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Abstract
Realistic crowd simulation has been pursued for decades, but it still necessitates tedious human labour and a lot of trial and
error. The majority of currently used crowd modelling is either empirical (model-based) or data-driven (model-free). Model-
based methods cannot fit observed data precisely, whereas model-free methods are limited by the availability/quality of data
and are uninterpretable. In this paper, we aim at taking advantage of both model-based and data-driven approaches. In order to
accomplish this, we propose a new simulation framework built on a physics-based model that is designed to be data-friendly. Both
the general prior knowledge about crowds encoded by the physics-based model and the specific real-world crowd data at hand
jointly influence the system dynamics. With a multi-granularity physics-based model, the framework combines microscopic and
macroscopic motion control. Each simulation step is formulated as an energy optimization problem, where the minimizer is the
desired crowd behaviour. In contrast to traditional optimization-based methods which seek the theoretical minimizer, we designed
an acceleration-aware data-driven scheme to compute the minimizer from real-world data in order to achieve higher realism by
parameterizing both velocity and acceleration. Experiments demonstrate that our method can produce crowd animations that
are more realistically behaved in a variety of scales and scenarios when compared to the earlier methods.

Keywords: crowd simulation, data-driven, multi-granularity

CCS Concepts: • Computing methodologies → Physical simulation

1. Introduction

Human crowds are ubiquitous and have attracted wide research
interests, among which replicating naturalistic crowd behaviours
has been an important task in computer animation, as well as
psychology, transportation research, architectural design, safety
and security, and so on. However, automated and realistic crowd
simulation is still challenging after decades of research and practice.

Existing crowd simulation methods can be conceptually divided
into two categories: empirical and data-driven. Empirical methods
abstract observed crowd behaviours into explicit mathematical
models and deterministic systems. They can model various crowd
behaviours at different levels of granularity, for example, macro-
scopic pedestrian flows [TCP06, NGCL09], microscopic local inter-
actions [Rey87, HM95, KSG14], and mesoscopic combinations of
local behaviours and global navigation [PCQ12]. We refer to these
methods as model-based, since they are explicitly formulated by

observed human behaviours using explicable mathematical terms.
However, as pedestrian interactions are complex and subtle, model-
based approaches tend to generate crowdmotions with limited plau-
sibility and diversity. This is because these models are usually based
on simplified and idealized hypotheses with deterministic nature.

On the other hand, data-driven crowd simulation methods tend to
rely on real data, which we refer to as model-free methods. These
methods attempt to establish a model that has sufficient learning
capacity so that they can fit complex crowd data in a black-box
manner. Most early model-free methods are based on simple
strategies: such as rule-based trajectory generation by connecting
patches or trajectory segments [LCL07, JCP*10, CC14]. These
methods can generate plausible results, but the variety of the sim-
ulation entirely depends on that of input data. A recent data-driven
method [RXX*21] attempts to solve an optimization-based model
in a solution space using real-world velocities. This method mimics
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Figure 1: Overview of our simulation framework. Taking the real data as input (a), our method employs a physics-inspired energy model which
describes path planning with a multi-granularity control (b) and solves the minimizer in human-solution space by leveraging an acceleration-
aware data-driven scheme. As a result, we can generate different crowd behaviours in diverse scenes (c).

the data to make decisions by selecting a velocity from the data
that is similar to an agent’s current velocity. However, as it ignores
natural acceleration, which is critical to realistic movements, the
output motion is unrealistic. Furthermore, most data-driven meth-
ods consider only simplified local interactions, for example, local
collision avoidance, and ignore macroscopic information. More
recently, deep learning techniques have been used to learn more
abstract behavioural models [AGR*16, vTGL*20]. Although they
have better data-fitting capabilities, their generality is still limited
by the training data and the models themselves are not interpretable.
We argue that a general simulation framework with better real-
ism and natural trajectories that integrates hierarchical empirical
knowledge of crowd behaviours with a model-friendly data-driven
scheme is required to improve the plausibility of crowd simulations.

In this paper, we aim for a new methodology that leverages the
advantages of both model-based and data-driven approaches. To
this end, we propose a new simulation framework grounded on
a physics-based model which is designed to be data-friendly, so
that the system dynamics is driven simultaneously by the general
prior knowledge of crowds encoded by the physics-based model
and the specific real-world crowd data at disposal (see Figure 1).
The physics-based model is a multi-granularity approach. At the
microscopic level, it models a wide range of local individual be-
haviours as energies, such as individual motions and local interac-
tions. At the macroscopic level, a global control model is utilized
for goal-directed guidance for agents, and in this paper, we primar-
ily focus on group motion control and treat the entire crowd as a
continuum [TCP06] to enforce directed flow generation. The whole
model is formulated as a dynamical system described by an energy
function, where the individual behaviour is modelled as the mini-
mizer of an energy minimization problem.

Although employing energy-based formulations to capture
crowd motions has been attempted before [GCC*10, KSNG17],
our model differs from previous work in that it is data-friendly.
Besides, we employ an acceleration-aware data-driven optimization
scheme to mimic real-world velocity changes, which can improve
the model’s realism while maintaining its scalability and general-
izability. Instead of seeking a solution that minimizes the energy

in the entire solution space, which would make the minimizer only
ideal in theory as in existing methods, we seek the minimizer in a
human-solution subspace, parameterized by motion features com-
puted from real-world data, so that the simulated behaviours mimic
the real ones. The key underlying assumption is that the global
optimum in the entire solution space does not necessarily lead to
realistic behaviours; it is the human-solution space (a subspace of
the entire solution space) where naturalistic human behaviours rise.
Consequently, we explicitly construct the human-solution space
based on real data and restrict the solution within it. This means
we need to explicitly parameterize this space. We investigate the
human solution using first- and second-order motion dynamics (i.e.
velocity and acceleration), which represent short-term motion de-
cisions and natural velocity changes. To that end, we parameterize
the space by extracting these motion dynamics from real-world
trajectories and constructing a reference dataset for optimization.
We estimate velocities from real trajectories using finite differences
of positions and encode the motion dynamics in the dataset as two
consecutive timestep velocities in a trajectory. This expression of
motion dynamics facilitates data generalization in our simulation
framework. During simulation, velocity is regarded as the motion
decision. We optimize for the new velocities and update the system
with an implicit Euler scheme for numerical stability. Formally, the
contributions of the paper include:

• a general simulation framework that introduces real data as
human-solution space to enhance a dynamics model and gener-
ate realistic crowd animations.

• a generic and data-friendly physics-based model that integrates
behaviour models at different levels of simulation granularity to
generate diversified crowd behaviours.

• an acceleration-aware data-driven optimization scheme that gen-
erates plausible trajectories in a natural human-solution space by
referring to consecutive velocities in the dataset.

The rest of this paper is organized as follows. After briefly re-
viewing the related work in Section 2, we give an overview of
our approach in Section 3 and elaborate our optimization-based
data-driven model and the human-solution space in Section 4 and
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Section 5, respectively. Then we show simulation results and eval-
uation in Section 6, and conclude the limitations and future work in
Section 7.

