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Abstract
3D-aware generative adversarial networks (GAN) are widely adopted in generating and editing neural radiance fields (NeRF).
However, these methods still suffer from GAN-related issues including degraded diversity and training instability. Moreover,
3D-aware GANs consider NeRF pipeline as regularizers and do not directly operate with 3D assets, leading to imperfect 3D
consistencies. Besides, the independent changes in disentangled editing cannot be ensured due to the sharing of some shallow
hidden features in generators. To address these challenges, we propose the first purely diffusion-based three-stage framework
for generative and editing tasks, with a series of well-designed loss functions that can directly handle 3D models. In addition,
we present a generalizable neural point field as our 3D representation, which explicitly disentangles geometry and appearance
in feature spaces. For 3D data conversion, it simplifies the preparation pipeline of datasets. Assisted by the representation, our
diffusion model can separately manipulate the shape and appearance in a hierarchical manner by image/text prompts that are
provided by the CLIP encoder. Moreover, it can generate new samples by adding a simple generative head. Experiments show
that our approach outperforms the SOTA work in the generative tasks of direct generation of 3D representations and novel
image synthesis, and completely disentangles the manipulation of shape and appearance with correct semantic correspondence
in the editing tasks.

CCS Concepts
• Computing methodologies → Shape modeling; Image manipulation;

1. Introduction

Neural Radiance Field (NeRF) [MST∗21] has gained a lot of at-
tention in recent years due to its promising capability to synthe-
size photo-realistic novel views from arbitrary views. The domi-
nant performance has the potential to significantly impact and rev-
olutionize applications in many fields including computer graphics,
computer vision, augmented reality/virtual reality, etc. On account
of the success of NeRF, a number of extended works have been
proposed in various fields, such as dynamic scene, generalization,
unconstrained scene exploration [DBS∗21], and scene understand-
ing [FZC∗22, KGY∗22].

The conventional NeRF pipeline is primarily limited to spe-
cific, individual scenes and is unable to be edited. Recently, re-
searchers have brought the Generative Adversarial Network (GAN)
into NeRF representation for generating and manipulating 3D
scenes. In contrast to 2D GAN, they use 3D-aware GAN which
incorporates a 3D-structure-aware inductive bias within the gen-
erator network architecture. As for editability, a widely used ap-
proach in 3D-aware GAN is to separate latent codes for shape
and appearance and feed them to different layers of the genera-
tors [CMK∗21, GLWT21, ZXNT21, CLC∗22, HMR19]. Users can
specifically manipulate the neural scene by controlling the disen-

tangled latent codes, such as appearance and shape transfer. Fur-
thermore, other studies incorporate condition settings into the gen-
erative pipeline to perform 3D-aware image manipulation for a
given condition [JSJ∗21, WCH∗22]. These methods achieve bet-
ter and more detailed editing but still cannot fully disentangle the
changes in shape and appearance because the predicted shape and
color still share some hidden features in the shallow layers of the
generators. In addition, 3D-aware GANs consider NeRF pipelines
as regularizers and do not directly operate with 3D models, which
results in imperfect 3D consistencies. More importantly, similar to
2D GAN, 3D GAN also suffers from issues including mode col-
lapse and complex training paradigms. ChangeIt3D [AHS∗23] and
LADIS [HAZ∗22a] edit 3d shapes through parsing language and
do not edit colors.

Meanwhile, diffusion models have recently advanced to many
2D generation tasks including image generation [GCB∗22,
NDR∗21, RLJ∗23, KSH22, SHC∗22], image super resolution
[RBL∗22, SHC∗22, DMH21], inpainting [LDR∗22, XZL∗23],
and image manipulation [ALF22, MHS∗21, KZL∗23, YGZ∗23,
ZHG∗23], and outperform GAN-based models on several bench-
marks. This is because diffusion models are much easier to train
and offer better diversity. In addition, it can be observed that dif-
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fusion models deliver promising performance on multimodal data
[RLJ∗23, TRG∗22, PVG∗21, SPH∗22, ALF22, BNX∗23, GCB∗22,
NDR∗21, PJBM22, XWC∗23, LGT∗23] and conditional genera-
tions [NSL∗23,ZLW∗23,BNX∗23,GCB∗22,NDR∗21]. Moreover,
several studies have introduced diffusion models into 3D geometry
generations such as point cloud [VWG∗22], while extending them
to directly generate neural implicit representation remains difficult.
The reasons lie in three aspects: 1. Implicit representations often
rely on the parameters of neural networks, which can hardly be
generated. 2. Training the 3D diffusion models requires plenty of
groundtruth samples of 3D assets. In the context of NeRF, obtaining
such a number of groundtruth data is impractical because per-scene
NeRF optimization requires a very long time. Even if there are
some volumetric radiance field approaches that can converge faster
[SSC22], it still needs more days to prepare a dataset consisting of a
few thousand samples. On the other hand, some studies have inves-
tigated optimizing a volumetric NeRF by score-based distillation
from a pretrained 2D image generation diffusion model [PJBM22,
XWC∗23, LGT∗23, HCO∗23, WDL∗23, CSL∗23, RKP∗23]. These
approaches are time-consuming and memory-inefficient, and con-
strained by the quality and consistency of generated 2D images.

