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Figure 1: Comparisons with representative methods [XSA* 18, CLGS18] on garment image synthesis, with a garment sketch and a texture
patch as inputs. Existing approaches struggle to produce consistent textures and expand the patterns, while ours works well.

Abstract

Using sketches and textures to synthesize garment images is able to conveniently display the realistic visual effect in the design
phase, which greatly increases the efficiency of fashion design. Existing garment image synthesis methods from a sketch and a
texture tend to fail in working on complex textures, especially those with periodic patterns. We propose a controllable garment
image synthesis framework that takes as inputs an outline sketch and a texture patch and generates garment images with
complicated and diverse texture patterns. To improve the performance of global texture expansion, we exploit the frequency
domain features in the generative process, which are from a Fast Fourier Transform (FFT) and able to represent the periodic
information of the patterns. We also introduce a perceptual loss in the frequency domain to measure the similarity of two texture
pattern patches in terms of their intrinsic periodicity and regularity. Comparisons with existing approaches and sufficient
ablation studies demonstrate the effectiveness of our method that is capable of synthesizing impressive garment images with
diverse texture patterns while guaranteeing proper texture expansion and pattern consistency.
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1. Introduction

Clothing is always a fundamental part of human life. Nowadays hu-
mans’ demands for the latest fashions are rapidly growing, which
increases the requirement for fast garment design and manufactur-
ing in the garment industry. Garment design is largely limited to
manual expert workflows and the huge amount of work dramati-
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cally increases the burden of the fashion designers. Therefore, au-
tomating some processes in the garment design and manufacturing
pipeline is in high demand in the fashion companies and the apparel
industry [FCRCO05, AD06].

Using a garment sketch and a texture to quickly synthesize the
garment image is able to display the realistic visual effect for the
designers in the design phase. Unlike the traditional garment de-
sign pipeline in which the visual effect of the designed garment
is shown after the manufacturing phase, this method greatly in-
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creases the design efficiency. The inspiration of the professional
designers tends to start with a rough outline (i.e., a sketch), and
the fine details are added later. Hence, displaying the visual effect
with texture patterns for the outline automatically can provide the
designers with a lot of reference information for the subsequent
refinement and detail addition. To this end, we propose a control-
lable garment image synthesis method with a sketch and a tex-
ture patch as the input elements. Our approach supports outline
sketches independent on the fine details inside, which are bene-
ficial to initial outline design and flexible enough for later edit-
ing for the experienced designers and even novice users. Several
works [XSA*18,CLGS18,LYH*20,SLL20,YZL*22] have focused
on this task, but they do not work well with complicated texture
patterns. In contrast, our approach produces high-quality garment
images with complicated and diverse patterns, as shown in Figure 1.

Textures used in the garment image synthesis often contain re-
peated patterns, such as stripes, polka dots and plaids. Even for
non-repeated patterns such as camouflage and leopard print, they
exhibit distinct characteristics or their own regularities. For exam-
ple, although the spots in the leopard print are scattered, they are
still separated from each other and do not merge into a cluster. Ex-
panding the texture patterns during the garment image synthesis
process should thus consider the periodicity or the regularity of the
patterns, which is highly related to the global context (i.e., long-
range dependency) of the synthesized patterns. With current deep
learning techniques that are based on convolution operations with
shared kernels in a local receptive field as solutions, the capabil-
ity of modeling long-term information is somewhat reduced. Fast
Fourier Transform (FFT) [BM67] is well-suited in this scenario,
which transforms spatial images into the frequency domain where
globally periodic information in the spatial domain is represented
as local one. Therefore, applying the convolutional kernels to the
frequency domain features enables a global receptive field for the
long-range spatial features and an efficient solution to modeling the
pattern periodicity and regularity. We thus propose to integrate the
concept of FFT with our generative process to improve the perfor-
mance of global texture expansion.

Another important aspect of the synthesized garment images is
the consistency with the input texture patch in local regions, which
is also measured by periodicity or regularity. We observe that two
texture patches with the same pattern but not aligned in pixels have
relatively similar amplitude images in the frequency domain, as
shown in Figure 3. With this characteristic, we propose a perceptual
loss in the frequency domain with the amplitude images from two
patches cropped from the synthesized and the target image. This
loss measures the consistency in terms of the periodicity, and also
reflects the quality of the local details.

We evaluate for our framework through qualitative and quan-
titative comparisons with the existing methods and comprehen-
sive ablation studies of the proposed techniques. These experi-
ments demonstrate that our approach is superior in expanding pat-
terns globally and generating consistent textures with proper reg-
ularity. An additional diversity experiment also shows that our
method works well with complicated and diverse texture patterns.
We also present an application of our approach in garment editing

via the sketches, which shows the generalization ability on unseen
sketches.

The main contributions of this work are summarized as follows:

e We present a controllable garment image synthesis framework
from a garment sketch and a texture patch. The concept of Fast
Fourier Transform (FFT) is integrated for better global expan-
sion of diverse texture patterns that the framework works with.

e We propose a perceptual loss in the frequency domain to further
improve the ability of capturing the periodicity of the generated
texture patterns and preserving the fine-grained details.

e We demonstrate the superior performance of our approach in
synthesizing garment images with complicated texture patterns
through comprehensive experiments. A derived application of
garment editing via sketches is also introduced.