2. Related Work

2.1. Empirical crowd models

The empirical methods abstract observed crowd behaviours into
mathematical models and deterministic systems, which can be clas-
sified intomicroscopic andmacroscopicmodels, in terms of the sim-
ulation granularity. Microscopic approaches regard individuals as
autonomous agents, and primarily focus on modelling the low-level
behavioural details of each agent. They can be further divided into
three categories: force-based, velocity-based and vision-based.

Force-based methods use physical forces to model the individual
interactions. Early force-based methods include the Boids model
where separation, alignment and cohesion behaviours are modelled
by physical forces [Rey87], and the social force model where pedes-
trian dynamics is modelled by sociological forces [HM95]. Later,
several extensions and variants have been proposed to model dif-
ferent pedestrian behaviours, for example high-density crowds that
combine physical forces with psychological and geometrical rules
[PAB07], anticipatory models using the notion of time to colli-
sion to predict future collisions and generate smooth trajectories
[KHvBO09, ZIK11, KSG14]. Recently, the force-based model has
been applied in simulating crowd behaviours in heterogeneous traf-
fic scenarios [CJH*19, HCJ21]. Compared to the traditional force-
based models that only consider the interactions among human
agents, their methods also consider the interactions between human
agents to other types of agents (e.g. cars, bikes). Force-based mod-
els can generate a wide range of crowd behaviours by combining
different user-defined behavioural models. However, because they
ignore prior knowledge hidden behind real-world crowd data, such
as real-world motion decisions and natural velocity changes, their
results may be unrealistic. Our optimization-based method, on the
other hand, is more data-friendly because we use real data for real-
time realistic crowd simulation.

While force-based approaches have the advantage of simple for-
mulation, they normally require laborious parameter tuning, and
suffer from numerical instability. In parallel, velocity-based mod-
els were proposed. They usually use a cost function to compute
a new velocity for an agent in a continuous velocity space [vd-
BLM08]. There are numerous velocity-based methods, for exam-
ple a predictive pedestrian interaction model that uses a predictive
time-varying space area to predict the future collision [PPD07], a
pedestrian interaction model using the minimum predicted distance
for motion adaptation[POO*09], a biomechanical model based on
the principle of least efforts [GCC*10], an extension of the RVO
model [vdBLM08] to simulate human-like behaviour of agents in
crowds [KO10], a cognitive science approach based on behavioural
heuristics [MHT11] and combinations of velocity-based and force-
based methods to simulate multi-agent interactions [KGM13] and
handle the dense crowds [KGH*15].

Vision-based approaches can be regarded as variants of velocity-
based methods, while they can better simulate the perception-action
of human beings. These approaches include synthetic-vision mod-

els [OPOD10, WJDL13, HOD15], perception field based models
[KSH*12], gradient-based models [DMN*17] and optimal flow
based models [LCMP19], and so on. Besides, a recent microscopic
crowd simulation framework has been proposed to combine existing
models by optimization [vTGL*20].

Besides, there are also other microscopic methods that are used
in different applications, for example the implicit crowd model for
large simulation time intervals [KSNG17], position-based methods
[WLJT17], proactive crowd models that select and execute proac-
tive steering strategies [LCM*18], etc.

Microscopic models work well for local navigation/collision
avoidance. However, most of them rely on additional control for
high-level behaviours. In contrast, macroscopic approaches regard
a crowd as continuous flows and focus on modelling the dynam-
ics of the entire crowd, for example continuum dynamics [TCP06,
JXM*10], aggregate dynamics [NGCL09] and navigation field
[PvdBC*11, TWCL18]. There are also hybrid models that extend
the continuum dynamics from an agent based perspective [PCQ12].
These macroscopic approaches are hybrid methods that enforce lo-
cal interactions separately from the macroscopic algorithm, which
affects their generalizability.

The aforementioned empirical methods are model-based, as they
explicitly model observed human behaviours using explicable terms
in their mathematical models. However, as the pedestrian interac-
tions are complex and subtle, the simulation results of empirical
models tend to lack plausibility and diversity, because these mod-
els are usually based on simplified and idealized hypotheses with
deterministic nature, for example least-effort. To this end, the pro-
posed method utilizes a data-driven scheme to generate realistic and
diversified crowd behaviours.

2.2. Data-driven crowd simulation

With the improvement of data acquisition techniques, data-
driven methods are employed to generate realistic crowd ani-
mations [LCL07, JCP*10, ZTC13, CC14, SHW*18, HXZW20,
XYWJ20]. These methods extract patches or trajectory segments
from input datasets and either connect them under pre-defined rules
or use them to learn some characteristics of an agent’smotion. Those
methods can generate plausible crowd behaviours but are limited by
the data. Recently, Ren et al. proposed a data-driven method (Heter-
Sim) that computes velocity from real datasets to minimizing an
energy function [RXX*21]. This method can generate reasonable
crowd behaviours, but its optimization scheme ignores second-order
real-world motion dynamics, resulting in trajectories with unrea-
sonable accelerations compared to real data and unrealistic sim-
ulation results. Furthermore, it only takes into account low-level
motions and ignores high-level and macroscopic perspectives. On
the contrary, our physics-based model allows for both microscopic
and macroscopic motion control in order to generate a variety of
crowd behaviours.

In parallel, machine learning approaches have been used to learn
human behaviours [WOO17]. Decision trees have been used to
build classifiers for pedestrian motion decisions [BKSB15], and
support vector machines have been used to simulate dense crowd
[MON*16]. These traditional machine learning models do not have
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enough learning capacity for complex crowd scenarios, as hu-
man crowd behaviours are complex and subtle. To this end, deep
learning-based models have been proposed to learn the arbitrar-
ily non-linear pedestrian dynamics, to abstract behavioural pat-
terns from motion trajectories for simulation or prediction. Recur-
rent Neural Networks with social pooling have been used to learn
the interactions among pedestrians and predict pedestrians’ trajec-
tories [AGR*16]. Generative Adversarial Networks (GANs) with
attention-based pooling have been used to sample plausible pre-
dictions of trajectories for the pedestrians in the scene [GJF*18].
Convolutional neural networks have been used to learn agent space
heat maps for agent navigation [Osh19]. Residual networks have
also been used to learn pedestrian movements [YZLL20]. These
deep learning-based methods can generate more plausible or more
accurate results than traditional simulation methods. However, the
variety of the simulation results is even more strictly adhere to
the data and therefore lack diversity. In addition, reinforcement
learning has also been employed, with less dependency on data,
to simulate the whole crowd [CP15, YZLL19] and agent-based be-
haviours [LWL18]. These methods are focused on the microscopic-
level policies to control agents, which loses the high-level behaviour
characteristics in the data. Comparatively, our method makes use of
both microscopic and macroscopic approaches to consider both the
local interactions and the global path planning, which makes the
method more general and scalable. Furthermore, when compared to
previous data-driven methods, our framework’s acceleration-aware
data-driven optimization scheme can generate plausible crowd be-
haviours in a human-solution spacewhile retaining themodel’s scal-
ability and generalizability.