In this paper, we reformulate the 3D NeRF generation task and
disentangle the editing task into a unified framework by a purely
hierarchical diffusion-based framework, which includes three main
stages. The first is responsible for 3D generation, and the last two
are employed for geometry and appearance manipulation respec-
tively. In contrast to GAN-based models, the presented diffusion
model directly generates and manipulates 3D assets, maintaining
full 3D consistency. Different from the previous works which use
volumetric radiance field as 3D representation, we propose a novel
disentangled neural points field as our 3D neural representations.
This representation helps us explicitly separate shape and appear-
ance in our diffusion-based pipeline and ensures fully independent
changes. Besides, the neural representation is trained under the
generic setting rather than single scene optimization, which signif-
icantly reduces the difficulties of 3D dataset conversion. For our
three-stage diffusion model, the first stage learns the generative
model in the CLIP latent space for directly generating new 3D as-
sets in an unconditional way. The second stage is conditioned on the
CLIP latent vector and generates neural points with geometry fea-
tures. The third stage produces the appearance features for the given
point scaffold and another CLIP latent vector. Thanks to the high-
level semantic information encoded in the CLIP vector, our method
can faithfully learn the semantic correspondences in a disentangled
manner but does not require different shape-appearance pairs. Ad-
ditionally, we surpass the complex inverse GAN techniques in the
recreation of realistic content because our pipeline is directly con-
ditioned on the image/text prompts and performs manipulation in
a forward manner without the need to reproject the reference im-
age/text to the original Gaussian space.

In summary, our contributions are in the following:

• We propose a three-stage diffusion-based unified framework for
both 3D generation and text-image driven manipulation tasks,
achieving diverse generation and shape and appearance control
in a disentangled manner. To the best of our knowledge, our ap-
proach is the first work purely based on diffusion models for

editing neural scenes, avoiding basic problems associated with
GAN-based approaches.

• We are the first to propose and use the generic neural point field
as the representation for the target task, which can explicitly en-
sure fully independent changes and simplify the pipeline of 3D
dataset preparations.

• We establish remarkable results for both generation and manip-
ulation by improving over the previous SOTA performance on
generation and manipulation tasks.

2. Related Work

2.1. Neural radiance field editing.

Over the last few years, studies of implicit representations ex-
perience significant progress, which represents 3D models by
deep neural networks. Among them, Neural Radiance Fields
(NeRF) [MST∗21] achieved the most impressive rendering re-
sults by optimizing the 5D neural radiation field of the scene.
The impressive performance of NeRF has inspired several sub-
sequent works that have extended its capabilities such as dy-
namic scene [PCPMMN21, TZFR23, LNSW21, CJ23, TTG∗21],
generalization [WWG∗21, CXZ∗21, JLF22, LPL∗22], acceleration
[WLC∗23, CJ23, GKJ∗21, LLZ∗22, LLW∗23] and few-shot recon-
struction [JTA21,CLH∗22,YPW23]. Despite improving the quality
of reconstructing challenging scenes, they are not capable of explic-
itly controlling and editing the scene.

Editing 3D scenes has received significant interest in the com-
puter graphics community. In order to enable the editability of
NeRF, researchers have investigated a range of hybrid semi-implicit
neural representations and the integration of generative models
into the NeRF rendering framework. For the former, Neumesh
[YBZ∗22] and NeRF-Editing [YSL∗22] store implicit neural fea-
tures into an explicit mesh scaffold to edit the neural representa-
tion by controlling the container. But they are only able to make
local-scale edits, not possible to replace the entire shape or ap-
pearance. In contrast, generative-based methods achieve global-
level edit. GRAF [SLNG20] is a 3D aware generative model and
first adopts shape and appearance codes to conditionally synthe-
size NeRF. GIRAFFE [NG21] can learn individual objects from un-
processed image collections without requiring additional guidance.
CodeNeRF [JA21] splits shapes and textures by learning to em-
bed them individually and edit them by changing the latent codes.
EditNeRF [LZZ∗21] was developed to address the challenge of
editing 3D models represented by millions of network parameters.
However, the above approaches either require time-consuming op-
timization processes or cannot ensure fully independent changes.
CLIP-NeRF [WCH∗22] have attempted to address these problems
by using separate latent codes for shape and appearance and feed-
ing them to different layers of the NeRF generator. Furthermore,
GDRF [WDY∗22] learns to edit specific categories by deforming
and recoloring a template space, thereby significantly reducing the
training complexity. Nevertheless, these two methods are still based
on 3D-aware Generative Adversarial Network (GAN). The 3D con-
sistency cannot be ensured and the details are blurry. This is be-
cause the NeRF pipeline is only regarded as the regularization in
their generation pipeline rather than directly generating 3D assets.
Our proposed method combines the two main branches, explicitly
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disentangles shape and appearance and directly generates 3D neu-
ral scene representation, which effectively overcomes the above is-
sues.

