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Abstract
Screened Poisson surface reconstruction robustly creates meshes from oriented point sets. For large datasets, the technique
requires hours of computation and significant memory. We present a method to parallelize and distribute this computation over
multiple commodity client nodes. The method partitions space on one axis into adaptively sized slabs containing balanced subsets
of points. Because the Poisson formulation involves a global system, the challenge is to maintain seamless consistency at the slab
boundaries and obtain a reconstruction that is indistinguishable from the serial result. To this end, we express the reconstructed
indicator function as a sum of a low-resolution term computed on a server and high-resolution terms computed on distributed
clients. Using a client–server architecture, we map the computation onto a sequence of serial server tasks and parallel client
tasks, separated by synchronization barriers. This architecture also enables low-memory evaluation on a single computer, albeit
without speedup. We demonstrate a 700 million vertex reconstruction of the billion point David statue scan in less than 20 min
on a 65-node cluster with a maximum memory usage of 45 GB/node, or in 14 h on a single node.

Keywords: modelling, surface reconstruction
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1. Introduction

Reconstructing surfaces from 3D points is a well-studied problem
in computer graphics and computer vision, with diverse applications
(e.g. LIDAR scenes, biomedical imaging, cultural heritage capture).
Numerous surface reconstruction approaches have been explored,
including those leveraging computational geometry and machine
learning techniques, as reviewed in Section 2. Among these, the
screened Poisson surface reconstruction algorithm (sPSR) [KBH06,
KH13] has been commonly used in the community because it is both
global (providing robustness in the presence of noise and missing
data) and efficient (with time and space complexity linear in the in-
put size).

However, as the rate at which 3D point clouds grow outpaces the
processing and memory capacities of commodity PCs, the Poisson
surface reconstruction algorithm has begun to lag in its ability to
generate surfaces at large scales. Although recent implementations
have leveraged the parallelization available on modern CPUs, this
has only afforded a small (e.g. 4× or 8×) speedup and fails to ad-
dress the issue of memory bottleneck.

For faster execution, the algorithm must be distributed among
several parallel processors. In typical compute clusters, each node

has local memory and storage and the nodes communicate via fast
networks. Supercomputers often offer large memory spaces, but
these are usually Non-Uniform Memory Access (NUMA) architec-
tures in which memory is partitioned among multiple processors
such that access to nonlocal memory is significantly more costly. In
either case, efficient solutions involve partitioning the problem into
distributed computations that focus on local data.

We present an efficient distributed version of the sPSR algorithm.
The distributed algorithm results in near-linear speedups on a com-
pute cluster with 65 client nodes. Additionally, the same algorithm
can be executed serially on a single processor, e.g. allowing the re-
construction of a 700 million-vertex mesh from one billion points
on a 64-GB PC.

2. Related Work

Surface reconstruction:. Several computational geometry meth-
ods create triangle meshes that interpolate all or a subset of the data
points [ABK98, BMR*99]. For resilience to noisy data, it is com-
mon to define an implicit surface that only approximates the points,
often in the form of a signed-distance function [HDD*92, CL96a,
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CT11] or an indicator function [KBH06, KH13]. Recent work de-
fines implicit functions with the aid of machine learning [WSS*19,
BGKS20, RGA*21, CTFZ22].

Out-of-core geometry processing:. Many techniques are able to
operate on models larger than main memory by partitioning and
traversing space using cubical cells or slices [IG03, NNSM07,
AGL06]. In particular, streaming computations advance through
space using a sliding in-core window [IL05, ILS05, VCL*06,
ILSS06, BKBH07].

Out-of-core surface reconstruction:. Some reconstruction ap-
proaches are naturally adaptable for out-of-core evaluation because
their data access patterns are localized. The ball-pivoting algorithm
of Bernardini et al. [BMR*99] is implemented out-of-core by
partitioning the domain into slices. The VRIP accumulated signed
distance field of Curless and Levoy [CL96b] is applied to large
volumes by independently processing blocks of the volume and
stitching together the reconstructed pieces [LPC*00]. Similar
strategies have been used to process models on the limited memory
available to GPUs [CBI13, NZIS13]. Reconstruction schemes based
on local neighbourhood fitting such as Refs. [HDD*92, ABCO*01,
OBA*03] can be adapted to operate out-of-core [Paj05]. Floating
scale surface reconstruction [FG14] and field-aligned online surface
reconstruction [STJ*17] are other local formulations that are well
suited for out-of-core, distributed computation. In contrast, methods
that cast surface reconstruction as a global minimization [KH13,
UB15] are challenging to evaluate as a distributed computation.

Performant Poisson surface reconstruction:. Focusing specifi-
cally on Poisson surface reconstruction, there has been early work
on adapting the implementation to be more time and/or memory ef-
ficient. The key idea behind these approaches is to leverage the lo-
cality of the computation performed by the Poisson surface recon-
struction algorithm, allowing different processors to solve for in-
dependent solution variables simultaneously [ZGHG08, BKBH09]
and supporting streaming computation so that only a small sub-
set of the data-structure needs to be memory-resident at any given
time [BKBH07].

Our proposed approach is most similar to the work of
Bolitho et al. [BKBH09] which distributes the reconstruction
problem among multiple clients by separately considering the low-
and high-resolution components of the problem. The entire low-
resolution problem is solved by each of the clients, while the high-
resolution problem is spatially partitioned along a 1D axis, with each
client refining the solution within its own volumetric ‘slab’. Con-
sistency across slab boundaries is realized in two ways. First, slabs
are defined to be overlapping. And second, data near the partition
boundaries are synchronized and blended between adjacent clients.

While our approach borrows some of these ideas, it differs in a
number of fundamental ways.

• It has space and time complexity O(N/C), with N the number of
points andC the number of clients.

• It supports the use of an adaptive octree at the coarse resolution,
allowing the coarse octree to be have finer depth, thereby support-
ing more clients and finer-granularity load balancing.

• It minimizes the communication between the clients, so that only
high-resolution information immediately at the slab boundaries
needs to be shared.

• It is guaranteed to produce a watertight surface, even in the pres-
ence of machine-precision errors that result in arithmetic opera-
tions failing to be associative or commutative.

