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Figure 1: An overview of hexahedral meshes generated by our pipeline with the corresponding meso-skeletons used as support.

Abstract

We present a novel approach for the generation of hexahedral meshes in a volume domain given its meso-skeleton. This compact
representation of the topology and geometry, composed of both curve and surface parts, is used to produce a raw decomposition
of the domain into hexahedral blocks. Analysis of the different local configurations of the skeleton leads to the construction of a
set of connection surfaces that are used as a scaffold onto which the hexahedral blocks are assembled. These local configurations
of the skeleton completely determine the singularities of the final mesh, and by following the skeleton, the geometry of the
produced mesh naturally follows the geometry of the domain. Depending on the end user needs, the obtained mesh can be
further adapted, refined or optimized, for example to better fit the boundary of the domain. Our algorithm does not involve the
resolution of any global problem, most decisions are taken locally and it is thus highly suitable for parallel processing. This
efficiency allows the user to stay in the loop for the correction or edition of the meso-skeleton for which a first sketch can be
given by an existing automatic extraction algorithm.

CCS Concepts
¢ Computing methodologies — Volumetric models; Mesh models;

1. Introduction General purpose hex meshing methods broadly fall within one

of a few categories based on the used approach. These categories
The growing use of physical simulation in scientific research and usually comprise of grid and octree based [Sch16,GSP19,LPC21],
industry has led to an increased demand for high-quality meshes advancing fronts [KBLK14], user guided [LQS17, Tak19] or auto-
as a simulation support. Hexahedral meshes, or hex meshes, are matic [LPP*20,BGMC22,LZJ*17] block decomposition, volumet-
often favored for their numerical properties and the potential for ric parameterization [NRP11,LVS*13,LZS*21], and frame fields
optimization during simulation [OS16]. As a result, the number of generation [KLF16, SRUL16]. Many of these methods are able to

research projects focused on the generation of hexahedral meshes
has seen a significant increase in recent years [BRK*22]. How-
ever, the automatic generation of high-quality hexahedral meshes
[BIa00] for arbitrary geometric domains remains an open prob-
lem [PCS*22].
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provide high quality hex meshes in a wide variety of cases. How-
ever, some of the classically cited drawbacks are the production
of elements whose geometry is not always well aligned to the ge-
ometry of the boundary of the domain or the inability to guar-
antee purely hexahedral meshes as a result. This can be an issue
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(a) (b)

Figure 2: Application of the proposed algorithm to a hand model using its meso-skeleton. (a) The domain and its meso-skeleton composed
of branches and leaflets. (b) Connection surfaces are built on joints of the skeleton. (c) The raw mesh is obtained by adding hex elements
around branches and leaflets and sewing them using the incident connection surfaces. (d) An example of a final refined and optimized mesh.

for some simulation tools that may need those guarantees. Fur-
thermore, many of these methods involve significant computational
costs and their computation times are often measured in minutes,
even for simple shapes and even automatic methods sometimes fall
back onto user input to correct and guide the process.

Restricting the targeted geometric domains to those sharing spe-
cific characteristics allows for the exploitation of some assump-
tions to propose specialized, hopefully more automatic and efficient
mesh generation methods. Domains that can be faithfully captured
by a curve skeleton are an example of such a specific characteris-
tic. Research on generating hex meshes from skeletons is relatively
limited. The method exposed in [LMPS16] is built upon an algo-
rithm that was designed to generate quad surface meshes from a
curve skeleton [ULP*15]. After fitting a cube on each branching
point based on the branches directions, the output faces of these
cubes are extruded along the branches. It produces generally good
results but the propagation of local cuts on the faces of the branch-
ing cubes when multiple branches intersect the same face leads to
the resolution of a global problem and leads to arbitrary choices in
the presence of cycles.

Methods presented in [PMA21] and [VKB21] follow a more lo-
cal approach to determine how the hexahedral elements should be
connected in the vicinity of the branching points and do not require
the resolution of a global problem. The generated mesh is fully
hexahedral and its geometry is naturally well aligned with the sur-
face of the domain. These methods are able to handle any type of
branching point and their local nature enables efficient parallel pro-
cessing. [DFOL22] also proposes a method to generate hex meshes
from a curve skeleton following a similar approach. The size and
the form factor of the elements prescribed by a simulation context
are already accounted for in the cross section that is extruded to
generate the hexahedra along the branches. These refinements and
adaptations are rather seen as a post-processing task in [PMA21]
and [VKB21].

Using a simplified curve skeleton as a proxy for the domain
shape allows these methods to handle very complex tubular do-
mains efficiently and to produce high-quality, surface-aligned hex
meshes. However, they are limited to domains that are well cap-
tured by their curve skeleton. While very useful for example in
the medical domain to generate volume meshes for structures like
lungs or blood vessels [DFOL22], they handle a fairly narrow range
of application domains. When the shape to mesh contains flattened
areas, the quality of the results decreases rapidly, if a viable mesh
can be obtained at all. In the example of Figure 3, generated us-

ing [VKB21], the elements built along the curve skeleton in the
palm of the hand could be adjusted to fill the domain, but at the
cost of severe deformations that will lead to very bad shaped or
even inverted elements.

