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Figure 1: Spurious correlations between body poses and garment dynamics. From left to right of each motion group: the original pose, the
perturbed pose, the relative garment changes of Pan et al. [PMJ*22], and that of ours. For each motion group, we perturb only one joint
(highlighted in yellow) and visualize the changes in animated garments. Note that garment parts inside the black boxes are not correlated
with the joint motion and should not have too much influence on animated garments.

Abstract

We address the 3D animation of loose-fitting garments from a sequence of body motions. State-of-the-art approaches treat all
body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment
vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint-wise
manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity.
In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint-specific
pose space deformation (PSD) to decompose the high-dimensional displacements as the combination of dynamic details caused
by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover,
garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness
of our approach. The code is available at https://github.com/qiji77/JointNet.
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1. Introduction

Dress for success. Image is very important.

Brian Tracy

Garments are essential in our daily life. They not only keep us
warm but also reflect our regional beliefs, individuality, and per-
sonality. Therefore, realistic garment simulation is in great demand
in numerous applications involving humans, e.g., video games, vir-
tual reality, the fashion industry, and virtual try-ons, just to name
a few. A vivid garment is individualized by both its specific tai-
loring and animation style. The existing workflows usually employ
physics-based simulation for high-quality garment dynamics. Nev-
ertheless, this scheme is computationally burdensome and requires
professional and tedious parameter tuning, which makes it difficult
to scale to real-time applications for processing various kinds of
garments.

Recently, data-driven paradigms have attracted extensive atten-
tion for improved efficiency. Pioneer work [GRH"12] learns gar-
ment deformations from simulated data and can be applied to dif-
ferent body shapes and poses. Motivated by promising achieve-
ments of deep learning methods on other vision tasks, there has
been a growing interest in designing neural networks for highly
non-linear garment deformations [BMTE21, PLPM20, PMJ*22,
ZWCM21]. For example, TailorNet [PLPM20] learns garment de-
formations and wrinkles in the canonical space using a network and
drives clothing to deform with body poses through fixed skinning
weights. DeePSD [BMTE?21] improves garment shapes by learning
a set of blend weights and blend shapes, i.e., PSD, for each point on
the garment template. However, both TailorNet and DeePSD posit
that garments and the human body share similar skinning patterns,
therefore often fail to deal with loose-fitting garments. Those gar-
ments are not completely consistent with body motions and have
more flexible deformation or more wrinkles.

Some recent works [PMJ*22, ZWCM21] have made attempts
at loose-fitting garment simulation. These methods generally con-
sider temporal body motions as important clues since the whole
body motion rather than a single joint pose determines garment de-
formations. In particular, Zhang et al. [ZWCM21] first learn the
3D shape and further enhance projected garment images by a ren-
dering network. Therefore, it cannot cater to those tasks requiring
fine 3D garments. Another interesting work [PMJ*22] can produce
3D garments by incorporating virtual bone-based skinning for low-
frequency shapes and an additional network for high-frequency de-
tails. Despite amazing results, these methods rely on global con-
texts on the whole body pose to determine the skinned garment
shape, which leads to spurious correlations between human poses
and garment shapes. As exemplified in Fig. 1, moving the left
shoulder leads to an unlikely swing of the skirt, which violates the
intuition that garment dynamics are only affected by a small subset
of related body joints. Moreover, these methods still have difficulty
in producing fine garment wrinkles, especially for skirts.

In this work, we address the problem of loose-fitting garment
animation from body motions. A good solution should (i) accu-
rately associate motions of each joint to garment deformations so
that they behave as consistent as expected; (ii) produce high-quality
wrinkle details and garment animation; (iii) require as less train-

ing data as possible. To this end, we present a novel garment an-
imation method, which renders sparse correlations between body
joints as well as brings high-quality 3D garment wrinkles. Specif-
ically, we learn joint-wise temporal features from a sequence of
3D body poses and then map joint-wise features to those of the
relevant garment’s virtual bones with a learnable association ma-
trix. We encourage the association matrix to be sparse and non-
negative to eliminate spurious correlations between body joints and
irrelevant garment vertices. Subsequently, we enhance features of
relevant virtual garment bones with garment-specific features that
encode the intrinsic garment animation style. Afterward, we pre-
dict 3D transformations for each garment’s virtual bone with en-
hanced features, which can be further skinned to produce the high-
dimensional garment shape. As the skinned garment may lose track
of fine garment wrinkles, we improve the result by predicting dis-
placements for each vertex with a set of joint-specific PSDs in the
canonical space. This design can further improve garment quality
and make the method easier to learn.

