
DOI: 10.1111/cgf.14920 COMPUTER GRAPHICS forum
Volume 42 (2023), number 6, e14920

Recurrent Motion Refiner for Locomotion Stitching

Haemin Kim,1 Kyungmin Cho,2 Seokhyeon Hong1 and Junyong Noh1

1KAIST, Visual Media Lab, Daejeon, South Korea
{spot1223, ghd3079, junyongnoh}@kaist.ac.kr
2Anigma Technologies, Daejeon, South Korea

ckm@anigma-ai.com

Abstract
Stitching different character motions is one of the most commonly used techniques as it allows the user to make new animations
that fit one’s purpose from pieces of motion. However, current motion stitching methods often produce unnatural motion with
foot sliding artefacts, depending on the performance of the interpolation. In this paper, we propose a novel motion stitching
technique based on a recurrent motion refiner (RMR) that connects discontinuous locomotions into a single natural locomotion.
Our model receives different locomotions as input, in which the root of the last pose of the previous motion and that of the first
pose of the next motion are aligned. During runtime, the model slides through the sequence, editing frames window by window
to output a smoothly connected animation. Our model consists of a two-layer recurrent network that comes between a simple
encoder and decoder. To train this network, we created a sufficient number of paired data with a newly designed data generation.
This process employs a K-nearest neighbour search that explores a predefined motion database to create the corresponding
input to the ground truth. Once trained, the suggested model can connect various lengths of locomotion sequences into a single
natural locomotion.

Keywords: character animation, motion processing, motion stitching

CCS Concepts: • Computing methodologies → Computer graphics; Animation; Motion processing

1. Introduction

Preparing every animation clip required in a project is a highly
resource consuming process. Therefore, artists often reuse a few
captured or manually created animation sequences by cutting out
necessary frames and concatenating them in a desired way. Here,
motion stitching plays an important role in connecting two different
motions. Through motion stitching, users can attach the start of
the second motion at the end of the first motion and interpolate the
inbetween poses for a smooth transition. Many animation software
resorts to this automatic stitching method equipped with various
interpolation schemes to control or edit character animations.

While individual character motions may be of high-quality, the
concatenated motion sequence may not be as natural as the original
input. This is because the interpolation process in the current mo-
tion stitching methods fails to consider the complex nature of the
motion data, often accompanied with visual artefacts. For instance,
if the first motion ends with the right foot in front and the second
motion starts with the left foot in front, applying interpolation will

lead to a severe foot sliding artefact, unless the walking pattern of
the character is properly considered. Therefore, additional manual
work is typically performed to improve the quality of the results,
which is undesirable in many applications that require automatic
motion stitching.

In this study, we propose a novel motion stitching method that
connects two locomotion clips of a character with possibly large
pose differences as depicted in Figure 1. Our method preserves
the locomotive pattern of the character while modifying the poses
for continuous motion, significantly reducing visual artefacts even
when a random phase of the character locomotion is given as in-
put. Our framework begins by simply aligning the roots of given
motions in order followed by refining the poses to make a seamless
transition using a recurrent motion refiner (RMR), a recurrent neural
network (RNN)-based network. Inspired by the encoder-recurrent-
decoder (ERD) model [FLFM15], our network architecture consists
of an encoder, RNN-based refiner, and decoder. We chose this archi-
tecture to make the refiner learn sequential information within the
learned motion manifold. Furthermore, we use bidirectional gated

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

1 of 13

https://diglib.eg.orghttps://www.eg.org



2 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

Figure 1: Motion stitching conducted with our method. The left sequence indicates two different locomotion clips and the right sequence
indicates the stitched result. The root position is translated for clear visualization.

recurrent unit (BGRU) layers for our refiner to take advantage of
the forward and backward information and effectively smooth out
possible discontinuities present between the input motions.

For our network to effectively handle various stitching combi-
nations of locomotion data, we designed a new data pair genera-
tion method. We prepared a large-scale dataset of two or three mo-
tions and a corresponding stitchedmotion that represents the ground
truth. The stitched motions must be as natural as real human motion
to be used as ground truth data. This is extremely difficult, however,
to acquire large-scale data with such quality, because it requires
carefully plotted motion capture with intense manual edits. There-
fore, we instead started from the ground truth and exploited it to ob-
tain corresponding input motion clips using an algorithm inspired
by motion matching [BC15]. We employed a K-nearest neighbour
(KNN) search to acquire two or three input motion clips that resem-
ble the ground truth. For this process, by controlling parameters, we
generated various combinations of input motions, including sam-
ples that are likely to produce artefacts when connected with current
methods.With this data, our network learns to generate high-fidelity
motions by eliminating the pose discontinuity that may occur when
independent locomotion clips are concatenated.

Our method can stitch multiple motions during runtime. First, we
align a few input motion clips into one long sequence. Then, our
network edits the frames within the short window, while repeatedly
shifting the window along the timeline. All input motion clips are
fused into one natural locomotion when the network updates the
last pose. By inferring one short segment at a time, we are able to
combine multiple motions in a unified way and acquire a result-
ing motion with minimal artefacts. In addition, we expect that the
proposed technique can be applied to generation methods such as
motion matching[BC15]. When connecting reference motions, our
method can refine possible pose differences and mitigate foot slid-
ing artefacts that may occur in the process.

We demonstrated how the suggestedmethod can stitch various in-
put locomotion clips. We validated our design choices by compar-
ing the results produced with different RNN cells and conducting

an ablation study on the loss terms. We also compared the output
with the result from an interpolation-based method and motion in-
betweeningmethod. These experiments verified that ourmethod can
be used inmany applications that require automatic motion stitching
with improved quality.

Our technical contributions can be summarized as follows:

• Novel data pair generation for motion stitching using KNN
search. The KNN search encourages data variety.

• Employment of BGRU to incorporate the intricate nature of loco-
motion when performing motion stitching. No assumption is re-
quired for a specific phase of locomotion due to the use of BGRU.

• Window-based motion refinement algorithm that effectively
stitches multiple motions at runtime. The employment of the ad-
justable inference window allows for stitching diverse lengths of
motions.