2. Related Work
2.1. Controllable Garment Design

Controllable garment design [XSA*18, CLGS18, LYH"20,
YZL*22] aims to synthesize garment images from a garment
sketch and a texture patch for quick garment display. The gen-
erated texture of the output image should be properly expanded
according to the silhouette of the sketch and simultaneously
consistent with the input pattern patch, which is still a challenging
task. Several methods focus on this task. TextureGAN [XSA*18]
proposes a two-stage training strategy, using garment images
and sketches in the first stage and texture patches in the second
one for fine-tuning. It introduces local texture losses to improve
the fine-grained details of generated textures. In most cases, it
produces high-quality results in the region where the texture
patch is placed, but fails to expand the pattern outside that region.
FashionGAN [CLGS18] maps the texture patch into a latent space,
which is passed to a BicycleGAN network [ZZP*17b] along with
the input sketch for the generation. The latent space allows for
the modeling of unseen textures in the inference stage. It can
generate good results with texture patches of flat colors or simple
patterns such as stripes. But when the pattern is complicated,
such as camouflage patterns, leopard prints or floral designs,
it relies heavily on the detailed inner contours from the input
sketches, which are tedious to obtain. Li et al. [LYH*20] develop
an interactive sketching system for fashion images design. To
accommodate complicated texture patterns, it also requires users
to draw the colorized contours of the patterns, which is inflexible
for fashion designers or novice users. Different from the previous
methods with a specific sketch as input, ADIN [YZL*22] first uses
a random noise to generate a garment sketch, which is then fed to
arendering generator along with a texture patch for garment image
synthesis. It is able to generate plausible textures but still fails
in complex patterns, exhibiting discontinuity and inconsistency
with the input texture. Moreover, the randomness of the generated
sketch makes it difficult to precisely control the shape of the
generated garment.

Apart from garment sketch, other methods use as input garment
segmentation masks [SEB* 18, KKL19] as a condition of the gar-
ment shape. Compared with garment sketches, they are not flexible
enough for the subsequent garment editing.
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Several methods [HLBK18, CMG21, HTB*22, CCC*23] work
with a similar task of controllable image synthesis according to a
sketch image and a reference or style image. While they are not
designed for garment images, they suffer from the insufficient ca-
pability of texture generation and propagation.

Compared with the methods above, our approach, with highly
flexible controls, is able to synthesize high-quality garment images
of diverse and complicated texture patterns. To enhance the global
expansion of the patterns and capture their periodicity, we integrate
the frequency domain features into our framework through FFT and
introduce a frequency perceptual loss to boost the performance.

2.2. Exemplar-based Texture Synthesis

Exemplar-based texture synthesis aims at generating a larger tex-
ture image from a reference texture patch [ZZB*18]. Existing
methods can be divided into two classes: non-universal and uni-
versal texture synthesis.

Non-universal texture synthesis algorithms [GEB15, HVCB21]
perform a new execution for each single texture pattern. That is,
with deep learning technology, a new tuning of the neural network
is required for each pattern, making it infeasible to apply to various
textures in the scenario of garment synthesis.

Universal texture synthesis methods [MLD*20, GDNR22] train
generative models on texture datasets. Once the training is finished,
the trained models can be applied to arbitrary textures. This line of
methods essentially focuses on expanding a texture patch into a
larger texture image, which is similar to our garment synthesis task
with texture expansion alike. However, those methods cannot be di-
rectly applied to our task due to some noticeable differences. First,
our task needs a sketch as an additional constraint of the propa-
gation boundary for the given texture. Second, the given texture
should be warped and its luminance should be changed to simulate
folds and shadows on the garment.

2.3. Fourier Transform-based Image Synthesis

2D Fourier Transform converts the spatial images into the fre-
quency domain ones, which reflect the low-frequency and high-
frequency information of the images. The low-frequency infor-
mation represents the spatial regions where intensity changes
smoothly, such as a large area with a flat color. In contrast, the
high-frequency one represents the regions with intensity changing
rapidly, such as edge contours, textures and fine details. Recently,
Fourier Transform has been proven to benefit the quality of texture
generation in image generation tasks, including image inpainting
and texture synthesis [BJV17, MLD*20,ZLL*22,JZYS23].

Image inpainting aims to fill up the missing parts in a given im-
age with holes. One of its challenges is to generate the missing
parts with repeating patterns. Recently, Fast Fourier Convolution
(FFC) [CIM20] is used to synthesize the periodic patterns in the
images. LaMa [SLM*22] proposes an inpainting network contain-
ing Fast Fourier Convolution Residual Blocks (FaF-Res) based on
FFC. CMGAN [ZLL*22] introduces an architecture consisting of
an FFC-based encoder and a cascaded decoder. Jain et al. [JZYS23]
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use FaF-Res and further propose a Fast Fourier Synthesis Mod-
ule. Due to the impressive results of these works and the fact that
garment textures are usually in a repeating mode, we follow these
works and adopt Fast Fourier Transform (FFT) in our garment im-
age synthesis framework to improve the ability of expanding the
input textures globally.