Our contributions are summarized as follows.

e Joint-wise motion feature encoding to avoid spurious correla-
tions between different body joints.

e An association mapping between human joints and a garment’s
virtual bones, which greatly reduces spurious correlations in gar-
ment animation.

o A joint-specific PSD in the canonical space learns more realistic
garment details specific to each joint.

Extensive experiments show that our method achieves significant
improvements in all indicators. Moreover, the qualitative results are
not affected by false correlations between body joints and garment
deformations, and better visual quality is obtained.

2. Related Works

3D garment animation can be achieved by two main paradigms
including physically-based simulation (PBS) and data-driven gar-
ment synthesis. We review these related works in this section.

2.1. PBS

PBS is a well-studied methodology to generate high-quality
garment animation by modeling the interactions between real-
world forces and garments according to physical laws [BW9S,
Pro97, SSIF08, TPBF87]. However, PBS-based methods are usu-
ally computation-hungry and sensitive to low-quality garment ty-
pologies because of complex collisions and interactions among
garment, body, and physical forces. Therefore these methods
often struggle to generate high-resolution garment animation
efficiently. Some works attempt to reduce the computational
cost [VSCOI1] by designing more efficient physical energy objec-
tive functions [GHF*07,JGT17, LBK17] and position-based sim-
ulation [MHHRO7]. Another line of work leverages CUDA accel-
eration and parallel algorithm design to efficiently simulate real-
istic garment animation [WWW22, Zel05]. For example, Tang et
al. [TWL* 18] use spatial hashing for continuous and incremental
tracking of deformed garment vertices and resolve penetrations by
anon-linear GPU-based impact zone solver. Wu et al. [WWYW20]
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Figure 2: Overview of our method. Given 3D body motions, we feed them into the joint-wise association module to map joint-wise features
encoded by GRU to different virtual garment bones with a sparse association function ¢(-)Y(-). These features are then concatenated with
garment-specific features encoded by a Fourier function Y(-) to predict rigid transformations of each virtual garment bone with MLP F (-).
At the same time, joint-wise motion features are also sent to MLP ©(-) to predict a set of joint-specific blending weights, which are multiplied
with joint-specific PSD D for garment displacement in the canonical space. Finally, the garment shape is skinned with LBS to produce the

final result.

cope with collisions by decomposing the problem into soft con-
straint and strict constraint enforcement. Li et al. [LTT*20] make
it possible to perform cloth simulation on multiple GPUs. Another
interesting work [Wan21] enables sub-millimeter level cloth simu-
lation with millions of vertices, which is computationally expensive
and cannot cater to real-time applications. In general, PBS-based
methods can produce realistic garment simulations at the cost of
significantly high computation complexity. Moreover, PBS relies
on many physical parameters, which can take hours to tune even
for experts.

