
Pacific Graphics 2023
R. Chaine, Z. Deng, and M. H. Kim
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 7

Robust Novel View Synthesis with Color Transform Module

S. M. Kim , C. Choi , H. Heo and Y. M. Kim†

Dept. of Electrical and Computer Engineering, Seoul National University, Korea

w/ CTM

w/o CTM

Encoded Input

Color Transform Module

w/ CTM w/o CTMGT

RGB Input

Figure 1: In this work, we propose an easy-to-plug-in color transform module (CTM) for NeRF. We train NeRF in a transformed or encoded
feature space with CTM (Blue box in the first row). By training NeRF with CTM, we can accurately reconstruct the geometry and radiance of
the low-textured regions, which are known to be challenging when trained in RGB space. The dark RGB images in the lower triangle regions
are enhanced for better visibility.

Abstract
The advancements of the Neural Radiance Field (NeRF) and its variants have demonstrated remarkable capabilities in gener-
ating photo-realistic novel views from a small set of input images. While recent works suggest various techniques and model
architectures that enhance speed or reconstruction quality, little attention is paid to exploring the RGB color space of input
images. In this paper, we propose a universal color transform module that can maximally harness the captured evidence for
the neural networks at hand. The color transform module utilizes an encoder-decoder framework that maps the RGB color
space into a new latent space, enhancing the expressiveness of the input domain. We attach the encoder and the decoder at the
input and output of a NeRF model of choice, respectively, and jointly optimize them to maintain the cycle consistency of the
proposed transform, in addition to minimizing the reconstruction errors in the feature domain. Our comprehensive experiments
demonstrate that the learned color space can significantly improve the quality of reconstructions compared to the conventional
RGB representation. Its benefits are particularly pronounced in challenging scenarios characterized by low-light environments
and scenes with low-textured regions. The proposed color transform pushes the boundaries of limitations in the input domain
and offers a promising avenue for advancing the reconstruction capabilities of various neural representations. Source code is
available at https://github.com/sangminkim-99/ColorTransformModule.

CCS Concepts
• Computing methodologies → Reconstruction; Rendering;

† Corresponding author

1. Introduction

Novel view synthesis aims to generate photo-realistic images of
a scene from viewpoints that were not captured during the origi-
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nal data collection process. Recently, significant progress has been
made in this field with the introduction of the Neural Radiance
Field (NeRF) [MST∗21]. Inspired by its high-quality results, var-
ious extensions arose to model scenes that could not be handled
in its original formulation, including unbounded scenes [BMV∗22,
ZRSK20, CKK23] or dynamic scenes [PCPMMN21, LWC∗23].

The quality of reconstruction is highly dependent on the color
variations of the input images. NeRF and aforementioned variants
basically enforce multi-view consistency of color measurements
and demonstrate stable performance for scenes with rich textures.
When a scene contains blank walls or weak color variation due
to insufficient lighting, on the other hand, the photometric consis-
tency of input images does not provide sufficient evidence to con-
verge to the correct geometry. Such a phenomenon, also known
as shape-radiance ambiguity [ZRSK20], is inherent in the NeRF
formulation, and low-textured scenes often suffer from blurry ge-
ometry. One can resolve the ambiguity with additional shape infor-
mation, either from depth measurements [ALG∗21] or estimated
priors [RBM∗22, WLR∗21, GPL∗22]. However, such information
might not be accurate or always available.

We present a novel approach that explores alternative color do-
mains beyond RGB. We take inspiration from existing color trans-
forms, which are designed to separate lightness from hue informa-
tion or increase expressiveness in high dynamic ranges. Instead of
crafting a color space tailored to a given setting, we jointly optimize
a scene-specific color transformation with NeRF reconstruction in
the transformed domain. The transformation is optimized to dis-
ambiguate the low-textured area in RGB space by minimizing the
reconstruction objective which enforces multi-view consistency in
the feature domain. The transformed color space significantly en-
hances the quality of reconstruction, especially in challenging con-
ditions where inputs exhibit a distinctive distribution in color.

The scene-specific color transformation can act in conjunction
with rich recent works, improving the performance of the NeRF.
The transformation is composed of an encoder-decoder framework,
where the encoder maps RGB images to the feature domain, and the
decoder generates RGB images from the transformed color space.
The encoding and decoding transformation is parameterized as an
MLP to represent any nonlinear function. We can incorporate the
color transform into any method that employs reconstruction loss
of individual pixel color values by prepending and appending the
encoder and the decoder, respectively. We then evaluate the recon-
struction loss in the transformed space instead of the conventional
RGB space. In addition, we introduce a cycle consistency loss to
ensure that the adapted transform preserves existing evidence.

We conducted experiments on multiple datasets, including
Synthetic-NeRF [MST∗21], RawNeRF [MHMB∗22], and our cus-
tom datasets: Synthetic-NeRF-Dark and Low-Texture-Blender. Our
extensive results show that the learned scene-specific transforms
promote the integrated neural network module to better capture
subtle texture variations or details in low-light and low-texture en-
vironments, and estimate faithful geometry. We demonstrate im-
provements in performance on a handful of NeRF settings and fur-
ther integrate the transform with planar image alignment, as sug-
gested in BARF [LMTL21]. The results indicate the robustness and
applicability of our approach in computer vision tasks involving

neural network modules trained with a reconstruction loss in color
values.

In short, our contribution can be summarized as follows:

• We propose a latent space mapping inspired by color transforms,
which can preserve delicate details of the input without extensive
prior knowledge or hand-crafted operation.

• Our framework learns a low-level transform that increases the
performance of reconstructing images for challenging condi-
tions.

• We provide a dataset that allows quantitative evaluation under
various measurement conditions such as low lighting or lack of
detailed texture.