The medial axis, or medial object, of a domain bounded by a sur-
face is well defined as the set of centers of inscribed empty spheres
that touch the surface at more than one point. Methods presented
in [PAR*20] and [Qual6] both use the medial object as a basis for
decomposing the domain into blocks to build a hex mesh. Each
block is then transformed into hexahedra using generic hex mesh-
ing methods, which leads to preserving their limitations. While car-
rying more information than a curve skeleton, medial objects are
notoriously sensitive to noise hence making these methods more
appropriate for smooth objects like CAD generated models.

In this paper, we propose a hex meshing algorithm that makes
use of meso-skeletons (Figure 2), an approximation of the me-
dial object composed of both curve and surface elements. Meso-
skeletons can be a powerful support in hex-meshing as this skeletal
representation already carries information about the topology and
geometry of the domain. Our approach specifically extends the al-
gorithm proposed by [VKB21] by adding the management of sur-
faces in the skeleton. As the meso-skeleton is better suited than a
curve-skeleton to represent shapes with flattened areas, a wider va-
riety of geometric domains can be addressed while preserving the
simplicity and efficiency of the original algorithm.

Of course, the claimed simplicity and efficiency are closely re-
lated to the existence or the production of the used skeletons and
their quality. The extraction, filtering and adaptation of curve skele-
tons is well studied and several known methods produce quality
results [TDS*16]. There are not many existing studies aiming at
the creation of a meso-skeleton of a given shape. Such a struc-

Figure 3: Methods that use a curve skeleton to produce hexahedral
meshes are not well suited to domains that have non-tubular parts.
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ture appears as an intermediate step of the curve skeleton retrieval
method presented in [TAOZ12], but the extraction of a proper com-
plex composed of curve and surface parts is not clearly described.
[YSC*16] and [LCLIJ10] offer methods to generate either curve or
meso-skeletons with reliable, yet noisy results. The recent methods
proposed in [DLX*22] and [LWS*16] are clearly targeted towards
this goal and can already produce usable results in some configura-
tions.

As we will see in the following, our method relies on a given
clean meso-skeleton in which the surface parts are composed of
quad faces. The automatic extraction of such a meso-skeleton is not
yet achieved reliably enough by existing methods. However, given
recent developments in that field, we believe that reliable methods
to produce the expected meso-skeletons will be available in the near
future. If a suitable skeleton cannot be obtained automatically, the
efficiency of the proposed algorithm allows the user to update the
meso-skeleton and obtain the corresponding hex-mesh in an inter-
active loop. As we think some oversight by the user in the produc-
tion of the meso-skeleton is not something to be avoided at all costs
(no automatic tool can guess and meet all end user constraints and
expectations), the interactive edition tools that we built will still be
useful. Most of the results presented here use hand-made or at least
hand-adapted meso-skeletons.

The remaining of the article is organized as follows. In the next
section we briefly describe the main steps of the algorithm. Section
3 is dedicated to the details of each of these steps, focusing on the
management of the surface parts of the meso-skeleton. Some results
are presented in Section 4. In Section 5 we discuss the limitations
of the current approach. The conclusion summarizes the proposed
algorithm and gives some insights for future work.

2. Main steps

Our proposed algorithm is built upon the pipeline described in
[VKB21] that took a surface and its curve skeleton as input to gen-
erate the hex mesh. We extend here the capabilities of this approach
by allowing the skeleton to also have surface parts.

Let us first introduce the terminology used to denote the dif-
ferent parts of a meso-skeleton (see Figure 4 for an example). As
in [VKB21], within the curve parts of a skeleton, we call extremity
a vertex of degree 1, joint a vertex of degree 2, and branching point
a vertex of any higher degree. Extremities and branching points are
the ends of branches along which only joints can be found. New
terms are needed to describe the configurations that involve sur-
face parts. We call leaflet (depicted with different colors in Figure
4(b)) a 2-manifold quad mesh bounded by edges of degree 1 or
higher than 2. Edges of degree higher than 2 are called fan edges.
Vertices incident to 2 leaflets are called LL-joints. Vertices incident
to 1 branch and 1 leaflet are called BL-joints. Vertices incident to
more than 2 leaflets or branches are considered as regular branch-
ing points.

The original pipeline consisted of 7 main steps that produce a
coarse hex mesh. Most of these steps have to be adapted in order to
manage the surface parts of the skeleton:

1. Skeleton adaptation. The sampling density of the skeleton is
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Figure 4: Classification of cells in a meso-skeleton. (a) Extremities
are in red, joints in green, branching points in yellow, LL-joints
(Leaf-Leaf joints) in blue, BL-joints (Branch-Leaf joints) in cyan,
and fan edges in purple. (b) Each of the five leaflets is depicted with
a different color.

adapted locally to the geometry of the shape. The length of the
edges and form factor of the faces of the meso-skeleton will
have a direct influence on the generated hexahedra in the raw
mesh.

2. Skeleton analysis. The branches, leaflets and all types of
branching points and joints are counted and characterized. This
allows for a potential anticipated resources allocation, as the
structure of the generated hex mesh is fully known after this
step.

3. Connection surfaces construction. A quadrilateral partition of
a sphere is constructed on each branching point and joint of the
skeleton based on the directions of the incident branches as well
as leaflets. These partitions are called connection surfaces and
serve as a scaffold onto which the hexahedral mesh is built.