2. Related Work

2.1. Blending-based motion synthesis

Synthesizing a new motion from existing motion clips has been ex-
tensively studied by many researchers. Early studies produced a
new motion that corresponds to the point in parameterized space
through the interpolation of examplemotions. For the underlying in-
terpolation mechanism, linear [WH97, GR96], radial basis function
(RBF) [RCB98], KNN [KG04], geostatistics [MK05], optimiza-
tion [HK10], and hand-crafted tetrahedron [FXS12]-based blend-
ing have been adopted. RBF-based motion interpolation was fur-
ther improved by inserting pseudo-examples to the interpolation
space [RISC01] or combining incremental time warping [PSS02,
PSKS04] to blend motions of different speeds.

To obtain the best results through these methods, it is crucial
to select motions that are structurally similar. Therefore, many re-
searchers suggested methods that can compare and choose motions
to interpolate. Rose et al. [RCB98] manually labelled the constraint
information of example motions and Kovar et al. [KG03] automated

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 3 of 13

this process by creating registration curves. Other methods based
on directed graphs adopted various distance metrics to compute the
similarity between motions. Joint positions and velocities with re-
spect to the torso [AF02], or a point cloud of the character [KGP02,
HG07] were used during this process. These metrics pre-computed
the closeness of the example motions and automatically labelled the
most probable transition points. In contrast, our method does not
directly measure the distance between each data. We train a neural
network on the dataset that encompasses various situations of con-
necting motions and let the network figure out the phase or pose
information needed for seamless transitions.

Inertialization blending (IB) [Bol16, Bol17] computes the dis-
placement between the source and target poses while keeping the
velocity of the source. This displacement is interpolated and then
added to the target poses for the number of frames to blend. Un-
less the source and target phases significantly differ in given loco-
motions, these methods generally produce smooth transitions. Our
model goes further than interpolating the motion data by employ-
ing a neural network to edit the given poses and combine different
locomotion clips into one natural locomotion.

2.2. Data-driven motion denoising

In the context of smoothing discontinuity in the motion data, our
problem can be interpreted asmotion denoising. Early studies aimed
at finding the bases that best represent the motion or applying a fil-
ter to it to remove noise in the data. Tangkuampien et al. [TS06]
employed a variant of principal component analysis (PCA) to take
advantage of the denoising ability of kernel PCA. Lou et al. [LC10]
learned multiple filter bases from available motion capture data.
Akhter et al. [ASK*12] constructed a bilinear spatiotemporal ba-
sis model. Other studies attempted to use sparse representation to
reconstruct clean motion data [XFJ*15, FJX*14, XSZF16].

The employment of deep learning made it possible to use large-
scale training data and acquire a compact model that can be gen-
eralized to unseen sequences. Fully connected layers were used
to construct hierarchical temporal encoders to recover the missing
joints [BBKK17]. Convolutional Neural Networks (CNN)were also
employed to learn the valid motion manifold and denoise a mo-
tion by projecting it onto the manifold and converting it back to the
original representation [HSKJ15]. Later studies combined RNN and
fully connected layers to model sequential information[MLCC17,
LZZ*19, LZZL20]. Recently, Cui et al. [CS21] adopted a combina-
tion of graph convolutional and temporal convolution networks to
exploit spatial information between joints. The goal of these stud-
ies and ours is similar. While they assume the input data from one
natural sequence, we consider the input as separate sequences and
recreate realistic poses to naturally concatenate the pieces of mo-
tions.

2.3. RNN-based motion prediction

A motion prediction task that synthesizes the frames following
the past frames has been developed with recent advances in deep
learning. Among the diverse network architectures, RNN-based net-
works have gained attention from many researchers. Fragkiadaki

et al. [FLFM15] suggested an ERD model that places fully con-
nected layers before and after the recurrent layers to make the
recurrent part learn within a valid motion manifold. To alleviate
the ambiguity that occurs when inferring long sequences, Habibie
et al. [HHS*17] added user control signals and combined a Vari-
ational Autoencoder (VAE) with an RNN. Chiu et al. [CAW*19]
utilized a multi-scale RNN to encode temporal dependencies. Other
studies sought to improve the performance by incorporating spa-
tial information. Diverse architectures such as a separate autoen-
coder [GSAH17], spatial encoder and decoder [WHSZ19], or spa-
tiotemporal attention mechanism [SZQ*21] are used to encode cor-
relation between the joints. The transformer architecture [VSP*17]
was also employed with a spatial and temporal attention mod-
ule [AKCH21]. In our model, the proposed RNN-based network is
less affected by the ambiguity problem because the model is aware
of the last frame of the given sequence and produces a result by
traversing the given sequence back and forth.

RNN-based approaches can also suffer from error accumulation
due to the use of an autoregressive inference scheme. Some stud-
ies added Gaussian noise to the input to reduce this error [JZSS16,
WCX19]. Other studies mitigated this issue by feeding the previous
output of the network along with the ground truth data during train-
ing [LZX*17, GMK*19, PGA18]. To avoid extensive parameter
tuning associated with these techniques, some researchers formu-
lated this problem as a sequence-to-sequence task and always input
predicted values followed by penalizing the error through separate
loss terms [MBR17] or discriminators [GWLM18]. Unlike these au-
toregressive models, our method updates frames at each time-step
based on the hidden vectors and corresponding input frames. Dur-
ing runtime, our model predicts the frames using the previous out-
put. To prevent error accumulation by preserving the input poses,
we designed a data generation process and added loss terms.

2.4. Motion in-betweening

Many motion in-betweening techniques employ RNN-based net-
works to explicitly model the sequential features of the motion
data. Harvey et al. [HP18] augmented the ERD model[FLFM15]
and suggested a Recurrent Transition Network (RTN) which uses
separate encoders for the current frame, offset, and target. Gelei-
jin et al. [GRvSD21] made the RTN lightweight and used quater-
nion values for joint rotations. Similarly, Zhang et al.[ZvdP18] used
both linear and recurrent layers to generate in-between frames of
the Luxo character. Harvey et al. [HYNP20] extended RTN [HP18]
and introduced additive embedding modifiers to make the network
produce temporal variations when given the same input keyframes.
The approach introduced in Tang et al. [TWH*22] combined the
conditional VAE with an RNN-based network similar to that used
in Harvey et al. [HYNP20]. This network learned the motion mani-
fold to sample the lower body movement, which plays a critical role
when determining the motion quality.