2.2. Diffusion models.

Diffusion models [SDWMG15], originally proposed by Sohl-
Dickstein et al., are mainly trained to denoise data that has been
perturbed by Gaussian noise. Diffusion model can be classified
into two main categories: namely denoising diffusion probabilis-
tic models (DDPM) [HJA20] and noise-conditioned score networks
(NCSN) [SE19]. The two types of approaches can be generalized
by the score stochastic differential equations theory [SSDK∗20]. To
develop further based on the diffusion model, researchers mainly
focus on three primary areas: sampling acceleration, likelihood
maximization, and data generalization. [CHIS23] summarizes the
current progress in computer vision.

Diffusion model has emerged the most advanced deep gen-
eration model and has been applied in a wide range of
fields, including image super resolution [RBL∗22, SHC∗22,
DMH21], image inpainting [LDR∗22, XZL∗23], image edit-
ing [MHS∗21, KZL∗23, YGZ∗23, ZHG∗23], semantic segmenta-
tion [HAZ∗22b, BRV∗21, BKC∗22, GMJS22], video generation
[HNM∗22, HCS∗22, ZCP∗22, QCZ∗23], natural language process-
ing [AJH∗21, GLF∗22, HKT22, LTG∗22], point cloud completion
[LWYL22, LH21, VWG∗22, ZDW21] and multi-modal generation
[RLJ∗23, TRG∗22, PVG∗21, SPH∗22, ALF22, BNX∗23, GCB∗22,
NDR∗21,PJBM22,XWC∗23,LGT∗23], as well as interdisciplinary
applications in fields such as and medical image reconstruction
[CSY22, CY22, PGZ∗22a, PGZ∗22b]. Notably, in the area of high-
resolution image generation, the impact of diffusion models has
surpassed that of GANs. It overcomes the vulnerability of GANs,
i.e. mode collapse, has more stable training processes, and produces
more diverse and meaningful results. Despite the original diffusion
model having longer training and sampling time, many recent stud-
ies have aimed to reduce them.

2.3. 3D generation.

Generative adversarial approaches [GPAM∗20] are achieving note-
worthy results in the field of 3D generation, such as gener-
ating voxel-based representations [CCS∗19, KAAL22], meshes
[?, GSW∗22], or NeRFs [CMK∗21, GLWT21, ZXNT21, CLC∗22,
HMR19]. Pi-GAN [CMK∗21] have introduced a GAN-based ap-
proach to the standard NeRF [MST∗21] model, incorporating a
form of stochastic conditioning and trained using an adversarial
loss. CIPS-3D [ZXNT21] have addressed the issue of high mem-
ory costs and lengthy training times by having their volume ren-
dering components output low-resolution 2D feature maps. These
maps are then upsampled using efficient convolutional networks
to generate the final images. StyleNeRF [GLWT21] has addressed
the issue of 3D inconsistency by carefully designing the convolu-
tion stage to minimize such inconsistencies. EG3D [CLC∗22] is
a hybrid explicit-implicit network that real-time synthesis of high-
resolution images that maintain consistency across multiple view-
points. However, the previously mentioned GAN-based methods
are not capable of supporting conditional generation and lack full

3D consistency. In contrast, the image condition generation model
is better at reasoning ambiguity and producing diverse and mean-
ingful content.

More recently, the diffusion model has been introduced into
3D generation. These generation methods are mainly divided into
two branches. The first is to distill the 2D pre-training diffu-
sion model into a 3D NeRF representation, which mainly is a
voxel-based neural representation [PJBM22, XWC∗23, LGT∗23,
HCO∗23, WDL∗23, CSL∗23, RKP∗23]. This type of methods of-
ten requires long optimization time and under-averaged quality due
to the inconsistency of the images generated by the 2D diffusion
models. The other is to directly generate 3D assets through the de-
noising diffusion model. DiffRF [MSP∗23] is the first to generate
3D neural representations from random noises in a straightforward
manner. However, the use of the volumetric radiance field leads to
low resolution and inefficient memory consumption. Our method is
also able to produce 3D entities straightforwardly, and we achieve
3D shape and texture manipulation by image/text prompts in a dis-
entangled style.

3. Generic neural point field.

Different from previous works in which the volumetric radiance
field is widely adopted to represent 3D scenes, we aim to simplify
the dataset preparation pipeline and explicitly separate shape and
appearance representations. It is noted that the goal of the 3D-aware
GAN is to synthesize novel images rather than the entire 3D rep-
resentation of objects. Therefore, we propose the generic disentan-
gled neural point field to represent 3D objects.

