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Figure 1: We propose IBL-NeRF, a neural volume representation with prefiltered radiance field inspired by image-based lighting formulation.
(a) Given multi-view images, we optimize the (b) prefiltered radiance field and estimate (c) reflectance properties of the material (albedo,
roughness), lighting information (irradiance, prefiltered radiance), and the geometry (normal). (d) One can manipulate the neural scene
easily by modifying the decomposed components. Project page: https://changwoon.info/publications/IBL—NeRF

Abstract

We propose IBL-NeRF, which decomposes the neural radiance fields (NeRF) of large-scale indoor scenes into intrinsic com-
ponents. Recent approaches further decompose the baked radiance of the implicit volume into intrinsic components such that
one can partially approximate the rendering equation. However, they are limited to representing isolated objects with a shared
environment lighting, and suffer from computational burden to aggregate rays with Monte Carlo integration. In contrast, our
prefiltered radiance field extends the original NeRF formulation to capture the spatial variation of lighting within the scene vol-
ume, in addition to surface properties. Specifically, the scenes of diverse materials are decomposed into intrinsic components for
rendering, namely, albedo, roughness, surface normal, irradiance, and prefiltered radiance. All of the components are inferred
as neural images from MLP, which can model large-scale general scenes. Especially the prefiltered radiance effectively models
the volumetric light field, and captures spatial variation beyond a single environment light. The prefiltering aggregates rays in a
set of predefined neighborhood sizes such that we can replace the costly Monte Carlo integration of global illumination with a
simple query from a neural image. By adopting NeRF, our approach inherits superior visual quality and multi-view consistency
for synthesized images as well as the intrinsic components. We demonstrate the performance on scenes with complex object
layouts and light configurations, which could not be processed in any of the previous works.
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network is trained to optimize a colored density volume to directly
match multiple posed input images. The formulation is ignorant of
any intermediate representations of traditional rendering pipelines,
namely surface geometry, light transport, or BRDF. The trained
volumetric representation does not trace iterative inter-reflections
of rays, or model complex occlusion of the surface geometries.
Nonetheless, NeRF can produce detailed subtleties of global illu-
mination and parallax effects.

While NeRF can capture complex effects in general scenes, the
implicit formulation limits further analysis or edits of the scenes.
Intrinsic decomposition is an attractive choice as it decomposes the
captured scene into intrinsic components that can be further ma-
nipulated to edit the scene. However, intrinsic decomposition is
inherently an ill-posed problem and requires enforcing additional
priors or constraints. Prior works often extract an isolated object
in a bounding box, selected with exhaustive segmentation masks,
for intrinsic decomposition of NeRF. They assume a single low-
dimensional environment lighting for the entire scene and incorpo-
rate additional knowledge for reflectance properties, such as pri-
ors on BRDFs or images captured under different known illumi-
nations. Under the constrained set-up, they sample rays between
the approximated environment light and the segmented object with
Monte-Carlo integration which can be computationally expensive.
Furthermore, such approximation with environment light prohibits
viewpoints inside the scene, or a local variation of lights caused
from common light fixtures or windows. By relinquishing the flex-
ibility of the original NeRF, existing inverse rendering with NeRF
approaches cannot represent everyday environments composed of
diverse unsegmented objects.

Instead of extensively simulating multiple bounces of rays with
approximated explicit representation, we propose incorporating
constraints from the image spaces, extending the NeRF formula-
tion. Specifically, we train a decomposed neural volume, coined
IBL-NeRF, to optimize for the implicit light distribution of neural
images. This neural representation captures detailed spatial varia-
tions of lighting, in contrast to low-dimensional environment map-
ping. Then we can substitute the illumination integration process
into a simple network query for the irradiance. The specular re-
flection of different surface roughness values is fetched from pre-
filtered radiance fields of appropriate prefilter levels, similar to tex-
ture mipmap. We additionally enforce priors on the intrinsic com-
ponents for input images, acquired from existing methods for de-
composing individual images. By incorporating image-based light-
ing with implicit intrinsic components, we can efficiently render
general scenes without sacrificing the rendering quality of the orig-
inal NeRF as shown in Fig. 1. We can further edit scenes by chang-
ing materials or adding objects, including highly reflective or trans-
parent objects.