As source code for the method of Bolitho et al. is unavailable,
we built our distributed implementation from the ground up. This
has the advantage of allowing us to integrate more recent develop-
ments in the Poisson reconstruction algorithm (e.g. incorporating a
screening energy for better fit, using a linear-time implementation of
the multigrid solver instead of the initial log-linear implementation,
and discretizing the problem using the sparser system derived from
first-order B-splines instead of the initial second-order B-spline dis-
cretization). Unfortunately, it also prevents a direct comparison of
the two methods.

3. Review

Distributed Poisson surface reconstruction (DPSR) adapts both

1. sPSR—to compute the implicit function over distributed clients,
and

2. Adaptive octree isosurfacing—to ensure that slab-adjacent
clients create isosurfaces whose level-set curves are identical
at the shared boundary.

We briefly review the implementations of both techniques.

3.1. Screened Poisson surface reconstruction

Given a set of oriented points {(pi, ni)}with positions pi and normals
ni, sPSR [KH13] proceeds by interpreting the points as a vector field
�V : R

3 → R
3 and finding the indicator function χ minimizing the

energy:

E(χ ) =
∫
R3

‖∇χ − �V‖2 + α
∑
i

(χ (pi) − 0.5)2.

Discretizing using a B-spline basis defined over an octree O, this
reduces to solving a linear system

Ax = b,

where both the solution vector x and the constraint vector b are el-
ements of R

|O|. This system is solved efficiently in a coarse-to-fine
manner using the hierarchical structure of the octree.

The implementation has (roughly) the following steps:

sPSR.1 The input points are inserted into an octree of a specified
reconstruction depth D. Each octree node o ∈ O stores
the weighted sample {po, no, wo} consisting of the aver-
age sample position po, average sample normal no and a
weight wo equal to the sample count.
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sPSR.2 The weighted samples are used to construct a density es-
timator.

sPSR.3 Each weighted sample {po, no, wo} contributes to the vec-
tor field �V by ‘splatting’ the weighted vector wono at posi-
tion po, using a kernel whose width falls off with estimated
local sampling density. Simultaneously, the sum of sample
weights is accumulated.

sPSR.4 The value of the screening parameter α is defined in terms
of the sum of the sample weights.

sPSR.5 The constraint vector b ∈ R
|O| is computed using both the

vector field �V and the weighted samples.
sPSR.6 Proceeding in a coarse-to-fine manner, a Gauss–Seidel

solver relaxes the B-spline coefficients x ∈ R
|O|, which

define an implicit function χ .
sPSR.7 The average of the implicit function over the samples, x̄,

is computed. (Though we expect this value to be approxi-
mately 0.5, it may deviate when the screening weight α is
small.)

sPSR.8 A polygonal mesh approximating the isosurface χ−1(x̄) is
computed as described below.

3.2. Unconstrained isosurface extraction

Given an unconstrained octree
and an implicit function, Kazh-
dan et al. [KKDH07] compute a
discrete approximation of the iso-
surface in the form of a polygonal
mesh whose vertices and edges lie
on the octree leaf cells. The ap-
proach processes the octree leaf
nodes in a fine-to-coarse order,
defining the intersection of the
surface with a leaf node by induc-
tion on the dimension of the cells.

The inset shows a visualization, for two face-adjacent octree nodes,
where the node on the left is more refined than the one on the
right.

Iso.0 The implicit function is evaluated at the corners of the
octree leaf nodes (blue and red circles, indicating the
sign).

Iso.1 Iso-vertices are computed at leaf-node edges (hollow cir-
cles). These are obtained by computing the level-set crossing
given the edge’s corner values (and gradients) when there
is no finer node incident on that edge. Otherwise the iso-
vertices from the incident finer leaf nodes are associated with
each edge (bottom row).

Iso.2 Iso-edges are computed at leaf-node faces (grey edges).
These are obtained by linking iso-vertices assigned to the
edges when there is no finer node incident on the face. Oth-
erwise the iso-edges from the incident finer leaf nodes are
associated with the face (bottom row).

Iso.3 Iso-polygons are computed at leaf nodes. These are ob-
tained by linking the iso-edges from the faces into
polygons.

Figure 1: 2D illustration of assigning input points to 16 regular
intervals and partitioning the intervals into four adaptively sized
slabs.

4. Approach

To distribute the computation of both Poisson reconstruction and
isosurface extraction among multiple clients, it is natural to di-
vide the problem spatially, assigning each client a region of the
3D space. The main challenges are (1) that the surfaces recon-
structed in the individual client computations must be identi-
cal along the region boundaries so as to not exhibit visible ar-
tifacts (e.g. topological cracks or shading discontinuities) and
(2) that the union of the clients’ reconstructions should match
the surface reconstructed using the traditional non-distributed
approach.

4.1. Slab-based partition

As in Bolitho et al. [BKBH09], we partition the 3D space using
adaptively sized slabs along a single axis, as illustrated in Figure 2.
The partitioning axis is selected to be the ‘long axis’ of the in-
put points. Specifically, we measure the extent of the point set
along multiple directions and rotate the samples so that the di-
rection of longest extent aligns with the z axis. We also trans-
late and uniformly scale the point set to fit into the unit cube
[0, 1]3.

To distribute the computation amongC clients, we partition space
along the z axis into C slabs, each containing a similar number of
input points (Figure 1a). We constrain the location of these slab
boundaries to alignwith the cells of a coarse octree of depth d, where
C < 2d . Thus, we start by dividing space along the z axis into 2d reg-
ular intervals, i

2d
≤ z ≤ i+1

2d
, for 0 ≤ i < 2d . We then determine a

partition of the intervals into C slabsSc = {(x, y, z)| z ∈ [ ic
2d

,
ic+1
2d

]},
with 0 ≤ c < C and 0 = i0 < i1 < · · · < ic < · · · < iC = 2d , such
that the number of points falling within each slab is balanced. Ul-
timately, client c is responsible for reconstructing the surface Sc
within its own slab, and we require that successive surfaces are
continuous across the slice corresponding to their shared boundary
plane:

Sc ∩
{
(x, y, z)| z = ic+1

2d

}
= Sc+1 ∩

{
(x, y, z)| z = ic+1

2d

}
.
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Figure 2: Reconstruction of the ‘David’at depth D = 15 usingC =
64 clients. The red curves reveal the partition of the domain space
into adaptively sized slabs using a dynamic-programming scheme.
A high density of clients is assigned to the head despite its small
surface area because that region is more densely sampled.