Figure 1 shows the workflow about how to build the neural point
field from existing images and the related volumetric rendering pro-
cess. For the dataset containing various multi-views,here we as-
sume the number of views is n. We use two different heads to
extract geometry and appearance features respectively. The cor-
responding depth maps (which can be estimated from multiview
images if the dataset does not provide them) are transformed into
point clouds following the camera parameters, and the extracted
two feature maps are projected to the point cloud and transformed
to 8 dimensions by an MLP. The n feature vectors are summed and
weighted by the associated binary mask weights ( f = SUM(wi ∗
fi), i = 1, ..,n). Each point contains two feature vectors associated
with the shape and appearance information. Next, the normal vol-
ume rendering technique (Equation 1) is conducted to access such
neural point field via sampling points along rays.

c =
M

∑
k=1

τk(1− exp(−σkδk))ck,τk = exp(−
k−1

∑
t=1

)σtδt , (1)

The sampled points aggregate features from their nearby neural
points by inverse distance weights that is to regulate the degree of
influence of the nearest K neural points p j | j = 1,2, . . . ,K.

gx = ∑
K
j=1

w j
∑ w j

g j,x,w j =
1∥∥p j − x

∥∥ (2)

Then we use two independent decoders to regress transmittance
sigma and colors c. After integrating colors along rays, images
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Figure 1: Overview of neural point rendering process. The volumetric rendering based on the proposed neural point field is depicted.
Multiview images are input to UNet with two output heads for disentangled feature extraction. The features are fetched to the point scaffold
transferred from the depth map. We aggregate features for sampling points from neighboring neural points and separately input them to the
shape and color decoder to obtain σ and c.

of specific viewpoints are synthesized and we compute L2 loss to
drive the training of the framework.

More importantly, the disentangled neural point field is trained
on multiple scenes hence it can be generalized to unobserved sce-
narios. In other words, for preparing 3D datasets, it is easier to con-
vert datasets with multiview images into neural representations be-
cause per-scene optimization is not required.

4. Diffusion model.

Diffusion models progressively destroy samples by injecting noise
sampled from multivariate Gaussian distribution, then learn to re-
verse this process and generate the result by iterative denoising the
random initialization. Traditional DDPM [HJA20] is based on the
Markov chain method. Its diffusion process generates a sequence
of x1,x2, · · · ,xT from a given 3D object radiance field x0 by the
forward Markov process. Each diffusion step is carried out by the
pre-defined Gaussian perturbation q(xt | xt−1) and the whole pro-
cess can be described by

q(x1:T | x0) =
T

∏
t=1

q(xt | xt−1) =
T

∏
t=1

N
(

xt |
√

1−βt ,βt I
)
, (3)

where βt ∈ (0,1) is a chosen hyperparameter to implement a sched-
ule for the injected noise variance. This process can also express
the conditional distribution of xt given x0 in a straightforward man-
ner by using properties of Gaussian distribution, resulting in Equa-
tion 4.

q(xt | x0) =N (xt |
√

atx0,(1−at)I) , (4)

where at = ∏
t
k=0(1 − βk). This transformation can be employed

to efficiently generate xt for arbitrary time steps given a pre-
determined x0.

The generation process, also known as the denoising process,
reverses the diffusion process by learning Gaussian transition ker-
nels parameterized by deep neural networks. Song et al. [SME20]
prove that if q(xt | xt−1) satisfies a Gaussian distribution and βt is

small enough, q(xt−1 | xt) is still a Gaussian distribution. Thus the
distribution P(xt −1 | xt) can be estimated by Equation 5.

pθ (xt−1 | xt) =N (xt−1 | µθ(xt , t),∑t) , (5)

where the µθ and ∑θ refer to the mean and variance of the Gaus-
sian distribution P(xt −1 | xt). In the original DDPM, the variance
can be explicitly derived from the diffusion coefficients.

∑ =
1−αt−1

1−αt
βt I (6)

Furthermore, µθ can also be reparameterized by the noises at t
timestamp, yielding Equation 7.

µθ (xt , t) =
1√

1−βt
(xt −

βt√
1−at

ε(xt , t)), (7)

Denoising diffusion implicit model (DDIM) [SME20] replaces
the Markov-based forward process in DDPM using a Non-
Markovian forward process. The edge distribution of DDIM for-
ward process also satisfies the form of edge distribution introduced
under Markov assumption, then it is still possible to reuse the opti-
mization objective of DDPM. When the form of the objective dis-
tribution of the Non-Markovian is supported at any time step, the
objective distribution is

q(xt̂ | xt ,x0) =N
(
√

αt̂x0 +
√

1−αt̂ −σ2 xt −
√

αtx0√
1−αt

,σ2I
)
,

(8)
where t̂ refers to t − 1, σ is the parameter that describes noises
added in the forward process. The free noise variable σ determines
the randomness of the generative process. When σ = 0, the genera-
tive process becomes deterministic.