In summary, our approach fully leverages the high-quality novel
view images of the original NeRF formulation, and yet enables effi-
cient re-generation with approximations inspired from image-based
lighting. Our contributions can be listed as following:

e We propose IBL-NeRF, which handles global illuminations with
spatially varying lighting and diverse materials given a set of
unsegmented images.

o We model the prefiltered radiance of the scene with a neural net-

work of NeRF, and efficiently approximate rendering equations
with image-based lighting formulation.

e Our neural representation extracts physically interpretable com-
ponents of the complex indoor scenes which can be altered to
render images with different attributes.

The results are presented with large-scale scenes containing multi-

ple objects, which can not be modeled with previous works employ-

ing a single environment lighting with Monte-Carlo integration.

2. Related Works

While NeRF [MST*20] can synthesize photo-realistic novel-view
images, one of its limitations is that the radiance information is
baked within the implicit neural representation. Several subse-
quent works propose to distill intrinsic components, such as il-
lumination and reflectance property, and try to achieve inverse
rendering with implicit representation, in contrast to reconstruct-
ing explicit mesh geometry with multi-view stereo [PMGD21,
DRC*15]. They optimize components to match the input images
by evaluating the rendering equation with Monte Carlo (MC)
method, which requires heavy computation. Neural Reflectance
Fields [BXS*20] and NeRV [SDZ*21] adapt ray-marching to ac-
count for reflectance, and model the illumination with a single point
light and environment light, respectively. Both approaches require
multiple images with known lighting configurations as input. NeR-
Factor [ZSD*21], Hasselgren et al. [HHM22], NeRD [BBJ*21],
and PhySG [ZLW*21], on the other hand, factorize radiance fields
from unknown light. They concurrently optimize for a single low-
dimensional environment light in a coarse resolution (NeRFactor,
Hasselgren et al.) or spherical Gaussian (NeRD, PhySG).

In contrast, IBL-NeRF proposes to efficiently synthesize images
without explicit Monte-Carlo integration, and utilizes prefiltered
radiance which can be evaluated with a single ray sample. Sev-
eral works [VHM™22, BJB*21] also adapt integrated illumination
for efficient rendering. They are either implicitly conditioned on
the surface reflectance property, or propose components without
physical interpretation. However, previous works using integrated
illumination employ a single environment lighting for entire scene
and therefore are limited to modeling an isolated object. Concur-
rent works, such as 1>-SDF [ZHY*23] and TexIR [LWC*23], also
exploit spatially-varying light for complex indoor scenes, but they
use MC integration or explicit mesh representation, respectively.

Intrinsic decomposition for general scenes requires modeling
spatially-varying lighting. With increased degrees of freedom for
the already under-constrained problem, scene decomposition re-
quires strong assumptions. Commonly used priors include piece-
wise constant albedos [CZL18,1.S18a,L.S18b, MCZ*18,LBP*12],
or sparsity of extracted albedo values [MSZ*21, GMLMGI12]. A
few works exploit data-driven priors instead of hand-crafted pri-
ors [BBS14, ZKE15, SGK* 19, LSR*20, PEL*21, YTL20], which
can be subject to domain discrepancy. IBL-NeRF takes inspiration
from the aforementioned prior works using single images, and adds
constraints in the image space. Because the neural volume of NeRF
is trained with images, the formulation can readily be applied to
handle challenging indoor scenes without simplifying the illumina-
tion model. Furthermore, IBL-NeRF can naturally find multi-view
consistent components, which is not possible with single-image de-
composition.
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Figure 2: Overview of the radiance approximation used in IBL-NeRF (Eq. 2). With the combination of inferred (a) albedo, (b) Irradiance,
(c) Fresnel term, and (d) roughness, one can obtain diffuse reflection. Also, with (f) multi-level prefiltered radiance, (g) fetched value from

LUT and (h) Fresnel constant, we can calculate (i) specular reflection. (j) Final approximated radiance is achieved by the sum of diffuse and

specular reflection.

