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Abstract

3D point clouds can represent complex 3D objects of arbitrary topologies and with fine-grained details. They are, however,
hard to regress from images using convolutional neural networks, making tasks such as 3D reconstruction from monocular
RGB images challenging. In fact, unlike images and volumetric grids, point clouds are unstructured and thus lack proper
parameterization, which makes them difficult to process using convolutional operations. Existing point-based 3D reconstruction
methods that tried to address this problem rely on complex end-to-end architectures with high computational costs. Instead, we
propose in this paper a novel mechanism that decouples the 3D reconstruction problem from the structure (or parameterization)
learning task, making the 3D reconstruction of objects of arbitrary topologies tractable and thus easier to learn. We achieve
this using a novel Teacher-Student network where the Teacher learns to structure the point clouds. The Student then harnesses
the knowledge learned by the Teacher to efficiently regress accurate 3D point clouds. We train the Teacher network using
3D ground-truth supervision and the Student network using the Teacher’s annotations. Finally, we employ a novel refinement
network to overcome the upper-bound performance that is set by the Teacher network. Our extensive experiments on ShapeNet
and Pix3D benchmarks, and on in-the-wild images demonstrate that the proposed approach outperforms previous methods in
terms of reconstruction accuracy and visual quality.
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1. Introduction

of the 3D point clouds. 3D object reconstruction from monoc-
ular RGB images is an important task, which is fundamen-
tal for augmented reality, mixed reality, holoportation, and
metaverse [WCL19, LCRCN22, PTHPS20, ASY22, Tan22, AB22,
SKKP22]. Despite being extensively investigated by the computer
graphics, vision, and machine learning communities, real-time ac-
curate 3D reconstruction of complex 3D objects of arbitrary topolo-
gies remains a challenge due to the complex structure of real-world
objects and the high computation requirements of the state-of-the-
art methods.

State-of-the-art image-based 3D reconstruction
pipelines [HLB21] can be classified based on how 3D shapes are
represented. Voxel-based methods [CXG∗16, WWX∗17, TZEM17,
SWZ∗18] can represent, and thus reconstruct, objects of arbitrary
topologies. Due to their reliance on volumetric grids and 3D
convolutions, these methods are expensive in terms of computation
time and memory requirements. While neural implicit representa-
tions address the memory issue, they remain expensive at runtime.

Mesh-based methods [WZL∗18, KUH18, KTEM18, PHC∗19] are
lighter but rely on template deformation. Thus, they can only
reconstruct objects that have the same topology as the template.
Ben Charrada et al. [BCTCL22] have proposed a method to ad-
dress the topology issue in mesh-based methods by simultaneously
deforming the geometry and topology of an initial template using
face pruning operations. However, these operations can result
in non-water tight meshes, which can significantly decrease the
accuracy and quality of the reconstruction. Point-based represen-
tations [FSG17, LKL18, JSQJ18, MMAB18, GWM18, LZZ∗19,
SWL∗18, LPZR18, LGCR19, ZKG18, MR19, WSL18, PEW21]
are compact and flexible. They can be used to represent complex
geometric and topological structures and fine geometric details.
They, however, lack the notion of structure, or parameterization,
and thus, are hard to regress from images using modern deep
networks, which rely on convolutional operations that require
grid-structured data. It is worth noting that, in this paper, we
use the terms parameterization and structure interchangeably.
They both refer to the process of structuring point clouds through
parametrization.
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In this paper, we propose a novel network architecture and a
novel training strategy to reconstruct accurate 3D point clouds from
monocular RGB images. Our key observation is that decompos-
ing the 3D reconstruction problem into two sub-problems, one for
structure, or parameterization, recovery and another for the geom-
etry reconstruction once the structure is known, makes the learn-
ing task drastically easier. Thus, we propose a novel architecture
that is composed of two sub-networks: (1) a Teacher network that
learns how to structure 3D point clouds. It receives as input the
ground truth 3D point cloud and a set of grid-structured 2D points.
It then uses folding operations [YFST18] to deform the 2D points
into the 3D space to fit the input 3D point cloud. It outputs the 3D
reconstruction of the input ground-truth point cloud as well as the
latent representation that encodes the points. This initial 3D recon-
struction, which is parameterized by the input 2D grid, will then
supervise, through a novel structural loss term, the training of the
second, referred to as Student, network to ensure that the correct
structure is reconstructed when regressing the 3D geometry. (2) A
Student network whose role is to recover the 3D geometry by map-
ping RGB images to the data generated by the Teacher network.
Since the latter is structured, the Student network’s task becomes
much easier than traditional point-based methods that learn how to
regress unstructured point clouds from input images. In this paper,
the terms Teacher and Student refer to our approach where one net-
work supervises another. Note that this terminology is distinct from
the context of knowledge distillation.