• The proposed transform can be easily integrated into any NeRF
model, making it a versatile and adaptable solution for neural
image reconstruction.

The universal performance enhancement covering various scenar-
ios indicates that our module can be a simple yet effective addition
to the powerful neural formulations for colored image reconstruc-
tion, especially for extreme conditions near to the sensor limits.

2. Related Work

NeRF volume is trained only with posed images and can be ren-
dered into photo-realistic images for an arbitrary view with a vol-
ume rendering equation [KVH84]. With its superior novel-view
synthesis results, NeRF initiated an enormous amount of subse-
quent works in various directions. In this section, we focus on the
works that address the failure cases of NeRF. It is widely known
that training NeRFs is often highly unstable because the optimiza-
tion is highly non-linear and under-constrained. Even with the
same configuration, the results vary on the initial random seed, and
sometimes they fail to converge. As a partial remedy, the original
NeRF [MST∗21] employ the center cropping technique, while Bar-
ron et al. [BMT∗21] utilize smoothly varying softplus activation
instead of ReLU activation.

The ambiguity is pronounced when the image constraints are
scarce, such as scenes with flat textures [WLR∗21] or under low-
light conditions [MHMB∗22]. With limited image cues, the ge-
ometry remains as a cloud of “floaters”, instead of high-density
surface geometry. This is also referred to as shape-radiance am-
biguity by [ZRSK20]. Several works employ additional regular-
ization losses on the geometry, including TV loss [CXG∗22] and
distortion loss [BMV∗22]. Others incorporate geometric priors of
depth estimation [RBM∗22, WLR∗21] or Manhattan world as-
sumption [GPL∗22]. The reconstruction quality heavily relies on
the accuracy of the estimated geometry.

Several works leverage latent space embedding to overcome
the limitation of input space, but they often fail to faithfully con-
serve the low-level details. For instance, features of CLIP embed-
dings [RKH∗21] can be leveraged to render plausible images with
limited input [JTA21]. Similarly, PixelNeRF [YYTK21] utilizes
a ResNet backbone [HZRS16] that has been pre-trained on Im-
ageNet [DDS∗09] to resolve ambiguity from a sparse set of in-
put views. Neural features of depth estimation network can assist
in representing specular objects [ZYW∗23]. However, pre-trained
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neural features from unrelated databases cause hallucinating ef-
fects [YPW23] due to the discrepancy between the latent space and
the RGB color domain.

Instead, we propose low-level transforms on the input color
space. Our module is less susceptible to deviation from ground
truth, quickly adapting to unknown environments or sensor set-
tings without additional priors. Our work is similar to the work by
Mildenhall et al. [MHMB∗22], which successfully excavates tex-
ture from raw HDR images. However, instead of relying on the
enhanced sensor input, we apply transform adaptive to the cur-
rent measurement and improve the sensitivity of the training ob-
jective. Our color transform module is inspired by the alternative
color spaces from color science, including HSV [WS00], to align
the color distance with human perception, or the Retinex model
to disentangle the illumination with inherent reflectance. The rela-
tionship between the HSV color space and the Retinex model has
been extensively studied [LLH∗21, QJLW22, ZDZ∗21], resulting
in modifications to the V channel for improved low-light image en-
hancement, further refined in recent works [MML∗22, WWZ∗22].
In the context of NeRF optimization, we propose a scene-specific
color transform instead of relying on conventional handcrafted
color spaces.

The color transform module is attached to the input and output
of the existing network, and jointly trained to adapt to the current
measurement and improve the sensitivity of the training objective.
It can be applied to more advanced network architecture, as long
as the input and output are color images. For example, our module
is compatible with a series of works employing MLP to represent
the entire scene [MST∗21,BMT∗21,BMV∗22]. Furthermore, it can
also be incorporated into methods that employ explicit representa-
tions such as feature grids [SSC22, MESK22] or factorized repre-
sentations [CXG∗22] to accelerate the speed. Our module can be
attached to any of these recent variations and stabilize the training
in challenging cases.

3. Methods

3.1. Preliminaries: Neural Radiance Fields (NeRF)

NeRFs [MST∗21] represent a 3D scene as a continuous neural im-
plicit function, which is trained to match the input RGB images of
a scene from various views. NeRFs typically consist of a multilayer
perceptron (MLP) that takes in a 3D spatial coordinate x and a 2D
direction d as input and outputs the color c and density σ at that
point. The color C(r) of the camera ray r(t) = o+ td is rendered
by compositing the output color c with transmittance from a near
bound tn to a far bound t f :

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t),d)dt, (1)

where

T (t) = exp
(
−

∫ t

tn
σ(r(s))ds

)
. (2)

In practice, the color of the pixel ray is numerically approximated
by inferring color values at multiple sample points along the ray,
which we can denote as Fθ(r) = Ĉ(r).

The network parameter θ is optimized by minimizing the recon-
struction loss, which is just a simple mean squared error of the ren-
dered color Ĉ(r) and the ground truth color Cgt(r) of the pixels:

L=
1
|R| ∑

r∈R

∥∥∥Ĉ(r)−Cgt(r)
∥∥∥2

2
, (3)

where R is a set of ray samples in each batch.

Instead of directly taking the 3D spatial coordinate x and 2D
direction d as input, NeRF utilizes sinusoidal encoding of these co-
ordinates as input to represent high-frequency details. While neu-
ral networks inherently prefer to regress low-frequency functions,
Tancik et al. [TSM∗20] demonstrated that the network can stably
fit data that exhibits high-frequency details by applying sinusoidal
functions to the input of the network. The set of sinusoidal func-
tions maps the inputs to a high dimensional space and is referred to
as positional encoding.