3. Method
3.1. IBL-NeRF Formulation
3.1.1. Preliminaries

Ray-tracing engines approximate the light transport with samples
of rays. The original rendering equation [Kaj86] formulates the out-
going radiance at surface Xq,,f as a combination of reflected rays of
incoming radiance L;

LD(Xsurf»wo):/er(xsumwi,mO)Li(Xsurﬁ(’)i)(n'(Di)dmia (1

where n and f; are the surface normal and BRDF at surface Xy,
and ®; and ®, are incoming and outgoing direction. Given the
scene properties (n and f;), the rendered output relies on the diverse
distribution of light transport, L; and L,, which are 5D functions.

The approximation within game engines [Kar13] replaces the re-
cursive calls of radiances L; — L, into a single sample of integrated
light. L, is approximated as the sum of two components, namely the
diffuse term and the specular term:

Lo(xsurfvma) =7X (1 _FY(m07n7Y)) xXaxl

Lo gitt

+Lpref(xsurf7 or,7) X [F, I]TLUT(C‘)O ‘ny). (2

Ln.spec

The diffuse term depends on irradiance I = [q L;i(Xeur, 0;)(n

®;)do; which integrates all the incoming radiance. Additionally,
it is proportional to the surface albedo a, roughness v, and approxi-
mated Fresnel term Fy. (According to the original paper of [Kar13],
the diffuse term is attenuated by (1-metallic) and we approximated
it as roughness (y). More sophisticated approximations could be
tried in future works.) Calculating the specular term Lo spec involves
directional components of rays. The split-sum approximation sim-
plifies the specular term into the product of two terms. The first
component Ly is the prefiltered environment map which summa-
rizes the effects of reflected lights to mimic specular highlights ef-
ficiently. It is filtered according to the surface roughness level y and

© 2023 Eurographics - The European Association
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Figure 3: Architecture of IBL-NeRF. The scene properties depen-

dent on position (volume density ©, albedo a, irradiance I and
roughness ) are extracted from position MLP. Those dependent on

the viewing direction (each level of prefiltered radiance L o) are
obtained from direction MLP.

fetched at the reflected direction. The second component is also
precalculated as a 2D lookup texture (LUT). Both diffuse term and
specular term are affected by roughness y. IBL-NeRF allows the de-
composition of NeRF by utilizing neural network to represent the
pre-computed volumetric light distribution. Detailed descriptions
of the approximation are available in the supplementary material.

3.1.2. Rendering Pipeline of IBL-NeRF

NeRF synthesizes a photo-realistic image applying a volume ren-
dering on a neural volume

o@mn=4wwmn@o

where x(¢) = ¢ —t®, represents points on a ray initiated from the
camera position ¢, and V (x(r),¢) = exp (— Joo(x(s))d 5) is the vis-
ibility. Given a position x and an outgoing direction ®,, the neural
volume of NeRF is trained to regress for density ¢ from the posi-
tional MLP and the emitted radiance L. from the directional MLP.
The training objective is to match the results of volume rendering
with the pixels in the input images, which enables creating images
of the scene only from a set of multiple-view images.

(x(1))Le(x(2), @0)dt, — (3)
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Figure 4: Specular reflection of IBL-NeRF. The prefiltered radi-
ance field is fetched only from the estimated surface point Xg,,r with
a single reflected ray toward the direction of mirror reflection ®.
The point on rough surface (intersection of jth ray) fetches the pre-
filtered radiance convoluted with a wide kernel. In contrast, the
point on smooth surface (intersection of K™ ray) reads prefiltered
radiance field filtered with a narrow kernel.

To decompose the radiance of NeRF into physically interpretable
components of the scene, we can adapt components as presented
in Eq. 2, ignorant of light transport. For each ray, we evaluate
albedo a, irradiance /, and roughness Yy with the volume density
6. We accumulate the values along the ray using volume render-
ing following the NeRF formulation in Eq. 3. Also, at the es-
timated surface point, the network evaluates the prefiltered radi-
ance field Lyper of the reflected direction. Due to the computa-
tional complexity, the reflected rays are evaluated only at the sur-
face hit position of the ray, which is estimated as Xg,f = ¢ —
dw, [ZSD*21,SDZ*21]. The termination depth d(¢, —®,) of the
ray defines the surface point xg,s and can be obtained with density
I exp (= J5° o(e — 50)ds) 16 (e — 1@, )dt. We obtain the surface
normal from the numerical gradient of the termination depth d:
(n(Xgurf) = Vxd(x,0)/||Vxd(x,0)||.) All the values are combined
using Eq. 2 to find the output radiance corresponding to the pixel,
which is also visualized in Fig. 2.