5. Three-stage disentangled diffusion framework.

Our framework is composed of three generative diffusion mod-
els that are built on and extended from DDIM. The first diffusion
model aims for interpolation in CLIP latent space, and the gener-
ated latent vector can be the condition for the subsequent diffu-
sion modules. The second diffusion module is trained to denoise a

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 13



J. W & Z. Z & R. X / Learning to Generate and Manipulate 3D Radiance Field by a Hierarchical Diffusion Framework with CLIP Latent

Figure 2: Training pipeline of the two-stage conditional diffusion model for disentangled manipulation. We separate the neural point field
into two parts to guide the training processes of the two diffusion models, namely geometry and appearance. To clarify, we omit the denoising
loss which is common for diffusion models.

high-dimensional spherical Gaussian initialization to produce the
neural point representations only with geometry features. The third
diffusion step is conditioned on a CLIP vector as well as a point
cloud scaffold to generate semantically corresponding appearance
features for the given points. Each module is trained independently
and jointly worked in the inference stage. In our case, our target is
to generate 3D objects in the form of our proposed neural points
field and separately manipulate shape or appearance driven by im-
age or text prompts via running corresponding diffusion modules.

At first, we introduce how we separately manipulate the shape
and appearance in the two-step diffusion manner. Then we present
how the framework generates new samples under the unconditional
setting.

5.1. Disentangled training paradigm for scene manipulation
modules.

The 3D neural point field can be summarized as a point cloud
scaffold with two disentangled geometry and appearance feature
vectors for each point. Assume the neural point set as {pi} , pi ∈
R19, i = 1,2, ...,N where 19 denotes the XYZ coordinates (3), the
8-dimensional shape feature vectors and the 8-dimensional appear-
ance vectors. As we presented in section 3, the shape and appear-
ance of rendering results only rely on the associated features and
coordinates. Therefore, we explicitly apply two diffusion models
to separately generate the two types of feature vectors. In this way,
the changes in shape and color will be fully independent and do
not share any hidden layer features. The whole training pipeline is
presented in Figure 2. As stated in the figure, each denoising model
is conditioned on a provided CLIP vector which is encoded from

a corresponding image. This image is associated with the x0, and
randomly selected from all given viewpoints in the dataset.

Shape Generation Module. The training process of shape gen-
eration starts with the noise injection into the 3D tensors repre-
sented by (Batch,numbero f points,11), following Equation 5. The
denoising model learns to predict the noise at time t (εt ) for re-
covering 3D entities. For each step of prediction, the denoising
model also receives an associated CLIP latent vector as the con-
ditional input. This CLIP vector can be encoded from either the
input images to reconstruct the neural points, as we introduced in
section 3, or the corresponding text description from our prepared
text library. The denoising is reformulated as ε(xt , t,z) to replace
the ε(xt , t) in Equation 8. The diffusion loss is depicted by Equa-
tion 9. The denoising model is implemented by the permutation in-
variant Set Transformer [LLK∗19], which is designed specifically
for unordered sequence data such as point clouds. To model the
conditional denoising, we feed the time t and the conditional CLIP
vector to each layer of the network. The time t is firstly embedded
by an MLP.

For each layer, we introduce an additional MLP to project the
condition embedding to the hidden dimension. We replace Layer
Normalization with Adaptive Group Normalization to pose these
conditions. In our experiments, we also try to concatenate all con-
ditions in the input layer, such as in [NJD∗22], we found similar
performance but slightly lower running speed. After this step, we
only obtain the geometry features, thus it is impossible to render
colorful images as supervision. By contrast, we are able to obtain
the object silhouette by accumulating transmittance along each ray.
Therefore, except for the diffusion loss, we additionally design a
silhouette loss to supervise the model training (Equation 10). Ma
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Figure 3: Illustration of disentangled editing by our two-stage ma-
nipulation modules after these models are trained. The edit can be
simply performed by inputting corresponding CLIP conditions.

is the rendering function for obtaining the silhouette of the object,
in which the x̄0 denotes the denoised neural representation and v
refers to the viewpoint associated with the CLIP condition image.
We compute the binary cross entropy loss between the groundtruth
mask and the prediction to encourage the reconstruction of the ge-
ometry part of x0.

Ldi f f = ||εt − εθ(t,xt ,z)||2 (9)

Lsil =−(Mgt logMa(x̄0,v)+(1−Mgt)log(1−Ma(x̄0,v))) (10)

However, fully denoising all samples requires burden compu-
tation resources. Inspired by the forward process of the diffusion
model, arbitrary xt can be directly obtained from x0 and t via Equa-
tion 4. Inversely, if we obtain the εt , we can roughly compute the
corresponding x0 by Equation 11. Even though this x0 is not the
optimal result, it is still useful to push the ε(xt ,z, t) toward the real
value.

x̄0 =
1√
αt

(xt −
√

1−αtε(xt ,z, t)) (11)

In addition, the rough approximation becomes more accurate
as the timestamp is close to 0. Hence, it should be scaled by
an exponential decay annealing function wa(t) = exp(−0.005∗ t).
The final loss to train the geometry generation module is Lgeo =
Ldi f f +wa(t)Lsil .