3.2. Color Transform Module

Our color transform module (CTM) augments the input and out-
put of the existing NeRF formulation, allowing the reconstruction
loss in Eq. (3) to be applied in the transformed space. Our encoder
f : [0,1]3 →Rk converts a pixel in an RGB space c ∈ [0,1]3 to a la-
tent feature l ∈Rk, and the decoder transforms the latent pixel back
to the conventional RGB space g : Rk → [0,1]3. We illustrate the
addition of the encoder and decoder modules in Figure 2(a). The
transformation operates on individual pixels in the image, convert-
ing them into a feature image of the same size.

By modifying the final MLP layer of the NeRF, we can gener-
ate an output of dimension k; Fk

θ(r) ∈ Rk. This modified output
tensor can be considered as residing in the transformed domain.
Consequently, the reconstruction loss in the encoded space can be
computed by comparing the output of Fk

θ(r) against the encoded
ground truth value:

Lenc =
1
|R| ∑

r∈R

∥∥∥Fk
θ(r)− f (Cgt(r))

∥∥∥2

2
. (4)

The rendered output Fk
θ(r) in the latent space is transformed to the

original RGB color space through the decoder g(l). In conjunction
with Eq. (4), we compute the reconstruction loss on the original
domain after the decoder:

Ldec =
1
|R| ∑

r∈R

∥∥∥g(Fk
θ(r))−Cgt(r)

∥∥∥2

2
. (5)

Therefore our reconstruction loss of the color discrepancy is

Lrec = Lenc +Ldec (6)

and we jointly optimize CTM with the original neural network
Fθ. This joint optimization enables the MLP of CTM to find a
scene-specific latent space, leading to enhanced scene reconstruc-
tion compared to relying solely on the RGB color space, especially
for challenging scenes to reconstruct.

Our formulation is generally applicable to any network that im-
poses losses on the color differences. The architecture of color
transform is ignorant of the formulation of the NeRF module
Fθ(r), and regards it as a black-box module. Indeed we can replace
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(a) Reconstruction Loss (b) Cycle Consistency Loss
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Figure 2: Method overview: Our color transform module comprises an encoder f (c) and a decoder g(l). (a) With f (c), we transform the
colors of input images into latent values and train the radiance fields using reconstruction losses in both the transformed and color domains.
(b) To ensure meaningful values in the latent domain, we incorporate cycle consistency loss as a regularization technique.

NeRF with any other neural mapping function which produces an
estimated color given a spatial coordinate, and increase the color
sensitivity of the underlying neural network.

Sinusoidal color embedding. In conjunction with the shallow
MLP layers, we augment sinusoidal functions of different frequen-
cies to the input color, similar to the positional encoding in the
spatial coordinates. Specifically, we augment the color value in k
dimension with P frequency basis, resulting in γ(·) ∈ Rk(1+2P):

γ(c) = [I,sin(20
π),sin(21

π), . . . ,sin(2P−1
π),

cos(20
π),cos(21

π), . . .cos(2P−1
π)],

(7)

where I refers to the identity function. The sinusoidal color embed-
ding is applied for the inputs of both the encoder and decoder and
further increases the flexibility of the mapping. The effect of the
embedding is further investigated in the experiments.

3.3. Regularization with Cycle Consistency Loss

Naïvely optimizing over the reconstruction loss can significantly
distort the color space in extreme cases. We ensure that the result-
ing transform conserves useful information by an indirect regular-
ization with a cycle consistency loss, namely ( f ◦g) = (g◦ f ) = I.

We define both forward and backward cycle consistency losses
for the encoder and the decoder. The forward cycle consistency loss
is computed as:

Lcyc→ =
1
N ∑

c∈R3

∥∥∥c−g( f (c))
∥∥∥2

2
, (8)

where N is the number of samples in each batch. Similarly, the
backward cycle consistency loss is calculated as:

Lcyc← =
1
N ∑

l∈Rk

∥∥∥l − f (g(l))
∥∥∥2

2
. (9)

We incorporate the two-way cycle consistency for random im-
ages to assist the forward consistency of the input image as shown
in Figure 2(b):

Lcyc = Lcyc→(cimg)+Lcyc→(crand)+Lcyc←(lrand), (10)

where crand and lrand are randomly sampled from a uniform dis-
tribution, and cimg denotes the color values of the training image.
Learning two-way conservative mapping with random pixels regu-
larizes the overall color transformation regardless of the imbalance
in the input images.

The key component of the cycle consistency loss Lcyc is
Lcyc→(cimg), which encourages a mapping that preserves the pixel
colors in the original images. The color transform is designed to
ease the training of the neural network by manipulating distances
of the current colors existing in the scene. Focusing solely on the
reconstruction loss in Eq. (6) can concentrate the encoded values
to be within proximity when the original color distribution is clus-
tered, ignoring imperceptible subtle details. Lcyc→(cimg) serves as
a regularization term, encouraging the subtle differences to be sepa-
rated within the latent space. The loss is especially beneficial when
the input images suffer from extreme light conditions as shown in
Figure 3.

Usually the forward cycle consistency loss in Eq. (8) is sufficient
to preserve the information in the training images, and adding the
backward cycle consistency loss may sometimes lead to a slight
performance decrease. However, the backward cycle consistency
is crucial to avoid fitting the latent space to a small set of domi-
nant colors. For example, previous works stabilize the training by
using a random background color [MESK22, SSC22]. Combined
with our color transform, the decoder loss Ldec encourages the de-
coder to map the latent values to match the random background
colors during initial iterations. Our backward cycle loss in Eq. (9)
remedies the singularity in the mapping, especially in extremely
dark regions.
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Methods
Synthetic-NeRF [MST∗21] RawNeRF [MHMB∗22] Synthetic-NeRF-Dark Low-Texture-Blender
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DVGO [SSC22] 31.47 0.9566 0.0280 31.67 0.8261 0.1994 30.35 0.7935 0.2645 36.34 0.9610 0.0503
DVGO w/ CTM 31.12 0.9549 0.0289 33.38 0.8752 0.1585 34.95 0.9181 0.1396 36.99 0.9652 0.0395

NeRF [MST∗21] 28.60 0.9261 0.0601 N.C. N.C. N.C. N.C. N.C. N.C. 37.94 0.9628 0.0458
NeRF w/ CTM 28.32 0.9259 0.0606 33.60 0.8736 0.1539 38.86 0.9616 0.0494 38.13 0.9630 0.0457

Table 1: Quantitative results of NeRF optimization. N.C. indicates that the method does not converge for that particular dataset.