4. Geometry propagation. Geometric constraints present on the
connection surfaces at branching points are propagated along
the branches to the connection surfaces at the joints and extrem-
ities.

5. Blocks insertion. Blocks composed of hexahedra are inserted on
each edge of the branches. New types of blocks are created on
each face and boundary edge of the leaflets. The blocks are reg-
istered within their incident connection surfaces and the skele-
ton. After this step, each edge of the connection surfaces and
each edge of the leaflets is associated with two hexahedra.

6. Volumes sewing. The pairs of hexahedra associated with each
edge of the connection surfaces and leaflet edges are sewn to-
gether.

7. Geometry transfer. The geometry encoded in the skeleton and
the connection surfaces is transferred to the hexahedra, complet-
ing the raw hex mesh.

This pipeline produces a rather coarse hex mesh. It can then be
padded, refined and optimized as required by the user, for exam-
ple to better fit the surface of the domain. This results in a mostly
regular hex mesh (a regular edge has 4 incident hexahedra). The ir-
regularities are localized around certain skeleton branching points,
fan edges and irregular leaflet vertices. The mesh is aligned with the
surface of the domain, as induced by the underlying meso-skeleton.
Most steps only involve independent decisions localized to a spe-
cific part or type of cell in the mesh, allowing straightforward par-
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allel processing. Figure 2 illustrates an example of the application
of this algorithm on a model of a hand.

3. Algorithm details
3.1. Skeleton adaptation

The first step consists in adapting the sampling and connectivity
of the skeleton. The density and shape of the cells of the skeleton
strongly influence the result of the whole algorithm, as the edges
and faces of the meso-skeleton will form the basis of the hexahedra
that will be generated in the following steps. The goal of this step
is to obtain the best starting point, depending on the application
context. For example, one can aim at the generation of as regular
as possible cube-shaped hexahedra. The adaptation of the skeleton
will then use the local radius of the shape to determine the sampling
density.

Figure 5: An oversampled skeleton branch is simplified and recur-
sively subdivided. The local radius and the proximity of the neigh-
bours are used as a termination condition of the process. As a re-
sult, the length of the edges in the resampled branch is adapted to
the local radius.

Along branches, if an automatic skeleton extraction technique
has produced an oversampled skeleton, a radius aware procedure
inspired by [LMPS16] and used by [VKB21] (Figure 5) can be ap-
plied. First, an arc-length parameterization of the branch is com-
puted and the branch is simplified to a single segment. This seg-
ment is then recursively cut in two by inserting a vertex in the mid-
dle. Inserted vertices are placed at the position corresponding to
their parametric coordinate in the original curve. The radius of the
shape at the vertices position is estimated and this process contin-
ues until the radius at an inserted vertex overlaps with that of its two
neighbors. At the end of the process, the lengths of the edges of the
skeleton depend locally on the radius of the shape. Each branch of
the meso-skeleton can be processed independently.

The following steps of our algorithm need leaflets to be com-
posed of quadrilateral faces and their vertices should be as regu-
lar as possible, i.e. have 4 incident edges. Indeed, as illustrated in
Figure 6, irregular vertices in the leaflets will eventually lead to
irregular edges in the generated hex mesh. As stated in the intro-
duction, only few methods are currently able to automatically ex-
tract meso-skeletons [TAOZ12, DLX*22, LWS*16], and their sur-
face parts are generally composed of triangles. Quadrilateralization
methods, such as the ones proposed in [OSCS99, RLS*12] can be
used to transform these triangle meshes into quad meshes. Irreg-
ularities can be removed using local regularization operators like
proposed in [DSH20]. If the density of the triangle mesh is already
adapted to the local radius of the shape, which can be achieved

by classical surface remeshing algorithms, those methods are able
to maintain this adaptation in the produced quad mesh. However,
variable density in the leaflet sampling will inevitably lead to some
irregular vertices.

Figure 6: Irregular vertices within a leaflet (in red) will lead to ir-
regular edges in the resulting hexahedral mesh, reducing the maxi-
mum achievable quality of the mesh.

Another way to obtain leaflets that meet the requirements is to
ask the user for input. We designed an interactive tool that lets the
user model a meso-skeleton for a given domain, either starting from
scratch or from a given skeleton with or without surface parts. The
main operations are extrusion and local connectivity modifications.
As the last steps of our method include geometry optimization and
fitting of the hex mesh to the domain surface, the geometry of the
skeleton does not actually need to be particularly accurate with re-
spect to the underlying medial object.

3.2. Skeleton analysis

The second step of the algorithm involves analyzing the meso-
skeleton to determine its composition and how the branches and
leaflets are connected. This analysis is done through a flooding pro-
cess.

Branches are extracted by flooding edges, starting from any edge
of degree 0 (not incident to any face), through joints, until any
other kind of vertex are met (branching point, LL-joint or BL-joint).
Leaflets are extracted by flooding faces, starting from any face,
through edges of degree 2, until boundary edges or fan edges are
met. To ease the subsequent steps of the algorithm, the different
kinds of vertices described in Figure 4 are also identified.

The exact number of construction blocks needed to build the raw
mesh can be determined at this step, allowing for pre-allocation of
resources. The irregularities of the raw mesh produced at the end of
the pipeline are also known at this step. Details about the regularity
of the obtained mesh are given in the results section.