Fig. 3 shows the modified neural network architecture. The po-
sitional MLP infers the components that do not have view depen-
dency, namely, albedo a, irradiance /, and roughness v, in addition
to the volume density ¢ in the vanilla NeRF. Note that irradiance is
inferred from MLP implicitly, instead of explicitly integrating over
the hemisphere. The irradiance depends on surface normal, but we
assume that it is implicitly handled in the neural network, which
takes position x as input. The directional component is encoded as
prefiltered radiance field Lyet, and is the output of the subsequent
directional MLP. It is modulated by roughness y and combined to
generate the final image. The following subsection further explains
the formulation and approximation used for the prefiltered radiance
fields.

3.2. Prefiltered Radiance Fields

The prefiltered environment map Lpref(Xurf, ®r,Y) in Eq. 2 ac-
counts for the specular reflection with directional components that
reside in a high-dimensional space as a single sample. Let us denote

NeRF NeRFactor IBL-NeRF (Ours)
Rendering Volume Surface Surface
Lo Baked Monte Carlo Integration Approx w. Eq. 2
L; - Env light w. Visibility Infer MLP Inference
Time
Complexity O(Ns) O(Ns + NyNy) O(Ng + Ny)

Table 1: We compare IBL-NeRF with NeRF and a recent method
decomposing NeRF'’s radiance. The time complexity is measured
for the entire training phase. Ny and Ny are the numbers of samples
along a camera ray and a reflected ray, and N is the number of
directional samples over a hemisphere.
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Figure 5: lllustration for the time complexity analysis in Table 1.
Prefiltered radiance fields significantly reduce the sample number
during the training phase from O(\. + )to O(N. 4 ).

the camera observation direction as —®, and its mirror reflection
with respect to the surface normal n at the surface point as ;.
Unless the surface is a perfect mirror (roughness 0), the reflected
rays are evaluated within angular distribution near the reflection di-
rection. As the surface roughness 7y increases, prefiltered radiance
should be filtered with a wider range kernel. Fig. 4 illustrates the
procedure, where the pre-filtered radiance at ®, is depicted with
cones with yellow shade, whose angle indicates the size of convo-
lution kernel for the roughness value.

While there exist several works that approximate specular illu-
mination from a hit point, IBL-NeRF alleviates the need for Monte-
Carlo integration and greatly reduces the computational burden. Ta-
ble 1 summarizes the comparison of IBL-NeRF against NeRFac-
tor [ZSD*21], which is a representative formulation with environ-
ment light [ZSD*21, SDZ*21, BXS*20]. Specifically, the Monte-
Carlo integration aggregates N; directional samples of reflected
rays from the surface points as shown in shaded cones in Fig. 4.
In addition to the Ny samples along the camera ray for the volume
rendering of NeRF, each reflected ray is evaluated with N, sam-
ples of towards the surrounding environment lighting. Although
NeRFactor directly fetch N; light samples from environment map
according to the visibility MLP output for each direction, they
need to query N, samples along each direction to train visibility
MLP which is originally used in NeRV [SDZ*21]. The variants us-
ing Monte-Carlo integration therefore require evaluating O(Ns +
N;Ny) samples. On the other hand, IBL-NeRF proposes fetching a
single ray of the prefiltered radiance field Lyret(Xsurf, @r,) in the
place of the environment map, leading to evaluating O(Ns + Ny)
samples, as depicted in Fig. 5.

Additionally, IBL-NeRF can process general scenes with diverse
lighting or viewpoints as long as the original NeRF converges. The
prefiltered radiance fields is defined for the entire scene volume for

© 2023 Eurographics - The European Association
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any position Xg,,+ and or direction ®,. This is in contrast to the ap-
proaches relying on a single environment light which is an infinite-
radius spherical image enclosing the entire scene, as they assume an
isolated object distant from other scene properties, especially light-
ing. Therefore it cannot render from viewpoints within the volume,
diverse objects spread throughout the scene, or indoor scenes with
interior lighting.