2.3. Parameter estimation and crowd evaluation

There are also works that focus on improving crowd simulation
quality by automatically estimating parameters in their parameter-
ized crowd simulation models [WGO*14, BKHF14, CLH*23] or
evaluating simulation quality by developing an evaluation bench-
mark framework [SKFR09] or assessing the results’ similarity with
real-world data [LCSCO09, CKGC14, WOO17]. It is worth noting
that our model can be easily combinedwith them. Furthermore, Kim
et al. [KBB*16] combine parameter estimation with simulation by
employing statistical models to estimate dynamics characteristics
from real-world data in order to update agents’ velocity. Themethod
can generate realistic crowd behaviour based on real-world data.
However, it only takes into account local motion control and dis-
regards high-level perspectives. On the contrary, our physics-based
model uses an acceleration-aware data-driven optimization scheme
to generate various crowd behaviours at both the microscopic and
macroscopic levels.

3. Methodology Overview

Our method can be conceptually described as a two-phase process:
the preprocessing stage and the simulation stage (see Figure 2). In
preprocessing, a reference dataset is generated from real crowd data
as the human-solution space (see Section 5) and the motion sce-
nario is initialized. The reference dataset consists of several features
extracted from real tracklets of human crowds including estimated
consecutive velocities. The scene initialization is also performed at

Figure 2: The pipeline of our method.

the preprocessing stage, with different goals, obstacles and initial
states of individuals. The whole environment is represented by a
2D grid.

Our method makes full use of the motion features extracted from
real data for simulation, during which we employ an acceleration-
aware data-driven optimization approach to update each individ-
ual by mimicking real-world continuous motion decisions (see Sec-
tion 4.1). For every time step, a continuous collision detectionmodel
is employed to generate collision-free trajectories (see Section 4.2),
and a continuousmacroscopic velocity field that spans the free space
in the environment is calculated to generate a preferred velocity for
each individual (see Section 4.3). Our model then selects a veloc-
ity from the reference dataset that minimizes an objective function
which incorporates different energy terms.

4. Data-Driven Continuum Motion Control

The reference dataset is denoted as D = {dv}, dv = (varr, v) ∈ R
2 ×

R
2, where v is a velocity estimated from a real tracklet to update

an agent’s motion state, and varr is the velocity in the associated
real tracklet at the previous timestep of v. We regard each pedes-
trian as a disk-shaped agent with radius r, and the motion state of
each agent can be characterized by its position and velocity, that
is s = (p, v) ∈ R

2 × R
2. Given a crowd with N agents, the motion

state of an agent i at time t is sti = (pti, v
t
i ). We further denote the

motion state of the whole crowd as St = {sti|i = 1, 2, . . . ,N}, the
whole motion environment as ENVt , and the macroscopic velocity
field is Vg. In detail, ENVt includes the detailed information of the
motion scenario and all the environmental objects such as obstacles
and goals. Our stepping scheme computes the agent’s new motion
state after a time step in an implicit Euler fashion:

vt+1
i = argmin

v∈dv∈D
E(i, dv, St ,ENVt ,Vg),

pt+1
i = pti + vt+1

i �t,
(1)

where the new velocity vt+1
i ∈ dv ∈ Dminimizes the objective func-

tion E, �t is a timestep, and pt+1
i is the position at time t + 1. The

objective function E is defined as:

E(i, dv, St ,ENVt ,Vg) = Edf + Eintf + Emc, (2)

where Edf is the basic drive force, Eintf is the agent-agent and agent-
environment interaction force, Emc is the macroscopic control force.
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ALGORITHM 1. Motion State Update at Time t

For each agent, the minimization of E is to calculate a new velocity
vt+1
i by selecting a v ∈ dv ∈ Dwhose corresponding varr is similar to
the agent’s current velocity. For brevity, we use v̂ and v to represent
the direction and the magnitude of the velocity v, respectively. The
algorithm for updating the motion state of the crowd is illustrated in
Algorithm 1.

4.1. Basic internal drive

We define an energy term Edf to model the force that drives the
agents to make real-world motion decisions and keep moving. The
energy contains a state similarity term Ess for simulating motion de-
cisions in real data, as well as a direction continuity term Edc for
trajectory smoothness:

Edf = Ess + Edc. (3)

State similarity. Given a data sample dv = (varr, v) ∈ D, we as-
sume that the chosen velocity v ∈ dv ∈ D is reasonable when an
agent’s current motion state is similar to that in the real data. The
goal of the state similarity energy Ess is to choose a reasonable ve-
locity for each agent in order to mimic the motion decision in real
trajectories and generate trajectories that are similar to the real data.
For an agent i at time t, Ess calculates the difference between the
agent’s current velocity vti and the previous velocity varr ∈ dv ∈ D
in the reference dataset. Ess takes into account the similarity of the
previous direction Edir and magnitude Emag:

Ess = wdirEdir + wmagEmag,

Edir = ‖v̂arr − v̂ti‖2,
Emag = |varr − vti |,

(4)

where Edir and Emag compute the direction and magnitude difference
between varr and vti . wdir ≥ 0 and wmag ≥ 0 are the weights of Edir
and Emag, respectively. The state similarity energy is defined as the
ability to generate plausible trajectories that are similar to the real
data by using a physics-based model to mimic real-world motion
dynamics (continuous velocity changes).

Trajectory smoothness. We also model an extra force for trajec-
tory smoothness as a direction continuity energy Edc, which mea-
sures the difference between the direction of the selected velocity v̂
and the current direction of the agent v̂ti :

Edc = wdc · ‖v̂ − v̂ti‖2, (5)

wherewdc ≥ 0 is the weight of the energy. While trajectory smooth-
ness is commonly employed in crowd simulation, state similarity,
which incorporates velocity change to make motion decisions that
mimic real data, is less frequently considered. This is to exploit the
motion dynamics of the human-solution space in our context.

4.2. Microscopic interaction

Interactions exist between an agent and other agents or the envi-
ronment. They affect the agent decisions in, for example collision
avoidance. We define an interaction energy term Eintf, which in-
cludes an agent-agent term Eaa to model the interactions among
agents, and an agent-environment (agent-env) term Eae to model
agents’ reactions to the environment:

Eintf = Eaa + Eae. (6)

4.2.1. Inter-agent interactions

To generate collision-free trajectories, the agent-agent interaction
energy Eaa models the instantaneous interactions to avoid possible
collisions in a short period (a time step �t), and the anticipatory
interactions to predict possible collisions in a longer term (T�t and
T > 1). Eaa is formulated as:

Eaa = winsCAEinsCA + wantiCAEantiCA, (7)

where EinsCA is the instantaneous interaction energy, EantiCA is the
anticipatory interaction energy, with weights winsCA, wantiCA ≥ 0.

Instantaneous interaction. To prevent agent collisions, instanta-
neous interaction is defined as maintaining inter-agent separations.
To that end, the instantaneous interaction energy EinsCA is defined
to select a velocity for an agent i to separate it from the potential
collision neighbours, assuming that the collision neighbours of an
agent i are the agents whose distance to this agent is within a range
RIns = 2vmax�t [GNCL14], where vmax is the maximum velocity in
the dataset.