Our second key observation is that although end-to-end training
is appealing, it is challenging in practice given the large number of
parameters the network needs to learn. We show that better recon-
struction can be obtained by training separately the Teacher and
the Student networks. While we train the Teacher network using
the Chamfer Distance (CD), we train the Student network using
a novel Latent Distance loss, which, instead of directly compar-
ing point clouds as done with the CD, compares their projection
onto the latent space of the Teacher network. This addresses an
important limitation of the CD, which is its saturation and insensi-
tivity to subtle changes that can lead to non-optimal convergence.
Finally, we employ an adversarial network to further refine the re-
constructed 3D objects and overcome the upper-performance limit
set by the Teacher network. We train the Teacher network end-to-
end using the Chamfer Distance and a novel downsampling reg-
ularization method to remove instance-specific details, preventing
the network from overfitting.

In summary, this paper makes the following contributions; (1) A
novel Teacher-Student architecture and a novel training methodol-
ogy that decouple the 3D geometry reconstruction problem from
the structure understanding problem. (2) A novel loss function
termed Latent Distance as an alternative to the widely used Cham-
fer loss. (3) A novel refinement stage that relies on an adversar-
ial loss to address the limitation of the Chamfer distance. (4) We
also show that the proposed framework can also be applied to 3D
mesh reconstruction, and show that it outperforms state-of-the-art
methods in terms of reconstruction accuracy. The remaining of this
paper is organized as follows; Section 2 reviews the related work.
Section 3 describes in detail the proposed method. Section 4 de-
scribes the loss functions used to train the proposed framework.

Section 5 presents the results and compares the performance of our
proposed method to the state-of-the-art. We conclude in Section 6.

2. Related work

Deep learning methods, which revolutionized the field of image-
based 3D reconstruction, train neural networks to infer the 3D
geometry and structure of objects directly from a monocular
RGB image. While the focus of our study is on single-view
paradigms, we acknowledge that complementary techniques have
emerged alongside. Multi-view reconstruction techniques such as
Pixel2Mesh++ [WZC∗22] capitalize on multiple image perspec-
tives to construct detailed 3D models. Diffusion-based models,
such as MeshDiffusion [LFB∗23], shift the paradigm by focus-
ing on the generation of realistic 3D shapes using meshes. An-
other avenue to consider is primitive-based reconstruction tech-
niques such as IMS2Truct, which break down complex geome-
tries into basic primitives, simplifying the overall reconstruction
process [NLX18]. In the following sections, we will classify the
state-of-the-art based on the 3D representation they use. For an in-
troduction and comprehensive overview, readers are referred to the
surveys by Han et al. and Laga et al. [HLB21, LJBB20].

Volumetric methods use 3D voxel grids such as occupancy
maps [LGOA18, TEM18] and (truncated) Signed Distance Func-
tions (SDF) [DRQN17,CSO∗18,KLR18,CLK∗18], and extend the
traditional 2D convolutions used on images to 3D. While conve-
nient, they are very expensive in terms of memory requirements.
Thus, they are limited to low-resolution reconstructions and are
not suitable for edge devices. Several methods, e.g., [WLG∗17,
TDB17, RUG17, LXC∗17, HTM19], proposed to use space parti-
tioning techniques to reduce the memory requirements of volumet-
ric methods. However, these methods require learning both the oc-
tree structure as well as its content (i.e., the 3D geometry) and thus
result in complex network architectures.

Methods that use neural implicit functions [PFS∗19, MON∗19,
LWL20, LZ21, DP22, AB22] address the resolution issue faced by
volumetric methods. They are efficient to train and allow the recon-
struction of 3D objects at an arbitrary resolution. They are, how-
ever, expensive at runtime since, to extract the mesh, one needs to
evaluate the implicit function at every 3D location of a discretiza-
tion 3D grid, which is then fed to a Marching Cube algorithm to
extract the mesh.