Our specular reflection is evaluated as a single ray for the given
roughness value within the scene volume since the prefiltered ra-
diance Lyrer(Xsurf, @r,Y) already aggregates the directional rays.

Specifically, IBL-NeRF outputs prefiltered radiance fields L{;ref
with different convolution levels j. The prefiltered radiance of the
desired roughness ¥ at a certain point X with direction ® uses trilin-

ear interpolation as

Lpref X, ’Y ZW pref ) 4

where w/ (ty) is the weight of jth mipmap that depends on the rough-
ness Y as described in Fig. 4. The values stored in the prefiltered
radiance fields correspond to specific roughness values, and we lin-
early interpolate them to adjust to the current y value. Therefore,
we evaluate the prefiltered radiance by fetching a sample of a sin-
gle ray, similar to texture mipmap.

The prefiltered radiance E}’;ref is inferred from the directional
MLPs using the similar volume rendering equation

Lpref 0‘)0 / V ( ())Lf;ret( () _U)O)dt' )]

For training, we use a set of images blurred with a discrete set
of Gaussian filters from the camera position —®,. During the in-
ference of the image, the values of L’ rof are fetched to render the
surface point Xq,f as explained in Sec. 3.1.2 and Eq. 4. Note that
the training target is the blurred images observed from the camera
(e, —@y), whereas the inference is evaluated from the reflected di-
rection (Xgyf,®r). The formulation relies on the assumption that
training images contain observations of the reflected rays.

3.2.1. Image-Space Approximation

The prefiltered radiance L pref of IBL-NeRF incorporates the image-
based rendering within the implicit volume of NeRF and achieves
computational efficiency. We further analyze the practical consid-
erations with the image-space approximation of Gaussian filters to
emulate the specular reflection blobs of different surface roughness.
The jth prefiltered radiance L{)ref is approximated for the roughness
value y; as

Llj:oref /QLI‘(X, ;) p(0;]x, 0,7;)do; (6)

= [ Lisops(six.op)ds. )

Previous approaches approximate the sampling distribution by in-
ferring radiance multiple times in hemispherical domain Q (Eq. 6)
which is computationally heavy [ZSD*21, SDZ*21]. Our method
converts the domain into the image space S of the current view as
Eq. 7, where s; is the screen space coordinate that corresponds to
direction ®;. When rendering for a viewpoint, the viewing direction

© 2023 Eurographics - The European Association
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®, can be assumed to be constant, and we can use a globally consis-
tent kernel L{)ret( ®) = K’(L(s)), where K’(s;) o ps(si|x,®,7;).
We include the full derivation of our approximation and plots of
K/(s;) in the supplementary material. The overall shape of K”(s;)
is similar to that of the Gaussian function, which is used to approx-
imate Lpref(x7 ) in our implementation. While Gaussian kernels in
image space mostly result in a reasonable approximation, they de-
viate from direct filtering of the environment map for pixels near
the image edge. Additional discussion on our approximation can
be found in the supplementary material.

3.3. Training IBL-NeRF

IBL-NeRF imposes constraints on the rendered images to train the
neural volume, similar to vanilla NeRF. The objective function is
composed of four terms:

L = Liender + ['pref + ['prior + }\-Iﬁregﬁl,reg- (8)

The first two components are rendering losses to match the ren-
dered images with the input images. For each pixel of the camera
ray r = (¢, —@y), the rendering 10ss Liender of approximated radi-
ance is defined as

Liender = HLO(r)fz'”(r)H%v 9)

where L, is ground truth radiance and L, is our approximated radi-
ance calculated with Eq. 2. Ly is the rendering loss of prefiltered
radiance defined as

Loret = YlILjrer(r) = LG ()13 (10)
J

L;j;ref is inferred prefiltered radiance of jth level and Lé is the radi-

ance convolved with jth level Gaussian convolution, where LOG =L

Inverse rendering is under-constrained in nature, and the remain-
ing two losses incorporate additional prior knowledge to estimate
intrinsic components. We obtain the pseudo albedo d and irradiance
I for our input images by applying intrinsic decomposition for sin-
gle images [BBS14], and use them as data-driven prior. The prior
loss Lpyrior encourages our inferred albedo a to match the pseudo
albedo