All large results in this paper use a coarse octree of depth d = 8.
Thus, there are 256 regular z intervals. Figure 2 shows an adaptive
partition of these intervals intoC = 64 slabs.

4.2. Connected isosurface

The implicit functions generated by each pair of successive clients
may not match precisely along their shared boundary slice. If iso-
surfaces are computed independently within each client, large gaps
become evident (Figure 3a). We present a two-part approach that
guarantees a watertight connection.

(1) Consistent function values:. The values of the two implicit
functions meeting at a slice must agree on the slice. Conveniently,

because isosurfacing samples functions discretely, it is unnecessary
for the 3D function to be continuous. Our strategy is to define a sin-
gle 2D function over the slice and use it to override the 3D implicit
function solely on the slice plane.

We achieve this by noting that the restriction of each client’s im-
plicit function to the slice can be represented using bivariate B-
splines defined over a quadtree. Fusing the quadtrees defined by
the two clients (i.e. computing the coarsest quadtree containing the
two quadtrees as subtrees) and averaging the B-spline coefficients,
we obtain a single 2D function defined on the shared slice that is
close to the restrictions of the two 3D implicit functions to that slice.
Figure 4 shows the fused quadtree and implicit function for points
non-uniformly sampled from a cylinder and Figure 3b shows the
resulting improvement.

(2) Consistent isocurves:. The shared quadtree and B-spline co-
efficients ensure a common function on the slice, but we also need
the two clients to sample the function in the same way. If the clients
only restrict their octrees to the shared slice, they may obtain differ-
ent quadtrees, which results in mesh cracks (Figure 3b).

We address this by performing level-set extraction over the 2D
slice (using the shared quadtree). In Iso.2, for each octree face that
lies in the slice plane, we replace the iso-edges that would have been
computed from the octree cell by the iso-edges computed directly on
the quadtree faces. As shown in Figure 3c, the reconstructed surface
parts are now guaranteed to be connected.

4.3. Accurate implicit function

Even with guaranteed connectedness of the isosurfaces, the result-
ing surface often exhibits ridge artifacts along the slab boundaries,
which are especially evident with flat shading (Figure 3c). The chal-
lenge is that the Poisson reconstruction is a global problem, and

Figure 3: Challenges in obtaining a connected, seamless surface using a computation distributed over slabs (shown in red): (a) extracting
isosurfaces independently per slab leaves large gaps between reconstructed mesh parts; (b) defining a shared 2D slice function corrects the
gaps but leaves topological cracks (where the octree is refined to different levels on either side of the slab boundary); (c) defining shared iso-
vertices and iso-edges guarantees a connected surface mesh, but which may still exhibit ridge artifacts along slab boundaries; (d) padding
the slab extents to include nearby points improves the consistency of the implicit functions, leading to a seamless reconstruction.
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Figure 4: Non-uniform point sampling of a cylinder, with a two-
slab partition (top): The different sampling densities on either side
of the shared boundary slice results in the clients defining differ-
ent quadtrees and different functions on the slice (middle). Fusing
defines a single, consistent quadtree and function (bottom).

attempting to solve it over distributed clients by disjointly partition-
ing the points leads to implicit functions that fail to agree near the
slices. In particular, points within a slab Sc should affect the value
of the implicit function not just in Sc but, at least in principle, in all
slabs. We address this in two ways:

1. We leverage the hierarchy to separately solve the low- and high-
resolution problems. The low-resolution problem is solved over
a single octree of depth d by the server. The high-resolution
problem is distributed across theC clients.

2. For each client slab Sc, we extend the set of considered points to
include those within a padded range of the slab, [ ic−P

2d
,
ic+1+P

2d
],

where P denotes the padding size (see Figure 1b).

The key idea is that while a point outside slab Sc affects the
reconstructed implicit function within the slab, its contribution to
the implicit function becomes smoother the further it lies from the
slab, and hence its long-distance effect is well-captured by the low-
resolution solution. Thus we choose a padding size P > 0 to enable
capturing the high-frequency effects of points sufficiently close to
the slab, and use the lower-resolution global solve to account for
points further away.

Figures 3c and 3d compare reconstructions of the ‘Angel’ dataset
obtained without padding (P = 0) and with padding (P = 4), show-
ing that the surface becomes seamless when a small amount of
padding is introduced. Experimental results in Section 6 indi-
cate that the root mean squared error introduced due to the dis-
tributed computation is significantly smaller than the width of a leaf
node.

5. Implementation

Our implementation follows a server–client architecture, in which
clients communicate only with the server. We begin by describing
the distributed preprocessing step that partitions the samples into
2d volume intervals. Next, we describe the implementation of the
reconstruction algorithm that takes the partitioned samples and out-
puts a surface for each slab. Finally, we describe the postprocessing
step that fuses the surfaces generated by the clients. We discuss the
differences between our implementation and that of Bolitho et al.
[BKBH09] and conclude by discussing implications for serial re-
construction.

5.1. Preprocessing

We partition the input samples into volume intervals, transforming
a single input file into 2d files. We assume that the size of an input
sample on disk is fixed (e.g. binary PLY format) so that the cost of
seeking to the position of a sample within the input file is constant,
and that the clients have a shared file system so that a file written
by one client can be read by another. The preprocessing consists
of six successive steps, alternating between serial processing by the
server and parallel distributed processing by the clients. It requires
three reading passes through the samples and one writing pass. Syn-
chronization is necessary only between successive phases, i.e. in the
form of a barrier.

5.1.1. Pre.1

The server determines the number of points in the input file and as-
signs each client a subsequence of points for processing. Concretely,
if there are N points and C clients, the subsequence associated to
each client c is Nc = [nc, nc+1), with nc = �N · c/C	.