Assuming that agent i chooses a velocity v ∈ dv ∈ D and a collid-
ing neighbour j holds its current velocity vtj, we use a distance-based
scheme similar to that used in [RXX*21] to model the instantaneous
interaction:

EinsCA =
∑
j∈InsN

e
(
1−d

(
�t,v,sti ,s

t
j

)
/dc

)
, (8)

where InsN is the set of instantaneous collision neighbours,
d(�t, v, sti, s

t
j ) is the predicted distance of the two agents at time

t + 1, and dc is a constant as the comfort distance between agents.

It is worth noting that our method defines short-term collision
neighbours differently than [RXX*21], where the collision neigh-
bours are the agents whose predicted distance from the focal agent
is within a range dc. The instantaneous collision avoidance method
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Figure 3: The visualization of EinsCA. The discontinuity of EinsCA
(blue) in [RXX*21] is smoothed by our method (orange).

works well for separating agents, but motion jumps may occur dur-
ing simulation due to the discontinuity of the energy function at the
truncation distance dc (see the blue curve in Figure 3). Our method
defines EinsCA in a smoother way to separate agents and keep the dis-
tance between agents around the comfort distance dc (see the orange
curve in Figure 3). Besides, we calculate the instantaneous collision
avoidance energy in an anisotropic manner by summing each en-
ergy. The goal of such a design is to keep the peak energy value
from disappearing while maintaining sensitivity in detecting poten-
tial collisions.

Continuous collision detection. Equation (8) is designed to avoid
short-horizon collisions and keep agents apart. However, agents
may still collide at some point t ′ = t + α′�t, α′ ∈ (0, 1] during a
single simulation step. Therefore, we employ a continuous collision
detection method. Denoting d(�t, v, sti, s

t
j ) as the distance between

two agents at time t ′:

d
(
�t, v, sti, s

t
j

) = ‖pt ′i − pt
′
j ‖2 − (ri + r j ), (9)

where pt
′
i = pti + (α′�t )v and pt

′
j = ptj + (α′�t )vtj are the predicted

positions of the two agents at time t ′. Under the assumption of tra-
jectory linearity within a timestep, α′ is calculated based on the time
coefficient α when the two agents are closest (i.e. the predicted dis-
tance at time t + α�t is 0):

α′ =
{

α, 0 < α ≤ 1,

1, others.

‖pt+α�t
i − pt+α�t

j ‖2 − (ri + r j ) = 0.

(10)

Figure 4 depicts the scenarios in which α will be calculated at var-
ious intervals. In Equation (10), α′ ∈ (0, 1) means that, the two
agents will collide during a timestep, and the predicted distance is
0 in this situation. Other situations mean that the predicted distance
is the distance at time t + �t.

Anticipatory interaction. During navigating through crowds, hu-
mans also consider long-horizon collision avoidance, which we de-
fine as anticipatory interaction. We model the potential anticipatory
collision between two agents using the colliding time α computed
in Equation (10) when two agents will collide in the far future:

EantiCA =
∑
j∈AntiN

e(1−α/αc ), α ≥ 0, (11)

where AntiN is the set of long-horizon collision neighbours, and
αc >> 1 is a truncation time to reduce the influence of potential

Figure 4: Simple illustrations for situations in the continuous col-
lision detection method. In each figure, the disks with the deepest
colour are the current positions of two agents at time t, disks with
the lightest colour are the predicted positions when the two agents
collide with each other at time t + α�t, and the other disks are the
predicted positions at time t + �t.

collisions in the far future. We empirically set αc = 3/�t in our
experiments. For computing performance, the long-range collision
neighbours are the agents whose distance from agent i is within a
certain range Ranti = 2vmaxαc�t [GNCL14].

4.2.2. Agent-environment interactions

The agent-environment interaction energy Eae models agents’ in-
stantaneous reactions to avoid impending environmental obstacles
such as walls and buildings. Wemodel potential instantaneous colli-
sions between an agent i and an obstacle kwithin the short-term col-
lision range RIns in Section 4.2. To avoid possible collisions within
a timestep, we use the same continuous collision detection method
as Equation (8) to predict the distance between the agent and an
obstacle. Then Eae can be defined as:

Eae = wae

∑
k∈InsEnv

e
(
1−d

(
�t,v,sti ,p

t+1
k

′)
/de

)
, (12)

where wae ≥ 0 is the weight, InsEnv is the set of the impending
colliding obstacles, pt+1

k
′
is the predicted obstacle position, and

d(�t, v, sti, p
t+1
k

′
) is the predicted distance.

It should be noted that anticipatory collision avoidance for agent-
environment interaction, such as that in Equation (12) for agent-
agent collision avoidance, is not considered in this section because
it can be handled well by the macroscopic continuum control (see
Section 4.3).

To calculate Eae, we use the grid to find neighbouring objects,
and the cells containing objects are considered obstacles. In Equa-
tion (12), each distance calculated is the distance between an agent
i and the centre of cell k, that is d(i, k) = ‖pi − pk‖2 − ri −

√
2
2 l,

where l is the side length of the cell. Because we can discretize
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both regular and irregularly shaped obstacles into grid cells, our ap-
proach can handle obstacles of any shape. When the obstacle is a
disk-shaped object, the predicted distance can be calculated as the
distance between the agent’s predicted position and the predicted
position of the centre of the obstacle to simplify the calculation and
improve performance.

4.3. Macroscopic control

Aside from individual agent local behaviours, we must also drive
goal-directed behaviours for individual agents or model global be-
haviours such as groups, flows, and so on. Not only are they com-
monly observed in the real world, they can also be utilized for user-
defined control in simulation. Therefore, we introduce a continuum
control force term Emc to provide macroscopic control that drives
each agent to follow a global path. We assume that at every time
step, the continuum control model computes a macroscopic control
velocity based on each agent’s local surroundings and the predicted
global motion cost. The energy term Emc computes a velocity that
is similar to the desired macroscopic control velocity:

Emc = wmdirEmdir + wmmagEmmag, (13)

where Emdir is the macroscopic control direction term and Emmag
is the control magnitude term. wmdir ≥ 0 and wmmag ≥ 0 are
their weights.

The macroscopic control can be realized by a global veloc-
ity field. Although our framework can employ any method for
the velocity field calculation, we employ a continuum crowd
model [TCP06] which has a similar representation of the global mo-
tion. In [TCP06], the agents in a group typically have the same goal,
and for each group, a macroscopic velocity field Vg is generated as
a position-related function, and each agent in this group is given a
preferred velocity by interpolatingVg. In terms of diverse behaviour
control, in our method, the macroscopic continuum control model
can be used not only for generating group behaviours that regard a
pedestrian group as a whole with a common goal, but it can also
be used for global path planning for individual agents with distinct
goals. For an agent i at time t, Emdir and Emmag are calculated as:

Emdir = ‖v̂ − V̂g(pti )‖2,
Emmag = |v −Vg(pti )|,

(14)

where V̂g(pti ) is the preferred direction andVg(p
t
i ) = ‖Vg(pti )‖ is the

preferred speed.