Mesh-based representations that rely on deforming a canoni-
cal template to fit the target 3D geometry [WZL∗18, MBM∗17,
PHC∗19, HWX∗21] cannot reconstruct objects that have a topo-
logical structure that is different from the template. Some of the
recent works attempted to address this problem through topology
modification by face pruning [PHC∗19, BCTCL22]. For example,
TopoNet [BCTCL22] addressed the topology issue by simultane-
ously deforming the geometry and the topology of an initial tem-
plate. It introduced a face-pruning stage that is based on a reinforce-
ment learning network. Pruning operations, however, can result in
meshes that are not watertight. Other methods use an intermedi-
ate volumetric representation to recover the topology, followed by
mesh refinement using Graph CNNs [GMJ19,THP∗19]. Due to the
computational cost, the intermediate volumetric representation is

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



T. Ben Charrada & H. Laga & H. Tabia / Structure learning for 3D Point Cloud Generation from Single RGB Images 3 of 11

usually of low resolution. For instance, Tang et al. [THP∗19] use
grids of size 1283 while Gkioxari et al. [GMJ19] attempted to re-
duce the computational cost by using grids of size 483. These meth-
ods also suffer from inconsistencies in the orientation of the surface
normals, and require a refinement step, which brings an additional
complexity. Thus, a trade-off between reconstruction accuracy and
visual aspect is often needed.

Point-based representations are light and flexible but
are unstructured. The success of PointNet and its vari-
ants [QSMG17, QYSG17] made processing point clouds without
relying on intermediate representations possible. Subsequently,
several methods proposed to apply convolutional operation on
point clouds [TQD∗19, BPM20, XFX∗18, LBS∗18, WQF19]. Also,
Fan et al. [FSG17] introduced the Chamfer Distance (CD) and the
Earth Mover Distance (EMD) as loss terms between the ground
truth and the reconstructed point clouds.

Our hypothesis in this paper is that the problem of point-based
reconstruction can be rendered easier by structuring the point
cloud, allowing lighter networks to generate 3D reconstructions
without a significant accuracy trade-off. We propose a novel net-
work architecture and a training method that decouple the struc-
ture learning problem from the geometry reconstruction task. Our
main intuition is that structure understanding is only necessary at
the training stage and thus, by decoupling the two problems, we can
obtain an accurate and efficient 3D point cloud reconstructions. Un-
like previous methods, the approach we propose in this paper does
not rely on computationally expensive operations and can be used
to reconstruct, from monocular RGB images, accurate point clouds
and meshes of arbitrary topological structures.

3. Method

We focus on reconstructing, in an efficient manner, accurate 3D
point clouds from monocular RGB images. Point clouds are a light
representation that can capture fine geometric details and can repre-
sent 3D shapes of arbitrary topologies. However, they are not struc-
tured and thus are difficult to process using modern deep neural
networks. We address this problem using a novel Teacher-Student
architecture where the teacher structures the data while the student
maps input RGB images to the structured point clouds.

Intuitively, given a complex task, the Student does not need to
fully solve the task from scratch. Instead, the Student only needs
to understand the solution to the task. The Teacher, being more in-
formed about the task, can explain (through supervision) the solu-
tion to the Student in a comprehensible manner. From the neural
network perspective, as a Student, solving the unstructured nature
of the point cloud representation to reconstruct point clouds from
single RGB images can be seen as unnecessary. Computational
power is often wasted on trying to solve this problem from unstruc-
tured data. The task of mapping images to 3D point clouds can be
drastically simplified by first structuring the target point cloud. To
this end, we present a Teacher network that learns to reconstruct
point clouds based on its own perception of the input point cloud.
We then train a Student network to understand the mapping be-
tween the input images and the newly annotated point clouds. Fi-
nally, we train a refinement network to further refine the generated
point clouds.

3.1. The Teacher Network

The aim of the Teacher network, whose architecture is shown in
Fig. 1, is to re-annotate and encode the ground-truth point clouds
into latent representations that are easily interpretable by the Stu-
dent network. It receives as input a point cloud, randomly sampled
from the surface of the ground-truth 3D object, with no notion of
structure. It outputs a latent representation and a 3D reconstruc-
tion of the input point cloud. In contrast to real-world points that
are unstructured, points that are generated by the proposed neural
network can be structured if the network is well-regularized at the
training stage. Those structured points should be easier to learn and
understand by another neural network.

Yang et al. [YFST18] introduced FoldingNet, an autoencoder
that uses 2D grid deformations to constrain point cloud reconstruc-
tion. It uses 2D to 3D folding operations to map a set of 2D points
to a 3D surface in a similar way to plane deformation. The de-
formed 3D points share the same structure as the input 2D grid.
We propose a Teacher network that leverages the success of Fold-
ingNet [YFST18] to generate structured point clouds that are easier
to learn for the Student network. We adopt PointNet [QSMG17] as
a global feature extractor module for unordered points. We extract
a vector of dimension 1024 and pass it to a cascade of two fully-
connected layers of 512 units each. We use ReLU as a non-linear
activation for the hidden layer and quantization [OVK17] for the
last layer. We adopt folding operations [YFST18] to decode the la-
tent representation into 3D point clouds.