Synchronization: The server sends each client c the subsequence
range Nc.

5.1.2. Pre.2

Each client c computes the extent of the points in the subsequence
Nc along several directions. (We use nine directions. The first three
correspond to the x, y and z axes and the remainder correspond to the
two diagonals in each of the xy, xz and yz planes. These nine direc-
tions have the property that any single direction can be completed
to a triplet of directions forming an orthonormal frame.)

Synchronization: Each client c sends the extents of the points in
subsequence Nc along each of the directions to the server.

5.1.3. Pre.3

The server consolidates the extents, computes the direction with
maximal extent, completes that direction to an orthonormal frame
and gets the similarity transformation taking the samples’ bound-
ing box into the unit cube. (The transformation is chosen so that the
direction with maximal extent is mapped to the z axis.)

Synchronization: The transformation from the oriented bound-
ing cube to the unit cube is sent to each of the clients.
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5.1.4. Pre.4

Each client c reads the subset of samples in subsequence Nc, applies
the similarity transformation to each sample and writes the trans-
formed sample to one of 2d volume interval files. (A sample with
transformed position (x, y, z) is mapped to the �z · 2d	th file.)

Synchronization: Each client c sends back the number of sam-
ples from the subsequence Ic falling into each of the 2d volume in-
tervals.

5.1.5. Pre.5

The server accumulates the number of samples to get the total num-
ber of samples falling within each volume interval. It then solves a
dynamic programming problem to partition the 2d volume intervals
into C slabs such that the number of samples falling in each slab is
as balanced as possible. Specifically, given a partitioning π of inter-
vals to slabs, we define the cost Cπ of the partition to be the vector
of the point counts falling within each slab, sorted from largest to
smallest. We then solve a dynamic programming problem to find
the ‘smallest’ partition, where for two partitions π ′ and π ′′, we de-
fine Cπ ′ ≤ Cπ ′′ using lexicographic ordering. (The smallest partition
minimizes the number of points falling in the largest slab. And, of
all such partitions, it minimizes the number of points falling in the
second largest slab etc.)

Synchronization: The server sends each client c the range of the
cth interval of the partition, {ic, ic+1}.

5.1.6. Pre.6

Each client c considers the volume interval in the range [ic, ic+1) and
consolidates the C volume interval files generated by the different
clients in step Pre.4 into a single volume interval file.

Note:. An alternate implementation of step Pre.2 could compute
the extent along the principal axes of the samples’ covariance ma-
trix, so that the streaming direction aligns with the direction of max-
imal covariance, as in Bolitho et al. [BKBH07]. The drawback of
such an approach is that it requires two passes over the samples—
one to compute the covariance matrix and a second to compute
the extent.

5.2. Reconstruction

The reconstruction algorithm has seven successive phases, alternat-
ing between serial server processing and parallel client processing.
The phases are separated by synchronization barriers.

5.2.1. Recon.1 [sPSR.1-3]

Each client c considers the partition interval {ic, ic+1} from step
Pre.4. Client c reads in the points falling within the interval
[ ic−P

2d
,
ic+1+P

2d
], constructs the octree, computes the density estima-

tor, constructs the vector field and accumulates the sum of sample
weights. We modify the implementation of sPSR in two ways.

First, to reduce the overhead of the padding points on the size of
the system, we observe that an oriented point (p, n) in the padding
region only needs to be introduced at the finest depth D if its z coor-
dinate pz is close to the range [

ic
2d

,
ic+1
2d

] in units of 2−D (the width of a
node at depthD). Thus, to each padding sample (p, n), we associate
the finest depth δp at which the neighbourhood of p still intersects
the slab:

[
pz − P

2δp
, pz + P

2δp

]
∩ Sc �= ∅.

Then, when constructing the octree, computing the density esti-
mator, and constructing the vector field, we insert a sample in the
padding region at a depth no larger than δp.

Second, to ensure that the constraints b shared with the server
are identical to those that would have been constructed if a single
client was used, we separately compute the vector field �V int , gener-
ated by samples in the interior of the slab, and the vector field �V pad ,
generated by samples in the padding region. For a similar reason,
when computing the sum of sample weights, we consider only the
contributions of interior points.

Synchronization: Each client sends its sum of sample weights to
the server.

5.2.2. Recon.2 [sPSR.4]

The server accumulates the sum of sample weights from the clients
and computes the screening weight α.

Synchronization: The server sends the screening weight α back
to the clients.

5.2.3. Recon.3 [sPSR.5]

Each client constructs the constraint vector b using the screening
weight α, the vector fields �V int , �V pad and the weighted samples. As
in step Recon.1, the right-hand side is computed separately as bint

using �V int and the interior samples, and as bpad using �V pad and the
padding samples.

Synchronization: Each client sends its low-resolution subtree
and associated subvector of bint (i.e. the subset of the tree and as-
sociated coefficients, for nodes at depth no greater than d) to the
server, as well as the average positions and counts of the samples
sitting over nodes at depth d (required by the server to construct the
coefficients of the system matrix associated with the screening).

5.2.4. Recon.4 [sPSR.6]

The server merges the trees and accumulates the constraints from
the different clients, as well as the average of the samples. It then
constructs and solves the linear system to obtain the low-resolution
solution x.

Synchronization: For each client c, the server extracts the subtree
and subvector of x corresponding to nodes whose z coefficients are
in the range [ ic−P

2d
,
ic+1+P

2d
] and sends those to the client.
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5.2.5. Recon.5 [sPSR.6-7]

Each client begins by growing its octree so as to contain the server’s
subtree. (This is necessary if a neighbouring client was more refined
near the slice.) Next, each client combines the interior and padding
constraints, bint and bpad , and using the low-resolution solution ob-
tained from the server continues to solve the linear system starting
at depth d + 1 and continuing to depthD. Then, the client computes
the sum of the values of the implicit function at the samples interior
to the slab.

Synchronization: To ensure a connected reconstructed mesh,
each client communicates to the server the restriction of its im-
plicit function on its two boundary slices. Using the B-spline struc-
ture, each of these implicit functions is represented by a quadtree
with bivariate B-spline coefficients associated with the nodes. (As
non-linear interpolation is used to determine the position of iso-
vertices [FKG15], we also send the B-spline coefficients encoding
the partial derivatives of the implicit function along the z direction.)
The client also sends the sum of the values of the implicit function
at the interior samples.