CNN has also been employed for the motion in-betweening task.
Hernandez et al. [HGMN19] mainly used the Generative Adver-
sarial Network (GAN) architecture with one- or two-dimensional
CNN to complete occlusions in the motion data. Kaufmann
et al. [KAS*20] interpreted this problem as an image infilling task
and built a deep CNN-based autoencoder to reflect a wide range of

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



4 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

Figure 2: System overview.

Figure 3: Top view of input motions A and B. The black arrow rep-
resents the root trajectory. (a) Before alignment, the root trajecto-
ries of motion A and B are disconnected from each other. (b) After
transforming motion B to start at the end of motion A, the two root
trajectories form one continuous curve.

frames. Zhou et al. [ZLB*20] generated local joint movements first,
followed by predicting the corresponding root trajectory. Instead
of using RNN or CNN, Li et al. [LVC*21] suggested a skeleton-
aware architecture that includes skeleton convolution, pooling, and
unpooling. Transformer-based methods have also been explored
by using the BERT [DCLT18] architecture [DSZ*21], incorporat-
ing additional pose conditions [KBS*22], and predicting delta mo-
tion [OVH*22]. Because these approaches receive sparse poses as
input, it is important to provide the most probable pose for a specific
time-step for satisfactory results. In contrast, if less plausible poses
are provided in the input sequence at a given time-step, our network
can modify the poses into a natural motion.

3. System Overview

As shown in Figure 2, our method receives multiple locomotion
clips, A, B and C, with various lengths as input. Because a mis-
match in the root trajectory would degrade the motion quality, we
first align motion B to motion A, and motion C to B′ to ensure the
continuity in the root trajectory, as depicted in Figure 3. Here, we
consider the aligned motions as a single motion X with length T .
Note that X may have abrupt changes in the speed of root transfor-
mation or large differences in pose within a frame where motion A,
B′, and C′ meet. These artefacts are removed by the use of RMR,
which receives input X and outputs a smooth and natural motion Y.

In the following sections, we first explain how the training data for
the motion stitching task is generated from random locomotion data
(Section 4). We then describe how the RMR is trained (Section 5)
and used to stitch multiple motions at inference time (Section 6).

Figure 4: Joints and the root used in pose representation. The joints
are indicated with red circles and the root is shown with the three
axes. (a) A total of J = 22 joints are used for the full body. (b) For
the lower body, Jlower = 11 joints are used.

4. Training Data Generation

The goal of generating the training data is to create two or three mo-
tion segments that sum up to length T . These segments are expected
to be the ground truth Ygt with length T when they are stitched and
edited by experts. Using two or three motion segments prepares our
model to deal with cases in which there are more than two motions
in a single inference window. It is possible to use more than three
motion segments, but using two or three segments produced natural
results in all of our experiments. The detailed description about the
inference window is provided in Section 6.

The ground truth clips of length T were created by sliding
through motion capture sequences, shifting by T/2 frames. We
project the hip joint of the character to the xz-plane and use it
as the root transformation of the character throughout our work.
Let Ygt = [xgt1 x

gt
2 . . . xgtT ] ∈ R

d×T be thematrix representing locomo-
tion data where xgtt is the pose at time-step t, which is defined as
follows:

xgtt = {rt , pt , qt , vt , ct} ∈ R
d .

Here, rt = {rx, rθ , rz} ∈ R
3 is the root displacement vector, pt ∈

R
3Jlower is the root-relative joint positions in the lower body, qt ∈ R

4J

is the parent-relative local rotations for all joints in quaternion,
vt ∈ R

3Jlower is the translational joint velocities with respect to the
root of the previous frame, and ct ∈ R

4 is the binary foot contact
vector. For the root displacement vector rt , rx and rz each indicate
the x-axis and z-axis translational displacement of the root, and rθ
indicates the rotational root displacement around the y-axis in ra-
dian. The foot contact vector was extracted from the left heel, left
toe, right heel, and right toe joints with empirically selected thresh-
olds. For the y position of the foot joints and toe joints, we used a
threshold value of 2.5 and 1.6 cm, respectively. The joints used for
the input data are shown in Figure 4.

First, we determine the length of motion segment A, B, and C by
randomly sampling multiples of 10 that add up to the total frame
number T . We denote these lengths as TA, TB, and TC. While TA
and TC are always larger than zero, the size of TB can be zero. TB

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 5 of 13

being zero means only two motion segments are generated. This
sampling process allows our network to encounter diverse situations
during training, so that it can effectively handle input motions of
various lengths.

The first segment A is simply copied from the beginning of the
ground truth [xgt1 . . . xgtTA ]. This decision is based on the observa-
tion that artists often mainly edit the latter motion B when B is
stitched to A. Although this may not always hold true, we found
that this strategy leads to generating plausible data, as well as sta-
bilizing the training by suggesting consistent tasks to the neural
network.

For the second (B) and third (C) input motion, we search
for the motion segments that are similar to [xgtTA+1 . . . xgtTA+TB ] and
[xgtTA+TB+1 . . . xgtT ], respectively. These segments are obtained from
the reference motion database, under the assumption that the at-
tributes in the input motion are preserved in the stitched motion. In
the following, we briefly explain how the reference motion database
is constructed and the KNN search is performed to generate motion
segments B and C [BC15].

Let m be a motion feature that is defined as follows:

m = {w1j1, wTl jTl ,wuu},

where jt ∈ R
3J denotes the joint positions at time-step t with respect

to the root of the first frame of the motion, Tl is the length of motion,
and u ∈ R

4T is the root trajectory that consists of the 2D position
and forward direction vector on the xz-plane for all frames. Here,
we set weights w1, wTl , and wu as 0.1, 1.0, and 1.0, respectively.
We use a smaller weight for j1 than for jTl to find a motion with
different poses from the ground truth in the first few frames while
gradually becoming similar toward the end. More poses could be
used to define the motion feature, but using the first and last pose
worked well for all of our experiments.

A separate reference motion databaseMl is created for every pos-
sible motion segment length Tl , which is determined by T . Each
database is composed of nl motion segments with a length of Tl . We
query the motion feature of the subsequence of Ygt to the database
Ml = {mi}nli=1 where mi is the motion feature of the i-th motion seg-
ment. To encourage input variety, we randomly sample k from 5 to
10 and select the k-th nearest neighbour with features that resemble
but are not identical to the ground truth. The motion segment that
corresponds to mk is used as B or C.