A folding decoder [YFST18] deforms a fixed initial 2D grid of
points and has proven to be efficient in unsupervised semantic seg-
mentation. We use a grid of 45 × 45 points, evenly spaced on a
square of dimensions [−0.3,0.3]2. The original implementation of
the folding operation [YFST18] uses fully-connected layers. We
found that a deconvolution-based folding operation performs better
than the original implementation. We implement it in the form of a
decoder that contains two folding operations. The first one maps a
fixed 2D grid to the 3D space using a cascade of three deconvolu-
tional networks. The output spaces of the deconvolution layers are
512,512, and 3. The second folding operation maps the output of
the first folding operation to the point cloud. Each folding operation
receives as input a concatenation of the latent vector with the input
that needs to be deformed, i.e., the 2D grid for the first folding op-
eration and the output of the first folding operation for the second
one.

3.2. Student Network

The Student network maps an input RGB image of size 224×224
to a 512D latent vector generated by the Teacher network. We
adopt VGG19 [SZ14] with batch normalization as a feature extrac-
tor. We apply average pooling on the extracted features to obtain a
7× 7× 512 latent representation, which is then processed using a
cascade of three fully-connected layers. The first hidden layer maps
the flattened feature vector into a vector of size 1024. The second
hidden layer has 1024 units. Finally, a fully connected layer maps
the generated features into the 512 latent vector that was generated
by the Teacher network. We use ReLU activation for all the hid-
den layers. To generate the point cloud, we use a decoder that has
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Figure 1: Overview of the proposed Teacher and Student network architecture. The former takes unstructured groundtruth points and outputs
a structured point set, which is then used as a groundtruth label to train the Student network. Only the latter is used at test time.
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Figure 2: Overview of the training method. We use the point cloud
generated by the Teacher network and a novel loss term, termed the
Latent Distance, to train the Student network.

the same architecture as the decoder of the Teacher network; see
Section 3.1.

3.3. Refinement Network

The Student network is trained using the annotations of the Teacher
network. Thus, its performance is bounded by the performance of
the Teacher network. To overcome this limitation, we propose a re-
finement network to refine the points generated by the Student net-
work. These are unordered points that have a local structure within
them. There are multiple ways to encode the local structure within
the point clouds. For instance, Qi et al. [QSMG17, QYSG17] use
a shared Multi-Layer Perceptron (MLP) across all points. More re-
cent works [WSL∗19, XDZQ21, NCKL19] use a graph obtained
with the K-nearest neighbor algorithm. In this work, we propose
to use the Alpha complex algorithm [EKS83] since it reconstructs
surfaces and enables mesh-based operations such as surface pool-
ing. Our refinement network receives a graph input and outputs a
set of refined points. It is composed of six graph convolution lay-
ers having 16,64,128,64,16,3 kernels, respectively, and a surface
pooling layer that extracts surface points from the refined graph.

4. Loss Function

Point cloud accuracy assessment is one of the most fundamental
problems in 3D reconstruction. The dominant trend in data-driven
shape reconstruction is to either propose a better architecture, a bet-
ter shape representation, or a better triangulation process. One re-
search aspect that received less attention is the design of a better
loss term that addresses the limitations of the widely used Cham-
fer Distance (CD). For two sets of point P and Q, the Chamfer
Distance is given by

CD(P,Q) =
1

|P| ∑
p∈P

min
q∈Q

∥p−q∥2
2 +

1
|Q| ∑

q∈Q

min
p∈P

∥p−q∥2
2, (1)

One of the limitations of the CD is the weak correlation be-
tween minimizing the CD and the visual quality of the reconstruc-
tion [WZL∗18, GMJ19]. In fact, the CD is insensitive to subtle
deformations; see Fig. 3. The mean CD error during the training
phase on ShapeNet [CFG∗15] is around 3× 10−4. Once the CD
falls below the 3× 10−4 threshold, it becomes insensitive to sub-
tle deformations and gets saturated. Alternative distance measures
include the Earth Mover Distance (EMD) [RTG00], which is com-
putationally expensive since it solves the assignment optimization
problem and relies on finding a unique bijection between point
sets [QSMG17]. We thus propose to use as a loss function the dif-
ference between deep features, which is proven to be very efficient
in assessing the perceptual similarity between images [ZIE∗18].
Also, we observe that deep features capture high-level concepts that
cannot be captured with low-level measures such as the CD or the
EMD.