5.2.6. Recon.6 [sPSR.7]

The server averages the values of the implicit functions to get the
isovalue x. Then, for each boundary slice between successive clients
c− 1 and c, the server merges the quadtrees, averages the coeffi-
cients generated by the two clients to the plane z = ic

2d
and computes

the level-set curve at x.

Synchronization: For every slice s, the server sends the merged
quadtrees and averaged coefficients to clients s− 1 and s. It also
sends the level-set curves computed over each quadtree to ensure
that the surfaces Ss−1 and Ss connect along shared vertices and
edges, even when the octrees are refined differently at the slice. The
server also sends the isovalue x to each client.

5.2.7. Recon.7 [sPSR.8, Iso.0-2]

Using the solution computed in step Recon.5, each client extracts
the isosurface Sc with isovalue x. The isosurface extraction of Kazh-
dan et al. [KKDH07] is modified in three ways. (1) When consider-
ing octree corners on the boundaries of the slab, values are assigned
using the merged quadtree and averaged coefficients received from
the server. (2) When computing iso-vertices along leaf node edges
that lie on the boundary, we use the iso-vertices received from the
server. (3) When computing iso-edges along leaf node faces that lie
on the boundary, we use the iso-edges received from the server.

As we do not require the
coarse tree to be complete,
it is possible for client leaf
nodes to straddle the bound-
ary slices. In this case we
‘trim’ the leaf nodes to the
boundary slices. The values
at slice corners (the intersec-
tion of the leaf’s edges with

the boundary slices) as well as iso-vertices on slice edges (the inter-
sections of the leaf’s faces with the boundary slices) and iso-edges
lying on slice faces (the intersection of the leaf’s volume with the
boundary slices) are obtained from the merged quadtrees in stepRe-
con.6. The inset shows an example for the reconstruction of the ‘An-
gel’ model, with the slab boundaries highlighted in red. (Note that
the trimming effectively splits the iso-surface associated to the leaf
node, and can result in skinny faces.)

An alternative approach would be to have the server compute the
subset of the iso-surface defined by leaves straddling the boundary
slices. This would avoid the introduction of small faces, but would
make fusing (described next) more complicated as shared vertices
would no longer be at the beginning/end of the vertex list.

5.3. Post-processing

Isosurface extraction is performed in each client by streaming across
the z axis. For each client c, vertices along slice z = ic

2d
are the first

ones created and vertices along slice z = ic+1
2d

are the last. Moreover,
each slice’s vertices have a consistent ordering in the two adjacent
clients. Thus, topologicallymerging the vertices from the successive
clients’ reconstructions is straightforward as it only requires know-
ing the count of the slice vertices—a value already determined by
the server when it explicitly constructs the level-set curve in step
Recon.6.

5.4. Relation to Bolitho et al. [BKBH09]

As discussed in Section 2, our approach differs from the earlier
method of Bolitho et al. [BKBH09] in several ways.

Complexity:. In that approach, every client constructs and solves
the low-resolution system. While the complexity of solving is neg-
ligible (since it is done over a coarse grid), the generation of the
system constraints requires having each client stream over all of
the points. Thus, for an input of N samples, the runtime complex-
ity will be at least O(N ). In our approach, the construction of the
low-resolution system (stepsRecon.1–4) is designed such that each
client only needs process O(N/C) points.

Coarse octree depth:. The earlier approach requires the coarse
octree to be complete. This limits the maximum value of d—the
depth of the coarse octree. That, in turn restricts the total number
of clients and the granularity at which the workload is partitioned
among clients. Our approach uses an adapted coarse octree, avoid-
ing these limitations.

Communication:. The earlier approach has clients synchronize
high-resolution constraint and solution coefficients in a padding re-
gion near the slab boundaries. In our approach, we only share the re-
stricted quadtrees between neighbouring clients (between steps Re-
con.5 and Recon.6 and between steps Recon.6 and Recon.7).

Surface continuity:. By having the geometry of the surface at the
slab boundary computed only once (step Recon.6), we guarantee
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that the level-set curves for the two surfaces extracted on either side
of a slab boundary are identical, independent of machine precision.

5.5. Implications for serial reconstruction

The client–server design of our distributed solver involves only a
small number of synchronization barriers. Consequently, in addi-
tion to providing an efficient distributed solution, our implementa-
tion trivially enables a serial realization of the traditional sPSR al-
gorithm with a significantly lower memory footprint. Specifically,
we can run the clients serially on a single machine by storing state to
diskwhen transitioning between clients. (In comparison, the stream-
ing implementation [BKBH07], while having smaller peak memory
utilization, is markedly more challenging to implement.)

6. Evaluation

We evaluate our approach by considering the quality of the gener-
ated reconstructions, the empirical and practical efficiency of the
algorithm and the effects of solving a dynamic programming prob-
lem on client workload. Open-source code implementing the dis-
tributed reconstruction is available at https://github.com/mkazhdan/
PoissonRecon.

6.1. Reconstruction quality

The slab padding introduced in Section 4.3 improves the accuracy
of the distributed solver, avoiding reconstruction artifacts along slab
boundaries. To quantify this improvement, we consider two related
questions.

(1) What is the discrepancy between the implicit functions gener-
ated by the individual clients on the boundary slice shared by
successive clients? This discrepancy is measured by compar-
ing the restrictions of the implicit functions computed by each
of the clients to the boundary slices.

(2) How different is the DPSR reconstruction obtained with dis-
tributed clients (which each see only a subset of the points)
from a reference sPSR reconstruction obtained with a single
client (which sees all points)? We compare both the implicit
(3D) functions and the extracted level-set polygon meshes.

Table 1 shows the L2 difference between the restrictions of
clients’ implicit functions to the slices, the L2 difference between
the implicit functions computed using a single client and the implicit
functions obtained using C = 4 clients, and the root mean squared
distance (in units of bounding box width) between the vertices on
the surfaces reconstructed using a single client and the surfaces re-
constructed using C = 4 clients for the ‘Angel’ (24K points) and
‘David Head’ (215M points) datasets.