Finally, we process motions A, B, and C to obtain input motion
clip X. The root trajectory is copied fromYgt to B and C tomatch the
root trajectory of the input with that of the ground truth. Through this
process, the network preserves the given trajectory during training
because it is one of the important requirements of motion stitching.
We align motion B to motion A by making the root transformation
of the first frame in B equal to the root transformation of the last
frame in A. The process is repeated to align C to B′: the motion B
that has been aligned to A. Then, we simply interpolate the upper
body of Ygt to the aligned sequence. We define this sequence as
input motion X for our network. As a result, we have a set of input
motions {Xi}nxi=1 and ground truth motions {Ygt

i }nxi=1 where nx is the
number of generated data pairs.

Figure 5: Recurrent motion refiner.

5. Recurrent Motion Refiner

As shown in Figure 5, the RMR consists of an encoder, refiner, and
decoder [FLFM15]. The encoder E and decoder D each consist of
two fully connected layers, and the refiner R includes two BGRU
layers. Each layer in BGRU has a forward layer RF and backward
layer RB. We exploit the most out of the given sequence by going
through the input back and forth and providing valid context infor-
mation at all time-steps. We use the hidden size of hs = 256 for
every hidden layer and rectified linear unit (ReLU) activation for all
linear layers except for the last one in the decoder, which does not
use activation.

Given a sequence of poses X = [x1 . . . xT ] ∈ R
d×T as input, the

RMR outputs Y = [xout1 . . . xoutT ] ∈ R
d×T , where each output pose

xoutt is computed through the following process. All pose vectors
xt are converted to latent vectors with the dimension of hs by E.
This series of vectors is input to R as an input sequence. For each
time-step, the forward hidden state hFt ∈ R

hs and backward hidden
state hBt ∈ R

hs of the last layer of R are concatenated into a vec-
tor ht ∈ R

2hs. Then, D converts ht back to original representation
xoutt ∈ R

d . This process is illustrated in Figure 5.

Note that all poses xt in X are normalized using the mean and
standard deviation of the generated data from Section 4. To apply
the output pose to the character, we first denormalize xoutt and apply
the rotation values. Because the forward kinematics accumulates the
error to the joints at ends, we further process the pose by locking
both feet in the output positions using inverse kinematics.

5.1. Training

Using the generated data from Section 4, our network is trained with
the following loss function:

L(X,Y,Ygt ) = λposeLpose + λtr jLtr j + λ f ootL f oot + λbeginLbegin,

where Lpose, Ltr j, Lfoot , and Lbegin are the poss loss, root trajectory
loss, foot contact loss, and beginning loss, respectively. The weight
for each term is λpose = 1.0, λtr j = 1.0, λ f oot = 0.5, and λbegin = 1.0.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



6 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

The poss loss Lpose forces our network to produce a valid motion
output:

Lpose = 1

T

T∑
t=1

(∥∥routt − rgtt
∥∥
1
+ ∥∥poutt − pgtt

∥∥
1
+

∥∥qoutt − qgtt
∥∥
1
+ ∥∥voutt − vgtt

∥∥
1

)
,

where routt , poutt , qoutt , and voutt are the output root displacement,
root-relative joint positions, parent-relative joint rotations, and joint
velocity, respectively; rgtt , p

gt
t , q

gt
t , and vgtt are their corresponding

ground truth values.

The root trajectory loss makes the output motion follow the
ground truth root trajectory and alleviates the error accumulation
in predicting the root displacement:

Ltr j = 1

T

T∑
t=1

(‖goutt − ggtt ‖1
)
,

where goutt ∈ R
3 and ggtt ∈ R

3 represent the output and ground truth
root transformation, respectively. These vectors consist of the 2D
position on the xz-plane and the rotation around the y-axis, which
are computed by accumulating the predicted root displacement to
the initial identity matrix.

The foot contact loss guides the network to predict the correct
contact labels which will be used in the post-processing:

Lfoot = 1

T

T∑
t=1

(‖φ(coutt ) − cgtt ‖1
)
,

where φ indicates the sigmoid non-linearity.

Lastly, the beginning loss is added tominimize the artefacts found
during runtime. This loss keeps the first few frames of the output
motion close to the input motion at the same time-step, minimizing
the discontinuity that may occur when the output is updated to the
original sequence:

Lbegin = 1

Tbegin

Tbegin∑
t=1

sig

(
t

Tbegin

)(∥∥routt − rt
∥∥
1
+ ∥∥poutt − pt

∥∥
1
+

∥∥qoutt − qt
∥∥
1
+ ∥∥voutt − vt

∥∥
1

)
,

where sig(x) = −1/(1 + exp(5 − 10x)) + 1 is the transformed sig-
moid function and Tbegin is the number of frames used to compute
the loss. We impose the largest loss on the first frame and gradually
decrease the value, so that the network attempts to preserve the first
few frames while creating the best answer for the remaining frames.
We empirically found that using Tbegin = 5 frames for this loss led
to the best results. A further experiment on Lbegin is introduced in
Section 7.4.

6. Runtime

After training, our method can stitchmultiple locomotion sequences
of various lengths into a single smooth motion. First, the input mo-
tions are arranged and aligned in the desired order. For best results,
each input motion should be longer than 10 frames, which is the
minimum length of motion segment created during data generation.

Figure 6: Process of stitching multiple motions in runtime.

Suppose the aligned input motion sequence is K = [x1x2 . . . xTK ],
where xt is a pose vector at time-step t, and TK is the total length of
K. Our method updates the motion within the window of w frames
while repeatedly shifting the window along the K by s frames per
shift, updating the motion in total of u times, as depicted in Figure 6.
Note that next motion should be known in advance because we setw
to include the boundary between adjacent motions. We also set s to
be smaller than w to overlap the windows. After the update, the mo-
tion is cleaned up by blending the small pose differences between
the previous pose of the input window and the first pose of the output
window [Bol16]. For our experiments, we set the blending weight
to decrease to zero over 10 frames.

7. Experiments

In this section, we explain how we implemented our method in de-
tail. Then, we present various locomotion stitching results and the
result from an ablation study that shows the effects of the root tra-
jectory loss and the beginning loss. The results obtained with differ-
ent types of RNN are also compared in the following experiment.
Finally, we compare our method with IB[Bol16] and the motion in-
betweening method (ERD-QV) [HYNP20]. For the runtime experi-
ments of the RNN comparison and ablation study on the beginning
loss, we used w = 60 and s = 30. For all other experiments, we
used w = 180 and s = 90. Please refer to our supplementary video
for animation results.