(a) w/o ℒ𝑐𝑦𝑐→(𝑐𝑖𝑚𝑔) (b) w/ ℒ𝑐𝑦𝑐→(𝑐𝑖𝑚𝑔)

Figure 3: Volume rendering results in encoded space. (a) With-
out Lcyc→(cimg), the optimization process is dominated by the re-
construction loss, resulting in a shrinking encoding space. (b) With
Lcyc→(cimg), the encoding space expands, allowing the neural net-
work to capture subtle details more effectively.

In summary, the final loss term for optimization is

L= Lrec +Lcyc. (11)

4. Experiments

We first demonstrate the effectiveness of the learned color trans-
form for optimizing NeRF (Section 4.1) in various NeRF mod-
els [MST∗21,SSC22]. Additionally, we apply the same module to a
slightly different problem of 2D planar image alignment introduced
by BARF [LMTL21] to show the versatility of our module beyond
NeRF (Section 4.2).

Implementation details. We maintain the dimensionality of the
original RGB color space by setting the latent dimension to be k = 3
and treat our transform as a color transform applied to individual
pixel values. We deliberately keep the MLP architecture as shallow
as possible for efficient inference. Specifically, we utilize a single-
layer MLP with 64 channels, using float32 datatype. To capture
subtle variations in the color mapping, we use sinusoidal embed-
ding with four frequency bases inspired by a positional encoding
for NeRF. The network activation function is chosen as ReLU, and
a sigmoid activation is applied to the output to ensure that both
the encoder and decoder operate within a bounded R3 space. To
ensure the modularity of our method, we utilize a separate Adam
optimizer [KB15] for our module instead of integrating it with the
NeRF optimizer. We set the learning rate to 5×10−4 for NeRF op-
timization and 5× 10−3 for the planar image alignment. We train
all NeRF models with 100k iterations. We preserve the setting of

their original implementations for the other hyperparameters and
training details [MST∗21, SSC22, LMTL21].

4.1. Optimizing NeRF

We demonstrate the effectiveness of our module for robust novel
view synthesis through experiments on various NeRF models.
NeRF networks use a set of posed images as input and train a vol-
ume that outputs the scene geometry (density) and radiance. The
color transform module, consisting of the color encoder and de-
coder, is integrated into the colors of input and output images to
enable optimization in the transformed color space. While our mod-
ule can be attached to any works that are trained with the color dis-
crepancy, we demonstrate the results on two representative NeRF
networks, the original NeRF architecture [MST∗21] utilizing a sin-
gle MLP for a scene, and DVGO [SSC22] employing a feature-grid
structure for a faster network.

We do not compare against RawNeRF [MHMB∗22] due to
the difference in input modality: our inputs are LDR images,
while RawNeRF uses HDR images. Additionally, our enhancement
solely is based on the image measurements, distinguishing it from
NeRF variants [YYTK21, ZYW∗23] using feature-space conver-
sions. Extracting features incorporates priors from training data and
we deliberately avoid such dataset biases.

4.1.1. Dataset

We extensively evaluate our approach in four datasets. Two of
them (Synthetic-NeRF and RawNeRF) are widely-used datasets to
benchmark the performance of view synthesis. We also contribute
two newly collected datasets that present new challenges that were
not covered by existing datasets.

• Synthetic-NeRF [MST∗21]: This widely-used synthetic dataset
contains small objects inside a bounding box with rich textures
and various material properties.

• RawNeRF [MHMB∗22]: This dataset comprises high-resolution
real images with raw data. We selected nine scenes captured in
low-light conditions for our experiments.

• Synthetic-NeRF-Dark: This dataset is a low-light version of
the Synthetic-NeRF dataset. We re-rendered each scene of
Synthetic-NeRF amidst low-light conditions.

• Low-Texture-Blender: We also introduce a new dataset with low-
textured scenes. It consists of seven scenes, each containing 49
images. We use one-eighth of the images as test images, while
we use the remaining images to train models.
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In our evaluation, we largely adhere to the original setup of
each method. However, in the RawNeRF dataset, we use a random
background instead of the original black background. We need to
avoid black background for dark scenes as the network can intro-
duce holes in the trained volume. Similarly, in the Synthetic-NeRF-
Dark dataset, we replace the black background with a random back-
ground to suppress artifacts in extremely dark scenes.

4.1.2. Results

The quantitative results of novel view synthesis are presented in
Table 1, and sample qualitative results are contained in Figure 4.
We observe that CTM enhances the performance in most datasets,
especially for challenging environment settings. We also perform
on par with other works on the Synthetic-NeRF dataset. When we
measure the variation of results trained with different initial seeds,
we observe that the performance gaps for all metrics are within
10% of the standard deviation, indicating the results are almost the
same for the ordinary setting (results are included in the appendix).
Note that CTM also cannot take advantage of the pre-defined back-
ground color. NeRF [MST∗21] additionally suppresses density for
regions matching the selected background color, and the original
NeRF in the RGB space can easily remove the background density.
On the other hand, our color transform adapts the color into the
flexible encoding space and does not rely on the synthetic back-
ground setup.