2.2. Data-driven Simulation

Data-driven simulation methods learn to generate realistic gar-
ment deformations from a set of collected garments. Compared
to PBS, this category of works usually delivers faster speed and
requires fewer computation resources as highlighted in many pa-
pers [CGY*21, GRH*12, GCP*20, GCS* 19, PLPM20, WCC™*21].
These methods learn to deform garments from high-quality 3D data
compiled by PBS methods off-line [BMTE21, BME20, JZGF20,
KKN*13, PLPM20, SOC19, TB21]. The basic workflow is to first
learn PSD [LCFO00] for garments and then use linear blend skin-
ning (LBS) to animate the mesh in the rest pose [VSGC20].
For example, TailorNet [PLPM20] decomposes 3D animated gar-
ments into pose-driven low-frequency shapes and shape-and-style-
dependent high-frequency details. DeePSD [BMTE21] improves
garment shapes by learning PSD on the garment template. Deep-
Draper [TB21] additionally considers the impact of measure-
ments on clothing and proposes perceptual constraints to im-
prove the representation of high-frequency details. Santesteban et
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al. [SOC19] further improve high-frequency wrinkles by introduc-
ing GRU units. These methods only demonstrate results on tight-
fitting clothes and cannot be expected to work on loose ones. Be-
cause loose clothes usually have much larger deformation freedom
and do not follow body motions as closely as tight-fitting clothes.
In addition, some methods try to directly reconstruct clothed hu-
man bodies from digital scanning [SYMB21], images [PSRC*19]
or videos [AMX*18]. Despite amazing results, these methods as-
sume similar skinning weights between clothes and 3D human bod-
ies, which makes it infeasible to animate loose clothing.

To address the above problem, some methods incorpo-
rate human kinematics and physics to drive cloth deforma-
tion [BME21, HLB*23, SRPMN21, SOC22, STOC21, ZWCM21,
WSEM19, GBH23]. However, these methods may not be robust
for large motions and do not work well on high-frequency de-
formations. Another line of work tackles the problem by design-
ing novel frameworks and incorporating garment priors [TB23].
DNG [ZWCM21] first learns the deformation of the coarse model
and then generates pixel-level frame renderings of complex tar-
get garments with an additional network. Zhang et al. [ZCM22]
learn features for each garment point on the UV map based on
body motion sequences and a history of how the garment deforms.
The method subsequently predicts per-vertex skinning weights
and displacements in the canonical space of the garment. Pan et
al. [PMJ*22] suggest using virtual bones [LD12] for clothing de-
formation, bringing a new idea to loose-fitting clothing anima-
tion. Compared to those methods on tight-fitting clothing anima-
tion, Pan et al. [PMJ*22] learn virtual bone motions from a global
code encoding a set of body sequences and finally produce clothing
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wrinkles through virtual-bone skinned shapes and clothing motions
achieving state-of-the-art performance on loose-fitting garment an-
imation. AnchorDEF [ZLH*23] utilizes human motions as input to
learn a set of anchor points for the garment, along with their cor-
responding rigid transformation matrices and the offsets of each
point in the canonical space. However, these methods learned from
the global code can be easily affected by irrelevant body joints and
yield unexpected influences on loose-fitting clothes. In this work,
we investigate how to make the influence of body motions on vir-
tual bones more local to alleviate undesirable interference.

3. Method

Given a sequence of 3D body poses Pé' " and a source 3D garment
Gy at the rest pose, our goal is to predict the target 3D garment G
for each body pose P4 so that a garment can be animated with a
set of the body pose inputs. We represent human pose P} with the
axis-angle rotations of J = 20 body joints w.r.t. their parent joints
Ry € R’*3 and the position of the root joint T} € R follow-
ing [LMR*15], where hand joints are not considered for their irrel-
evances with garment deformations. This problem is challenging
in several aspects. First, garment deformations, especially loose-
fitting ones, have a high degree of freedom and usually do not fol-
low the posed body shapes closely. Second, correlations between
body joints and garment deformations are complex but localized,
where each joint is expected to affect only a subset of garment ver-
tices. Third, the wrinkles of the garment are intricate and exhibit
large variations, making them difficult to learn.

In this work, we present a novel method that ensures the local-
ized influence of body joints on the garment and the high fidelity
of garment wrinkles. The overall pipeline is shown in Fig. 2. At
first, we introduce virtual bones that act as an intermediate repre-
sentation between the garment and body poses to alleviate the gaps
between high-dimensional garment motions and body motions (see
Sec. 3.1). Afterward, we learn sparse correlations between body
joints and virtual bones and encode garment-specific features for
coarse garment shape skinning in Sec. 3.2. Last but not least, fine-
level winkles of the garment are accounted for by learning displace-
ments in the canonical space with a set of joint-specific PSDs so
that the learned winkles are pose-independent and specific to dif-
ferent joints in Sec. 3.3.