The macroscopic velocity field Vg can be represented by the op-
timal path from each position to a goal [TCP06]. Furthermore, cal-
culating the optimal path is equivalent to minimizing the total cost
based on three factors: total path length, total travel time and total
repulsion effect from obstacles, with the cost function defined as:

Cost = wd

∫
P
1ds︸ ︷︷ ︸

path length

+wt

∫
P
τds︸ ︷︷ ︸

travel time

+wr

∫
P
Rds︸ ︷︷ ︸

repulsion force

=
∫
P
Cds, where C ≡ wd + wt · τ + wr · R,

(15)

where wd, wt and wr are weights, and wd + wt + wr =
1, wd, wt, wr ≥ 0, τ is the travel time. R is environment-repulsion
force. All integration is conducted along the whole path. The higher
wr is, the more repulsive the obstacles are.

The grid is used to discretize Equation (15), and a potential func-
tion � : R

2 → R is defined over cells. At the goal, we have � = 0.
For anywhere else, � satisfies an Eikonal equation: ‖∇�(p)‖ = C.
In each time step, the velocity of a crowd is converted to a speed
field based on the maximum permissible speed in any direction in
each cell, and then the unit cost field C is updated for each group,
followed by updating the potential � and its gradient. The veloc-
ity field Vg is finally determined. The velocity of each cell is a
two-dimensional vector with the opposite gradient direction, and
the magnitude of each dimension is scaled by the corresponding
speed at the speed field. Interpolating the velocity field yields the
preferred velocity for macroscopic motion planning. We refer read-
ers to [TCP06] for more information.

To generate different scenarios, the macroscopic velocity field
can be updated online during simulation to capture dynamic changes
in the states of agents or environmental objects, or it can be pre-
calculated as a static global motion control map while ignoring
agents’ motion states. Furthermore, for agent personalization, the
preferred speed Vg(p) can be user-defined to impose control.

Continuous environment-repulsion field. To incorporate obsta-
cles in Vg, [TCP06] introduce a ‘discomfort’ value in obstacle-
occupied cells to generate repulsion. However, this causes signif-
icant unsmoothness in Vg near obstacles. Therefore, we propose a
new continuous repulsion. For a cell m in the grid, the continuous
env-repulsion force R(pm) is calculated based on its minimum dis-
tance dmin to the boundary cells of the environmental obstacles:

R(pm) = h(dmin) =

χ ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, dmin < 0,

0.5 ·
(
cos(

π · dmin
dcrep

)+ 1

)
, 0 ≤ dmin ≤ dcrep,

0, dmin > dcrep,

(16)

where χ > 0 is a scaling constant, dcrep > 0 is a predefined dis-
tance threshold of the boundary cells. dmin is the signed distance
determined by whether the cell is inside the obstacle:

d = min{‖pm − pk‖2}, k ∈ K,

dmin =

⎧⎪⎪⎨
⎪⎪⎩

−d, m is inside an obstacle,

0, m is at a boundary cell of an obstacle,

d, m is outside the obstacles,

(17)

where K is the set of the boundary cells of the obstacle.

5. Human-Solution Space

Solving Equation (1) in the entire solution space ensures that
our system runs along at the envelop of the minimal energy.
However, this is not ideal because individuals might not always
follow a minimal-energy trajectory. Existing research assumes
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certain principles on individual motions, for example minimum ef-
fort [GCC*10], power-law [KSG14], and so on, but they are based
on simplified hypotheses. Real-world individual motions are al-
most always sub-optimal for the physics-based models, which sig-
nificantly affects the visual realism of crowd animation [WOO16,
HXZW20]. Therefore, we propose to advance the system in the
human-solution subspace rather in the entire solution space.

5.1. Parameterization

We hope to find reliable information for parameterization by us-
ing trajectory segments extracted from real crowd videos. Individ-
ual movements in crowds, from a microscopic perspective, form a
series of short-term decision-making processes, which are reflected
in motion dynamics. As a result, based on the trajectory segments,
we investigate high-order information to explore motion dynam-
ics. The first-order information (velocity) is the change of positions
which is a natural reflection of motion decisions. In addition, the
second-order information (acceleration) shows the trend of deci-
sions which should also be incorporated. Fortunately, the velocity
can be estimated relatively reliably from the trajectory segments,
and it has been widely used for crowd simulation [RXX*21], crowd
activity analysis [WO16] and fidelity evaluation of simulated crowd
data [WOO17]. Unlike [RXX*21], which only considers velocity,
our method considers higher-order motion dynamics from real data
to construct a dataset that includes both first- and second-order
real-world information when parameterizing the human-solution
space. Furthermore, to reflect real-world continuous motion deci-
sions, we encode the information as velocities in two consecutive
timesteps.

Given a trajectory dataset ��� with L trajectory segments, that is
��� : �1, �2, . . . , �i, . . ., where i = 1, 2, . . . ,L, a reference datasetD
is generated based on���. In���, each trajectory is a discrete time series
of positions, that is �i : X1

i ,X
2
i , . . . ,X

t
i, . . ., where t = 1, 2, . . . , T

refers to the temporal information of a trajectory and T is the to-
tal time steps that �i covers. The velocities that imply the motion
decision of the pedestrians can be estimated from �i by the first-
order forward differencing of the positions in the trajectory, that is,
vti = (Xt+1

i − Xt
i )/�T , where t = 1, . . . ,T − 1 and �T is a time

step. The accelerations that imply the continuous change of veloci-
ties can be estimated by the second-order forward differencing of the
positions. The estimated acceleration is a motion dynamics feature
used in Section 6 to evaluate the simulation results’ performance.

Each data term in the referenced dataset D consists of two con-
secutive timestep velocities in a trajectory, [vti, v

t+1
i ], where vti is the

velocity of a pedestrian during the previous timestep to get to Xt
i ,

and vt+1
i is the new velocity to get to the next position Xt+1

i .

Notably, the human-solution space contains velocities that are not
constrained by the context state, implying that we do not presume
to solve a context-solution matching problem. This is due to the fact
that the context state and the solution (i.e. velocity and acceleration)
have amany-to-manymapping in general.We can observe sufficient
solutions across all possible context states if we consider the solu-
tion as a distribution conditioned on the context state. As a result, we
do not match the solutions to their context states. Ourmethod, on the
other hand, chooses the best velocity from the human-solution space

to update an agent’s motion by matching the previous velocity in the
dataset to the agent’s current one, allowing it to mimic real-world
continuous motion decisions. Although it is theoretically possible
that a mismatch between the chosen solution and its context state
could result in unnatural motions, we did not observe this in prac-
tice. Furthermore, because velocity and acceleration are fundamen-
tal features used in most physics-based methods to describe crowd
motion dynamics, those obtained from real trajectories are friendly
to the optimization-based model for improving realism while main-
taining scalability and generalizability.