In the texture synthesis task, several works use frequency domain
image features to enforce constraints when optimizing the synthe-
sis algorithm. Liu et al. [LGX16] propose to incorporate Fourier
spectrum constraints into the convolutional neural network (CNN)
approach, in order to synthesize textures with large scale regular-
ity. Gonthier et al. [GGL22] combine constraints on statistical fea-
tures (i.e., Gram matrices) and power spectrum of the image to
enable long-range dependency when synthesizing high-resolution
textures. With the constraints in the frequency domain, these meth-
ods gain performance boosts in reproducing the periodic details of
the complicated texture patterns. In our work, we propose a per-
ceptual loss in the frequency domain as a guidance to help captur-
ing the periodicity of the textures in the generated garment images.
This loss is also able to preserve the fine-grained details.

3. Method
3.1. Overview

We propose a controllable garment image synthesis framework
to produce garment images with diverse textures. It takes as in-
put a garment sketch image and a small texture patch image,
and is built upon a conditional generative adversarial network
(GAN) [GPAM*20], as illustrated in Figure 2-(b). The main chal-
lenge of this task is that the input texture pattern should be properly
expanded to cover the inner region of the sketch, while still preserv-
ing the periodicity and regularity of the pattern. To this end, we take
into account Fast Fourier Transform (FFT) [BM67] that is able to
represent periodic information in the frequency domain. This con-
cept is integrated into the generator of our framework to improve
the performance of global texture expansion. In addition, we lever-
age the ability of amplitude images from the Fourier Transform
in reflecting the regularity of patterns, and propose a perceptual
loss in the frequency domain. This loss compares the similarity of
two amplitude images of local patches cropped from the generated
and target garment images respectively, which is able to further en-
hance the quality of the generated textures in terms of periodicity
and fine-grained details.

3.2. FFT-based Garment Image Synthesis Framework

As shown in Figure 2-(b), our framework consists of two image
encoders to encode the input sketch I, and the texture im-
age lrexture,  spatially corresponding feature transfer (SCFT) mod-
ule [LKL*20] for feature fusion, a Fourier coarse-to-fine (FcF) gen-
erator [JZYS23] built upon Fast Fourier convolutional (FFC) lay-
ers [CJM20] for garment image synthesis (Ipur), and a discrimina-
tor.

Before training, a data preprocessing stage is required for data
collection. With the real garment images (Ig;) from the dataset, we
first extract the inner masks () of the images, which are then
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Figure 2: Overview of our FFT-based garment image synthesis framework (b), which takes as inputs a garment sketch and a texture patch.
The training and testing data is collected through a preprocessing stage (a). The FcF generator (c) is integrated with Fast Fourier Convolu-
tional (FFC) layers (d), where a Spectral Transform module and Fourier units are employed to model the global (i.e., the overall structure)

and local (i.e., texture details) features.

processed by an edge detection algorithm to produce the outlines
as the sketch images (Zyrc,)- The sketch images in our dataset do
not contain any interior contours. Next, a square patch of a random
size is randomly cropped from the foreground region of each real
garment image indicated by the inner masks. We place the texture
patch on the center of a blank image with the same size as the gar-
ment sketch, which forms the input texture image (Itexture). This
process helps to accommodate texture patches of arbitrary sizes.

Encoders and Feature Fusion. The two encoders that respec-
tively extract the shape features from the garment sketch image and
style features from the texture image share the same architecture
and are built upon convolutional layers and a fully-connected out-
put layer. The output feature vectors of the two encoders are then
passed to the feature fusion module named SCFT (spatially corre-
sponding feature transfer), an attention-based module proposed by
Lee et al. [LKL*20].

SCFT uses the intermediate outputs and the final outputs of the
encoder in their original implementation, while we found using the
final ones only is sufficient in our task. Specifically, given the en-
coded texture feature vector fiexrure € R4 *1 and the sketch feature
vector foerch € R%>1 where dy is the dimension of the extracted
feature vectors, the self-attention mechanism in SCFT uses three
learnable matrices W, € R4 xds , W € R >dr and W, € R4 xdy
to project the fiieren and frexture into a query Q € RYX1 key
K e RY*! andavalue V e R¥*1, respectively (i.e., Q = Wy fkerchs

K = W, frextures V.= Wi frexture). Then, the attention A is calculated
as:

KT

NCE

The context features are then calculated as:

A = softmax(

)- (eY)

f.=VAT. 2)

Finally, the context features are added with the sketch features to
form the fused feature vector f € RY <!

S = Fsketen + fe- (3)

FcF Generator. With the fused feature vector from the SCFT
module as input and the intermediate features from the encoders
as skip connections, our generator aims to synthesize a realistic
garment image. The skip connections propagate more information
from texture and sketch encoders to the decoder, especially the
low-level one such as contour information for ensuring shape sim-
ilarity and pattern features for recovering fine details. To improve
the performance of global expansion of the reference texture pat-
terns, we incorporate our GAN-based framework with the idea of
Fast Fourier Transform (FFT) that represents globally periodic in-
formation from the spatial domain as local one in the frequency
domain. To this end, we adopt a Fourier coarse-to-fine (FcF) gen-
erator [JZYS23] originally designed for image inpainting, which
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Figure 3: The FFT amplitude images of texture images with the
same pattern, for patches with either the same size (a) or different
sizes (b). Although the two patches of each group have different
appearances to some extent, their amplitude images in frequency
domain are still similar due to the shared pattern periodicity.

combines Fast Fourier convolutional (FFC) layer [CIM20] and a
co-modulated StyleGAN2 network [ZCS*21] to control the regu-
larity of the inpainted textures. Fast Fourier convolutional (FFC)
layer [CIM20] is proven to be effective in identifying and synthe-
sizing repeated texture patterns.