Appearance Generation Module. The third diffusion stage is
to generate appearance features for a given point scaffold and a
conditioned CLIP latent vector. The input to this denoising model
is 3D noises sampled from a standard multivariate Gaussian distri-
bution (Batch,Numbero f points,8). It shares the same Set Trans-
former architecture with the geometry denoiser. For the CLIP latent
vector and the time embedding, it also adopts adaptive group nor-
malization to implement condition injections. Different from the
geometry diffusion model, it requires a point cloud scaffold to be a
condition for guiding appearance generation. In the training stage,
the point cloud comes from the dataset, but in the inference stage,
it can be generated by the above geometry diffusion model. We
concatenate the point cloud condition with the input noise along
the last dimension in the input layer. Thereafter, the input to the
appearance denoiser changes to (Batch,Numbero f points,11). Af-
ter the appearance features are generated, they can be concatenated
with the corresponding geometry features and the input point cloud
scaffold to recover an intact neural point representation. This repre-
sentation can be used to synthesize images in arbitrary views with
provided camera parameters. Therefore, similar to the silhouette
loss in training the geometry diffusion model, we adopt the render-
ing image loss by computing the L2 distance between the rendered
images and the groundtruth. This loss is described in Equation 12
where the R(x,s) means the rendering function to render the neural
radiance field x from the provided camera parameter s. The x̄0 is de-
rived by Equation 11 as well. In addition, inspired by [WCH∗22],
the CLIP loss is employed to improve the semantic correctness of
the generated samples by Equation 13. The last two auxiliary losses
are multiplied by the above exponential decay weights because both
of them utilize the roughly approximated x̄0. Thus the total loss is
described as Lappe = Ldi f f +wa(t)(Lrend + γLclip).

Lrend = ||R(x̄0,s)− Igt ||22 (12)

Lclip = Distclip(R(x̄0,s)− Igt) (13)

5.2. Inference paradigm for manipulations.

After the above two generative diffusion models for geometry and
appearance are trained, we simply conduct shape or appearance
swaps in a two-step manner without any additional setting. The
only thing to control this pipeline is to change the CLIP conditions.
Figure 3 clearly illustrates the whole process for manipulating neu-
ral scenes by changing the CLIP condition for each module. In the
first step, our approach generates the point cloud and associated
geometry neural features based on the reference images that we
expect to follow its shape. The "points with geometry features" in
this figure represent the generation results of the geometry diffusion
model, in which the point scaffold will be concatenated with a 3D
noise matrix and input to the next module. In contrast to the training
stage, the appearance CLIP condition is not identical to the geome-
try condition but is replaced by other reference images or texts that
users prefer to maintain the appearance style. As indicated in this
figure, the shape description "chair with arms" is maintained while
the original blue-style color is transferred to the grey appearance
from the second exemplar image.

It can be experimentally observed that even if our method is not
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Figure 4: Illustration of the generative head. A simple latent diffusion model to generate vectors in CLIP latent.

trained on different shape-appearance pairs, it can bridge the high-
level semantic correspondence between the reference conditions
and the generation results. This is natural because the pretrained
CLIP encodes multimodal data with high-level semantic meanings.
In other words, we do not need the paired groundtruth 3D models to
train the model but rely on the semantic consistency introduced by
the CLIP. In the end, the newly produced sample will be input into
our pretrained neural point rendering system (declared in Section
3) to synthesize novel images.

5.3. Generation process.

Since the above-mentioned two-stage diffusion model generates
the 3D neural field according to the exemplar prompts, it can also
be extended to an unconditional generative model by adding a
lightweight auxiliary head module to generate the "condition" for
the last two models. In this section, we introduce the generative
module as a latent diffusion model to produce CLIP latent (Fig-
ure 4). This generative head is trained on the dataset consisting
of the precomputed CLIP latent vectors belonging to the specific
category. Furthermore, the generated clip latent vector can be con-
sidered as the conditions of the other disentangled generative mod-
els. For reconstruction, the two models receive the same condition
to generate corresponding plausible 3D neural models. Besides, in
the unconditional generation settings, the σ in DDIM sampling pro-
cess is set to 0 to make the conditionally generated sample repeat-
able and largely agrees to the reference vector. By contrast, if we
release the σ constraints, the details of the generated samples be-
come various, and the diversity increases. To clarify the robustness
to the σ selection in diffusion model (Equation 8), we test differ-

ent σ. First we define σ = η

√
1−αt−1

1−αt
βt . Then we linearly inter-

polate η between 0 and 1 with 10 values. It is observed that all
metrics in Table 1 fluctuate no more than 0.1. For example if one
expects to conduct single view reconstruction by our framework,
it is recommended to fix the variance to 0 for better consistency,
whereas non-zero variance benefits for generating similar objects
with slightly different details.

6. Experiments.

The proposed approach is evaluated in different settings and the
results are reported in this section.

Datasets. We evaluate our method on the Photoshape Chairs
dataset [PRFS18] and the Amazon Berkeley Objects (ABO) Tables
dataset [CGD∗22]. We follow the dataset configuration of DiffRF

Table 1: Illustrate the performance for each model. To keep the
evaluation metrics in the same order of magnitude, we magnified
the FID by a factor of 1000.