5.2. Data generalization to different scenarios

Similar to other data-driven methods, our method relies on the avail-
ability of data. To reduce the data dependency and improve the
generalizability for different scenarios, we use a direction align-
ment method to simulate scenarios where the desired agents’ move-
ments differ greatly from those of the reference dataset obtained
in Section 5.1, for example, simulating the adversarial movements
of pedestrians by referencing a dataset that only includes unidirec-
tional movements (see Section 6.3.8). Furthermore, an augmented
dataset can be generated by blending datasets from different real-
world scenarios to generate different pedestrian behaviours in a
complex scenario.

Direction alignment. If we directly search for the optimal new
velocity from the dataset obtained in Section 5.1, the synthesized
scenario will be limited to generating movements similar to the real
data, according to Equation (2). The direction adaption method in-
troduced in [RXX*21] is one method for removing the constraint,
which maps the local coordinates of the velocities in the dataset to
those of the simulation scenarios by aligning their control directions,
where the estimation error for estimating the control directions from
real data may reduce simulation plausibility. In contrast, because the
velocity pairs indicate that each data term is a trajectory segment of
two consecutive time steps with three sequential positions, we use a
direction alignment method to align the previous direction of a data
term with an agent’s current direction and convert the data term’s
selected velocity to the agent’s local coordinate.

Given a data term dv = (varr, v) ∈ D, the chosen direction of the
agent and the data term shares the same rotationM ∈ R

2×2 with the
current direction, that is:

v̂ti = M · v̂arr, (18)

v̂′ = M · v̂, (19)

where v̂′ is the predicted new direction of the agent calculated from
a data term dv, thus the aligned new velocity is v′ = v · v̂′. M =
[
m1, −m2

m2, m1
] is the standard rotationmatrix in Euclidean space in the

counterclockwise direction, where m2
1 + m2

2 = 1. Given v̂ti and v̂arr,
m1 andm2 can be calculated by solving the quadratic Equation (18).

When utilizing the direction alignment method, the energy term
of the similarity of previous direction Edir for state similarity is con-
stantly 0 during simulation, thus saves the computing cost.
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Table 1: The weights used in different simulation scenarios of our result.

Scenario Ess Edc Eaa Eae Emc

wdir wmag wdc winsCA wantiCA wae wmdir wmmag

Hallway no obstacle (100/200 agents) 1.0 1.0 0.25 0.5 1.0 0 0.75 0.75
with an obstacle 1.0 1.0 0.25 0.5 1.0 1.0 0.75 0.75

Dynamic Envs Obstacle 0.75 0.75 0.25 0.5 1.0 1.0 1.0 1.0
Goal 0.75 0.75 0.25 0.5 1.0 0 1.0 1.0

Crowd crossing 1.0 1.0 0.25 0.5 1.0 0 0.75 0.75
Crowd wandering 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0
Train station 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5
Intersection 1.0 1.0 0.25 0.5 1.0 1.0 0.5 0.5
Bottleneck 1.0 1.0 0.25 0.25 1.0 1.0 1.0 2.5

Figure 5: The hallway scenario with different scales of crowds.

6. Experimental Results and Evaluations

The implementation is in C++ and the experiments were run on a
PC with an Intel (R) Core (TM) i7 4.00 GHz CPU, 32 GB RAM,
and an NVIDIA Geforce GTX 1060 GPU. We provide both quali-
tative and quantitative evaluations to demonstrate the performance
of our method. Due to the space limit, we only show representa-
tive results and refer the readers to the supplementary materials for
more details. In all our experiments, we set K = 1, and the weights
of the energy terms for the test scenarios are shown in Table 1.
Additionally, the weights for the street scenario are shown in
Table 3.

6.1. Qualitative results

We first show several results generated by referencing the dataset
from [ZKSS12]. The simulation results show that, based on a single
reference dataset, our method can generate various crowd scenarios,
not merely restricted to that of the dataset. In the following simula-
tions, each agent is initialized with a random velocity chosen from
the reference dataset, and the desired speed is the maximum speed
in the dataset.

Hallway scenario.We show the results of the adversarial move-
ments of different scales of crowds in a narrow hallway (see
Figure 5), similar to the scenario of the reference dataset from
[ZKSS12]. Note that a static obstacle is placed in the centre of the
hallway in Figure 5c. In addition, the macroscopic velocity field is

Figure 6: Emergent behaviours with different moving environmen-
tal objects in the scenario. In both (a) and (b), the red cylinder is
the goal of a crowd and the white disk-shaped object is the obstacle.

updated online to capture dynamic changes in agent group states
and guide agents to avoid dense congestion.

Dynamic environments. To demonstrate our method’s ability to
adapt to changing environments, a scenario with a moving obstacle
and a scenario with a moving goal is simulated (see Figure 6), in-
cluding 50 and 50 agents respectively. As the obstacle/goal is mov-
ing, the macroscopic velocity field is updated online to reflect dy-
namic changes in the environment.
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Figure 7: Four groups of pedestrians walking through each other.

Figure 8: Pedestrians wandering in a virtual city block.

Crowd crossing. In Figure 7, four groups of agents are moving
in an adversarial way to reach the opposite corner and each group
includes 50 agents. Similar to the hallway scenario, the macroscopic
velocity field is updated online.

Crowd wandering. To demonstrate the scalability of our method,
we simulate a high-density scenario with a crowd of 500 agents in
Figure 8. There are several static obstacles in the area. In this exper-
iment, we set several goals, and each agent is assigned a goal. When
the agent reaches its current goal, it will change to a random goal.
Because agents in the scenario are separated and have a variety of
motion options, we use a pre-calculated static macroscopic veloc-
ity field that considers static environmental objects while ignoring
agents’ motion states to globally guide individual motion. We com-
pute the static macroscopic velocity field for each goal (i.e. the end
position of an agent or several agents) using a speed field in which
the maximum permissible speed in any direction is the preferred
speed of agents toward the goal. Using a pre-calculated velocitymap
can reduce the computational cost of updating the macroscopic ve-
locity field during the simulation.

In Figure 9, we show more simulation results that are generated
by referencing other datasets. The simulation results show that our
method is adaptive to different data.

Street scenario. In Figure 9a, we use the reference dataset from
[LCL07] to generate a similar scenario, which is a bidirectional
street with sparse pedestrians. The appearance time, the initial mo-
tion state and the desired speed of each agent is similar to that in
the dataset. Similar to the crowd wandering scenario, to guide indi-
vidual motion, we use a pre-calculated static macroscopic velocity
field for each goal.

Station scenario. In Figure 9b, we use the reference dataset from
[ZWT12], which is a multi-gate (multi-goal) station with dense
pedestrians. The motion state of each agent and the goal gate are ini-
tialized in a randomway.We use a pre-calculated static macroscopic
velocity field for each goal to guide individual motion, similar to the
crowd wandering scenario.

Intersection scenario. In Figure 9c, we also simulate an intersec-
tion scenario by referencing the dataset from [YLRÖ19], where sev-
eral pedestrians avoid a passing car to cross the road in an intersec-
tion. During simulation, the motion state of the agents is initialized
in a random way, and the cars are initialized as dynamic obstacles
with pre-defined paths. The macroscopic velocity field is updated
in real-time to globally guide the agents in responding to dynamic
changes in the obstacles.