The FcF generator takes as inputs the fused feature vector f
and an additional noise vector z,, converted from a random noise
z via a mapping network as in [ZCS*21]. As shown in Figure 2-
(c), the FcF generator is built with several synthesis modules from
the StyleGAN?2 in the starting layers and its proposed Fast Fourier
synthesis modules subsequently. The Fast Fourier synthesis mod-
ule is mainly comprised of Fast Fourier convolutional (FFC) lay-
ers [CIM20] (Figure 2-(d)), in which vanilla convolutions with
local kernels are employed for the spatial features and a Spec-
tral Transform module is introduced to account for the global and
long-range context of the textures. The Spectral Transform module
uses a Global Fourier Unit (GFU) to learn the global information
(e.g., the overall shape of the garment) and a Local Fourier Unit
(LFU) for the semi-global one (e.g., the global repeating patterns),
as shown on the right side of Figure 2-(d). The GFU and the LFU
share the same structure, with a Real FFT2D operation to convert
the spatial contents into image frequencies, a convolutional layer in
the frequency domain, and an Inverse FFT2D operation.

Discriminator. The discriminator is borrowed from Style-
GAN2 [KLA*20], which takes in inputs the real image and the
generated garment image and aims at distinguishing between them.
We follow the same adversarial training scheme.

3.3. Frequency Perceptual Loss

Besides the global context and expansion of the texture patterns ac-
counted for by the FFT-based synthesis framework, we also focus
on the consistency of the local patches in terms of the periodic-
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Figure 4: Workflow of the calculation of the proposed frequency
perceptual loss based on a pre-trained VGG-16 model [SZ15].

ity and fine-grained details of the generated patterns. A straight-
forward solution is to crop a patch from the target garment image
and another of the same size and in the same position from the
generated image, and then measure the similarity of them. While
the expanded texture may not be completely aligned with the target
image, it is still perceptually feasible for humans. A case is shown
on the top left of Figure 3, where the two texture patches center
cropped from the target and synthetic garment images respectively
exhibit alternative positions of the green and black stripes. While
they appear high dissimilarity over a measurement for spatial im-
ages, they are reasonable and acceptable to us due to their similar
regularity.

As a result, the problem becomes how to measure the similar-
ity of regularity between two patterns. The FFT amplitude images
in the frequency domain that are able to represent the periodic in-
formation make them well-suited for this scenario. As shown in
Figure 3-(a), two patches that have the same texture pattern but are
not spatially aligned share rather similar amplitude images. More-
over, we also notice that even for two patches of different sizes but
with the same patterns (Figure 3-(b)), their FFT amplitude images
are still spatially aligned after rescaling, which is also observed by
Mardani et al. [MLD*20]. According to this observation, we can
measure the similarity in terms of the regularity and periodicity by
cropping patches from the target and the synthetic garment images,
and the croppings can be from different positions and have different
sizes. Afterwards, we convert the two patches into their correspond-
ing amplitude images with FFT, and then define a loss to measure
the distance between the amplitude images.

Perceptual Loss on the Amplitude Images. The periodicity of
patterns reflects the similarity of two texture patches in human per-
ception, even though they have different appearances, as illustrated
in Figure 3-(a). This inspires us to use amplitude images storing
the periodicity information to account for the texture similarity
during training. The amplitude images, different from the natu-
ral images with sufficient color gradients, often exhibit dull colors
and in a structural appearance. Therefore, we adopt a perceptual
loss [MSSG*21] that is able to account for both fine details and
overall structure of the shape images.

The calculation of the perceptual loss on the amplitude images
is illustrated in Figure 4. We first crop a local texture patch from
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the synthetic garment image and the target real one, denoted as
x and y. As Figure 3-(b) shows when two similar texture patches
have different image sizes, their amplitude images are still spatially
aligned after rescaling. This allows us to crop patches of arbitrary
sizes. A larger patch allows for supervision on a larger area and thus
benefits the texture expansion. We thus make x larger than y so as
to capture the periodicity of patterns in a larger area of the synthetic
image. x and y are then transformed into the frequency domain via
FFT, from which we obtain the amplitude images as follow:

Famp (1) = 108\ Teat® + Imaginary® + 1), 4)

where I,..4; and Ijpaginary denote the real part and the imaginary part
of result / after the FFT operation Fr(-). With Eq.(4), we have the
amplitude images for the texture patches x’ = Fump(Fyf;(x)) and
Y = Famp(F rf1(¥)). Then, we downsample the x' to match the size
of y/, denoted as x" = F,,,(x). Afterwards, we use a VGG-16
model [SZ15] trained on ImageNet dataset to extract features for
x” and y’ from the intermediate layers. Although trained with nat-
ural images, it is found to work on amplitude images. Finally, we
calculate the L1 loss between the features from the same interme-
diate layer. The frequency perceptual loss Ly, is defined as follow:

N,
Lyp(x,y) = Z Z

leL i=1

A Faomn () = £107))|

) (&)

where x' = Fump(Frf(x)) and y' = Famp(Ff,(y)). Le is the set
of selected intermediate layers of VGG-16, and N; the number of
channels of layer [. fj(-) denotes the feature of the i channel of
layer /.