3.1. Virtual Bones for Garment Animation

In 3D digital designs, artists usually rely on rigged garments for
garment animation. However, garment rigging requires profes-
sional and tedious labor and cannot scale up. Following [PMJ*22],
we first use Marvelous Designer to generate a sequence of mesh
models. Next, we employ SSDR [LD12] to solve for a rest pose
mesh U, the skinning weight W, and a series of virtual bone poses
Py = {RY|Ty}Y], where R}, € R3*3 denotes the rotation matrix
of the v-th virtual bone, T“/’ € R3 is the v-th virtual bone’s transla-
tion, and V| = 80 is the number of virtual bones. Skinning weight
W encodes the influences of each virtual bone on the final defor-
mation of each garment vertex and is represented by a sparse, non-
negative N x |V| matrix, N is the number of garment vertices, and
|V | is the number of virtual bones. The sum of elements in any row

of W is equal to 1. A garment and its virtual bones are shown in
the top left and bottom right of Fig. 2. Therefore, high-dimensional
3D garment deformations can be narrowed down to a small set of
learned 3D rigid transformations defined on virtual bones. Though
fine-scale wrinkle motions may be lost, we can recover most coarse
garment deformations through skinned virtual bones.

Given virtual bones Py and skinning weights W € RN |V|, the
deformed garment G can be attained according to virtual bone-
based skinning. We can calculate the i-th deformed garment vertex
Gr,; by transforming a vertex Gg ; at the rest pose with blended 3D
rigid transformations of virtual bones as follows:

Gr, = LBS(Pv,W,Gs,;)

vl i,V pV v (1)
=Y w(RyGs;i+TY),
v=1
where w” indicates the skin weight for vertex Gy ; regarding to
virtual bone v.
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Figure 3: Joint-wise associations. Both axis-angle vectors of
neighboring joints and the position of the root joint are concate-
nated and fed into a joint-wise GRU layer to learn temporal fea-
tures for each joint. Thereafter, we use a sparse association matrix
to map joint-wise features to related virtual bones.

3.2. Associating Body Joints and Virtual Bones

After we have virtual bones and corresponding skinning weights W,
3D garment animation boils down to estimating 3D transformations
of virtual bones P}, from a sequence of ¢-frame poses. Previous
works [PMJ*22] consider body joints as a whole and encode the
concatenation of all body joints for virtual bones prediction, there-
fore virtual bones are influenced by all body joints. Although this
scheme can capture contexts between different joints, it can easily
lead to spurious correlations between garments and unrelated body
joints. For example, arm poses should not affect the swing of the
bottom of a skirt as shown in Fig. 1.

In this work, we cope with the above problem by requiring each
body joint to only affect a subset of garment vertices as illustrated
in Fig. 3. Given the body poses 7711;"'[, we encode temporal mo-
tion features with a function y(-) : R */*€ 5 R/*K where K is
the dimension of virtual bone features and C denotes the feature
dimension of input joint poses. For each joint, we concatenate the
root joint position T, its joint rotation R, and that of its two neigh-
bors on the human skeleton as joint features. The temporal feature
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encoder y(-) consists of a joint-wise single GRU layer (J GRUs
with input size C and hidden size 600) following a single layer per-
ceptron with 480 output channels, where joint-wise GRUs alleviate
feature interferences between different joints.

Inspired by [OBB20], we devise a learnable association matrix
A € RVI¥ 5o that only essential joint poses are used for vir-
tual bone estimation so that spurious correlations are mitigated.
As the association matrix should be non-negative, we use ¢(A) =
ReLU (A) to threshold negative weights and restrain spurious cor-
relations. Then, the rigid transformations of virtual bones can be
determined by:

P = F(0(A)w(PE™)), )

where F(-) € RIVI*K s RIVIX6 js 4 channel-wise function to pre-
dict the three-dimensional Euler angles and the three-dimensional
offsets for each virtual bone. F(-) is implemented as a four-layer
perceptron (K, 1024,2048,1024,6)

Figure 4: Examples of learnt association function ¢(A). On the left,
each circle denotes a body joint and its corresponding index id. On
the right, the influences of each joint are shown with the green color
highlighting impacted garment regions.