PhotoShape Chairs ABO Tables
Methods FID ↓ KID ↓ FID ↓ KID ↓
DiffRF 17.71 8.37 27.10 10.10
Ourswo/stage 17.97 8.49 26.99 9.84
Ourswo/clip 56.46 14.69 47.81 14.15
Ourswo/recon 39.82 12.71 33.61 11.28
Ourswo/rend 18.68 8.99 28.57 12.00
Ourswo/sil 17.26 8.31 27.07 10.19
Ourswo/cliploss 18.95 8.79 26.16 10.08
Ours f ull 17.45 8.36 26.08 10.05

for the Photoshape Chairs dataset. Approximately 15,000 chairs
are rendered by Blender Cycles from 200 given viewpoints. For
the ABO Tables dataset, we not only contain the samples that are
provided 91 renderings with 2-3 different environment maps de-
scribed in DiffRF but also incorporate the renderings of the ABO
3D models dataset. In detail, we select table examples in the ABO
3D models dataset, and render them with 100 viewpoints from an
Archimedean spiral, The final Table dataset contains 2418 tables.
Besides, we first pretrain our neural point field on DTU [JDV∗14]
and Photoshape Chair datasets to obtain a generic NeRF model.
Then we run the model on the above two multiview datasets to ob-
tain their neural representations for training our generative model.
It is noted that each point cloud scaffold of all objects is downsam-
pled to 8192 points before producing neural representations.

Implementation details. The backbone Set Transformer con-
tains 16 layers each with 8 attention heads for both neural point
generative models in the manipulation module. The hidden feature
vector is 512 dimensions and the post Layer Normalization layers
are replaced with Adaptive Group Normalization layers which have
8 groups for incorporating CLIP and timestamp conditions. On the
other hand, the latent diffusion model to generate CLIP latent vec-
tors of specific categories is a simple 1D UNet with 1024 hidden
features.

6.1. Unconditional Generation Results.

We compare our method with the state-of-the-art diffusion-based
NeRF synthesis method DiffRF on the two datasets. Both works
require pre-processing of the image collections to create a radiance
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Figure 5: Qualitative comparison between DiffRF and our method on the PhotoShape Chairs and ABO Tables datasets.

Figure 6: Qualitative comparison of the shape and texture transfer results of EditNeRF, GDRF, and our method on the PhotoShape Chairs
dataset.

field for each example, but our pipeline needs significantly less time
due to our generic radiance field representation. We evaluate the
quality of generated radiance field by assessing the quality of im-
ages that are obtained by rendering the radiance field. We compute
Fr´echet Inception Distance [HRU∗17] (FID) and Kernel Inception
Distance [BSAG18] (KID) over the 256× 256 resolution images.
Additionally, we also evaluate degraded versions of our method, in-
cluding 1. a one-stage model to simultaneously generate shape and
appearance; 2. the staged diffusion model without CLIP condition.
3. the CLIP module is replaced with an AutoEncoder and trained
from scratch 4. without using rendering loss 5. without using sil-
houette loss 6. without using CLIP loss. Table 1 illustrates the per-

formance for each model. Clearly, the full model delivers the best
performance. The staged model without CLIP fails to model the
data distribution that highlights the significance of CLIP condition
in our method. The unified model achieves comparable results, but
it sacrifices the ability to manipulate objects. This also indicates
the effectiveness of our neural point field. In addition, the render-
ing and silhouette losses also improve the performance. Even if
the CLIP loss only brings limited improvement in performance, we
observed that it benefits the stability of training. We additionally
evaluate the Coverage Score (COV) and Minimum Matching Dis-
tance (MMD) between our full model and DiffRF. The Coverage
Score measures the diversity, while MMD assesses the quality. Fol-
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Figure 7: Example of shape editing on the PhotoShape Chairs and ABO Tables datasets with detached manipulated shapes and textures.

Figure 8: Example of color editing on the PhotoShape Chairs and ABO Tables datasets with detached manipulated shapes and textures.

Figure 9: Real image reconstruction and disentangled manipula-
tion for shape and appearance in our method.

lowing DiffRF, we use Chamfer Distance in the two metrics. The
results are compared in Table 2. Figure 5 qualitatively indicates the
comparison between DiffRF and ours. While DiffRF delivers good
results for both shape and appearance, it shows limited diversity of
its generation. As our generative processes are based on the sam-
pling of CLIP condition vector, this way has more robust guidance
than sampling from normal noises.

Table 2: Illustrate the COV and MMD metrics between the base-
line and our full model.