Cropping Region Selection. We crop patches randomly from
the synthetic and the target garment images, while ensuring that
the cropped patches should be able to represent the texture pat-
tern of the garment images as much as possible. Thus, we should
avoid cropping the background and regions with garment compo-
nents such as neckline or cuffs.

Such a region is easy to find with our dataset where images have
blank backgrounds and garment masks indicating the inner region
(foreground) are readily computed. Then, we choose a sub-region
on the mask as the cropping region, in which undesired garment
components should not be included. The selection is done accord-
ing to the inherent layout of garments. Specifically, as shown in
Figure 5, we calculate the maximum internal rectangle of the mask
region, and then drag down the upper bound of the rectangle by
40 pixels (the image size is 256 x 256). Garment components are
probably outside such an area. Note that for images with non-pure
backgrounds, advanced segmentation techniques such as Segment
Anything [KMR*23] could be adopted to extract the foreground
masks for the cropping region selection.

3.4. Training

Our GAN-based framework with a generator G and a discriminator
D adopts an adversarial training. When training the generator G,
besides the adversarial loss L4, (G), we also use a supervision loss
Lsup, a high receptive field perceptual loss [SLM*22] Ly, and our
proposed frequency perceptual loss Ly, (Eq.(5)). For the discrim-

y o T

|

Figure 5: Selection of the cropping region for the texture patches,
which is within the red rectangle.

inator D, the adversarial loss L4, (D) as well as a regularization
term Lyg are adopted.

Adversarial Loss. We adopt the losses from Style-
GAN2 [KLA*20]:

LadV (G) = 7Elrkerch rexture ™~ Paata(Lkeren siexture) [D(G(I‘Ykemh ’ Liexture ) )} ’

©)

Lad" (D) :]Elrk('u‘h siexture ™~ Paata (I:ke/(‘/x -,Iffxmr(‘) [D (G(]skewh ? Itex’”re ) )]

@)
- ElgtNPdam (Igr) [D(Igl)} .
Supervision Loss. L1 distance is calculated between the ground
truth and the generated image:

Lsup = ||Iout *IgtHl . (8)

High Receptive Field Perceptual Loss. This loss [SLM*22]
uses a high receptive field-based model to extract the features
of the ground truth and the generated image. Following Jain et
al. [JZYS23], we utilize the ResNet50 model [HZRS16] pre-trained
on ADE20K dataset [ZZP*17a,ZZP* 18] for the semantic segmen-
tation task. The loss is formulated as:

Lyy = Z%

€L, i=1

(Pg (Tour) — (Pf (Igt) ©)

P )

where | € L. denotes the intermediate layers we select from the
pre-trained ResNet50 model, N; the number of channels of layer /.
@l (-) is the features of the i’ channel in layer /.

Regularization Term for Discriminator. Following [KLA*20],
we use a regularization when training the discriminator as a gradi-
ent penalty term to prevent gradient explosion. This term penalizes
the gradients of the discriminator by constraining L2 normalization
over them:

Lyeg = By, [|7DUgt)I] (10)

In summary, the total losses for the generator G and the discrim-
inator D are defined as:

Lg = Ladv(G) + lsupLsup + xhpth + }"fPLfI” an

Lp = Lugy(D) + AregLreg, (12)

where Agup, kh[,, kfp and A are scalars.
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4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. We build our own dataset upon the data used in Fashion-
GAN [CLGS18], which contains about 19,000 garment images and
their corresponding sketch images with inner contours. We aim at a
flexible input sketch that can be easily drawn and edited, so we pro-
duce our own sketch images instead of using those in FashionGAN.
As illustrated in Figure 2-(a), we first produce the garment masks
from the garment images and then extract their outlines as sketches.
It is straightforward to extract the garment masks by color-based
thresholding, but finding a proper threshold for all the data is prac-
tically impossible. We then turn to a learned salient object detection
method named BASNet [QZH* 19], which is pre-trained on a gar-
ment image dataset [WLL*15]. We found it works well in mask
extraction on the garment images from FashionGAN. Afterwards,
the garment sketches are extracted from the masks via the Canny
edge detection algorithm. The masks also serve as the foreground
region of the garments, in which the texture patches are randomly
cropped and placed on a blank image to form the input texture im-
ages. The garment sketches, texture images and the ground truth
ones are in a resolution of 256 x 256. The resolution of the cropped
texture patches ranges from 64 to 96. We randomly split 1,000 ex-
amples in this dataset as the test set only for evaluation.

Evaluation Metrics. We use Fréchet inception distance
(FID) [HRU*17] and learned perceptual image patch similarity
(LPIPS) [ZIE*18] as our evaluation metrics. Following Mardani
et al. [MLD*20], we also use a cropping-based version of FID (c-
FID) and LPIPS (c-LPIPS). For c¢-FID, we randomly crop 16 tex-
ture patches from the output image, and then compute the FID be-
tween the input texture and each cropped patch. For c-LPIPS, we
do a similar thing except for cropping 8 texture patches. Compared
with FID and LPIPS that account for the overall quality, c-FID and
c-LPIPS reflect the quality more in local areas or details of the im-
ages.