During training, body joints with zero activation with respect to
virtual bones will have no corrective effect on the virtual bone pre-
dictions. We further encourage the association matrix ¢(A) to be
sparse so that unnecessary correlations can be eliminated. In Fig. 4,
we show the learned association function ¢(A), where only related
garment regions are affected by body joints. However, this does not
imply the loss of long-range effects of body joints on the garment.
As shown in index 2, the motion of hips not only affects garment
vertices near body joints but also has an impact on the distal part,
such as the skirt hem.

Except for the body poses, each 3D garment usually exhibits spe-
cific geometric patterns, such as camisole and waistband. Therefore
we augment the body pose-based features with a virtual bone-based
garment prior. We feed 3D positions of each virtual bone T& at the
rest pose to a Fourier function [TSM*20] so that garment-specific
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feature f"} can be learned:

fv =Y(T)) = [aycos(2mey - Ti), ausin(2mey - Ty ), 3

e Omcos(27em - Ty ), O sin(2Tem - T&)},
where 0, is the randomly initialized Fourier series coefficient, ¢m
is the Fourier basic frequency. We then concatenate f;, as garment-
specific features fy. Basically, these features encode garment-
specific animation styles. The combined features of the body pose-
based features and fy are fed into F(.) to estimate 3D rigid trans-
formations for each virtual bone as follows:

Pir = F(0(A)W(PE ™) + fv). @)

3.3. Joint-specific PSD Displacements

Notwithstanding virtual bone-based skinning can recover coarse
garment shapes, it usually loses track of high-frequency wrin-
kles. Previous works [PMJ*22] learn displacements based on the
skinned garment shape to enrich details. We instead model gar-
ment wrinkles in the canonical space. The advantage is that dif-
ferent posed garments are aligned in the same space and many of
the local geometric details become invariant to large body articula-
tions. Recent works on human reconstruction and neural radiance
field [DLJ*20, SYMB21, CJS*22, CZB*21] suggest that learning
shape details in the canonical space can improve the results.

However, learning these details still requires memorizing every
pose-dependent detail, which hinders its generalization and learn-
ing efficiency. We observe that each joint only affects a small re-
gion of garment wrinkles, which can be further decomposed into a
combination of basic blending shapes as PSD [LCFO00]. Therefore,
we devise joint-specific PSDs to learn joint-specific wrinkle varia-
tions. In this way, complex wrinkles are reduced to a very small set
of joint-specific weights. The basic network structure is illustrated
in Fig. 5. Then we can formulate the joint-specific PSD as follows:

J . .
G5 =Y o(w(Py ")D’ + Gs, P ®)
j=1

where y(-) is explained in Eq. (2), ¢(.) : R — RX is a three-
layer perceptron (K,480,128,|X|) taking the output features y(-)
to predict blending weights for each joint-specific PSD, and Dl e
RIXIXNX3 s the PSD matrix for j-th body joint. Then, G is de-
formed by virtual bone-based LBS to generate garment G7 with
skinning weight W. The equation for the skinning process is shown
in Eq. (1).

3.4. The Objective

In this subsection, we describe the loss terms for network optimiza-
tion. The overall objective function is defined as:

L= Lcloth + Xnorm . Lnorm + 7\@ . Lsparsm (6)

where hyper-parameter Ayorm and Ag balance different loss terms.
Leion, calculates the difference between the deformed garment G
and the corresponding ground truth Gy as follows:

1 T
Lcloth:?ZHGtT_GtT*Hr (7)
=1
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Similarly, normal loss Lyorm is enforced on normal between the
deformed garment and the ground truth to improve local geometry.
Sparsity loss Lsparse encourages the sparsity on correlation weights
between body joints and virtual bones with L1 norm:

L‘vparse = H(])(A)”l . ®)