3.3. Connection surfaces construction

In this step, connection surfaces are constructed on all branching
points and joints of the skeleton. They serve two purposes: encode
the way hexahedra created on the incident branches and leaflets
will be connected together and store geometrical information. In
essence, they are the scaffold upon which the hexahedral mesh is
built.

The main difficulty in skeleton-driven hex mesh generation is
managing the connectivity around branching points. If the branches
are composed of a single extruded hex, we are left with a set of
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Figure 7: Connection of hexahedral chunks around a branching
point using a quadrilateral connection surface. (a) A vertex in-
cident to 3 branches. (b) The connection surface composed of 3
quadrilaterals. (c, d, e) Hexahedra of incident chunks are associ-
ated with the edges of their respective quadrilateral. (f) Pairs of
hexahedra are connected together. (Figure 4. of [VKB21])

incoming quads around branching points. Filling the polyhedron
formed by these quads with hexahedra is a very complicated prob-
lem in the general case [VPR19]. To address this issue, an alterna-
tive approach is proposed in [VKB21]. Along branches, a chunk of
four hexahedra is created on each edge (Figure 7 c). Using blocks of
four hexahedra minimizes the introduction of irregular edges along
branches in the final hex mesh. On each branching point and joint,
the connection surface, a polyhedron composed of one quad per in-
cident branch is constructed. The four incoming hexahedra of each
incident branch are associated with the four edges of their corre-
sponding quad face in the connection surface. Finally, the pairs of
hexahedra associated to the edges of the connection surface are
sewn together. This process, illustrated in Figure 7 for a branch-
ing point of degree 3 can be generalized to branching points of any
degree.

The connectivity and the geometry of the connection surface is
obtained by using a deterministic sphere partitioning process de-
fined by [VKB21], illustrated in Figure 8, that outputs one quad
per incident branch. This approach is still suitable in the context
of meso-skeletons, for branching points that are not incident to any
leaflet (only incident to branches).

Branching points that are incident to leaflets are processed using
a similar approach. Each incident leaflet is considered as a unique
virtual branch with its average direction, as illustrated in Figure 9.

(@ (®) ©

Figure 8: Partitioning a sphere in a given number of quads (one per
incident branch). The method proposed in [VKB21] starts with a
set of points on the sphere (a), creates the Delaunay Triangulation
of the points (b), updates the connectivity using edge flips, edge
additions and deletions until each vertex has 4 incident edges (c),
then takes the dual of this mesh (d) which is the final quad mesh

(e).
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Figure 9: On branching points that are incident to both branches
and leaflets (or leaflets only), the connection surface is constructed
by considering the average direction of each leaflet.

S NUS

(a) (b)

Figure 10: Connection surfaces on joints, BL-joints and LL-joints
are composed of two quads (one hemisphere per incident branch or
leaflet). A single quad is used on extremities. The geometry of these
connection surfaces is unconstrained on joints and extremities at
this stage (a), whereas it is given by the normal of the incident
leaflets in BL-joints and LL-joints (b).

Details about how the hexahedra created around leaflets are regis-
tered within these connection surface, in a way that is fully com-
patible with the previous case, are given in section 3.5.

Connection surfaces are also constructed on joints, BL-joints and
LL-joints (Figure 10). They are composed of two quads, each cov-
ering a hemisphere of the partitioned sphere. In the case of simple
joints, even if there is no particular challenge in connecting two
consecutive blocks of four hexahedra coming from both sides of
a joint, these connection surfaces allow the upcoming hex sewing
step to be generic and able to run in parallel. In the same spirit,
a single quad is created on each extremity of the skeleton. In the
BL-joints and LL-joints cases, the connection surface will allow
hexahedra created around leaflets to be managed in the exact same
way as in the branching points case.

The geometry of these connection surfaces is not fully con-
strained in the cases of joints and extremities at this stage of the
algorithm. Indeed, the only available geometric information is the
normal plane of the branch at these vertices. The rotation degree of
freedom around the tangent direction will be set in the next step. In
contrast, the geometry of the connection surfaces on BL-joints and
LL-joints is set using the normal of the incident leaflets.

Around fan edges, an order among the incident faces is computed
and also encoded in connection surfaces, as illustrated in Figure
11. On each fan edge, after sorting the incident faces on the plane
orthogonal to the edge, a polyhedron composed of one two-sided
face per incident face is constructed. Hexahedra that will be built
on both sides of the leaflet faces will be registered within the edges
of this connection surface allowing pairs of hexahedra to be sewn
together independently afterwards. Unlike the quad connection sur-
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faces used on branching points and joints, this connection surface
only carries connectivity information while all the necessary geo-
metric information is carried by the underlying meso-skeleton ver-
tices.

(a)

Figure 11: After ordering the incident faces in the plane orthogo-
nal to the edge, a connection surface is built around a fan edge. It
is composed of a two-sided face per incident face.

The construction of all these connection surfaces is independent.
All the sphere partitioning and faces ordering computations can be
processed in parallel.

3.4. Geometry propagation

As stated above, the geometry of the connection surfaces on joints
and extremities is not fully set yet. However, the geometry of the
connection surfaces on branching points and BL-joints is fixed. To
find the positions that will generate the minimal torsion in the final
hexahedra, the geometry of these connection surfaces is propagated
using rotation minimizing frames (RMF) [PRW*18, VKB21].