7.1. Implementation details

Our data pairs were created using the LaFAN1 dataset[HYNP20]
with 60 frames per second. The generated dataset consists of 3435
training data and 381 validation data, each sample being T = 60
frames long. The test data for all experiments were created with mo-
tion clips in the LaFAN1 dataset using combinations unseen during
training. The model was trained for 5000 epochs with a batch size
of 32, which required about four hours for training. An Adam op-
timizer was used with a learning rate of 0.0001. For the refiner, a
dropout of 0.5 was used in the second layer. All training and exper-
iments were conducted with an AMD Ryzen 7 3700X CPU, 32GB
memory, and Nvidia GeForce RTX 3080 GPU.

7.2. Results on locomotion stitching

Here, we describe in detail how locomotion sequences are refined
by RMR using three different experiments. In the first experiment,
as shown in Figure 7a, two motion clips with a length of 180
frames each are aligned and provided as input to RMR. Between the

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 7 of 13

Figure 7: Locomotion stitching results. A, B, and C are from three different experiments. The frames highlighted in red indicate the boundary
where two different locomotion clips meet. Other than the boundary, the poses are shown every 10 frames for clear visualization.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



8 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

Table 1: Comparison to other recurrent neural network cells.

Architecture MSE ↓ (×10−3) NPSS ↓
LSTM 0.668008 0.165049
GRU 0.688607 0.17621
BLSTM 0.422105 0.149565
BGRU (Ours) 0.418925 0.14885

The results using long short-term memory (LSTM), gated recurrent unit
(GRU), bidirectional long short-term memory (BLSTM), and bidirectional
gated recurrent unit (BGRU) are compared.

boundary frames 180 and 181, the input motion has abrupt changes
in the feet position and head rotation. In contrast, the refined motion
holds the feet of the character and gradually matches the locomo-
tion phase of the input, as shown in frame 211. We also observed
that RMR eliminates the discontinuity in head rotation and makes it
smoothly converge to the input motion as the frames progress.

In the second experiment, the input motion is composed of five
locomotion clips with the length of 60-frames each. Figure 7b shows
several frames from the second experiment. As shown in the input
at frames 60 and 61, there are sudden switches in the feet position
within a frame. The refined pose at frame 60 makes a smaller step
compared to the input, preparing for a smooth transition to the next
frames. Then, the character takes another small step in frame 81 to
catch up on the walking phase of the input motion. This shows that
our method can change the timing and size of footsteps as necessary.

In the third experiment, we tested three motion clips of different
lengths: 106, 154, and 179. Figure 7c visualizes frames around the
second boundary. The character in the input pose at frames 259 and
260 abruptly lowers its body, with the head being rotated and feet
positions changed. In the resulting motion, the body of the charac-
ter is gradually lowered over several frames, as shown from frame
249 to frame 270. The character also starts to turn its head before
the boundary and adjusts its feet positions for a continuous transi-
tion. This experiment proves that our method can successfully stitch
multiple locomotion clips with different lengths. For more various
results, please refer to our supplementary video.

7.3. Comparison to other RNNs

We validated our choice of BGRU for the refiner by comparing the
mean squared error (MSE) and NPSS [GMK*19] values acquired
with other types of RNN. Only the architecture of the refiner is re-
placed for each experiment and the scores are computed on the vali-
dation set. As shown in Table 1, the network using BGRU performs
the best. There is a significant difference between using only the for-
ward direction and both the forward and backward directions. This
difference in performance can also be observed visually when the
models slide through the test samples longer than the training data.
As can be seen in the supplementary video (01:47–02:08), the re-
sults produced using the gated recurrent unit (GRU) exhibit notice-
able popping artefacts at the start of each window due to the lack
of context information in the initial hidden vector. Furthermore, as
shown in Figure 8, the root trajectory of the output motion from
GRU frequently deviates from the input. In contrast, our method

Figure 8: Comparison to GRU-based network.

Figure 9: Effect of the root trajectory loss Ltr j on the result mo-
tion. The x-axis represents the frame and the y-axis represents the
distance between the input and output root positions.

using BGRU produces much less artefacts and better preserves the
input trajectory than the method using GRU by utilizing backward
information.

7.4. Ablation study

7.4.1. Root trajectory loss

An ablation study was conducted on the root trajectory loss to
show its effect. We trained two separate models with and with-
out Ltr j, and measured the root position difference between the in-
put and output on the validation set. As presented in Figure 9a,
the model trained with Ltr j incurs smaller distance errors than the
model without Ltr j. By constraining the network to produce the

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 9 of 13

Table 2: Comparison of MSE resulting from the use of different Tbegin.

Tbegin with GT (×10−3) with input (×10−3)

3 0.434587 3.20278
5 (Ours) 0.418925 3.17028
10 0.4275 3.17795

correct global root position, this loss successfully mitigates the
error that may be accumulated when continuously inferring the root
displacement.

The impact of Ltr j is apparent when refining the poses by the
window during runtime. We tested the two models with unseen
sequences longer than the training samples and measured the dis-
tance between the input and output root positions. The measured
distances using one of the test samples are plotted in Figure 9b.
In the figure, the distance produced without using Ltr j increases
dramatically, while that produced using Ltr j remains relatively low.
This suggests that Ltr j effectively preserves the input trajectory even
when refining sequences longer than the training data.

7.4.2. Beginning loss

We evaluated the impact of the beginning loss on the result during
runtime. We trained the network without Lbegin and compared the
test results with those produced by the model that uses all losses.
When tested on an input sequence longer than the training samples,
themodel without Lbegin produced popping artefacts in the beginning
of the update window, as shown in the accompanying video (02:29–
02:48). To determine the Tbegin that best preserves the first few input
poses at the same time-step, we trained three different models that
use different Tbegin. We did not use more than 10 frames because
the discontinuity in the input sequence could affect the training pro-
cess. MSE was computed between the output and ground truth, and
the output and input in all three cases. As shown in Table 2, ours
using Tbegin = 5 achieved the lowest error, producing poses close to
the ground truth and minimizing the possible discontinuity that may
appear during each window update.