4. Experments
4.1. Datasets and Evaluation Metrics

In our experiments, we adopt the garment animation dataset pro-
posed in [PMJ*22]. The dataset is generated by garment simulation
on two different types of loose-fitting garments driven by a digital
avatar, denoting (D1,D2). The driven human motions are collected
from the Internet and have a diversity of complex human poses. The
dataset is divided into 35000 frames for training and 5000 frames
for testing. For each garment, we obtain the virtual bones and cor-
responding skinning weights as [PMJ*22]. To validate the effec-
tiveness on a wider range of garment types, we selected three dif-
ferent types of loose-fitting garments in Cloth3D [BME20], denot-
ing (D3,D4,D5). We applied the same set of poses as in [PMJ*22]
and generated the ground truth garment mesh sequences using Mar-
velous Designer. Then, we computed the virtual bone for the gar-
ments using SSDR [LD12]. We set the number of bones to 80 to
maintain the consistency with [PMJ*22].

For evaluation, we embrace two metrics: RMSE (Root Mean
Squared Error), and Hausdorff distance. Basically, RMSE and
Hausdorff distance reflect the vertex distance between predicted
garments and their ground truth.

4.2. Implementation Details

The method is implemented based on the released code of
[PMJ*22] and is trained on an NVIDIA Tesla V100 GPU with
32GB memory. we adopt truncated back propagation through
time [WP90] with 50-time steps to reduce the memory consump-
tion. The network is optimized using RMSProp optimizer and we
set the batch size to 8 and the initial learning rate to 1073, which
decays by 70% every 30 epoch. In our experiments, we split the
training process into two stages. In the first stage, we optimize

Table 1: Quantative comparisons with previous works.

Skinned Final
Method
RMSE] Hausdorff] RMSE] Hausdorff]

Tailornet [PLPM20] - - 41.59 133.26

DI DNG [ZWCM21] - - 49.20 144.45
Pan et al. [PMJ*22] 28.40 110.49 26.90 107.50
Ours 24.98 98.95 24.18 98.61

Tailornet [PLPM20] - - 36.71 91.87

D2 DNG [ZWCM21] - - 36.42 106.65
Pan et al. [PMJ*22] 21.23 71.30 21.04 71.71
Ours 19.16 63.62 18.74 63.50

DNG [ZWCM21] - - 33.72 83.33

D3 Pan et al. [PMJ*22] 16.28 53.25 15.52 51.15
Ours 14.30 46.05 14.14 46.51

DNG [ZWCM21] - - 55.47 137.76

D4 Pan et al. [PMJ*22] 38.07 106.11 37.63 105.09
Ours 33.88 98.76 33.52 98.36

DNG [ZWCM21] - - 30.78 75.57

D5 Pan et al. [PMJ*22] 16.93 55.34 16.51 54.56
Ours 14.11 48.11 14.18 47.83

DNG [ZWCM21] - - 50.59 137.31

D6 Pan et al. [PMJ*22] 25.29 85.48 24.76 89.57
Ours 21.80 76.09 21.59 76.24

the network without the garment wrinkle part in Sec. 3.3. After-
ward, we tune the whole network with all modules. Both stages are
trained with all loss terms. The code will be released for research
purposes.

4.3. Comparison with Previous Work

We compare our method with the state-of-the-art loose-fitting
garment deformation methods, including Pan et al. [PMJ*22],
DNG [ZWCM21], and TailorNet [PLPM20]. We retrain the net-
work [PMJ*22,ZWCM21] with their released code for comparison.
For TailorNet, we adopt the results reported in [PMJ*22], which
has the same configuration as ours.