Evacuation through a bottleneck. In Figure 9d, we use the dataset
from [SPS*09] to generate crowd evacuation behaviours in a bottle-
neck scenario similar to the referenced dataset. During simulation,
the motion state of the agents is initialized in a random way. The
agents in this scenario are all walking toward the same goal. To re-
duce congestion in the confined space, we treat the agents as a con-
tinuum and update the macroscopic velocity field at each timestep.

Parameter tuning. By varying the weights of the energy terms,
crowd behaviour can be intuitively adjusted. For example, having
the default value of each weight set to 1 means that all behaviour
models have equal control. To reduce sudden motion changes, the
weight of instantaneous interaction energy (winsCA) is reduced in all
simulated scenarios. Theweight of the direction control model (wdc)
is smaller than that of state similarity and macroscopic control in all
scenarios to encourage agents to focus on natural velocity changes
and global guidance. The weights of the macroscopic control model
(wmdir and wmmag) in the hallway and crossing, for example, are
smaller than those of the state similarity energy to encourage agents
to focus on real-world continuous motion decisions. In the dynamic
environment scenario, theweights of the state similarity energy (wdir

andwmag) are smaller than that of the macroscopic control energy to
improve the efficiency of responding to environmental change. The
weight of the energy for macroscopic magnitude similarity (wmmag)
is increased in the bottleneck scenario to improve the efficiency of
changing agent speeds so that agents can avoid congestion when
entering a crowded environment from a sparse one and vice versa.
Furthermore, wdir = wmag and wmdir = wmmag apply to the majority
of scenarios in practice, reducing the need for manual adjustments.

6.2. Evaluations

6.2.1. Time performance

The time complexity of our motion updating algorithm (see Algo-
rithm 1) is O(M × (WH ))+ O(kN ), where O(M × (WH )) is the
time complexity to calculate the macroscopic velocity field, M is
the group (or goal) number, W and H are the width and height of
the grid map; O(kN ) is the time complexity to update the motion
of the agents in a time step, N is the number of agents, and k is
the data sample size in the reference data. In our experiments, for
fast indexing, we only traverse data terms whose varr is close to the
agent’s current speed, and k = 300 is enough to generate all scenar-
ios. The time complexity is nearly linear (O(kN )) if the macroscopic
velocity field is pre-calculated.

To quantitatively test the performance of the proposed algorithm,
we simulate a crowd in a 200*200 grid with no obstacle. The length
of each cell is 1m. During the initialization, we randomly position N
agents, and divide them into M groups. The initial velocities of the
agents are randomly selected from a dataset [ZKSS12]. Figure 10
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Figure 9: The simulation results referencing different datasets.
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Figure 10: Time performance of our approach. The computation
cost is linear w.r.t the number of agents. The legends are different
group (goal) numbers set in the simulation.

Table 2: The time performance of different simulation scenarios. N is the
number of agents present at any given time.

Scenario N Time (s/ f )

Hallway 100 0.0035
200 0.0110

Hallway with an obstacle 80 0.0026
Dynamic Envs Obstacle 50 0.0020

Goal 50 0.0028
Crowd crossing 200 0.0147
Crowd wandering 500 0.0187
Street 1-20 0.0004
Train station 138-193 0.0069
Intersection 54-89 0.0058
Bottleneck 1-63 0.0068

shows a comparison of the averaging updating time for different
agent groups with online calculation of the macroscopic velocity
field during simulation. In Figure 10, the average updating time with
0 agents is the time performance of updating the macroscopic ve-
locity field. The computation cost increases with the group num-
ber. However, as we only perform the online updating of the macro-
scopic velocity field in dense and flow-like crowd scenarios with few
agent groups, this cost is negligible. In the sparse crowd scenarios,
calculating the macroscopic velocity field is part of initialization,
so the computation does not affect the online performance. Table 2
also shows the time performance in different simulations, demon-
strating that all of the tested scenarios can be simulated in real time.
Furthermore, in more complex scenarios, such as the crossing and

wandering scenario, where dense agents are assigned various goals,
frequent interactions with the environment or other types of agents
affect time performance.

6.2.2. Comparisons

To demonstrate the plausibility of our method, we compare sim-
ulation results in a narrow hallway scenario with real data from
[ZKSS12] and in a sparse street scenario with real data from
[LCL07] (i.e. Figure 9a). During the initialization phase of each
experiment, the initial motion state, appearance time and motion
preferences (e.g. the minimal and maximal velocities, the minimal
distance and the maximum acceleration) of each agent are copied
from the real data. For the compared methods, we use a genetic
algorithm to estimate the optimal key parameters from the simu-
lated scenario’s real data, and the learned parameters are shown in
Table 3. The objective function of the genetic algorithm is based on
the absolute difference metric (ADM) proposed by [WGO*14].

Trajectory and statistical comparisons in a hallway scenario.
We simulate bidirectional pedestrians in a narrow corridor, sim-
ilar to [ZKSS12], to compare our method with a continuum
method [TCP06], a force-based method (PowerLaw) [KSG14],
a vision-based method [DMN*17] and a state-of-art data-driven
method (Heter-Sim) [RXX*21] both qualitatively and quantita-
tively. It is worth noting that the key parameters of the com-
pared continuum method are predefined and identical to those in
our method (wd, wt = 0.2, wr = 0.6). The compared Heter-Sim
method [RXX*21] also uses a dataset obtained from [ZKSS12]. The
frame rate is 16 frames per second as in the data.

In this scenario, each agent aims to reach the opposite exit, and
we regard the agent as inside the corridor before it arrives at the goal
exit. The goal of each agent in all of the compared experiments is
the closest boundary point of its goal exit in the corridor. Because
the real data includes the trajectories of agents outside the corridor,
which influence the local environment of the nearby agents moving
into the corridor, for all simulation methods, the agents will move
toward the nearest boundary points of the scenario as soon as they
complete their travel in the corridor.

Figure 11 shows the visual simulation results compared with the
real data. The simulation results show that the continuum model
from [TCP06] and our method mimics real crowds well in separate
pedestrian flows to reduce congestion, while the other approaches
fail to achieve this because they do not take high-level motion con-
trol into account in the same manner that we do. Figure 12 presents
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Table 3: The parameters of each compared models learned from real-world data [ZKSS12]. N.D. stands for neighbour distance.