4.2. Implementation Details

Network Details. Our texture encoder and sketch encoder share the
same structure as the discriminator used in StyleGAN2 [KLA*20]
but without the residual skip connections. Both encoders map
the input image into a 1024-dim latent vector. The mapping net-
work for the inputs of the FcF generator has the same settings
as [ZCS*21] and consists of a series of fully-connected layers,
which converts a 512-dim random noise z to a new noise vector
zw With the same dimension.

Training Details. We train our model on a machine with an
NVIDIA GeForce RTX 3090 GPU. We train for 1,120k iterations
totally with a batch size of 12. Adam [KB15] is used as the op-
timizer with an initial learning rate of le-4. The loss weights in
Eq.(11) and Eq.(12) are set to Asup = 10,43, = 5,1, = 4 and
Areg =5.

4.3. Baseline Methods

We compare with the baseline methods as follows. The hyper-
parameters are kept the same as the ones in their original imple-
mentations for fair comparisons.

© 2023 Eurographics - The European Association
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e FashionGAN [CLGSI18]. It is a garment image synthesis
method that is closest to ours, with a garment sketch and a tex-
ture patch cropped from a garment image as input. It is re-trained
on our own dataset.

o TextureGAN [XSA*18]. It is also close to our approach with a
garment sketch and a cropped texture patch as input. It originally
works with images with a resolution of 128 x 128, and is found
to work worse with a larger resolution such as 256 x 256 in our
dataset. Thus, we downsample our images to 128 x 128 and re-
trained TextureGAN.

e MUNIT [HLBKI18]. It is an unsupervised method that transfers
images from a source domain to a target domain. We treat the
garment sketches as the source domain. During training the real
garment images are used as the target domain. During the test-
ing stage where only texture patches are provided, we tile them
within the inner region of the garment sketch to form the images
for the target domain.

o ReferenceGAN [LKL*20]. It is a reference-based GAN model
for sketch to natural image transfer. We use our garment sketches
as its sketch input and our texture images as the reference.

e SSSIS [LZSE21]. It is also a reference-based sketch to natural
image transfer method. It uses a two-stage generation strategy. In
the first stage, it extracts the content and the style features from
the two inputs and generates an image with a GAN-based archi-
tecture. In the second stage, another GAN-based network is em-
ployed to refine the generated image. We only train the first stage
since we found the second one degrades the generation quality
in our task.

e DIiSS [CCC*23]. It is a diffusion model-based method that gen-
erates a natural image from a stroke-based style image and a
sketch, by using the technique of classifier-free diffusion guid-
ance [HS21]. We use our garment sketch images as its sketch
input and our texture images as its style input.

4.4. Comparison with Existing Approaches

Qualitative Comparison. Figure 6 shows the results of our ap-
proach and the baseline methods, in which we evaluate all the
methods with garment sketches of different types (e.g., T-shirt, vest,
long-sleeved shirt, etc.), texture patches of different sizes and pat-
terns (e.g., colored fabric, stripe, polka dot, leopard print, camou-
flage, plaid, etc.). From all the results, the garment images gen-
erated by our approach exhibit the best visual quality in terms of
color faithfulness, texture consistency, pattern expansion, and fine-
grained details. They demonstrate the effectiveness of our proposed
FFT-based synthesis framework and the frequency perceptual loss
in improving the performance of global texture expansion and pat-
tern periodicity preservation.

Regarding the baseline methods designed for garment image
synthesis, FashionGAN is able to generate images with colors
largely consistent with the input textures, but fails to reproduce
most textures except for the stripe. For those complicated patterns,
it tends to produce a blurry and average color in the entire area of
garment images. This is probably because FashionGAN uses a tex-
ture encoder to map the input texture into a low-dimension latent
space so that it allows modeling the unseen textures during infer-
ence. Such a low-dimension latent space leads to the loss of the
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Figure 6: Qualitative comparison with baseline methods. The texture patch of different sizes and the garment sketch in the first and the
second columns are used as the inputs. We show more results in the supplemental material.

abundant spatial information of the texture patterns. TextureGAN
produces a blurry reconstruction of the input textures in the area
where they are placed (i.e., the center) and fails to expand them,
leaving a flat color outside the area of the texture patch. This indi-
cates even on a low resolution (128px), TextureGAN fails to model
the characteristics of the textures for recovering and expansion.
When applied to a higher resolution (e.g., 256px), such artifacts
(especially the blur) are magnified, leading to an even worse per-
formance.

As for the approaches for sketch to image translation, MUNIT
performs much worse in terms of color faithfulness and texture
consistency. Moreover, it fails to capture the inner region of the gar-
ment sketches. These issues are caused by the unsupervised learn-
ing scheme of MUNIT, making it difficult to model the variety of
texture patterns in the limited target domain. Similar to MUNIT,
ReferenceGAN originally designed for natural images also fails to
produce faithful colors and consistent patterns with the input tex-
tures, although it is able to capture the shape of the garments. SSSIS
generates plausible results with a stripe texture, but seems to pro-

duce over-repeated patterns for other complicated textures. We as-
sume this is because the image augmentation operations in its style
encoder break the original regularity of the texture pattern, and thus
the encoder learns a general pattern with excessive periodicity for
all the textures. DiSS effectively reconstructs the input textures in
the center area, but cannot expand them properly. Compared with
other methods, it lacks the ability to produce a blank background.
This is probably because the style input in its original scenario is
required to store information of the content (e.g., the overall shape),
in order to align the style with the sketch shape during the reversed
diffusion process. However, in our task, the input textures are not
aligned with the shape of the garment sketches at all.