The effectiveness of our CTM is prominent in dark scenes
(RawNeRF, Synthetic-NeRF-Dark). With a limited color range in
the input image, the vanilla NeRF even does not converge. Our
module not only stabilizes the convergence but also automatically
finds an adequate mapping to increase the performance. We also
noticed that the feature grid of DVGO can sometimes fail to con-
verge despite its fast convergence. NeRF models the entire scene
with a single network, and benefits from the inherent smooth inter-
polation to fill the ambiguous volumes. However, individual feature
grid points observe local neighborhoods and can significantly dete-
riorate, as shown in Figure 4.

While the quantitative results demonstrate subtle performance
enhancement for the Low-Texture-Blender, the qualitative results
in Figure 4 shows that CTM can capture more accurate geometry,
especially with DVGO. Low-texture-Blender contains walls with
almost flat textures, and the resulting color differences might not be
significant. Even in the worst-case scenario where the MLP emits
only one color, the difference in performance metric is not sub-
stantial. As a result, incorrect geometry does not necessarily lead
to incorrect colors as long as the network predicts the dominant
color. CTM, however, correctly interprets weak signals in color and
shows remarkable improvement in geometry (further details are in-
cluded in the appendix). CTM, therefore, holds great potential for
various downstream tasks that utilize geometric context.

Comparison between other color spaces. We compare our scene-
specific color transformation against existing handcrafted color
maps. We replace our method with transformations based on HLS,
HSV, Lab, and Luv color spaces [WS00]. Additionally, we apply a
warping technique to transform the cylindrical positions of the Hue
channel into Cartesian coordinates (denoted as cart). Since the Hue
channel of HLS and HSV is defined as an angle in a cylinder, there

Color Space PSNR SSIM LPIPS

RGB 31.67 0.8261 0.1994
HLS 31.85 0.8303 0.1610
HLScart 32.63 0.8515 0.1645
HSV 32.31 0.8427 0.1615
HSVcart 32.86 0.8579 0.1698
Lab 28.34 0.7359 0.2574
Luv 28.50 0.7346 0.2564

Ours 33.38 0.8752 0.1585

Table 2: Quantitative results in various color spaces for RawNeRF
dataset. HLScart and HSVcart denote the warped color space into
Cartesian coordinate.

Methods warping error (↓) patch PSNR (↑)

No PE 0.3559 21.87
No PE w/ CTM 0.2156 22.47

Naïve PE 0.3981 19.89
Naïve PE w/ CTM 0.3721 20.13

BARF [LMTL21] 0.2922 26.22
BARF w/ CTM 0.2357 29.24

Table 3: Quantitative results of planar image alignment. We report
the mean of 10 random seeds.

is a discontinuity at zero, which results in artifacts, as shown in
Figure 5. Our Cartesian variants effectively transform the discon-
tinuous angular space into a continuous domain where the neural
network can be efficiently trained. In Table 2, we present the quan-
titative results of NeRF using various color transformations on the
RawNeRF dataset and verify that our method yields the best perfor-
mance in a challenging scenario. Interestingly, our experiments re-
veal that color spaces such as HLS and HSV outperform RGB. This
observation supports our initial motivation that there might exist a
more suitable color space for optimizing NeRF models compared
to the traditional RGB color space.

4.2. Planar Image Alignment

As another problem to apply the color transformation, we
present results on planar image alignment, as suggested in
BARF [LMTL21]. Given five patches of an image cropped with
random homography parameters, the problem is to optimize for the
warping homography, and the patch is initialized from the center
position. The image is represented with a neural network that maps
pixel coordinates to corresponding color values. BARF presented
improved alignment results by incorporating higher frequencies of
positional encoding for the later stages of optimization. The results
are compared against no positional encoding, naïve positional en-
coding, and the scheduled set of frequencies of BARF.

Similar to the NeRF setting, we augment the encoder and de-
coder to map the RGB color and jointly optimize for the homogra-
phy parameters and the color transform. Table 3 demonstrates that
CTM enhances the performance of all the approaches, especially in
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Figure 4: Qualitative results of optimizing NeRF in challenging environments, including bikes, scooter, chair, and staircase. The first row
showcases the rendered images of each scene, with the lower triangle enhanced for better visibility in dark regions. The second row presents
the corresponding depth images.
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HSV

RGB Ours
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Figure 5: Qualitative results in various color spaces for RawNeRF
dataset. The warping technique effectively reduces artifacts in the
red car, denoted as cart.

BARF. One may attribute the improvement to the increased number
of parameters with our module. However, the deeper layers of the
module effectively encode higher-frequency positional informa-
tion [ZRLL22], and it has been reported that higher-level positional
encoding can lead to erroneous warping homography [LMTL21].
Nonetheless, CTM consistently improves the performance in terms
of both PSNR and the warping error. The results indicate that the la-
tent embedding of CTM adapts the images for more distinctive fea-
tures, thereby aiding in accurate warping estimation. In Figure 6,
we present the qualitative results for various images. The correct
warping with CTM generates crisp images on the second row. CTM
plays a crucial role in refining the warping process, particularly in
cases where the original warping exhibits slight misalignment, as
shown with BARF on the cat and squirrel image.

4.3. Ablation Study

We conduct ablation studies to validate our design choices. First,
we analyze the impact of individual loss terms in Table 4. Ex-
cluding the Ldec results in a decrease in performance, highlight-
ing the importance of incorporating the photometric loss in both
domains to fully extract valuable information. It is worth noting
that even without the loss in the RGB domain, our approach still
outperforms the naïve RGB approach, emphasizing the effective-
ness of the applied color transformation. Additionally, we find a
significant performance drop when excluding the Lcyc→(cimg). As
shown in Figure 3, this term plays a crucial role in achieving a more
scene-specific color transformation by enhancing subtle details in
the RGB space. We also observe a decrease of performance with-
out Lcyc←(lrand). This supports the effect of regularization terms
as illustrated in Section 3.3.