Let F be the encoder of the Teacher network. Then, the proposed
Latent Distance (LD) is given by

LD(P,Q) =
1

|F(P)|
∥F(P)−F(Q)∥2

2. (2)

Fig. 3 shows that, unlike the CD, the Latent Distance can effectively
capture more discriminative information. In particular, the latent
distance is large when the reconstruction is noisy. Thus, it penalizes
noisy reconstructions and favors smooth ones. This is not the case
with the CD.

Similar to the CD, the proposed Latent Distance is invariant to
the way the input points are ordered. However, unlike the CD, the
Student network does not need to solve the unstructured aspect of
the point-cloud representation. For this reason, we seek to transfer
the structure information recovered by the Teacher network to the
Student network. We do this by matching the latent space of the
Teacher network to the latent space of the Student network, using
the Mean Square Error (MSE). The loss term of the Student net-
work is then defined as:

Loss = LD(Pgt,Prec)+MSE(LtStudent(I),F(Pgt)), (3)

where LtStudent(I) and F(Pgt) are the latent vectors of the Student
and the Teacher networks, respectively, Pgt is the re-annotated
ground truth point cloud, and Prec is the point cloud reconstructed
by the Student network.
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(a) Input image.

CD=0.00023
LD=0.41601

CD=0.00021
LD=0.31640

CD=0.00024
LD=0.46093

(b) Reconstruction.

CD=0.00023
LD=0.44531

CD=0.00021
LD=0.46679

CD=0.00024
LD=0.48828

(c) Reconstruction + noise.

(d) Ground truth.

Figure 3: Sensitivity to subtle deformation: examples of recon-
structions with and without added deformation. For all of the ex-
amples, the CD remains the same despite adding noise while the
Latent Distance varies significantly.

The CD does not establish a one-to-one mapping between the
predicted and the target 3D points. This makes it insensitive to sub-
tle deformation as shown in Fig. 3. The Student network relies, dur-
ing the training phase, on the annotations of the Teacher network,
which was trained using the CD. Thus, the Student network inherits
the CD limitation from the Teacher network. To overcome this, we
train the refinement network using an adversarial loss. Our adver-
sarial network, i.e., the discriminator, has a similar architecture to
our proposed point encoder network (Section 3.1). The only differ-
ence is in the last layer in which the fully-connected layer has only
one unit and is followed by a Sigmoid activation. As the discrimi-
nator network is trained to only differentiate between ground-truth
point clouds and the reconstructed point clouds, we added the CD
to the loss term to ensure that the refinement network is reconstruct-
ing the correct object. The full loss term of the refinement stage is:

Lossre f = BCE(Disc(Rf(Prec)),Yreal)+

1000×CD(Pgt,Prec).
(4)

Here, BCE is the Binary Cross Entropy function, Rf the refinement
network, Yreal the annotations used to train the adversarial network,
and Disc the discriminator network. We multiply the Chamfer dis-
tance by a factor of 1K to align it with the magnitude of the BCE
and avoid mode collapse.

Table 1: We report, using the Chamfer Distance, the reconstruction
error on 13 categories from the ShapeNet benchmark [CFG∗15].
We use 3D-LMNet [MMAB18] and AttentionDPCR [LXL∗19]’s
evaluation protocols. The lower the value the better the perfor-
mance.

3D-LMNet Protocol AttentionDPCR Protocol

Category PSGN 3D-LMNet Ours Ours(ICP) PSG-FC DensePCR AttentionDPCR Ours
Airplane 0.374 0.334 0.173 0.090 3.446 3.093 4.232 0.732
Bench 0.463 0.455 0.164 0.120 3.092 1.997 1.223 0.622
Cabinet 0.698 0.609 0.270 0.228 0.778 0.909 0.738 0.581
Car 0.520 0.455 0.163 0.139 0.925 1.069 0.931 0.485
Chair 0.639 0.641 0.339 0.243 3.591 2.630 1.507 0.991
Lamp 0.633 0.710 0.499 0.252 5.246 4.359 3.465 2.172
Monitor 0.615 0.640 0.328 0.215 1.748 1.629 1.339 1.033
Firearm 0.291 0.275 0.134 0.051 1.450 1.048 1.443 0.873
Couch 0.698 0.585 0.258 0.201 1.491 1.745 1.085 0.894
Speaker 0.875 0.810 0.434 0.336 1.251 1.398 1.111 1.169
Table 6.00 6.05 0.256 0.203 3.559 1.695 1.266 0.665
Telephone 0.456 0.463 0.181 0.119 1.157 0.925 0.881 0.613
Watercraft 0.438 0.437 0.202 0.115 1.327 1.601 1.603 1.043