Quantitative Comparison. We use our test set for the quantita-
tive evaluation. Table 1 shows the results, where our method per-
forms the best on all the metrics. The results of FID and LPIPS
indicate that our method has the best overall quality. The c-FID
and c-LPIPS confirm that our method is superior to other methods
in producing local texture details. These results are consistent with
the qualitative ones.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Table 1: Quantitative comparison with baseline methods.

FID| LPIPS| c-FID| c-LPIPS)

DiSS [CCC*23] 190.969  0.608 124.066 0.569
ReferenceGAN [LKL*20] 70.417  0.236 100.420 0.567
FashionGAN [CLGS18] 54759  0.161 99.222 0.452
TextureGAN [XSA*18] 46.019  0.303 77.620 0.516
MUNIT [HLBK18] 44919  0.250 83.576 0.516
SSSIS [LZSE21] 39.121 0.164 70.145 0.445
Ours 17.146  0.126 31.796 0.371

Ours

SSSIS
TextureGAN
Diss
FashionGAN
MUNIT
ReferenceGAN

45 4.419
4.295

4.145

o Local Texture Consistency Texture Expansion Effectiveness

Overall Quality

Figure 7: Results of the user study. The participants gave a score
ranging from 1 to 5. Higher scores mean higher preference.

User Study. We further conduct a user study to compare all the
methods. We randomly select 30 examples from our test set and di-
vide them into 3 groups, each of which contains 10 examples. We
invite 28 participants for each group (84 participants in total), and
ask them to score the synthetic garment images of each method.
All participants are from multiple backgrounds and have no prior
knowledge of this project. For each result, the participants are asked
to score according to three aspects: (1) Local texture consistency,
which indicates the consistency of pattern and color in local regions
with the input texture. (2) Texture expansion effectiveness, which
means the performance of the model in expanding the texture pat-
tern to the entire inner region of the garment. (3) Overall quality,
which includes subjective measurements such as realism, light and
shadow effect, 3D effect, etc.

The average results are shown in Figure 7. Our approach obtains
the best scores in all the aspects, which corroborates the effective-
ness of our framework in reconstructing and expanding the texture
patterns as well as generating high-quality garment images. Among
the baseline methods, SSSIS is overall superior to the others, but is
still inferior to ours by a large margin. DiSS works well in guaran-
teeing local texture consistency, which is in line with the qualitative
results where the textures are properly reconstructed in the center
area (Figure 6). While its weaknesses in expanding the textures and
generating plausible results are also revealed in the user preference.

4.5. Ablation Studies
We conduct three ablation studies to evaluate the importance of

each component of our framework.
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Table 2: Quantitative result of ablation studies. Our approach has
a FFT-based generator, a dual-branch encoder, and a frequency
perceptual loss (Lg),).

FID| LPIPS| <c¢-FID| c¢-LPIPS|
Generator w/o FFT 34.002 0.159 48.054 0.403
Single-branch encoder  21.197 0.141 33.257 0.373
w/o Lgp 17.409 0.127 33.155 0.375
Ours 17.146 0.126 31.796 0.371
B ‘ ” ‘ .Er /:‘ |
Input Texture Input Sketch with FFT-based w/o FFT-based Ground Truth

generator(ours) generator

Figure 8: Comparisons between methods with and without FFT-
based generator.

Effectiveness of FFT-based Generator. The FFT-based gen-
erator (FcF generator) is built upon a co-modulated StyleGAN2-
based coarse-to-fine generator [ZCS*21], with integration of fast
Fourier convolutional layers [CIM20]. Thus, we simply use the co-
modulated StyleGAN2 generator without the concept of FFT as
the ablation. From the quantitative results in Table 2, we can see
that the method without the FFT-based generator has a consider-
able drop in performance. Figure 8 shows the qualitative differ-
ences, where the method without the FFT-based generator is able
to reconstruct the input texture in the center area, but works poorly
in propagating the patterns globally. In contrast, our approach with
a generator integrated with the Fast Fourier Transform-based mod-
ules expands the texture pattern well, resulting in high-quality syn-
thetic images.

Encoder Architecture. Our framework employs a dual-branch
encoder, i.e., one branch for the input sketch and the other for the
input texture image. They encode the two images separately. We
also evaluate a single-branch encoder taking as input the concatena-
tion of the sketch and the texture image. In Table 2, we can see that
the single-branch method suffers from a certain degree of degra-
dation. We illustrate the training information of the two methods
in Figure 9, and we can see that our approach with a dual-branch
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Figure 9: Training information between methods with a single-
branch and a dual-branch encoder.

I

Input Texture  Input Sketch with pr w/o pr Ground Truth

Figure 10: Comparisons between methods with and without our
proposed frequency perceptual loss (Lgp).

encoder converges faster and has a better performance in terms of
FID scores.