Tab. 1 shows the quantitative comparison. Compared to
[PMJ*22] on the skinned results, our method achieves about
+2.75mm gains in RMSE, +9.61mm in Hausdorff distances on
dress (D1 and D2), and about +2.75mm gains in RMSE, +9.61mm
in Hausdorff distances on average on dress (D3, D4, and DS).
This suggests our method overwhelms [PMJ*22] on both geometry
and local edge structures. A major difference between our method
and [PMJ*22] is that Pan et al. [PMJ*22] encode motion features
of all body joints with a GRU layer, while ours extracts motion
features in a joint-wise manner and augments them with garment-
specific features fy. Therefore our joint-wise design can prohibit
interferences in the garment shapes from irrelevant body joints as
well as improve the animation quality. For final results, our method
surpasses previous methods for at least 2.7mm on D1 and 2.3mm
on D2 on RMSE. The results confirm our advantage over previous

© 2023 Eurographics - The European Association
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Figure 6: Qualitative comparisons with previous methods. The first two rows are for dressl, and the last five rows are for dress2, dress3,

dress4, dress5, and dress6. From left to right: (a) 3D body poses, (b) the ground truth garments, (c) ours, (d) Pan et al. [PMJ*22], (e)
DNG [ZWCM21], (f) skinned results by ours, (g) skinned results by Pan et al. [PMJ*22].
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Figure 7: Ablation studies of skinned results. From left to right: (a) body poses, (b) ground-truth garments, (c) our results, (d) results of ours
without (- )Y(+), (e) results of KNN associations, (f) results of ours without fy.

work on loose-fitting garment animation. Our method surpasses
previous methods for at least 4.1mm on dress D4 on RMSE. Ba-
sically, our method can attain better results on looser-fitting gar-
ments. For example, dress D4 has fewer fixes than the other ones.
Fig. 6 demonstrates the qualitative results of different methods. The
results reveal that our method can produce more realistic garments,
especially the loose parts and garment wrinkles.

(AN My

\ A e \\
3 N

} A W n

- i
AN @

+ B

(a) (b) (c) (d)

Figure 8: Ablation studies of final results. From left to right: (a)
body poses, (b) ground-truth garments, (c) our results, (d) results
of ours without PSD. See the zoom-in regions for geometry differ-
ences.

4.4. Ablation Experiments

In this section, we evaluate the influences of key module designs.
We conduct all experiments on dress1.

Joint-specific Associations. Because the association matrix
®(A) and joint-wise motion features W(P}*") depends on each
other, we replace them with a single GRU layer rather than re-
moving them one by one (denoting without ¢(A)y(P4"")). On the
first row of Tab. 2, we find this change results in a 6.0mm drop in
RMSE and an 11.5m drop in Hausdorff distance. To further vali-
date how well a prior-based association matrix can work, we di-
rectly selected the nine nearest human joint nodes for each virtual
bone based on their distance (denoted as KNN association), where
the best performance is attained when K = 9. On the second row of

Table 2: Ablation studies on skinned results and final results. For
ablated methods, ours without ¢(-)y(-) replaces the association
module with one GRU layer, KNN association means directly se-
lecting KNN human joint nodes, ours without fy removes garment-
specific features fy, ours without PSD replaces the joint-specific
PSD module with a high-frequency module on the baseline method
[PMJ*22].

Method RMSE| Hausdorft]
without ¢(-)w(-) 30.94 110.50
Skinned KNN association 27.48 107.18
without fi 26.52 103.01
Ours 24.98 98.95
Final without PSD 24.69 98.71
Ours 24.18 98.61
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Figure 9: Results on perturbed joint poses. From left to right: (a)
original body pose, (b) the body pose with perturbed joints, (c) gar-
ment changes of ours, (d) garment changes of [PMJ*22]. We move
only one joint in each row. Note that our method has fewer uncor-
related garment movements.

Tab. 2, the metrics of RMSE and Hausdorff drop by 5.26mm and
22.65mm. Removing garment-specific features fy on the third row
of Tab. 2 leads to a 1.5mm drop in RMSE and a 4.0mm drop in
Hausdorff distance. The baseline method [PMJ*22] can be treated
as removing both joint-wise motion features, association matrix,
and garment-specific features. By comparing the first row with re-
sults of [PMJ*22], we can see garment-specific features will have
less influence if features of all body joints are joined for motion
feature learning. Fig. 7 gives visual results of the experiments.