2
‘cpnor Ha( ) (r)||2 (11)
In addition, Ll,reg is the irradiance regularization loss
Lireg = |11(r) —E[N]3, (12)

where E[i] is the mean of irradiance (shading) values in training
set images. Although the results from single-image decomposi-
tion are inconsistent for different viewpoints, our neural volume
learns multi-view consistent and smooth results. We provide more
detailed comparison between IBL-NeRF and results from single-
image decomposition methods in Sec. 4.1.

4. Experiments

Dataset First, we test IBL-NeRF in 12 realistic synthetic indoor
scenes [Bit16], which are capable of obtaining ground-truth intrin-
sic components. We render 100 multi-view images for both training
and test set with the OptiX [PBD*10] based path tracer [KK21].
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Figure 6: Qualitative results of novel-view image synthesis.

Time per step (s)

Method MSE| PSNRT sSSIMp PR
MC +Env [ZSD*21]  0.0369  16.107 02763 0.4686 0.1062
MC 0.0016  30.052  0.8348 04941 0.1084
NeRF 0.0008 34707  0.9253  0.0984 0.0055
IBL-NeRF 0.0014  29.962  0.9009 0.1559 0.0211

Table 2: Quantitative results of view synthesis.

All of the scenes in our dataset exhibit complex lighting with win-
dows or interior lighting and contain multiple objects with chal-
lenging material, which cannot be modeled with an environment
light. This is in contrast to previous works for decomposing NeRF,
which present results with isolated objects [ZSD*21, SDZ*21].
The camera’s position and rotation are randomly sampled within
a scene bounding box. All the results reported in the manuscript
are the novel viewpoints in the testset which are not seen dur-
ing the training images. We linearly interpolate between the test
camera poses to generate results of the supplementary video. Fur-
thermore, we test IBL-NeRF in real-world scenes from ScanNet
dataset [DCS*17] and our own captured scene. For ScanNet scenes,
we use train/test split from [WLR*21]. The camera poses are esti-
mated with COLMAP [SF16] for real scenes.

Implementation Details The neural network architecture is illus-
trated in Fig. 3. We use the same MLP configurations with vanilla
NeRF [MST*20], except that IBL-NeRF has additional layers to
output albedo (a), irradiance (1), and roughness () at position MLP,
and 4 parallel layers to emit the prefilterd radiance fields (Ll])ref) for
each roughness level 0 < j < 3. IBL-NeRF is trained for 120k steps
with 512 ray samples, and follows the training schedule below to
stabilize the process. For the first 10k steps, we only optimize Ll])ref
and 6 with L,rr. Once we obtain stable geometry and prefiltered
radiance fields, we additionally optimize for Lpref + Lrender Without

Albedo Irradiance Radiance

- |

Figure 7: Qualitative results of intrinsic decomposition and view
synthesis on real-world datasets.

prior. Then we freeze roughness and apply priors Lprior, £1 reg for
last 20k steps. We use A7 req = 0.1 empirically, but we observe that
the final result is not very sensitive to the value of A ree. Also, we
assume monochromatic irradiance for simplicity.

4.1. View Synthesis & Intrinsic Decomposition

Baselines We compare IBL-NeRF with two baselines with Monte
Carlo (MC) sampling over a hemisphere of environment light.
Since Neural Reflectance Fields [BXS*20] and NeRV [SDZ*21]
need known lighting formulation to train models, they cannot be
applied to our scenario with unknown lighting conditions. The first
baseline (MC) is a variant of IBL-NeRF, which exploits the radi-
ance field (Lgref = L,) as incoming light for specular reflection and
calculates integration with MC sampling. The second baseline (MC
+ Env) estimates single environment light for the entire scene as L;
and employs MC integration as in NeRFactor and NeRV. MC +
Env is the microfacet BRDF version of NeRFactor [ZSD*21] with-
out visibility inference network, which is the most relevant work
to us. We found that the original NeRFactor which exploits learned
BRDF prior does not converge in any of our scenes. For all the
baselines with Monte Carlo approaches, we use 32 x 16 resolution
environment light following NeRFactor. Also, we use equal-area
stratified sampling over hemispheres with 64 samples.