First, frames are built on the connection surfaces of branching
points and BL-joints. For each incident branch, the diagonals of
the corresponding quad and the branch direction are used to ini-
tialize a frame. RMF is then used to propagate these frames along
the branches, joint after joint. For branches that have a constrained
frame on both ends, the propagation is first performed in one di-
rection. The angular defect between the propagated frame and the
frame of the quad on the other end of the branch is then dis-
tributed evenly among the joints using the arc-length parameteri-
zation along the branch in a backward step. The frame of each joint
is finally used to set the geometry of their connection surface ver-
tices (Figure 12).

Each branch of the meso-skeleton can be processed indepen-
dently and the propagation of frames on all branches can be run
in parallel.

Figure 12: The constrained geometry of the connection surfaces on
branching points is propagated along the branches using Rotation
Minimizing Frames.

3.5. Blocks insertion

With the connection surfaces constructed, the domain is ready to be
decomposed and filled with different types of construction blocks.
[VKB21] defined a single generic block to reconstruct tubular do-
mains: the chunk. In order to handle leaflets, we define two new
types of blocks: plates and half-chunks. On each branch edge, a
chunk composed of four hexahedra is inserted (Figure 13 (a)). The
hexahedra are registered within the edges of the corresponding
quads of the connection surfaces present on both sides of the edge.
For each face of the leaflets, a plate, i.e. a pair of hexahedra, is in-
serted (Figure 13 (b)) and registered within the edges of the face.
If one of the edges of the face is a fan edge, the hexahedra are reg-
istered within the edges of the corresponding two-sided face of the
connection surface of the fan edge (Figure 13 (c)). On each bound-
ary edge of the leaflets, a half-chunk, i.e. a pair of hexahedra, is
inserted and registered within that boundary edge (Figure 13 (d)).

Figure 13: Construction blocks are inserted and registered. (a) A
chunk of four hexahedra on a curve edge is registered within the
corresponding quads of its incident vertices connection surfaces.
(b) A pair of hexahedra on a leaflet face is registered within its
incident edges. (c) Around fan edges, these hexahedra are also reg-
istered within the two-sided faces of the connection surface. (d)
A pair of hexahedra is registered within each boundary edge of
a leaflet. (e¢) When a boundary vertex of a leaflet is a branching
point or joint (here, a BL-joint), the two pairs of hexahedra at-
tached to the the two incident leaflet boundary edges are also reg-
istered within the corresponding quad of the connection surface of
the branching point or joint.

© 2023 Eurographics - The European Association
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If the boundary edge is incident to a branching point, a BL-joint or
a LL-joint, the two incoming half-chunks are registered within the
edges of the corresponding quad of the connection surface (Figure
13 (e)). This way, the interface exposed by leaflets on branching
points and joints is fully compatible with the one exposed by the
four-hexahedra chunks built on the curve branches.

Once this step is completed, each edge of the different con-
nection surfaces is associated with exactly two hexahedra. Inte-
rior edges of the leaflets are associated with the hexahedra that lie
around its two incident faces. Boundary edges of the leaflets are
associated with the hexahedra of its incident face and the ones that
have been inserted on the boundary.

If the required place for each construction block has been allo-
cated beforehand in the underlying data containers, the creation of
all these hexahedra can also be run in parallel.

3.6. Volumes sewing

To complete the topology of the raw mesh, the generated hexahedra
remain to be connected together. The connection surfaces and edges
of the leaflets already carry all the information needed to establish
these connections. As illustrated in Figure 14 (a) and (b), the pairs
of hexahedra associated with the edges of the connection surfaces,
either on branching points or around fan edges, are sewn together.
Traversing the edges of all connection surfaces to perform these
connections can be done in parallel.

For all interior and boundary leaflet edges, the pairs of hexahedra
that lie on both sides of the edges are connected together (Figure
14 (c)). Again, traversing the edges of all leaflets to perform these
connections can be done in parallel.

(c)

Figure 14: Hexahedra built around the meso-skeleton curve and
surface parts are sewn together. (a) Each edge of each connection
surface is associated to a pair of hexahedra to connect. (b) Each
edge of each leaflet is associated to two pairs of hexahedra to con-
nect (over and under the leaflet surface).

Despite what all the illustrations suggest so far, the obtained vol-
ume mesh still has no geometry, but its combinatorial topology is
complete and has the same genus as the input domain.

3.7. Geometry transfer

All the necessary information to set the geometry is carried by the
connection surfaces and the leaflets of the meso-skeleton.

Each connection surface is associated with several vertices in

© 2023 Eurographics - The European Association
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Figure 15: Transfer of geometric information from the skeleton to

the hex mesh. (a) Transfer from a joint with a connection surface.
(b) Transfer from a leaflet and its edge. (c) Transfer from a fan edge.

-
.

the hexahedral mesh. The central vertex, which is placed at the po-
sition of the corresponding meso-skeleton vertex. One vertex for
each vertex of the connection surface, that are placed at the position
already computed for the vertices of the connection surface. One
vertex per edge of the connection surface, that are placed halfway
between the vertices of the edge, on the sphere of local radius. This
is illustrated in Figure 15 (a)) for a joint vertex. The same process
applies to any connection surface.