Frequency Perceptual Loss. We propose a perceptual loss in
the frequency domain in order to aid in capturing the periodicity of
the texture patterns in the local areas. We evaluate this loss by re-
moving it from our framework. The quantitative results are shown
in Table 2, in which the method without this loss is slightly worse
than ours with the loss. Although the quantitative difference is in-
significant, we observe a noticeable improvement in our qualitative
results, as shown in Figure 10. In the first and second rows, our ap-
proach with the frequency perceptual loss produces more periodic
and more regular patterns that are consistent with the input texture.
The quality of the fine-grained details is meanwhile improved. In
addition, we also notice that the frequency perceptual loss bene-
fits the reconstruction of the input textures, particularly with a print
pattern. As shown in the last row of Figure 10, the print is recon-
structed better in our approach.
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4.6. Diversity of Texture Patterns

Our controllable garment image synthesis framework is able to
work with a variety of texture patterns in a single trained model,
unlike those non-universal texture synthesis approaches [GEB1S5,
HVCB21] that require a new tuning of the neural network for each
pattern. Figure 11 shows the results from our approach when ap-
plying multiple texture patterns to a garment sketch. The textures
include common patterns such as plain fabric, camouflage, stripe,
polka dot, velour and leopard print, as well as customized ones such
as irregular floral print and photo print. For all these texture pat-
terns, our approach generates impressive results.

4.7. More Applications

Controllable Garment Editing. Our controllable garment image
synthesis framework works on outline sketches, and thus allows
for the visual effect display of not only a well-designed sketch, but
also the subsequent editing of a given sketch. This is especially use-
ful for fashion designers in their designing phase, and even novice
users when they try out our system. We demonstrate such an appli-
cation with several edited sketches in Figure 12, where we change
the shapes of sleeves (e.g., long sleeves (b) and wide sleeves (e)),
collar (e.g., a round collar (c)), shoulder (e.g., a sloping shoulder
(h)), and waist (e.g., a shorter waist (f) and an asymmetry waist (i)).
For all these edited sketches that are unseen during the training, our
framework is able to produce reasonable synthesized results with
equivalent quality to the original ones, implying that our approach
allows flexible editing and meanwhile has high generalization abil-
ity on garment sketches with a wide variety of appearances.

Generalization to Real Garment Sketch. While trained with
outline sketches, our approach generalizes to real garment sketch
to a certain degree. As shown in Figure 13, they exhibit interior de-
tails in collars, cuffs and waists, describing the garment style. Our
method recovers the interior details, albeit with results slightly in-
ferior to those on outlines. The performance could be improved if
more training data is provided. Our framework mainly works with
tops, as we collect them only as our dataset given their varying de-
signs and styles. If more types of garment data (such as bottoms)
are available during training, our method could handle more gen-
eral types of garments theoretically. These could be future works of
our approach.

4.8. Resolution Increasing

In the experiments above, we generate the garment images in
256 x 256 to make fair comparisons with existing methods. The
resolution can be increased for more realistic results. We adopt the
latest technique in Stable Diffusion [RBL*22], where a pre-trained
autoencoder is employed for super-resolution of the images gener-
ated by the latent diffusion model. Specifically, the 256 x 256 re-
sults synthesized by our method are first input to the trained latent
diffusion model to denoise for 100 steps, and then converted into
512 % 512 ones by the decoder of the pre-trained autoencoder. The
results with increased resolution are shown in 14, where we can see
the details are more clear and the entire images are more realistic.

© 2023 Eurographics - The European Association
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Figure 11: Diversity results with various textures per garment sketch. We show more results in the supplemental material.
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Figure 12: Editing results on the garment sketches.

5. Conclusion and Limitations

This paper presents a framework for synthesizing high-quality gar-
ment images with a garment sketch and a texture patch as inputs.
The generation results display the realistic visual effect of the de-
signed garments, and can increase the design efficiency of the fash-
ion designers. To synthesize garments with properly expanded tex-
tures, we integrate our framework with the concept of Fast Fourier
Transform (FFT) that enables the framework to model the peri-
odic information of the patterns. To better capture the regularity
of the texture patterns, we further propose a frequency perceptual
loss based on the characteristics of the amplitude images in the fre-
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Figure 13: Generalization to real garment sketches.

quency domain. Comprehensive experiments are done to corrobo-
rate the effectiveness of our approach.

Although producing impressive results with most complicated
texture patterns (Figure 11), our method may still fail in some over-
complex and colorful patterns, as shown in Figure 15. In the first
row, the pattern contains not only the floral designs, but also dif-
ferent textures such as flat colors and dense dots. This case is espe-
cially difficult for our approach to propagate the pattern. In the sec-
ond row, the stripe pattern contains multiple colors and our result
fails to expand this texture. This is probably because this multi-
color pattern is different from the common two-color stripe ones
with stripes placing alternately. Our method is not yet able to un-
derstand the positions of the stripes for each color. To better handle
the cases above, structural information of the patterns could be first



12 0of 13

- “—
N
f |
Input 256x256 | 256%256
nputs Output nputs Output

512x512 Output 512x512 Output

Figure 14: Results with increased resolution.

discovered and understood [RGF*20], and then integrated into our
framework. This may be a future extension of our work.

Input Texture Input Sketch Ours

Figure 15: Limitations of our method in textures with over-
complicated patterns and multiple colors.
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