Examining the table, we see the expected trend of improved re-
construction quality with increased padding size P. Examining rows
‘Slice’ and ‘Implicit’, we also find that for a padding size of P = 4,
the differences are on the order of 10−3. We believe that this is neg-
ligibly small as the implicit function is approximately an indicator
function taking on values in the range [0,1] and in regions of fine
sampling density, we expect the gradient of the implicit function to

Table 1: Slice difference (L2), implicit function difference (L2) and geomet-
ric difference (RMS) for reconstructions with different padding sizes P. ‘An-
gel’ is obtained at depth D = 8 with coarse depth d = 5 and C = 4 clients.
‘David Head’ is obtained at depth D = 10 with coarse depth d = 5 and
C = 4 clients.

Angel P = 0 P = 2 P = 4 P = 6 P = 8

Slice 3.8 · 10−2 4.1 · 10−3 1.7 · 10−3 8.6 · 10−4 4.5 · 10−4

Implicit 1.6 · 10−2 9.8 · 10−4 3.9 · 10−4 1.9 · 10−4 1.2 · 10−4

Geometric 1.9 · 10−3 3.8 · 10−5 2.1 · 10−5 9.0 · 10−6 6.0 · 10−6

David Head P = 0 P = 2 P = 4 P = 6 P = 8

Slice 9.1 · 10−2 1.2 · 10−2 8.4 · 10−3 4.2 · 10−3 3.6 · 10−3

Implicit 3.6 · 10−2 4.0 · 10−3 2.4 · 10−3 1.3 · 10−3 9.2 · 10−4

Geometric 1.6 · 10−4 8.0 · 10−6 4.0 · 10−6 2.0 · 10−6 2.0 · 10−6

be large near the surface. Thus a change on the order of 10−3 should
correspond to an imperceptible difference in the isosurface. This is
corroborated in the ‘Geometric’ rows of the table which show that
using a padding size of P = 4, the root mean squared distance is on
the order of 10−5.

We also visualize the distances between the reconstructions ob-
tained using a single client and reconstructions obtained usingC =
4 clients in Figure 5, for padding sizes of P = 0 and P = 4. With
a padding size of P = 0, there are significant errors at the slices
between clients. In contrast reconstructions with a padding size of
P = 4 only exhibit error in regions of low sampling density.

In all subsequent evaluations, we fix the padding size at P = 4.

Note:. We observe that the choice P = 4 matches the back-of-
the-envelope calculation for a ‘reasonable’ padding size, given the
finite-elements discretization of the PDE (i.e. and is independent of
the point sampling). Concretely, in choosing P, we would like to
ensure that the reconstruction generated by multiple clients is close
to the reconstruction that would be generated by a single client.

At aminimum, this requires that the right-hand side bint generated
by client c matches the restriction to slab Sc of the right-hand side
generated by sPSR. In the implementation of sPSR, an oriented sam-
ple falling into octree node o ∈ O contributes to the coefficients of
the vector field �V at the corners of the nodes in the one-ring neigh-
bourhood of o. Furthermore, since the right-hand-side constraints
are computed by integrating the vector field against the gradients of
first-order B-splines centred at octree corners, an oriented sample
will affect the value of bint if and only if it is within a distance of
P = 2 of slab Sc.

We further extend the padding size because solving the Poisson
equation diffuses the constraints into neighbouring nodes—a pro-
cess that can be realized as a convolution with the Green’s function.
Formally, the Green’s function is not compactly supported so the
constraint at one node affects the solution everywhere. However, as
the long-range effects of the convolution are low-frequency, we find
that they are well captured by the server’s solution, and extending
to a padding size of P = 4 works well in practice, regardless of how
the points are sampled.
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Figure 5: Visualizations of the closest distance from the surfaces reconstructed from the ‘Angel’ and ‘David Head’datasets (left) with C = 4
clients to surface reconstructed with a single client, using padding sizes of P = 0 (centre) and P = 4 (right). Using a padding size of P = 0,
there are noticeable error at the client boundaries. These go away with a padding size of P = 4.

6.2. Theoretical complexity analysis

We recall that our implementation is parameterized by the depth of
the reconstruction (D), the depth of the coarse octree used by the
server (d), the number of clients (C) and the padding size (P).

Redundancy:. We measure the redundancy in terms of the ad-
ditional octree nodes introduced by points in the padding region.
This reflects the computational overhead of setting up and solving
the system, as well as extracting the isosurface. As derived in Ap-
pendix A, the expected redundancy overhead due to padding is

RN (P) = 2 · P ·C
2d

for the naive implementation (in which padding samples are intro-
duced up to the finest depth), and

RA(P) = 3 · P ·C
2D

for the adaptive implementation (in which the depth at which a
padding sample is introduced is determined by its proximity to the
slab). We validate these estimates by measuring the fraction of addi-
tional octree nodes introduced by points in the padding region. This
reflects the added overhead of setting up and solving the system, as
well as the overhead of extracting the isosurface.

Distributed complexity:. For the distributed implementation of
the Poisson surface reconstruction, we expect the runtime of the
client (resp. server) to scale as O(4D · R/C) (resp. O(4d + 2D ·C)),
withO(4d ) the complexity of the coarse octree,O(4D) the complex-
ity of the fine octree, O(2D) the complexity of the quadtree storing
the shared solution on a slice and R the redundancy factor. Simi-
larly, we expect the peak memory usage of the client to scale as
O(4D · R/C) and that of the server to scale as O(4d + 2D).

Serialized distributed complexity:. Similar to the distributed im-
plementation, the expected peak memory of the client (resp. server)

Table 2: Comparison of the expected and measured redundancy factors
when reconstructing two datasets, as a function of padding size P. The table
compares the Naive implementation (in which all points in the padded re-
gion are introduced at the finest depth) and our adaptive implementation
(in which the depth at which a point is introduced is chosen based on its
proximity to the slab interior). ‘Angel’ uses C = 4 clients, reconstruction
depth D = 8 and coarse depth d = 5; ‘David Head’ uses C = 16, D = 10
and d = 7.