Notice ¢(-)y(-) and fy are important to high-quality garment re-
sults. Comparing (c) with (e), we can find that opting for the direct
selection of joints yields inferior outcomes and fewer details. This
outcome can be attributed to the fact that directly selecting a fixed
number of joints might inadvertently neglect certain pivotal joints,
consequently compromising the overall quality of the results.

Joint-specific PSD. We explored the impact of joint-specific
PSD on the results. Removing this module yields a 0.5mm decrease
in RMSE and a 0.1mm drop in the Hausdorff distance. Therefore
the influence of joint-specific PSD is positive but very slight. Al-
though the boost is small, the results of the PSD are closer to the
details of the GT surface, as shown in Fig. 8

Robustness to Irrelavent Joints. We select several joints that
usually affect the garment shape and perturb them with some ran-
dom poses. After the perturbation, garment shapes should change
as little as possible w.r.t. the original. In Fig. 9 and Tab. 3, we report

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 10: Extension to Different Body Shapes. The first row shows
different human bodies, and the second and third rows show ani-
mated garments in different poses.

¥

Figure 11: Failure cases. Some parts of garments may have self-
collisions or body-garments collisions as we do not model colli-
sions.

the results. Notice that our method is more robust to perturbations
on unrelated local joints.

The Impact of Training Data Size. During experiments, we
also found that our method is more data-efficient. In Tab.4, we show
the results trained with different amounts of data (50% and 30%,
respectively). Basically, our method can achieve similar results as
[PMJ*22] even with only half of the training data.

4.5. Extension to Different Body Shapes

We demonstrate the generalization capabilities across different
body types, as depicted in Fig 10. The network is trained on a
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Figure 12: Garment animations for a sequence of human motions.
garments.

The top row shows human motions, and the second row denotes animated

Figure 13: Garment animations with human motions from video input. The first row gives a sequence of video frames, the second row is the
corresponding human motion, and the last row demonstrates our animated results.

medium body shape (a) and subsequently tested on lean and fat
body shapes (b and c). During testing, we adjusted the garment
template using body shape priors. The experimental results demon-
strated that our method can be extended to different body shapes
and produce satisfactory results by moving virtual bones based on
the differences in body shapes.

4.6. Applications

Body motion-based garment animations enjoy wide applications,
such as virtual try-ons and garment designs. In Fig. 12, we demon-
strate an example of how a garment can be animated by a se-
quence of body motions. An interesting application of the method

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Diao et. al. / Combating Spurious Correlations in Loose-fitting Garment Animation Through Joint-Specific Feature Learning

Table 3: RMSE results on four randomly perturbed joints.

Method Joint-18 Joint-16 Joint-17 Joint-19
Pan et al. [PMJ*22] 6.9 7.0 4.5 3.8
Ours 0.5 1.2 1.0 0.6

Table 4: Results on different amounts of training data.

Training data Method Skinned Final
30% Pan et al. [PMJ*22] 36.54 36.41
’ Ours 32.27 31.55
Pan et al. [PMJ*22] 32.10 31.88

50%
Ours 28.02 27.37
all data Pan et al. [PMJ*22] 28.41 26.90
Ours 24.98 24.18

is to animate garment dynamics based on a natural image or
video input. In this part, we select a video sequence of the surreal
dataset [VRM™17] and then use the corresponding human motions
to animate garments. Results are shown in Fig.13.

4.7. Limitations

Our method still has some limitations. For instance, the trained net-
work can only be used for the animation of a specific kind of gar-
ment. In addition, the present approach does not model the complex
collisions between garment parts or between garments and body,
therefore self-penetration and collisions may occur sometimes as
shown in Fig. 11. We leave these two limitations to future works.

5. Conclusions

This work presents a novel approach to body motion-based gar-
ment animation. Our method first learns to map joint-wise motion
features to features of related virtual garment bones with a sparse
association matrix. Then the mapped features of virtual bones along
with garment priors are concatenated to learn 3D transformations
of virtual bones. Besides, we devise joint-wise PSDs to learn gar-
ment wrinkles in the canonical space. Experiments show that our
method eliminates counterfeit garment deformations caused by un-
related body joints, improves the quality of garment deformations,
and eases the learning process.
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