J., GKIOXARI G.: Accelerating 3d deep learning with
pytorch3d. arXiv:2007.08501 (2020). 7

[SG18] StuTZ D., GEIGER A.: Learning 3d shape completion un-
der weak supervision. CoRR abs/1805.07290 (2018). URL: http:
//arxiv.org/abs/1805.07290.7

[SHN*19] SAITO S., HUANG Z., NATSUME R., MORISHIMA S.,
KANAZAWA A., L1 H.: Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In The IEEE International Con-
ference on Computer Vision (ICCV) (October 2019). 2, 5,7, 8,9, 10

[SS08] ScHMIDT R., SINGH K.: Sketch-based procedural surface mod-
eling and compositing using surface trees. In Computer Graphics Forum
(2008), vol. 27, Wiley Online Library, pp. 321-330. 3

[Sut64] SUTHERLAND I. E.: Sketch pad a man-machine graphical com-
munication system. In Proceedings of the SHARE design automation
workshop (1964), pp. 6-329. 3

[SWSJ07] ScHMIDT R., WYVILL B., SOUSA M. C., JORGE J. A.:
Shapeshop: Sketch-based solid modeling with blobtrees. In ACM SIG-
GRAPH 2007 courses. 2007, pp. 43—es. 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.


https://opencv.org/
http://arxiv.org/abs/1805.07290
http://arxiv.org/abs/1805.07290

J. Zhou et al. / GA-Sketching: Shape Modeling from Multi-View Sketching with Geometry-Aligned Deep Implicit Functions

[TZF04] Ta1 C.-L., ZHANG H., FONG J. C.-K.: Prototype modeling
from sketched silhouettes based on convolution surfaces. In Computer
graphics forum (2004), vol. 23, Wiley Online Library, pp. 71-83. 3

[UPH*19] Uy M. A., PHAM Q.-H., HUA B.-S., NGUYEN T., YE-
UNG S.-K.: Revisiting point cloud classification: A new benchmark
dataset and classification model on real-world data. In Proceedings
of the IEEE/CVF international conference on computer vision (2019),
pp. 1588-1597. 12

[VMM99] VOLLMER J., MENCL R., MUELLER H.: Improved laplacian
smoothing of noisy surface meshes. In Computer graphics forum (1999),
vol. 18, Wiley Online Library, pp. 131-138. 13

[WLY*23] WANG J., LIN J., YU Q., Liu R., CHEN Y., YU S. X.:
3d shape reconstruction from free-hand sketches. In Computer Vision—
ECCV 2022 Workshops: Tel Aviv, Israel, October 23-27, 2022, Proceed-
ings, Part VIII (2023), Springer, pp. 184-202. 2

[WZL*18] WANG N., ZHANG Y., L1 Z., FU Y., Liu W., JIANG Y.-
G.: Pixel2mesh: Generating 3d mesh models from single rgb images.
In Proceedings of the European conference on computer vision (ECCV)
(2018), pp. 52-67. 7, 8

[XWC*19] XU Q., WANG W., CEYLAN D., MECH R., NEUMANN U.:
Disn: Deep implicit surface network for high-quality single-view 3d re-
construction. Advances in neural information processing systems 32
(2019). 2

[XXM*13] XIE X., XU K., MITRA N. J., COHEN-OR D., GONG W.,
SU Q., CHEN B.: Sketch-to-design: Context-based part assembly.
In Computer Graphics Forum (2013), vol. 32, Wiley Online Library,
pp. 233-245. 3

[ZGG21] ZHANG S.-H., Guo Y.-C., GU Q.-W.: Sketch2model: View-
aware 3d modeling from single free-hand sketches. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 6012-6021. 1,2,7, 8

[ZPW*23] ZHENG X.-Y., PAN H., WANG P.-S., ToNG X., LIU Y.,
SHUM H.-Y.: Locally attentional sdf diffusion for controllable 3d shape
generation. ACM Transactions on Graphics (SIGGRAPH) 42, 4 (2023).
1,2

[ZQG*20] ZHONG Y., Q1 Y., GRYADITSKAYA Y., ZHANG H., SONG
Y.-Z.: Towards practical sketch-based 3d shape generation: The role of
professional sketches. IEEE Transactions on Circuits and Systems for
Video Technology 31,9 (2020), 3518-3528. 2,3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

150f 15