Each interior vertex of the leaflets is associated with three ver-
tices of the hexahedral mesh. The central vertex is placed at the
leaflet vertex position. The other two are pushed up and down along
the normal vector, using the local radius (Figure 15 (b)).

Leaflet vertices that lie on the boundary (except branching points
and joints), have three additional vertices to position. The central
one is pushed in the plane of the leaflet towards the exterior. The
other two are pushed towards an average between this direction and
the up and down normals of the leaflet (Figure 15 (b)).

Finally, leaflet vertices that lie on fan edges are associated to as
many vertices as the degree of the edge, plus one central vertex. The
central vertex is placed at the meso-skeleton vertex position. The
other vertices are pushed outwards, again using the local radius, in
a direction that is halfway between that of the pairs of successive
incident faces (Figure 15 (c)).

Each branching point, joint and leaflet vertex of the meso-
skeleton can be processed independently. For this step again, the al-
gorithm can be run in parallel. After that, the raw hexahedral mesh
is complete.

4. Results

The described pipeline has been implemented in C++ using an
incidence graph structure for the meso-skeleton, a 2-dimensional
combinatorial map for the connection surfaces and a 3-dimensional
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combinatorial map for the hex mesh. The code and used models are
publicly available [CGo].

This extended algorithm can handle skeletons with many combi-
nations of edges and faces, ranging from an edge-only skeleton to
a face-only skeleton with or without border, as shown in Figure 16
with a bronchial system and a hollow torus.

Figure 16: Example of application to a purely curve skeleton and
a purely surface skeleton with no borders.

It results in a raw mesh (Figure 17), a decomposition of the input
domain into hexahedral blocks that shares the topological charac-
teristics of the domain with a crude approximation of its geometry
and a minimal amount of irregular edges. To be usable for example
in a finite elements simulation application context, this mesh can be
further refined and its geometry optimized to better fit the domain.
In other contexts like isogeometric analysis in which higher order
elements are used and less hexahedra are needed, the raw mesh may
not be topologically further refined [HCBOS].

(2) (b) (c)

Figure 17: Example of application to the Eagle model using a
meso-skeleton. (a) The initial domain, (b) The meso-skeleton, (c)
The generated raw hexahedral mesh.

The targeted resolution of the mesh depends on the needs of the
application context. In many cases, the mesh should fit the sur-
face as closely as possible while ensuring that all hexahedra have
a shape as close as possible to that of a rectangular cuboid. To
achieve this, existing methods can be used to optimize both con-
nectivity and geometry. Primal subdivision increases the resolution
of the mesh. Padding adds a layer of hexahedra on the surface of the
whole mesh. As a result, each boundary hexahedron only exposes
one face to the boundary, allowing for better angles optimization.
The structure of the generated mesh and the orientations provided

P. Viville & P. Kraemer & D. Bechmann / Meso-Skeleton Guided Hexahedral Mesh Design

by the underlying meso-skeleton also allow to control the subdivi-
sions to be made in either longitudinal or radial directions along
branches. Several geometry optimization methods exist [LSVT15]
that generally consists in a local-global optimization loop. Local
steps compute ideal directions and lengths for each edge based on
its neighbourhood. Global steps solve a global problem to find a
least squares solution that satisfies those quantities while enforc-
ing boundary vertices to stay on the domain surface. As a result,
vertices of the mesh are moved iteratively, resulting in a mesh in
which angles tend towards orthogonality and therefore bring hexa-
hedra closer to cuboids.

Several measures can denote the quality of a hexahedral mesh,
the most prevalent one being the scaled Jacobian, computed for
each element of the mesh. A negative value indicates an inverted
element, which generally discards the mesh as a usable support for
any computation, and rectangular cuboids have a value of 1. The
worst and the average value over the whole mesh are usually given
as good indicators of the global quality of a mesh.

Figure 18 shows several meshes obtained using our method. For
each model, the silhouette of the shape is shown along with its asso-
ciated meso-skeleton next to the resulting hexahedral mesh. Table
1 indicates the number of hex, minimum and average scaled Jaco-
bian for each model. Some of the presented models were already
processed by previous works and their associated data is presented
in the table. The surface for Chair was taken from the Aim @ Shape
Repository. The surfaces and skeletons of DualOcta, TorusTwist,
Twist, and VerticalTurbine were modeled to provide some complex
cases. TorusTwist for example is the intersection of two Moebius
strips. In most cases, our method is able to produce meshes that
have better quality elements.

Our hex mesh construction process generates a limited and pre-
dictable amount of irregularities within the raw mesh that can only
appear under a few conditions. Figure 19 illustrates the singular
structure of the models shown in Figure 18. Irregular edges are
present around each branching point of the skeleton, depending on

Previous works Our results

(#) Model [ref] Min/Avg S #Hex | Min/Avg SJ  #Hex
(1) Chair 262/.941 12128
(2) Dilo [LZS*21] .551/.949 36500 | .380/.968 39232

(3) DualOcta .657/.873 1344
(4) Eagle [GSP19] .334/.821 18306 | .633/.948 7072
(5) Hand [LPP*20] .330/.721 1300 .629/918 3584
(6) Holes [LPP*20] .104/.746 858 [725/.938 2432