7.5. Comparison to motion blending and in-betweening

To examine our approach with other methods, we compared our
method with IB and ERD-QV. Given the task of connecting two dif-
ferent motions, we measured the foot sliding distance on the valida-
tion set. Among the validation data made of two motion segments,
we selected 51 data samples whose first segment is longer than 10
frames to secure the input frames required by ERD-QV.

To compare the performance of each method in the motion stitch-
ing task, we applied IB and ERD-QV as follows. For IB, we interpo-
lated the pose difference between the boundary frames and added it
to the first 30 frames of the subsequentmotion, decreasing the blend-
ing weight to zero. For ERD-QV, we trained it to fill in-between
poses of the ground truth when given the first 10 frames as context
and the last frame as the target. Then, for each validation input, we
removed a window of poses up to 30 frames centred at the frames

Table 3: Comparison of the foot sliding distances produced by inertializa-
tion blending (IB), motion in-betweening (ERD-QV), and our method (Ours)

Method Foot sliding distance

IB 0.0092
ERD-QV 0.0094
Ours 0.0074

where the two motion segments meet. We let ERD-QV fill these
deleted frames and connect the motion segments.

The resulting average foot sliding distances are compared in
Table 3. We measured the foot positional displacement when the
distance between the floor and each foot was less than 2 cm. No
post processing was applied for fair comparison. As shown in the
table, our method outperformed IB and ERD-QV by producing the
smallest amount of foot sliding.

In addition, we qualitatively compared IB and ERD-QV to our
method using the test samples. First, we compared IB to our method
by utilizing five input motions of 60 frames each. Figure 10 shows
several frames close to the second boundary. As can be seen from
frames 120 to 141, IB failed to bend the character’s knee and let the
foot slide on the ground, while ours produced a consistent walking
motion. This proves that employing RNN trained on a large amount
of realisticmotion data can connect differentmotionsmore naturally
compared to the interpolation-based method.

Next, we compared ERD-QV to our method by utilizing three
input motions of 120 frames each. Figure 11 presents the resulting
poses close to the first boundary. As shown in frames 131 and 141,
ERD-QV suffers from a floating character problem, which makes
the output motion unnatural and different from the input. In contrast,
our model refines the given sequences into a continuous motion
while preserving the input poses. Through this experiment, we ver-
ified that our approach, which receives a sequence with no missing
frames and exploits backward information, can perform better than
ERD-QV when connecting different locomotions. The animated re-
sults of these experiments are provided in the supplementary video
(02:49–03:24).

8. Discussion

During the data generation process, retrieving a motion segment us-
ing KNN search and forcing it to be same as the ground truth motion
may lead to many-to-one mapping. Because it is important to match
the phase of the feet when stitching locomotions, we retrieved mo-
tion segments with similar but not identical phases through KNN
search as explained in Section 4. Our model was trained to mainly
edit the latter part of the input to be identical to the ground truth,
because we assumed that this approach would be suitable for real-
time controllers such as motion matching [BC15]. In this process,
motions with different phases can be edited and mapped to the same
output phase. Although this might restrain the diversity in the out-
put, our results show that our method succeeds in automatically re-
fining different footsteps and naturally synchronizing the upper and

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



10 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

Figure 10: Comparison of motion stitching test results obtained with inertialization blending (IB) and our method (Ours). Five input motion
clips of 60 frames each were given. The poses in red highlights indicate the boundary frames. For IB, results were obtained by decreasing the
blending weight to zero over 60 frames.

Figure 11: Comparison of motion stitching test results obtained with motion in-betweening (ERD-QV) and our method (Ours). Three input
motion clips of 120 frames each were given. The poses in red highlights indicate the boundary frames. For ERD-QV, results were obtained by
removing 60 frames centred at the boundary and filling them with the generated poses.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 11 of 13

Figure 12: Comparison of the input and result trajectories as a fail-
ure case. The root trajectory is not preserved well. The poses are
visualized every 20 frames.

lower body movement, which is difficult to achieve through previ-
ous methods.

While our method is able to cope with arbitrary combinations of
locomotion clips, its quality of the output is data-dependent. Our
model can be applied to unseen input motions from other dataset
[SZKS19], but if the input motion largely differs from the training
samples, the output may be overly smoothed out. Similarly, if the
pose differences at the boundary are larger than those in the training
samples, our model may produce unnatural transitions. To gener-
alize our method for use in many applications, we plan to expand
the dataset to include various categories and styles of motion. In
addition, we could take advantage of a more complex network ar-
chitecture than the current network to learn the generalized pattern
of character motion.

In some cases, ourmodel struggles to preserve the exact trajectory
of the input motions, as shown in Figure 12. The main reason is
that the error accumulates as the input is refined during runtime.
To produce results that abide by the input trajectory, we could add
another component to our method. One way would be to employ
a two-step process in which the root trajectory of the raw output
motion is blended to that of the input motion followed by refining
the output again to remove foot sliding artefacts.

At runtime, inferring the given sequence by window may intro-
duce discontinuity artefacts due to the pose difference between the
first frame of each window and the previous frame that is not up-
dated. However, the difference is small enough that applying sim-
ple interpolation in post-processing can easily remove it. Using a
wider window during runtime can also reduce this artefact because
we empirically found that using a larger window size smooths out
poses in a wider range at the cost of losing some sharpness in the
motion. In future work, we can include the previous frame in our
training scheme and add a smoothing loss term to reduce the sud-
den pose differences.

9. Conclusion

In this work, we propose a novel neural network-based motion
stitching method that connects multiple locomotion clips into a sin-
gle natural animation. To acquire the data pairs, we construct a mo-

tion database based on selected motion features and create input
data through KNN search. The generated dataset was used to train
the suggested network, RMR, that consists of an encoder, refiner,
and decoder. During runtime, we first align multiple input motions
in order by matching the root transformation of the last frame in
the preceding motion and that of the first frame in the subsequent
motion. Then, our trained network refines the poses using a sliding
window, until it reaches the end of the aligned sequence.We demon-
strated that ourmethod can combinemany locomotions with various
lengths and inconsistent phases. In the future, we plan to improve
the method of balancing the naturalness of the output motion with
the input pose preservation. We also hope to generalize our method
to stitch a wide range of motions besides locomotion.