Mean 0.562 0.540 0.262 0.178 2.236 1.847 1.603 0.913

5. Experiments

We evaluate the performance of the proposed framework on
three different datasets: (1) ShapeNet [CFG∗15] (Section 5.1),
(2) Pix3D [SWZ∗18] (Section 5.3), and (3) in-the-wild images
(Section 5.4). For a fair comparison on the ShapeNet bench-
mark [CFG∗15], we train and evaluate the proposed framework on
a subset of 13 categories. We adopt the evaluation protocols previ-
ously used by the state-of-the-art methods. These are detailed in the
Supplementary Material. Finally, we perform an ablation study to
assess the contribution of the different components of the proposed
approach (See Section 5 in the Supplementary Material).

5.1. Performance on ShapeNet

Following the protocols described in [WZL∗18, GMJ19], we train
and test our method on a subset containing 13 categories of
ShapeNet [CFG∗15]. For a fair evaluation, we use the images
rendered by Choy et al. [CXG∗16], which we split into train-
ing, validation, and test following the training protocol described
in [GMJ19].

5.1.1. Quantitative Evaluation

Table 1 evaluates, on the ShapeNet benchmark [CFG∗15], the per-
formance of our method and compares it to other point cloud-based
approaches such as PSGN-FC [FSG17], DensePCR [MR19], and
AttentionDPCR [LXL∗19]. From this table, we can see that our
method outperforms the state-of-the-art in 12 out of the 13 shape
categories, with a performance increase of more than 97%. Our
method requires 6.33 ms to generate a point cloud of 10K points
on a machine equipped with an i9 processor and a Nvidia Titan
RTX GPU card. This is very efficient compared to the state-of-
the-art, e.g., Mesh R-CNN [GMJ19], which requires 679ms and
DefTet [GCX∗20], which requires 200 ms. PSGN [FSG17], on the
other hand, requires only 3.61ms but is 61% less accurate than ours
as shown in Table 2.

The Student network has been trained using the annotations pro-
duced by the Teacher. Thus, the reconstructed point clouds fol-
low a probability distribution that is slightly different from the
ground-truth distribution. This results in slightly larger Chamfer
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Table 2: Evaluation on ShapeNet dataset following Pixel2Mesh
protocol. We report the CD and F1 scores. ∗ refers to the results
where we sample 40k predicted points and 16384 ground truth
points to align with PCDNet(UpResGraphX) [NCKL19] and Depth
Intermediation [ZKG18].

Model CD ↓ F1 ↑ Camera
τ 2τ intrinsic

N3MR [KUH18] 2.629 33.80 47.72 -
3D-R2N2 [CXG∗16] 1.445 39.01 54.62 -
PSGN [FSG17] 0.593 48.58 69.78 ✕

Pixel2Mesh [WZL∗18] 0.591 59.71 74.19 ✓
MVD [SFM18] - 66.39 - -
TopoNet [BCTCL22] 0.500 66.01 78.20 ✓
GEOMetrics [SFRM19] - 67.37 - ✓
BSPNet [CTZ20] 0,465 - - ✕

Mesh R-CNN (Best) [GMJ19] 0.306 74.84 85.75 ✓

Ours (No refinement) 0.310 74.4 85.2 ✕

Ours 0.255 79.5 88.7 ✕

PCDNet∗ (UpResGraphX) [NCKL19] 0.252 - - ✓
Depth Intermediation∗ [ZKG18] 0.246 - - ✓

Ours∗ 0.231 82.0 89.7 ✕

Teacher 0.097 89.26 95.40 ✕

Distance values. To alleviate this issue and ensure a fair compar-
ison with the state of the art, we sample surface-extracted point
clouds after applying the refinement stage. Table 2 compares the
performance of our method to PCDNet(UpResGraphX) [NCKL19]
and Depth Intermediation [ZKG18] following the evaluation proto-
col of Pixel2Mesh [WZL∗18]. Depth Intermediation [ZKG18] uses
3D-CNN to deform a 3D grid. PCDNet(UpResGraphX) [NCKL19]
uses a novel graph-x operation that operates similarly to graph con-
volution. Both methods assume a known camera intrinsic matrix.
This limits their application in real-world scenarios. Despite the
fact that our network does not rely on known camera intrinsics to
reconstruct 3D objects, it outperforms the state-of-the-art methods
in terms of accuracy. This is mainly due to our improved training
methodology.