Although the inclusion of Lcyc→(crand) results in a slight de-
crease in performance, the findings presented in Figure 7 under-
score the significance of this term. In complex scenes with thin

PSNR SSIM LPIPS

w/o CTM 31.67 0.8261 0.1994

w/o Ldec 32.96 0.8689 0.1634
w/o Lcyc→(cimg) 31.48 0.7664 0.1935
w/o Lcyc→(crand) 33.40 0.8751 0.1567
w/o Lcyc←(lrand) 33.31 0.8721 0.1574

Ours (full) 33.38 0.8752 0.1585

Table 4: Ablation study on the loss term in the RawNeRF dataset.

PSNR SSIM LPIPS

Sinusoidal
embedding
level
P

0 33.32 0.8699 0.1573
2 33.37 0.8750 0.1568
4 (Ours) 33.38 0.8752 0.1585
6 31.53 0.8307 0.1875
8 30.86 0.8172 0.2007
10 26.93 0.7036 0.2747

Latent
dimension
k

1 32.75 0.8676 0.1610
2 33.37 0.8735 0.1570
3 (Ours) 33.38 0.8752 0.1585
4 33.27 0.8733 0.1597
5 33.07 0.8678 0.1632

Table 5: Ablation study on the sinusoidal color embedding level
and latent dimension in the RawNeRF dataset.

handrails or fog-like lighting, the volume rendering process of
NeRF leads to the blending of foreground and background fea-
tures. These blended latent features may not be represented in the
encoded space of the training images, resulting in inaccurate color
values during decoding. By incorporating Lcyc→(crand), we ensure
the preservation of cycle consistency for these novel colors, effec-
tively mitigating artifacts in the rendered images. In Figure 7, we
can see how the edge of a traffic sign turns black and the handrail,
along with the gap between them, exhibits a reddish color while
blending with the background.

Table 5 outlines additional experiments on our parameter
choices. We explore different values for the level of sinusoidal color
embedding P and the latent dimension k in our feature domain.
We find that when P exceeds 4, the rendering results experience
a significant degradation. We use P = 4 to balance the complex-
ity of mapping and avoid significant distortion. Regarding the la-
tent space dimension k, we observe no significant difference ex-
cept a slight performance decrease for k = 1. However, when k is
less than 3, the rendered outputs exhibit noticeable color discrep-
ancies compared to the ground truth images. This can be clearly
seen in Figure 8, where the rendered images near the tree appear
to be achromatic, lacking the expected color fidelity. Despite of
the reduced latent space dimension, however, CTM can reconstruct
high-fidelity depth maps. It indicates that CTM effectively finds the
embedding that captures important variations within the scene.

Table 6 demonstrates the impact of varying loss functions. While
changing the loss function into L1 can enhance the performance of
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BARF BARF w/ CTM PE PE w/ CTM No PE No PE w/ CTMGT warping

(a) Cat

(b) Squirrel

(c) Ducks

Figure 6: Qualitative results of planar image alignment. The first row of each scene shows the estimated warping for each patch. The
optimized 2D neural image is presented in the second row.

(b) w/o ℒ𝑐𝑦𝑐→(𝑐𝑟𝑎𝑛𝑑) (c) w/ ℒ𝑐𝑦𝑐→(𝑐𝑟𝑎𝑛𝑑)(a) Ground Truth

Figure 7: Rendering output on highly blended region with the
Lcyc→(crand) ablated. The top image exhibits artifacts at the top
edge of the traffic sign, while the bottom image highlights reddish
artifacts near the thin handrail.

PSNR SSIM LPIPS

MSE w/o CTM 31.67 0.8261 0.1994
L1 w/o CTM 32.21 0.8548 0.1701

MSE w/ CTM 33.38 0.8752 0.1585
L1 w/ CTM 33.10 0.8720 0.1540

Table 6: Ablation study on the different loss functions in the RawN-
eRF dataset.

NeRF, it can also be combined with our CTM and further improve
quality.

5. Conclusion

We propose a scene-specific color transformation attached to exist-
ing neural representations processing images. By incorporating the
color encoder and decoder within the NeRF pipeline, we were able
to enhance the reconstruction quality in scenes with low textures

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

9 of 14



S. M. Kim, C. Choi, H. Heo & Y. M. Kim / Robust Novel View Synthesis with Color Transform Module

Ground Truth k=2 k=4k=1 k=3

R
G

B
D

ep
th

N/A

k=5

Figure 8: Qualitative results of ablation study on the latent dimension k. Rendered output images and corresponding depth maps are
presented. When k < 3, the rendered image, particularly the tree under the lamp, appears achromatic.

and low-light environments. The scene-specific color transforma-
tion is jointly trained to resolve ambiguities and subtle variations
in the measurements. Our extensive results show that it can im-
prove the reconstruction quality in challenging environments. The
module is versatile and can be combined to enhance existing im-
age synthesis techniques, offering a valuable tool to overcome the
challenges associated with the input domain. Future research di-
rections include integrating it with other computer vision tasks or
other datasets. We anticipate it can readily be adopted to enhance
the performance of various vision-based tasks, for example, indoor
visual SLAM, where low-textured scenes are prevalent.
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Appendix A: Dataset and Implementation Details