‘We report the quantitative results of the novel-view synthesis in
Table 2 and intrinsic decomposition in Table 3 in terms of MSE,
PSNR, and SSIM. IBL-NeRF models outgoing radiance as the

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Albedo Irradiance Roughness Radiance
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W/0 L [ reg

IBL-NeRF
w/o all priors

Figure 8: Qualitative results of intrinsic decomposition and view synthesis on KITCHEN.
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Figure 9: Qualitative results of intrinsic decomposition and view synthesis on LIVINGROOM?2.
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| Albedo | Irradiance | Roughness

| MSE| PSNR{ SSIM{ | MSE| PSNRT SSIMT | MSE| PSNR{ SSIM?
MC + Env (NeRFactor) | 0.1808  8.1273  0.3916 | 0.1190 10220  0.2514 | 0.0910  11.798  0.6217
MC 0.0543  14.109  0.7383 | 0.0344 17.280  0.7149 | 0.0722  14.090  0.7474
IBL-NeRF 0.0553  14.114  0.7455 | 0.0351 16435  0.7778 | 0.0707 15545  0.8653
w/ GT n 0.0551 14.134  0.7465 | 0.0376 15986  0.7717 | 0.0623 14216  0.8220
W/0 Lyrior 0.0664 13423  0.7107 | 0.0403 15.609  0.7553 | 0.0717 15413  0.8613
W/0 Lj reg 0.0551 14.077 0.7362 | 0.0337 16215  0.7586 | 0.0710 14316  0.8588
w/o all priors 0.0775 11.601  0.6911 | 0.0674 12.147  0.7015 | 0.0709 15527  0.8637

Table 3: Quantitative results of intrinsic decomposition.
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Compared to MC + Env (recent works on intrinsic decomposition), our result

achieves better intrinsic decomposition of the scene. Note that MC shows comparable performance in the expense of substantially longer
training time as it performs Monte-Carlo integration (Table 2). Normal information is critical to estimate the shading information (irradiance,
roughness), and the additional regularization on albedo or irradiance balances the distribution between different intrinsic components.

combination of various intrinsic components and concurrently gen-
erates images whose quality is comparable to vanilla NeRF. No-
tably, our approach outperforms the method from NeRFactor (MC
+ Env) in both intrinsic decomposition and image synthesis results
for all error metrics, which supports our claim that using environ-
ment lighting with MC sampling is inadequate to express complex
indoor scenes. The reconstruction quality is much better by allevi-
ating the environment light and instead adapting our formulation in
Eq. 2. Theoretically, the MC baseline should have better results in
the expense of computation time, which is almost 3 times slower
in the training phase and 5 times slower in the inference phase than
IBL-NeRF. However, since there exists a number of invalid samples
in the incident radiance that are invisible from training viewpoints,
the decomposition of MC is comparable to ours. The results for
MC + Env do not incorporate the albedo prior, as it achieves better
performance. We report the second baseline method (MC + Env)
with Lpior in supplementary material.

We demonstrate the qualitative results of novel-view synthe-
sis and intrinsic decomposition in synthetic scenes in Fig. 6, 8
and 9, real scenes in Fig. 7. Our approach and MC approach with
prefiltered radiance field reconstruct high-quality images in novel
viewpoints, which are comparable to vanilla NeRF. On the other
hand, objects in large-scale indoor scenes are often occluded by
other structures within the scene, and therefore cannot be illumi-
nated appropriately with environment light (MC + Env). The qual-
ity of images is significantly worse as it suffers from notable dark
and noisy artifacts created from missing viewpoints or ambiguous
regions. Fig. 7, 8 and 9 show that IBL-NeRF successfully decom-
poses the scene attributes in both synthetic and real-world scenes.
IBL-NeRF estimates low roughness at metallic surfaces, for exam-
ple, the ventilator, metallic wall, knobs in the oven, and pots in
KITCHEN in Fig. 8, TV in LIVINGROOM? in Fig. 9. However, our
method fails to discover metallic surface that does not have spec-
ular variation with respect to viewing direction in the training set.
(For example, the fireplace in LIVINGROOM? has consistent color
in the training images.)