PhotoShape Chairs ABO Tables
Methods COV ↑ MMD ↓ COV ↑ MMD ↓
DiffRF 59.20 4.42 61.60 7.64
Ours f ull 59.56 4.01 66.61 7.52

6.2. Disentangled Manipulation Results.

The proposed method is capable of manipulating objects under the
guidance of images/texts in a disentangled manner. This can be
simply achieved by replacing different prompts in the disentangled
generation pipeline (Figure 3). In contrast, GAN-based methods
have to project the reference images to their original sampling dis-
tributions or train additional networks to predict the inverse pro-
cesses. Due to the discrepancy between the original normal distri-
bution and the output distribution of GANs, the inverse GAN pro-
cess has always been complex and intractable. Our diffusion-based
model considers this as a forward process thereby bypassing the
inversion. In this section, we compare the editability of our model
with the EditNerf and GDRF, which are optimization-based and
generative-based models respectively. Figure 6 includes the shape
and texture transfer of the above three methods. The diagonal el-
ements are their original. It is clear that our method gives more
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Table 3: Performance comparisons between CLIP and an Autoen-
coder in the appearance module.

PSNR ↑ SSIM ↑ LPIPS ↓
CLIP 24.71 0.93 0.078
AE 19.52 0.76 0.15

correct texture transfer with regard to semantic correspondence.
See the first and third example, EditNeRF wrongly recognize the
color of the chair seat and chair back, it tends to mix the two color
and transfer them to the target object. In contrast, our method se-
mantically distinguishes the texture of different parts of the chair
and successfully transfers it to the corresponding parts of the target
chair. This is because the CLIP latent encodes high-level semantic
information Compared with the GDRF, our method provides more
realistic geometry.

We further show more examples of disentangled manipulation
shape and texture on the two datasets in Figure 7 and Figure 8.
The results show a clear separation of shape and appearance on ac-
count of our explicitly disentangled representation. Besides, it is
noted from the third experiment in Table 1 that CLIP shows signifi-
cance in the reconstruction. We modified this experiment to analyze
the effect of CLIP on appearance independently, only replacing the
CLIP encoder in the appearance generation module with an Au-
toencoder. We test three reconstruction metrics in Table 3 and the
results illustrate the great assistance of CLIP in appearance recon-
struction.

6.3. Real Image Reconstruction and Manipulation.

We test our model on real-world images for reconstruction and ma-
nipulation. Since our model is trained with white background for
all examples, the colorful backgrounds of real-world images are re-
moved before input to CLIP. In addition, we fixed the variance in
DDIM as zero before reconstructing the neural point field for bet-
ter consistency. Figure 9 illustrates that our method can faithfully
reconstruct the entire 3D object as the neural point field merely
based on a single realistic image and synthesize novel views from
arbitrary viewpoints. Besides, we can further manipulate the shape
and texture of the real object by simply replacing the CLIP condi-
tions. Different from GAN-based methods, our goal is to directly
edit the 3D representations rather than the images, but the edited
images can also be obtained indirectly by accessing the 3D scenes
based on associated camera poses.

6.4. Efficiency.

Commonly used volumetric radiance field in previous works often
has a resolution of 323 = 32768, our method contains 8192 neural
points. Thus our utilization rate of each neural element is higher
than the counterparts. Smaller resolutions also lead to faster con-
vergence. We trained our model on four NVIDIA 3090 GPUs with
a convergence time of 22 hours, which is shorter than the 38 hours
of GDRF on the same device. The generation process takes only 56
seconds, which is faster than DiffRF’s 1 minute and 47 seconds.

6.5. Other categories.

To clarify the generalizability of the proposed approach, we fur-
ther retrained our model and DiffRF on two complex categories

Table 4: Illustrate the performance of the other two categories to
explain the generalization of the proposed approach. The FID is
magnified by a factor of 1000.

Car Airplane
Methods FID ↓ KID ↓ FID ↓ KID ↓
DiffRF 26.20 11.03 21.14 9.85
Ours f ull 23.20 10.77 19.36 9.05

from ShapeNet and Objaverse datasets, "car" and "airplane". The
quantitative comparisons are listed in Table 4. It is noted that the
superiority of our model does not fall into specific categories.

7. Conclusion.

We propose a purely diffusion-based three-stage framework for
unifying generation and disentangled editing tasks that directly in-
volve 3D neural representations. To the best of our knowledge, our
method is the first attempt to separately manipulate neural radiance
field by diffusion models, and the first to use neural point field as
the 3D representation for NeRF-related generative tasks. The pre-
sented generic neural point field both improves the efficiency and
reduces the difficulties of 3D datasets conversion. Our model con-
siders manipulation tasks as a conditional generation process. We
leverage the high-level semantic correspondence naturally encoded
in CLIP latent to edit the shape and texture. The proposed method is
evaluated on two datasets, achieves better performance than SOTA
methods for both generation and editing tasks, and releases the po-
tential of diffusion model in the new regions.

8. Limitation.

While the proposed method shows promising results on both gen-
eration and manipulation tasks, several limitations remain. At
present, this method only supports category-specific objects due
to the lack of large 3D datasets. Knowledge distillation or collect-
ing plenty of 3D data might help handle this challenge. Addition-
ally, the method only deals with 3D objects without colorful back-
grounds. In the future, one possible solution is to model the back-
ground via a regular neural grid and train another neural block to
handle backgrounds independently.
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