Naive Adaptive

P = 0 2 4 6 8 0 2 4 6 8

Expected 0.0 0.5 1.0 1.5 2.0 0.00 0.09 0.19 0.28 0.38
Angel 0.0 0.2 0.4 0.6 0.8 0.00 0.04 0.08 0.12 0.15
David Head 0.0 0.5 1.1 1.6 2.2 0.00 0.10 0.20 0.30 0.40

isO(4D · R/C) (resp.O(4d + 2D ·C)). However, in this case, the ex-
pected running time of the client is O(4D · R).

6.3. Empirical complexity results

Redundancy:. Table 2 compares the measured redundancy factors
when reconstructing the ‘Angel’ (24K points) and ‘David Head’
(215M points) datasets for different padding sizesP. Reconstruction
depth D, coarse octree depth d and number of clients C are chosen
so that the expected redundancy for the two datasets are the same.
As expected, for both approaches, the redundancy factor grows lin-
early with P, with the naive approach incurring a significant cost
for larger padding values. In contrast, the overhead for the adaptive
approach remains small even for larger values of P.

We note that the redundancy factor does not consider the I/O cost
of padding, which is the same for both the naive and adaptive im-
plementations: 2·P·C

2d
.

Distributed complexity:. Table 3 shows the running time
and peak memory usage when reconstructing the full ‘David’
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Table 3: Performance and output complexity for the ‘David’ and ‘Safra Square’ datasets, (with 1 005 395 738 and 2 364 268 059 points, respectively), for
different numbers of clients and at different depths. We set the coarse octree depth to d = 8. For the ‘David’ reconstruction, the output mesh has 13, 54, 216
and 727 million vertices, respectively. For the ‘Safra Square’ reconstructions, the output mesh has 12, 48, 171, 554 and 1610 million vertices, respectively.

David Safra Square

C = 1 C = 2 C = 4 C = 8 C = 16 C = 32 C = 64 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32 C = 64

Preprocess time (s) 458 231 112 65 41 28 28 1383 729 376 238 127 72 60
D = 12 Time (s) 433 308 174 94 56 47 48 536 318 184 108 77 59 60

Memory (GB) 17 10 6 3 2 1 1 11 8 5 3 1 1 1
D = 13 Time (s) - 1190 572 343 208 146 106 1254 776 461 263 162 126 113

Memory (GB) - 46 27 15 9 5 3 41 27 17 10 6 4 3
D = 14 Time (s) - - - 1955 893 641 410 - - 1472 814 479 307 247

Memory (GB) - - - 71 45 22 14 - - 59 34 21 14 9
D = 15 Time (s) - - - - - - 1187 - - - - 1536 856 619

Memory (GB) - - - - - - 44 - - - - 66 41 26
D = 16 Time (s) - - - - - - - - - - - - - 1301

Memory (GB) - - - - - - - - - - - - - 58

Figure 6: Visualizations of the ‘Safra Square’ reconstruction at
depth D = 16 using C = 64 clients. Boundary slices are drawn in
red. Parts of the reconstruction generated in regions of low sampling
density are trimmed off.

point-set (roughly one billion points) and the ‘Safra Square’ point-
set (roughly 2.5 billion points) as a function of reconstruction depth
D and number of clientsC. (For the ‘David’ datasets, which exhibits
misalignment error, we disabled screening. For the ‘Safra Square’,
we used the default screening weight.) Reconstructions were run on
a distributed cluster using a SLURM workload manager.

Visualizations of the reconstructed ‘David’ at depth D = 15 and
‘Safra Square’ at depth D = 16 can be seen in Figures 2 and 6. The
figures show zoom-ins on the partition boundaries, demonstrating
the seamlessness of both the geometry and colour reconstructions.

As expected, we see a reciprocal relation between the number
of clients and the peak memory usage and an (almost) reciprocal
relation between the number of clients and the running time.We also
see that for a given number of clients, increasing the depth increases
the running time and peak memory usage by a factor of four. (This
model starts to fail at higher depths, as sPSR assigns a point’s depth

Table 4: Performance comparison for the traditional reconstruction and
the serial implementation of the distributed reconstruction using the ‘David’
dataset at different depths. For the serial implementation, we setC = 64 and
d = 8.

Traditional sPSR Serial DPSR

D = 12 Time (s) 764 985
Memory (GB) 12 2

D = 13 Time (s) 2211 3234
Memory (GB) 58 6

D = 14 Time (s) - 13 728
Memory (GB) - 20

D = 15 Time (s) - 48 962
Memory (GB) - 56

dynamically, only refining the octree where the sampling density is
high enough.)

While we would hope that doubling the number of clients would
reduce the running time and peak memory usage by a factor of two,
the tables show that this does not hold for larger values ofC. This is
because for fixed values of coarse octree depth d, larger numbers of
clients make it more difficult to load balance the workload. (In the
limit, as C = 2d , each client is assigned a single interval, reducing
the workload distribution to a regular spatial partition.)

The tables also show the runtime for the preprocessing step. (The
peak memory usage is negligible since the samples are not stored in
memory.) As expected, we see that empirical performance matches
the O(N/C) complexity, particularly for smaller C where load bal-
ancing is easier. And, importantly, we see that the distribution of the
preprocessing ensures that the cost of partitioning remains negligi-
ble, relative to the cost of reconstruction.

Serialized complexity:. Table 4 compares the running times and
peak memory usage of the serialized distributed implementation
with the traditional sPSR on the ‘David’ point-set. As the table
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Table 5: Per-client memory usage (in gigabytes) with a regular slab parti-
tion and with adaptive load-balancing, on the ‘David’dataset reconstructed
at depth D = 14 with coarse tree depth d = 8, and usingC ∈ {8, 16, 32, 64}
clients.

C = 8 C = 16 C = 32 C = 64

Reg. Bal. Reg. Bal. Reg. Bal. Reg. Bal.