(7) Knob [LPP*20] .555/1.00 744 900/1.00 6912

(8) Metatron [LPP*20] .820/.981 6624 .844/980 7008
(9) Pinion [LPP*20] .966/.986 240 .836/.973 16640
(10) Plane [GSP19] 265/.805 54267 | .501/.942 6496
(11) Sculpture | [BGMC22]  .689/961 23936 | .836/.984 2240
(12) Torque [LPP*20] .576/.858 880 .616/.905 1144

(13) TorusTwist .690/.878 768
(14) Twist .802/.968 4224
(15) Ujoint [LPP*20] .683/.865 112 .640/.991 7232
(16) VertTurbine .506/.957 15168

Table 1: Minimum and average scaled Jacobian of the generated
meshes including those presented in Figure 18.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 18: Several meshes obtained using our algorithm with post processing using padding, simple subdivision, and geometric optimization.
For each model, the left image shows the silhouette of the domain and the meso-skeleton and the right image shows the obtained hex mesh.
Quality measures for these meshes are indicated in Table 1.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 19: Singular structures of the meshes presented in Figure 18. In red: edges of degree 3. In green: edges of degree 5. In blue: edges of
degrees 6 and above. These images have been produced in Hexalab [BTP* 19].

its degree. Two irregular edges are created around each BL-joint,
LL-joint and irregular vertex of leaflets, one above, and one below
(see for example the irregular edges on the knuckles of the Hand,
or the head and tail of the Eagle). One irregular edge is present
for each fan edge of the skeleton. The addition of a padding layer
during post processing creates additional irregularities: four irreg-
ular edges of degree 3 along each branch edge and two irregular
edges of degree 3 along each leaflet boundary edge. These cre-
ate loops that are clearly visible in red in Figure 19. Irregularities
around branching points can however be avoided in some config-
urations. [VKB21] proposes to insert a compatible 8-hex chunk in

branching points of degree 6 or less whose incident branches are
mutually almost aligned or orthogonal. In this case, no irregular
edge is created around these branching points. In the same fashion,
a compatible 4-hex chunk could be inserted in fan edges of degree
4 or less whose incident faces are mutually almost aligned or or-
thogonal, also resulting in the creation of no irregular edge around
these fan edges.

Figure 20 shows side-to-side the singular structures of meshes
obtained using our approach and using some other existing meth-
ods. As the singularity graph is determined by the skeleton rather

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 20: Singular structure of several meshes. On the left, our
results. On the right, results obtained by different methods: Dilo
[LZS*21], Holes [LPP*20], and Eagle [GSP19].

than computed, our method generally produces more predictable
irregularities, especially compared to grid based methods.

General purpose hexahedral mesh generation methods usually
involve costly computations and their execution times are gener-
ally expressed in the order of several minutes. Our execution times
are presented in Table 2. They are separated in three distinct steps:
skeleton production, raw hexahedral mesh generation, and opti-
mization of the mesh.

In our current implementation, skeleton production and opti-
mization steps are user controlled. Therefore the times given are
rough measurements of the time needed by an experienced user.
Raw hexahedral mesh generation times are precise measurements.
This step only takes a few milliseconds even for skeletons com-
posed of hundreds of branching points.

The skeletons used for our results were produced in three way:
procedural generation along with their corresponding surface, hand
modeled, or edited starting from a computed mean curvature skele-
ton [TAOZ12]. The process of editing or drawing a skeleton was
generally a matter of a few minutes. When applied, padding and
subdivision steps require milliseconds. The subsequent geometry
optimization is a more costly process, especially as the mesh size
increases. A few hundred iterations of the geometry optimization
loop are usually required. However, given a fixed connectivity, the
least square matrix involved in the process only has to be factorized
once, saving much time for the subsequent iterations. The needed
time varies depending on model size (per 100 iterations: 700ms for
7000 hex; 13s for 56000 hex).

With an improved editor that proposes a first guess using an

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Our results Prior works
(#) Model Skeleton Raw Optim times
(1) Chair HD 5min Tms 45s -
(2) Dilo MC 5min 3ms 90s 15min [LZS*21]
(3) DualOcta P 16ms 60s -
(4) Eagle HD 10min 6ms 45s N/A [GSP19]
(5) Hand MC 3min 3ms 45s 2.3min [LPP*20]
(6) Holes MC Imin 2ms 30s 6.5min [LPP*20]
(7) Knob HD 5min 4ms 60s Imin [LPP*20]
(8) Metatron MC 10min  14ms 45s 2min [LPP*20]
(9) Pinion HD 5min 3ms 60s Imin [LPP*20]
(10) Plane HD Smin 4ms 45s N/A [GSP19]
(11) Sculpture MC 10min 4ms 80s N/A [BGMC22]
(12) Torque HD 3min 2ms 30s 0.6min [LPP*20]
(13) TorusTwist P 6ms 45s -
(14) Twist P Tms 45s -
(15) Ujoint HD 3min 2ms 45s 0.1min [LPP*20]
(16) VertTurbine P 3ms 60s -

Table 2: Time required to produce the results presented in Figure
18. For our results, the given times are split into three distinct tasks:
produce the skeleton (P: Procedural generation, MC: edited Mean
Curvature skeleton, HD: Hand Drawn), generate the raw hexahe-
dral mesh, subdivide and optimize the geometry.

automatic curve skeleton or meso-skeleton extraction method, we
expect uninitiated users to be able to produce such skeletons in a
similar time frame, especially since given the post-processing opti-
mizations, geometric accuracy is not required on the skeleton itself.
Furthermore, letting the user intervene in the process may lead to
a more compliant result. As the production of the raw mesh and
minor optimizations could be done in near real time during edition,
an efficient interactive loop between skeleton edition and hex-mesh
generation would remain rather efficient.