Acknowledgements

This research was supported by Culture, Sports and Tourism R&D
Program through the Korea Creative Content Agency grant funded
by Ministry of Culture, Sports and Tourism in 2023 (Project Name:
Development of Universal Fashion Creation Platform Technol-
ogy for Avatar Personality Expression, Project Number: RS-2023-
00228331, Contribution Rate: 100%)

References

[AF02] Arikan O., Forsyth D. A.: Interactive motion genera-
tion from examples. ACM Transactions on Graphics (TOG) 21,
3 (2002), 483–490.

[AKCH21] Aksan E., Kaufmann M., Cao P., Hilliges O.: A
spatio-temporal transformer for 3d human motion prediction.
In 2021 International Conference on 3D Vision (3DV) (2021),
IEEE, pp. 565–574.

[ASK*12] Akhter I., Simon T., Khan S., Matthews I., Sheikh
Y.: Bilinear spatiotemporal basis models. ACM Transactions on
Graphics (TOG) 31, 2 (2012), 1–12.

[BBKK17] Butepage J., Black M. J., Kragic D., Kjellstrom
H.: Deep representation learning for human motion prediction
and classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017), pp. 6158–
6166.

[BC15] Büttner M., Clavet S.: Motion matching – The road to
next gen animation. Proceedings of Nucl.ai (2015).

[Bol16] Bollo D.: Inertialization: High-performance anima-
tion transitions in ’gears of war’. Proceedings of GDC 2018
(2016).

[Bol17] Bollo D.: High performance animation in gears of war
4. In ACM SIGGRAPH 2017 Talks (New York, NY, USA, 2017),
SIGGRAPH ’17, Association for Computing Machinery, Article
22, 2 pages URL: https://doi.org/10.1145/3084363.3085069.

[CAW*19] Chiu H.-k., Adeli E., Wang B., Huang D.-A.,
Niebles J. C.: Action-agnostic human pose forecasting. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV) (2019), IEEE, pp. 1423–1432.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/3084363.3085069


12 of 13 H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching

[CS21] Cui Q., Sun H.: Towards accurate 3d human motion
prediction from incomplete observations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2021), pp. 4801–4810.

[DCLT18] Devlin J., ChangM.-W., LeeK., ToutanovaK.: Bert:
Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805 (2018).

[DSZ*21] Duan Y., Shi T., Zou Z., Lin Y., Qian Z., Zhang B.,
Yuan Y.: Single-shot motion completion with transformer. arXiv
preprint arXiv:2103.00776 (2021).

[FJX*14] Feng Y., Ji M., Xiao J., Yang X., Zhang J. J., Zhuang
Y., Li X.: Mining spatial-temporal patterns and structural sparsity
for human motion data denoising. IEEE Transactions on Cyber-
netics 45, 12 (2014), 2693–2706.

[FLFM15] Fragkiadaki K., Levine S., Felsen P., Malik J.: Re-
current network models for human dynamics. In Proceedings of
the IEEE International Conference on Computer Vision (2015),
pp. 4346–4354.

[FXS12] Feng A. W., Xu Y., Shapiro A.: An example-based mo-
tion synthesis technique for locomotion and object manipulation.
In Proceedings of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (2012), pp. 95–102.

[GMK*19] Gopalakrishnan A., Mali A., Kifer D., Giles L.,
Ororbia A. G.: A neural temporal model for human motion pre-
diction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 12116–12125.

[GR96] Guo S., Robergé J.: A high-level control mechanism for
human locomotion based on parametric frame space interpola-
tion. In Computer Animation and Simulation’96. Springer, 1996,
pp. 95–107.

[GRvSD21] Geleijn R., Radziszewski A., van Straaten J. B.,
Debarba H. G.: Lightweight quaternion transition generation
with neural networks. In 2021 IEEE Conference on Virtual Re-
ality and 3D User Interfaces Abstracts and Workshops (VRW)
(2021), IEEE, pp. 579–580.

[GSAH17] Ghosh P., Song J., Aksan E., Hilliges O.: Learning
human motion models for long-term predictions. In 2017 Inter-
national Conference on 3D Vision (3DV) (2017), IEEE, pp. 458–
466.

[GWLM18] Gui L.-Y., Wang Y.-X., Liang X., Moura J. M.: Ad-
versarial geometry-aware human motion prediction. In Proceed-
ings of the European Conference on Computer Vision (ECCV)
(2018), pp. 786–803.

[HG07] Heck R., GleicherM.: Parametric motion graphs. In Pro-
ceedings of the 2007 Symposium on Interactive 3D Graphics and
Games (2007), pp. 129–136.

[HGMN19] Hernandez A., Gall J., Moreno-Noguer F.: Hu-
man motion prediction via spatio-temporal inpainting. In Pro-

ceedings of the IEEE/CVF International Conference on Com-
puter Vision (2019), pp. 7134–7143.

[HHS*17] Habibie I., Holden D., Schwarz J., Yearsley J., Ko-
mura T.: A recurrent variational autoencoder for human motion
synthesis. In 28th British Machine Vision Conference (2017).

[HK10] Huang Y., Kallmann M.: Motion parameterization with
inverse blending. In International Conference on Motion in
Games (2010), Springer, pp. 242–253.

[HP18] Harvey F. G., Pal C.: Recurrent transition networks for
character locomotion. In SIGGRAPHAsia 2018 Technical Briefs.
2018, pp. 1–4.

[HSKJ15] Holden D., Saito J., Komura T., Joyce T.: Learn-
ing motion manifolds with convolutional autoencoders. In SIG-
GRAPH Asia 2015 Technical Briefs. 2015, pp. 1–4.

[HYNP20] Harvey F. G., Yurick M., Nowrouzezahrai D., Pal
C.: Robust motion in-betweening. ACM Transactions on Graph-
ics (TOG) 39, 4 (2020), 60–1.

[JZSS16] Jain A., Zamir A. R., Savarese S., Saxena A.:
Structural-rnn: Deep learning on spatio-temporal graphs. In Pro-
ceedings of the IEEEConference onComputer Vision and Pattern
Recognition (2016), pp. 5308–5317.

[KAS*20] Kaufmann M., Aksan E., Song J., Pece F., Ziegler
R., Hilliges O.: Convolutional autoencoders for human motion
infilling. In 2020 International Conference on 3D Vision (3DV)
(2020), IEEE, pp. 918–927.

[KBS*22] Kim J., Byun T., Shin S., Won J., Choi S.: Conditional
motion in-betweening. arXiv preprint arXiv:2202.04307 (2022).