Dataset

We introduce two newly collected datasets, namely Synthetic-
NeRF-Dark and Low-Texture-Blender. Synthetic-NeRF-Dark and
Low-Texture-Blender are challenging datasets that contain low-
light environments and large-portion of low-textured areas, respec-
tively. For the Synthetic-NeRF-Dark dataset, we render the identi-
cal 3D models from Synthetic-NeRF [MST∗21] in the weak light
environment. We render images from the same 100 and 200 camera
viewpoints on the hemisphere for trainset and testset in the original
Synthetic-NeRF dataset. For the Low-Texture-Blender dataset, we
collect open-sourced scenes which contain low-textured areas (e.g.
white walls). We render 49 images from forward-facing camera tra-
jectory following LLFF [MSOC∗19]. Samples from the proposed
datasets are demonstrated in Figure 9. The sources used to generate
the Low-Texture-Blender dataset and the test images for the planar
image alignment are provided below.
# Low-Texture-Blender
- Bathroom by bobal57 (CC-0)
http://www.blendswap.com/blends/view/21307
- Bathroom-2 by nacimus (CC-BY)
https://blendswap.com/blend/12584
- Bathroom-3 by imperfectino (CC-0)
https://blendswap.com/blend/29175
- Dark-Kitchen by Vladoffsky (CC-0)
https://blendswap.com/blend/19116
- Island-Kitchen by Matteo Pascale (RF)
https://www.blenderkit.com/asset-gallery-detail/c6d4517a-853d-4a2b

-a312-55cb36a3a826/
- Low-poly-deer by Spine69 (CC-0)
https://blendswap.com/blend/26863
- Staircase by blenderjunky (CC-0)
https://blendswap.com/blend/11660

# Planar Image Alignment
- Squirrel by Andhoj via Pixabay
https://pixabay.com/photos/nature-rodent-squirrel-mammal-7997402/
- Ducks by pen_ash via Pixabay
https://pixabay.com/photos/australian-wood-ducks-ducks-birds

-8012590/

Implementation Details

For the optimization of NeRF, we set the following values for
the hyperparameters: wenc = 1, wdec = 1, wcyc→(cimg) = 10000,
wcyc→(crand) = 10, and wcyc←(lrand) = 100. For planar image
alignment, we use wenc = 1, wdec = 0.1, wcyc→(cimg) = 100,
wcyc→(crand) = 0, and wcyc←(lrand) = 0.

During our experiments on the Synthetic-NeRF-Dark dataset,
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(a) Synthetic-NeRF-Dark

(b) Low-Texture-Blender

Figure 9: We demonstrate samples from our newly introduced (a) Synthetic-NeRF-Dark and (b) Low-Texture-Blender dataset.

Methods
PSNR SSIM LPIPS

mean±std mean±std mean±std

DVGO 31.80±3.39 0.9554±0.0345 0.0364±0.0351
DVGO w/ CTM 31.59±3.36 0.9547±0.0343 0.0365±0.0342

Table 7: Quantitative results of DVGO on the Synthetic-NeRF
dataset with varying random seeds.

we observed that DVGO [SSC22] encounters difficulties with
"floaters" during the coarse optimization stage. These floaters cause
significant challenges in reconstructing the scene accurately. As a
result, we decided to skip the coarse stage and instead focus on
training the fine stage for a total of 30k steps similar to RawNeRF
setting. This adjustment allowed us to mitigate the issues caused by
floaters and achieve more satisfactory results in reconstructing the
scene.

Appendix B: Performance of CTM in Synthetic-NeRF Dataset

We conducted an additional experiment on the Synthetic-NeRF
dataset to investigate the impact of CTM on performance in high-
textured scenarios. We utilized DVGO instead of NeRF due to its
faster convergence properties. By varying the random seed from 0
to 3, we calculated the mean and standard deviation for different
metrics, as shown in Table 7. Notably, the differences in all metrics
were found to be smaller than 10% of their corresponding stan-
dard deviations, indicating that the application of CTM does not
degrade the performance of Novel View Synthesis in Synthetic-
NeRF dataset.

Appendix C: Performance Boost in the Low-Textured Scene

The performance improvement in low-textured scenes follows the
same underlying principle with low-light scenarios. In essence,
CTM amplifies subtle details that are already present but lack dis-
tinction in the original color space. We demonstrate this effect using
an image from the Staircase scene (the leftmost image in Figure 9).
Upon applying our CTM, the total image variance increased from

859.6 to 871.7. Additionally, when handpicking a 100×100 patch
from a low-textured region, the variance increased from 256.5 to
346.2. These results indicate how our CTM enhances variations in
low-textured scenes, thereby improving the quality of NeRF recon-
structions.

Appendix D: Additional Results

In this section, we provide per-scene results of our experiments to
further support the effectiveness of CTM in challenging scenarios.
Table 11-19 demonstrate the performance increase applying CTM
in challenging scenarios.
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Methods chair drums ficus hotdog lego materials mic ship mean

NeRF 29.90 23.84 27.84 33.56 29.54 27.25 30.18 26.65 28.60
NeRF w/ CTM 29.62 23.74 27.03 33.38 29.16 27.54 29.50 26.54 28.32

DVGO 33.89 25.05 32.48 35.88 33.87 29.12 32.95 28.51 31.47
DVGO w/ CTM 33.19 24.91 31.51 35.73 33.14 28.96 32.86 28.63 31.12

Table 8: PSNR(↑) on Synthetic-NeRF dataset

Methods chair drums ficus hotdog lego materials mic ship mean

NeRF 0.9434 0.9057 0.9452 0.9623 0.9359 0.9292 0.9651 0.8221 0.9261
NeRF w/ CTM 0.9410 0.9069 0.9384 0.9630 0.9351 0.9339 0.9641 0.8249 0.9259

DVGO 0.9780 0.9294 0.9789 0.9800 0.9765 0.9507 0.9825 0.8765 0.9566
DVGO w/ CTM 0.9759 0.9278 0.9753 0.9799 0.9739 0.9493 0.9824 0.8751 0.9549