Table 1 compares the performance of our proposed method to
3D-LMNet [MMAB18] and PSGN [FSG17] using the evaluation
protocol proposed by 3D-LMNet [MMAB18]. In contrast to the
proposed method, 3D-LMNet [MMAB18] relies on a simple la-
tent matching without structure learning. As seen in Table 1, the
proposed method outperforms 3D-LMNet [MMAB18] by a large
margin. From this observation, we conclude that learning struc-
tured points is more efficient than non-structured ones. Addition-
ally, MandiKal et al. [MMAB18] rely on the Iterative Closest Point
(ICP) algorithm to align the reconstructed point clouds with the
ground truth points, which further enhances the reconstruction ac-
curacy. We report the performance of the proposed method before
and after applying the ICP.

5.1.2. Qualitative Evaluation

Figure 4 compares the visual quality of our method to
PSGN [FSG17] and 3D-LMNet [MMAB18]. PSGN [FSG17]
is trained in an end-to-end manner using the Chamfer Dis-
tance as a loss function. 3D point clouds generated using 3D-

LMNet [MMAB18] are more accurate than points generated by
PSGN [FSG17]. However, 3D-LMNet [MMAB18] fails to faith-
fully generate thin structures such as chair legs; see for example
the fourth and fifth rows of Figure 4. The structure of the Teacher
network can be observed on flat surfaces of our reconstructions.
There, we can see that, compared to the ground-truth points, points
generated by our method seem to have an organized pattern; see for
example the first three rows of Figure 4.

Figure 6 illustrates the structure learned by the teacher network.
We color the points in the initial grid based on their order. Then, we
deform the grid using the Teacher network and use the same color
mapping. As seen in Figure 6, the learned parametrization provides
a plausible mapping (correspondence) between parts of Object A
and Object B. For instance, both the front right legs of the tables
seen in Figure 6, first row, are colored in light green while the back
right legs are colored in orange.

5.2. Application to Mesh Reconstruction

The proposed refinement network generates a mesh. In this
section, we compare the performance of our mesh recon-
struction approach with the state-of-the-art. In addition to the
point-based methods, we also consider (1) mesh-based meth-
ods such as N3MR [KUH18], Pixel2Mesh [WZL∗18], and GE-
OMetrics [SFRM19], which are template based, and Mesh R-
CNN [GMJ19], which reconstructs meshes of arbitrary topology
but uses voxels as an intermediate representation, and (2) volu-
metric methods such as 3D-R2N2 [CXG∗16] and MVD [SFM18].
We use the Pixel2Mesh [WZL∗18] evaluation protocol. Ta-
ble 2 reports the performance. Table 3 compares the perfor-
mance of our proposed method to Mesh R-CNN [GMJ19]
and Pixel2Mesh [WZL∗18] following the evaluation protocol of
Mesh R-CNN [GMJ19]. As illustrated in Table 3, our proposed
method significantly outperforms Mesh R-CNN [GMJ19] and
Pixel2Mesh [WZL∗18] in terms of accuracy.

Figure 5 compares the visual aspect of our mesh reconstruc-
tions to Pixel2Mesh [WZL∗18] and Mesh R-CNN [GMJ19]. Since
Pixel2Mesh [WZL∗18] deforms a sphere, it cannot reconstruct ob-
jects of complex topological structures. Mesh R-CNN [GMJ19] re-
lies on low-resolution volumetric grids as an intermediate repre-
sentation. This results in non-smooth surfaces. Our method is ca-
pable of reconstructing objects of arbitrary topological structures
as shown in Figure 5. Unlike Pixel2Mesh [WZL∗18] and Mesh R-
CNN [GMJ19], our method was not trained to generate meshes and
does not assume a known camera intrinsic matrix. Nevertheless, it
generates reconstructions of a higher fidelity to the input images
than mesh-based solutions. As shown in Figure 5, our method can
reconstruct meshes of arbitrary topological structures more accu-
rately than Mesh R-CNN [GMJ19]; see the rows 2, 3, and 4 of
Figure 5.

5.3. Performance on Pix3D

We evaluate the performance of our proposed framework on Pix3D
benchmark [SWZ∗18], which is composed of 10,069 real images
of 395 CAD models. Compared to ShapeNet [CFG∗15], Pix3D is
more challenging due to (1) the misalignment between the images
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Input PSGN. 3D-LMNet. Ours. Ground truth.