Furthermore, IBL-NeRF can easily achieve the inherent multi-
view consistency and smoothness of our optimizing process as
shown in Fig. 10. While the intrinsic decomposition algorithms for

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Viewpoint 3

Viewpoint 1

Viewpoint 2

Bell et al. Zhou et al.

IBL-NeRF

Figure 10: Visual comparison of albedo estimation between IBL-
NeRF and single-image based methods.

single-view images [BBS14,ZKE15] fail to maintain consistent re-
sults, it provides useful guidance for the intrinsic decomposition.

Ablation Studies Fig. 8, 9 and Table 3 also contain results for ab-
lated versions of IBL-NeRF to analyze the important components
of the proposed method. The qualitative results with ground-truth
normal n show cleaner roughness than our original model. The ef-
fect of roughness is tightly coupled with the direction of mirror
reflection, which is obtained from the surface normal. Recent meth-
ods [OPG21,WLL*21] propose to reconstruct high-quality geome-
try with NeRF formulations, from which IBL-NeRF can learn bet-
ter decomposition.

Since intrinsic decomposition is an under-constrained problem,
prior knowledge on intrinsic components plays a crucial role to dis-
ambiguate each component. When we remove Lo, the albedo
contains illumination information which should belong to irradi-
ance, and the irradiance is clipped to the mean value by L re,. Also,
without L g, ONe cannot estimate correct irradiance, especially on
the surface with dark albedo. (e.g., Oven in Fig. 8 should have ir-
radiance similar to nearby furniture, but the dark pixels encourage
estimating lower irradiance without £ eg.) Removing both priors
shows the worst results.
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(a) Original Scene

(b) Edited Scene

Figure 11: Example of changing intrinsic components of the scene.

4.2. Scene Editing

After IBL-NeRF decomposes intrinsic components, one can ren-
der realistic novel-view images of altered scenes by modifying the
value of each component. For example, we replace roughness of
the dining table and albedo of the lamp to edit KITCHEN scene in
Fig. 1(d). We demonstrate more results in Fig. 11. In the first row of
Fig. 11, we replace albedo of two kettles in VEACH-AJAR to green
and red respectively while preserving illumination information. In
the second row of Fig. 11, we reduce the roughness of the picture in
frame, drawer, and closet door, which results in mirror-like material
in BEDROOM scene. We also change the albedo of the middle door
of the closet to white and the conference logo is marked on the left
door by modifying roughness. In the third row of Fig. 11, we mod-
ify the albedo and roughness of the desk pad in our real-world scene
to express the marble-like material. Also, one can insert 3D objects
inside our trained neural volume with prefiltered radiance field. In
Fig. 12, we add 3 objects with different roughness and transparency
inside the KITCHEN. The red blobby object is highly reflective and
the surrounding scene is clearly reflected on its surface. The green
dragon also has a low roughness value but has translucency so the
shape of the green kettle behind the object is visible. Finally, the
blue teapot has a high roughness value and moderate translucency.
The blurry reflection on the teapot accounts for its high roughness
value. Note that scene editing could be achieved similarly using
Monte Carlo method with NeRF’s radiance, but IBL-NeRF outper-
forms them in terms of speed (Table 2, Infer time).

5. Conclusion

We propose IBL-NeRF, a neural volume representation with pre-
filtered radiance field. Our approach successfully decomposes the
intrinsic components in a large-scale scene with an efficient ap-
proximation and prefiltered radiance field, which could not be pro-

Figure 12: Example of adding new objects to the scene.

cessed in prior works with Monte Carlo integration of environment
light. Furthermore, one can easily edit the scene by modifying each
decomposed component or inserting 3D models in our neural vol-
ume. Although IBL-NeRF can handle both Lambertian reflection
and specular reflection, IBL-NeRF has a limitation in expressing
transparent objects or perfect-mirror reflection. One can resolve the
ambiguity in a mirror with user interaction as [GKB*21].
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