Table 9: SSIM(↑) on Synthetic-NeRF dataset

Methods chair drums ficus hotdog lego materials mic ship mean

NeRF 0.0552 0.0849 0.0346 0.0369 0.0371 0.0409 0.0364 0.1544 0.0601
NeRF w/ CTM 0.0564 0.0817 0.0422 0.0370 0.0399 0.0368 0.0388 0.1515 0.0606

DVGO 0.0135 0.0528 0.0121 0.0135 0.0118 0.0200 0.0114 0.0886 0.0280
DVGO w/ CTM 0.0163 0.0535 0.0144 0.0135 0.0131 0.0214 0.0115 0.0871 0.0289

Table 10: LPIPS(↓) on Synthetic-NeRF dataset

Methods bikes candlefiat livingroom morningkitchen nightstreet notchbush parkstatue scooter streetcorner mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 31.95 36.13 32.54 31.64 33.51 31.53 34.32 38.07 32.67 33.60

DVGO 27.90 35.77 32.50 31.39 31.05 30.77 33.43 32.15 30.02 31.67
DVGO w/ CTM 31.98 36.09 32.65 31.43 32.33 31.14 33.88 38.24 32.71 33.38

Table 11: PSNR(↑) on RawNeRF dataset

Methods bikes candlefiat livingroom morningkitchen nightstreet notchbush parkstatue scooter streetcorner mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 0.8317 0.8992 0.9064 0.8589 0.8868 0.8023 0.8982 0.9177 0.8615 0.8736

DVGO 0.7182 0.8872 0.9003 0.8555 0.8509 0.7783 0.8636 0.7940 0.7873 0.8261
DVGO w/ CTM 0.8448 0.8999 0.9152 0.8708 0.8789 0.7932 0.8923 0.9143 0.8678 0.8752

Table 12: SSIM(↑) on RawNeRF dataset

Methods bikes candlefiat livingroom morningkitchen nightstreet notchbush parkstatue scooter streetcorner mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 0.1768 0.1360 0.0982 0.1781 0.1339 0.2634 0.1051 0.1656 0.1280 0.1539

DVGO 0.2754 0.1473 0.1056 0.1867 0.1770 0.2832 0.1793 0.2333 0.2065 0.1994
DVGO w/ CTM 0.1821 0.1358 0.0940 0.1675 0.1458 0.2681 0.1366 0.1638 0.1328 0.1585

Table 13: LPIPS(↓) on RawNeRF dataset
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Methods chair drums ficus hotdog lego materials mic ship mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 43.56 35.63 41.24 37.54 41.17 38.16 38.03 35.58 38.86

DVGO 32.09 29.20 36.14 30.07 31.92 26.52 29.74 27.14 30.35
DVGO w/ CTM 37.18 33.23 39.05 33.18 36.26 31.58 35.54 33.56 34.95

Table 14: PSNR(↑) on Synthetic-NeRF-Dark dataset

Methods chair drums ficus hotdog lego materials mic ship mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 0.9775 0.9398 0.9594 0.9801 0.9705 0.9676 0.9704 0.9277 0.9616

DVGO 0.8043 0.7530 0.8588 0.8929 0.8460 0.6889 0.7927 0.7113 0.7935
DVGO w/ CTM 0.9394 0.8972 0.9248 0.9492 0.9394 0.8896 0.9468 0.8584 0.9181

Table 15: SSIM(↑) on Synthetic-NeRF-Dark dataset

Methods chair drums ficus hotdog lego materials mic ship mean

NeRF N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
NeRF w/ CTM 0.0306 0.0801 0.0392 0.0279 0.0298 0.0412 0.0370 0.1090 0.0494

DVGO 0.2442 0.3244 0.1972 0.1380 0.2111 0.3415 0.2727 0.3872 0.2645
DVGO w/ CTM 0.1175 0.1998 0.1255 0.0783 0.1088 0.1525 0.1141 0.2203 0.1396

Table 16: LPIPS(↓) on Synthetic-NeRF-Dark dataset

Methods bathroom bathroom-2 bathroom-3 dark-kitchen island-kitchen low-poly-deer staircase mean

NeRF 34.95 35.23 36.70 37.84 36.16 42.97 41.71 37.94
NeRF w/ CTM 35.14 35.33 36.70 38.21 36.45 43.13 41.93 38.13

DVGO 35.07 35.63 35.09 37.15 36.15 39.68 35.61 36.34
DVGO w/ CTM 34.48 36.08 35.33 37.34 36.77 40.40 38.50 36.99

Table 17: PSNR(↑) on Low-Texture-Blender dataset

Methods bathroom bathroom-2 bathroom-3 dark-kitchen island-kitchen low-poly-deer staircase mean

NeRF 0.9516 0.9548 0.9516 0.9592 0.9508 0.9875 0.9840 0.9628
NeRF w/ CTM 0.9507 0.9547 0.9519 0.9603 0.9522 0.9871 0.9842 0.9630

DVGO 0.9617 0.9645 0.9494 0.9560 0.9541 0.9814 0.9600 0.9610
DVGO w/ CTM 0.9601 0.9677 0.9519 0.9579 0.9607 0.9829 0.9753 0.9652

Table 18: SSIM(↑) on Low-Texture-Blender dataset

Methods bathroom bathroom-2 bathroom-3 dark-kitchen island-kitchen low-poly-deer staircase mean

NeRF 0.0487 0.0511 0.0570 0.0569 0.0840 0.0068 0.0161 0.0458
NeRF w/ CTM 0.0498 0.0501 0.0567 0.0564 0.0839 0.0073 0.0156 0.0457

DVGO 0.0364 0.0313 0.0670 0.0593 0.0634 0.0189 0.0760 0.0503
DVGO w/ CTM 0.0388 0.0282 0.0623 0.0542 0.0450 0.0156 0.0327 0.0395

Table 19: LPIPS(↓) on Low-Texture-Blender dataset
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