5. Limitations

Although our algorithm can manage a wide variety of meso-
skeleton configurations, some specific cases are still not handled
by the currently defined construction blocks and assembly process.
Among the three identified configurations, two are actually com-
patible with our pipeline but are not yet handled in our implemen-
tation, and one is incompatible with our block structure and would
require a local modification of the skeleton to be processed.

The first configuration is the case of a branch incident to an in-
ternal vertex of a leaflet, as illustrated in Figure 21. The interface
exposed by the incoming branch cannot always find a compati-
ble docking interface. However, a modification of the leaflet mesh
around the vertex would allow the insertion of a connection block
on which the branch could connect. The downside is the introduc-
tion of new irregular vertices in the leaflet connectivity.

The second configuration concerns fan edges stopping on an in-
ternal vertex of a leaflet, as shown in Figure 22. The hexahedra
inserted on the boundary of the incoming leaflet cannot be con-
nected around this vertex. Here again, a modification of the local
connectivity and the insertion of an interface block can correct the
problem, at the price of some new irregular vertices.
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Figure 21: Branches cannot be incident to a leaflet internal vertex.
(a) With the generic construction process, the interface exposed by
the incoming branch (in red) cannot be connected on the leaflet.
(b) A modification of the leaflet connectivity around the vertex is
required (bottom left) and the insertion of an interface block leads
to a compatible configuration.

e

Figure 22: Fan edges cannot stop on an internal vertex of a leaflet.
(a) With the generic construction process, the hexahedra of the
boundary of the incoming second leaflet (in red) cannot be con-
nected on the first leaflet. (b) A modification of the connectivity
around the vertex in the second leaflet is required (bottom left) and
the insertion of an interface block leads to a compatible configura-
tion.

The third configuration occurs when a branch is incident to a
boundary vertex of a fan edge, as illustrated in Figure 23. The in-
terface exposed on this vertex by the hexahedra inserted along the
leaflet boundary edges is not compatible with the interface exposed
by the incident branch. This case requires a local modification of
the connectivity to bring the skeleton back to a compatible configu-
ration: either move the branch away from the fan edge or make the
fan edge stop before the boundary.

Geometric difficulties may also arise at joints or branching points
where the incident branches or leaflets directions are not suffi-
ciently distributed on the sphere (Figure 24). These kind of con-
figuration can lead to spiky hexahedra with small angles that are
hard to improve. A solution could be to insert virtual branches
in the branching points to improve the distribution of the direc-
tions. A single chunk of 4 hexahedra would be added for these vir-
tual branches and the geometry of their extremity would lie on the
sphere of local radius.

P. Viville & P. Kraemer & D. Bechmann / Meso-Skeleton Guided Hexahedral Mesh Design

(b)

Figure 23: Branches cannot be incident to a boundary vertex of a
fan edge. (a) In this configuration, the hexahedra inserted on the
boundary edges of the leaflets expose an interface composed of
more than 4 hexahedra (in red) that is not compatible with the 4
hexahedra that are exposed by the incoming incident branch (in
green). (b) Such configurations need to be eliminated by either
moving the branch away from the fan edge (bottom left), or retract-
ing the fan edge (bottom right).

g

Figure 24: Badly distributed branch directions can lead to
thin, hard to improve, angles in the resulting hexahedra. Virtual
branches could help mitigate this problem.

6. Conclusion

In this article, we proposed a new hexahedral mesh generation
pipeline. It starts from a surface of the domain to mesh and its
meso-skeleton, composed of both curve and surface parts. This
proxy of the domain shape serves as a support for the construc-
tion of a raw hexahedral mesh. Connection surfaces are built on
the different types of branching points and fan edges of the skele-
ton to encode how the hexahedral blocks that meet at these points
should be connected. The locality and independence of most steps
allow each of them to be run in parallel, leading to a very efficient
implementation. The meso-skeleton naturally follows the geometry
of the domain, and so does the resulting mesh. The basic building
blocks used to build the mesh tend to a mostly regular connectivity,
irregularities being mainly localized around branching points and
irregularities in the leaflets. Compared to previous methods based
on curve-only skeletons, thanks to its support of surface parts in
the skeleton, our approach is able to address a much wider range of
geometric domains.

Several possibilities could be explored in order to improve this
work. As of yet, our pipeline can be automated once a suitable
meso-skeleton is provided. Progress on the development of reliable

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



P. Viville & P. Kraemer & D. Bechmann / Meso-Skeleton Guided Hexahedral Mesh Design

meso-skeleton extraction methods combined with off the shelf sur-
face remeshing algorithms will allow the completion of a fully au-
tomated pipeline with minimal user input required. User could still
stay in control of the result in an efficient interactive loop of skele-
ton edition and hex-mesh generation. Also, automatic repairing or
transformation of the meso-skeleton could enable the support of the
currently incompatible configurations, which could further expand
the range of possible shapes to be processed. Finally, the proposed
evolution using virtual branches could allow to generate meshes of
better quality in some challenging geometric configurations.
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