[KG03] Kovar L., GleicherM.: Flexible automatic motion blend-
ing with registration curves. In Symposium on Computer Anima-
tion (2003), vol. 2, San Diego, CA, USA.

[KG04] Kovar L., Gleicher M.: Automated extraction and pa-
rameterization of motions in large data sets. ACM Transactions
on Graphics (ToG) 23, 3 (2004), 559–568.

[KGP02] Kovar L., GleicherM., Pighin F.: Motion graphs. ACM
Transactions on Graphics (TOG) 21, 3 (2002), 473–482.

[LC10] Lou H., Chai J.: Example-based human motion denoising.
IEEE Transactions on Visualization and Computer Graphics 16,
5 (2010), 870–879.

[LVC*21] Li J., Villegas R., Ceylan D., Yang J., Kuang Z.,
Li H., Zhao Y.: Task-generic hierarchical human motion prior
using vaes. In 2021 International Conference on 3DVision (3DV)
(2021), IEEE, pp. 771–781.

[LZX*17] Li Z., Zhou Y., Xiao S., He C., Huang Z., Li
H.: Auto-conditioned recurrent networks for extended com-
plex human motion synthesis. arXiv preprint arXiv:1707.05363
(2017).

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



H. Kim et al. / Recurrent Motion Refiner for Locomotion Stitching 13 of 13

[LZZ*19] Li S., Zhou Y., Zhu H., Xie W., Zhao Y., Liu X.: Bidi-
rectional recurrent autoencoder for 3d skeleton motion data re-
finement. Computers & Graphics 81 (2019), 92–103.

[LZZL20] Li S.-J., Zhu H.-S., Zheng L.-P., Li L.: A perceptual-
based noise-agnostic 3d skeleton motion data refinement net-
work. IEEE Access 8 (2020), 52927–52940.

[MBR17] Martinez J., Black M. J., Romero J.: On human mo-
tion prediction using recurrent neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2017), pp. 2891–2900.

[MK05] Mukai T., Kuriyama S.: Geostatistical motion interpola-
tion. In ACM SIGGRAPH 2005 Papers. 2005, pp. 1062–1070.

[MLCC17] Mall U., Lal G. R., Chaudhuri S., Chaudhuri P.:
A deep recurrent framework for cleaning motion capture data.
arXiv preprint arXiv:1712.03380 (2017).

[OVH*22] OreshkinB.N., ValkanasA., Harvey F. G.,Ménard
L.-S., Bocquelet F., Coates M. J.: Motion inbetweening via
deep δ-interpolator. arXiv preprint arXiv:2201.06701 (2022).

[PGA18] Pavllo D., Grangier D., Auli M.: Quaternet: A
quaternion-based recurrent model for human motion. arXiv
preprint arXiv:1805.06485 (2018).

[PSKS04] Park S. I., Shin H. J., Kim T. H., Shin S. Y.: On-line
motion blending for real-time locomotion generation. Computer
Animation and Virtual Worlds 15, 3-4 (2004), 125–138.

[PSS02] Park S. I., ShinH. J., Shin S. Y.: On-line locomotion gen-
eration based on motion blending. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (2002), pp. 105–111.

[RCB98] Rose C., Cohen M. F., Bodenheimer B.: Verbs and ad-
verbs: Multidimensional motion interpolation. IEEE Computer
Graphics and Applications 18, 5 (1998), 32–40.

[RISC01] Rose III C. F., Sloan P.-P. J., Cohen M. F.: Artist-
directed inverse-kinematics using radial basis function interpola-
tion. Computer Graphics Forum 20, (2001), 239–250.

[SZKS19] Starke S., Zhang H., Komura T., Saito J.: Neural
state machine for character-scene interactions. ACM Transac-
tions on Graphics 38, 6 (2019), 209–1.

[SZQ*21] ShuX., ZhangL., Qi G.-J., LiuW., Tang J.: Spatiotem-
poral co-attention recurrent neural networks for human-skeleton
motion prediction. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44, 6 (2021), 3300–3315.

[TS06] Tangkuampien T., Suter D.: Human motion de-noising
via greedy kernel principal component analysis filtering. In
18th International Conference on Pattern Recognition (ICPR’06)
(2006), vol. 3, IEEE, pp. 457–460.

[TWH*22] Tang X., Wang H., Hu B., Gong X., Yi R., Kou Q.,
Jin X.: Real-time controllable motion transition for characters.
arXiv preprint arXiv:2205.02540 (2022).

[VSP*17] Vaswani A., Shazeer N., Parmar N., Uszkoreit J.,
Jones L., Gomez A. N., Kaiser Ł., Polosukhin I.: Attention
is all you need. Advances in Neural Information Processing Sys-
tems 30 (2017).

[WCX19] Wang Z., Chai J., Xia S.: Combining recurrent neu-
ral networks and adversarial training for human motion synthesis
and control. IEEE Transactions on Visualization and Computer
Graphics 27, 1 (2019), 14–28.

[WH97] Wiley D. J., Hahn J. K.: Interpolation synthesis for ar-
ticulated figure motion. In Proceedings of the 1997 Virtual Real-
ity Annual International Symposium (VRAIS ’97) (USA, 1997),
VRAIS ’97, IEEE Computer Society, p. 156.

[WHSZ19] Wang H., Ho E. S., Shum H. P., Zhu Z.: Spatio-
temporal manifold learning for human motions via long-horizon
modeling. IEEE Transactions on Visualization and Computer
Graphics 27, 1 (2019), 216–227.

[XFJ*15] Xiao J., Feng Y., Ji M., Yang X., Zhang J. J., Zhuang
Y.: Sparse motion bases selection for human motion denoising.
Signal Processing 110 (2015), 108–122.

[XSZF16] Xia G., Sun H., Zhang G., Feng L.: Human motion
recovery jointly utilizing statistical and kinematic information.
Information Sciences 339 (2016), 189–205.

[ZLB*20] Zhou Y., Lu J., Barnes C., Yang J., Xiang S., et al.:
Generative tweening: Long-term inbetweening of 3d human mo-
tions. arXiv preprint arXiv:2005.08891 (2020).

[ZvdP18] Zhang X., van de Panne M.: Data-driven autocomple-
tion for keyframe animation. In Proceedings of the 11th Annual
International Conference on Motion, Interaction, and Games
(2018), pp. 1–11.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supporting Video S2

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.