Average 55.5 56.2 29.0 29.2 14.9 15.3 8.0 8.2
Max 81.3 70.8 50.4 44.8 36.8 22.2 20.2 14.2

Table 6: Per-client memory usage (in gigabytes) and maximum number of
samples within a slab (in millions) on the ‘David’ dataset reconstructed
at depth D = 14 with C = 64 clients, and using coarse tree depth d ∈
{8, 9, 10, 11}.

d = 8 d = 9 d = 10 d = 11

Average Mem. 8.2 7.9 7.7 7.6
Max Mem. 14.2 12.9 12.2 13.4
Max Samples 18.6 17.0 16.6 15.9

shows, the serialized distributed computation incurs a running time
overhead of 30–50%, but its required memory is an order of mag-
nitude smaller, enabling a reconstruction at depth D = 15 within a
64-GB memory budget.

Comparing the performance of the serialized implementation to
the performance of the parallel implementation, we note that the
serialized implementation is slower (compare to Table 3: row D =
12, column C = 1, left), likely due to the additional disk I/O, and
requires more memory (compare to Table 3: column C = 64, left).

We stress that while our distributed implementation makes it easy
to obtain a low-memory serial implementation, the streaming imple-
mentation in Bolitho et al. [BKBH07] has significantly lower mem-
ory.

6.4. Benefits of load balancing

Our implementation uses dynamic programming to assign point in-
tervals to clients so as to make the distribution of work as balanced
as possible. The slabs are visualized in Figures 2 and 6 which show
the reconstructed models with boundary edges drawn in red.

Tables 5 and 6 show the effects of using dynamic programming
for load balancing on the clients’ memory utilization when recon-
structing the ‘David’ model. Table 5 compares the performance of
regular partitioning to load balancing for varying number of clients
C, while Table 6 shows the effects of increased coarse octree depth
on memory utilization for varying coarse octree depth d. (Recall
that the input point set is partitioned into 2d intervals, so that larger
values of d allow for more fine-grained load balancing.)

Since the complexity of sPSR is linear, the average memory uti-
lization remains roughly the same, regardless of whether ‘regular’
or ‘balanced’ partitioning is used and regardless of the depth of the

coarse octree depth. Examining the maximum memory utilization,
we see that load balancing improves performance, reducing the peak
memory utilization by 12–65%. We also find that increasing the
coarse octree depth reduces the peak memory utilization by an ad-
ditional 10%, 17% and 6%, respectively.

We make two observations about load balancing: First, while in-
creasing d allows for finer load balancing, it comes at the cost of
having the server solve a finer system. For d ∈ {8, 9, 10, 11}, the
respective running times were 369, 355, 376 and 425 s. Second, the
distribution of points to clients is only a prediction of the amount of
work each client needs to do, and this prediction becomes less pre-
cise as the point sampling is becomes non-uniform. This is reflected
in the d = 11 column of Table 6 which shows larger peak memory
utilization than d = 9 or d = 10, despite the smaller peak number
of samples per slab.

7. Conclusion

We presented a novel implementation of the sPSR algorithm that
allows the reconstruction to be distributed across multiple clients
using a client–server system, with only a small number of synchro-
nization barriers. By decomposing the solution of the linear system
into low-frequency (global/server) and high-frequency (local/client)
components, leveraging padding, and enforcing a connected isosur-
face, we obtain a solution that exhibits no artifacts at client bound-
aries and is indistinguishable from the single-client solution.

This distributed implementation can leverage modern hardware
to reconstruct surfaces from huge (e.g. billion-point-scale) datasets
with running time and memory usage that are an order of magnitude
smaller than those required by the traditional sPSR implementation.
In addition, the small number of synchronization barriers lets us re-
duce the peak memory usage for a single-client machine, enabling
the reconstruction of surfaces at higher depth (i.e. more precisely).

In the future, we would like to explore several extensions of our
approach. We would like to incorporate streaming Poisson surface
reconstruction [BKBH07] within our client/server model to further
reduce the peak memory utilization. We would like to consider ap-
proaches for decoupling the granularity of point-partitioning from
the coarse octree depth. And we would like to incorporate mesh
compression, as in the works of Schertler et al. [STJ*17] and Mag-
giordomo et al. [MMT23], to reduce the size of the output generated
by the clients.
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Appendix A: Estimating Redundancy

With the introduction of padding regions, each sample point can
affect the octree construction for multiple clients, resulting in ad-
ditional octree nodes. In this appendix, we analyse this redundancy
overhead. We begin by recalling that the distributed reconstruction
is parameterized by several variables:

• the depth D of the reconstruction,
• the depth d of the coarse octree,
• the number of clients C and
• the padding size P.

Naive approach

A naive implementation is to introduce all points in the padded re-
gion at the finest depth of the tree. Because the expected number of
samples in the padding region added to a slab is proportional to 2 · P
and the expected number of points within the interior of the slab is
proportional to 2d/C, we obtain a redundancy factor

RN (P) = 2 · P
2d/C

= 2 · P ·C
2d

. (A1)

Adaptive approach

In the adaptive approach, padding points are only introduced up to
a depth δ where they are within a distance of P

2δ from the interior of
the slab. That is, they are within a distance of P from the interior, in
units measured by the size of octree nodes at depth δ. Thus, while
all points in the padding region are introduced at depth d, we expect
that half of those will be introduced at depth d + 1, and only half of
those will be introduced at depth d + 2 and so on. Furthermore, we
note that if, on average, the points in a slab contribute to κ nodes at
the finest depth D, they will contribute to κ

4 nodes at depth D− 1,
κ

42
nodes at depth D− 2 and so on.

Combining these observations, we estimate the redundancy fac-
tor by first computing the expected number of nodes generated by
samples in the padding region:

∑D−d
i=0

2·κ·P
4i ·2D−d−i = 2 · κ · P ·

∑D−d
i=0 2D−d−i
4D−d

= 2 · κ · P · 2D−d+1−1
4D−d ≈ 4·κ·P

2D−d .
(A2)

Then, using the fact the expected number of nodes generated by in-
terior points is κ·2d

C · (1 + 1/4 + 1/42 + · · · ), the redundancy factor
becomes

RA(P) = 4 · κ · P/2D−d

κ · 2d/C · 4/3 = 3 · P ·C
2D

. (A3)
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