Figure 4: Qualitative comparison, using ShapeNet [CFG∗15], of the visual aspect of our reconstructions to PSGN [FSG17] and 3D-
LMNet [MMAB18].

Table 3: Reconstruction error on ShapeNet using the scale-invariant protocol of Mesh R-CNN. We compare to the state-of-the-art and to an
ablated model of Mesh R-CNN.

Full Test Set Holes Test Set

CD ↓ Normal ↑ F0.1
1 ↑ F0.3

1 ↑ F0.5
1 ↑ |V | |F | CD ↓ Normal ↑ F0.1

1 ↑ F0.3
1 ↑ F0.5

1 ↑ |V | |F |

Pixel2Mesh 0.265 0.729 29.9 76.2 89.0 2466 ±0 4928 ±0 0.273 0.733 30.8 76.5 88.9 2466 ±0 4928 ±0
Mesh R-CNN (Best) 0.133 0.729 38.8 86.8 95.1 1899 ±928 3800 ±1861 0.130 0.725 41.7 86.7 94.9 2291 ±903 4595 ±1814
Mesh R-CNN (Pretty) 0.171 0.713 35.1 82.6 93.2 1896 ±928 3795 ±1861 0.171 0.700 37.1 82.4 92.7 2292 ±902 4598 ±1812

Ours 0.108 0.611 44.5 89.2 96.3 3161 ±569 31311 ±7455 0.108 0.588 46.5 88.9 96.0 3165 ±576 30887 ±6537

and their corresponding 3D objects, (2) the presence of occlusions,
(3) the different lighting conditions, (4) the different camera intrin-
sic matrices, and (5) the limited size of the dataset. We compare our
performance to Mesh R-CNN [GMJ19] following the evaluation
protocol of Mesh R-CNN; see Table 4. The proposed method has
a reconstruction error (Chamfer Distance) that is 21% lower than
Mesh R-CNN [GMJ19]. However, Mesh R-CNN [GMJ19] reports
higher F1 scores than the proposed method. In fact, unlike ours,
Mesh R-CNN [GMJ19] assumes a known camera intrinsic matrix
which results in better alignment between the reconstruction and
the input image. The proposed method achieves comparable per-
formance without relying on such information. This makes the pro-
posed method applicable in a wider range of applications where the
camera’s intrinsic information cannot be easily obtained.

Table 4: Quantitative evaluation on Pix3D. We report the CD and
the F1 scores of Mesh R-CNN and the proposed model.

Model CD↓ F0.1
1 ↑ F0.3

1 ↑ F0.5
1 ↑

Mesh R-CNN 1.11 18.7 56.4 73.5
Ours 0.87 16.6 55.4 72.2

5.4. In-The-Wild Evaluation

We test our model, which was trained on the synthetic dataset of
ShapeNet [CFG∗15], on in-the-wild images from the Internet. Fig-
ure 7 qualitatively compares its performance with PSGN [FSG17]
and 3D-LMNet [MMAB18]. 3D-LMNet [MMAB18] overfits its
training set and fails to generalize to real-world images. Our model,
which was trained using synthetic data, generalizes well to unseen
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Input Pixel2Mesh. Mesh R-CNN (Pretty). Ours (mesh). Ground truth.

Figure 5: Qualitative comparison, using ShapeNet [CFG∗15], of the proposed mesh-based 3D reconstruction to Pixel2Mesh [WZL∗18] and
Mesh R-CNN [GMJ19].

Initial grid Object A Object B

Figure 6: Parametrization results obtained by the Teacher network:
We observe that the generated parametrization provides a direct
mapping (correspondence) between Object A and Object B.

real-world images and generates reconstructions of a higher fidelity
to the input images than PSGN [FSG17].

6. Conclusion

We proposed in this paper a novel framework for point cloud recon-
struction from single RGB images. Our novel training methodology
decouples the structure-learning problem from the reconstruction
problem by relying on two different networks: a Teacher network
and a Student network. Such methodology allows the reconstruc-
tion of accurate point clouds without relying on computationally
costly operations, e.g., graph-X [NCKL19], nor assuming a known
camera intrinsic matrix. Additionally, we proposed a novel loss to
train the Student network. In contrast to the widely used Chamfer
Distance that estimates the average error of individual points, our
Latent distance relies on deep features to compute a global error
between 3D shapes. We use the Chamfer Distance to evaluate the
performance of this proposed model and to train the Teacher net-
work which represents a limitation for the current method. As a
future work, we will focus on fixing the limitations of this evalua-
tion metric.
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