Scenario Our method PowerLaw [KSG14]
Vision-based method
[DMN*17] Heter-Sim [RXX*21] Heter-Sim++

Hallway wdir,wmag = 0.83,
wdc = 0.09, winsCA = 0.37,
wantiCA = 0.60,
wmdir, wmmag = 0.62

m = 1.99, k = 1.47,
N.D. = 9.92, τ0 = 3.05,
ksi = 0.03, scomf = 1.20

σαg = 1.86, σs = 3.07,
σttca = 2.16, σdca = 0.06,
scomf = 0.89

wm1 = 1.01, wm2 = 1.29,
wc1 = 1.06, wc2 = 0.70,
wd = 0.53, wsc = 1.44

wm1 = 0.85,
wm2 = 1.14, wc1 = 0.52,
wc2 = 0.97, wd = 1.08,
wsc = 1.02

Street wdir,wmag = 0.75,
wdc = 0.21, winsCA = 0.50,
wantiCA = 0.51,
wmdir, wmmag = 0.93

m = 2.10, k = 1.40,
N.D. = 10.16, τ0 = 3.01,
ksi = 0.06

σαg = 1.79, σs = 1.99,
σttca = 1.43, σdca = 0.14

wm1 = 0.67, wm2 = 0.58,
wc1 = 1.07, wc2 = 0.88,
wd = 1.60, wsc = 1.47

-

Figure 11: Qualitative comparisons in a bidirectional scene with real data.

Figure 12: Comparisons of the generated trajectories. The corridor is in the scene’s centre and is surrounded by black walls. The blue curves
show the trajectories of the group that starts on the right side of the corridor, while the yellow curves show the trajectories of the group that
starts on the left. For each example, 100 trajectories are sampled from the simulation results/real trajectories.

Table 4: Benchmark scores on the trajectory and statistical similarity to the real data [ZKSS12], the lower is the better. For simplicity, the values of the ADM
and PLM are normalized by sample size. The best results are highlighted in bold font.

Trajectory similarity KL divergence

ADM PLM Velocity Distance Acceleration x Acceleration y

Continuum [TCP06] 2.1903 0.7499 0.9511 0.2379 1.4695 0.7494
PowerLaw [KSG14] 1.5765 1.5932 0.6771 0.9169 1.4695 1.3958
Vision-based [DMN*17] 1.3304 0.9679 0.5134 0.7424 0.3740 0.3701
Heter-Sim [RXX*21] 1.2373 0.8719 0.0847 0.8338 1.2715 1.1917
Heter-Sim++ 1.1032 0.6576 0.0482 0.4152 1.2741 1.0929
OurDirCon 0.9447 0.5405 0.0779 0.1705 0.1346 0.2206
Our method 0.8763 0.5176 0.0089 0.0806 0.0598 0.0130

visual comparisons on the generated trajectories, where our method
mimics data more closely.

Quantitatively, we quantify the trajectory similarity. We employ
the absolute difference metric (ADM) and the path length metric
(PLM) proposed by Wolinski et al. [WGO*14]. Table 4 shows the
results. Our method achieves better scores compared with the base-
line methods [TCP06, KSG14, DMN*17, RXX*21], showing that

our trajectories are more similar to the real data. Although the tra-
jectories of the continuum method in [TCP06] are visually similar
to the real ones (see Figure 12), the speed of crowd flows is slower
during simulation (Figure 13a), resulting in higher scores for trajec-
tory similarity.

We also compare distribution similarity, which includes ve-
locity, minimum distance (the distance to the nearest agent) and
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Figure 13: Comparisons of the distributions of velocity (a), mini-
mal distance (b) and acceleration (c for x (lateral of the corridor)
direction and d for y (longitudinal of the corridor) direction).

acceleration distributions, as these are descriptors that capture both
the state and the motion dynamics of agents. The velocity denotes
first-order motion dynamics, which denotes an instantaneous
motion decision and the acceleration denotes second-order motion
dynamics, which denotes velocity change and continuity. We
use a widely accepted metric, Kullback–Leibler divergence (KL
divergence) [KL51], DKL(Ps||Pr ) = ∑

i
Ps(i) · log Ps (i)

Pr (i)
, to measure

the similarity of the empirical distributions shown in Figure 13. The
KL-divergence scores are given in Table 4. Our method has signifi-
cantly smaller scores, which demonstrates that it generates motions
that are statistically more similar to real data than the baselines. This
indicates model-based simulation in human-solution space is su-
perior to pure model-based methods, which is true for both motion
dynamics (velocity and acceleration) and states (density). There-
fore, our simulations are statistically more similar to data by a large
margin.

It should be noted that Heter-Sim [RXX*21] investigated the
human-solution space as well. Ourmethod differs significantly from
it in both the data-driven scheme and the physics-based controls,
resulting in more realistic crowd behaviours. From a data-driven
standpoint, our method uses state similarity to simulate real-world
continuous velocity changes by referencing second-order motion
dynamics (acceleration) from data. Heter-Sim, in particular, tends
to choose a new velocity that is similar to an agent’s current one
in order to maintain velocity continuity. As a result, the majority
of the accelerations calculated from it tend to be close to zero
(see Figures 13c-d), resulting in unnatural straight trajectories
with nearly constant velocities (see Figure 12d). Quantitatively,
our method’s lower motion dynamics scores than Heter-Sim (see
Table 4) show that it outperforms in generating statistically more
similar motions to the real data. In terms of physics-based control,
our method employs continuous instantaneous collision detection
and collision time-based anticipatory collision avoidance to reduce
possible congestion while generating smooth velocity changes
in narrow scenarios such as those found in real data [ZKSS12].
However, in narrow scenarios, the simple distance-based collision

Figure 14: The visual results of Heter-Sim++: (a) a snapshot of
the simulation result and (b) the generated trajectories.

avoidance model used in Heter-Sim may ignore anticipatory
collision neighbours who will pass through the agent during the
long-term time threshold, increasing the risk of congestion. Due
to limited dataset for collision avoidance, in Heter-Sim, unnatural
turning and velocity jitteringmay arise frequently in the narrow hall-
way scenario, resulting in unsmooth trajectories (see Figure 12d).
The smoother trajectories in Figure 12e and lower score for the
minimum distance in Table 4 of our result show that our interaction
model outperforms Heter-Sim both qualitatively and quantitatively.

To further validate our acceleration-aware data-driven optimiza-
tion scheme’s superiority in generating more plausible crowd be-
haviours than Heter-Sim [RXX*21], we conduct an ablation study
by introducing themacroscopic control model used in our method to
Heter-Sim (we call it Heter-Sim++) and comparing Heter-Sim++
with both Heter-Sim and our method. The macroscopic continuum
model calculates the control direction and desired speed for each
agent in Heter-Sim++ (refer to the preferred direction and preferred
speed in Equation (15), respectively). Heter-Sim++ shares the
same parameters as the previous experiments, and the weights of the
energy terms in Heter-Sim++ are also learned from real-world data
[ZKSS12] by the genetic algorithm (see Table 3). Figure 14a shows
a snapshot of the visual result. Figure 14b depicts the generated
trajectories and shows how incorporating the macroscopic control
model produces better visual results that are close to the real data.
However, as shown in Figure 14b, unnatural straight trajectories or
velocity jittering may still occur, resulting in unsmooth behaviour.

Quantitatively, as shown in Table 4, our method achieves lower
trajectory similarity scores, indicating that it outperforms Heter-
Sim++ in terms of generating trajectories that are more similar
to the real data. We also compare the distributions of our method
and Heter-sim++ (see Figure 13). According to the KL-divergence
scores shown in Table 4, the scores of our result’s motion dynamics
and state are both significantly lower than those of Heter-Sim++,
demonstrating our method’s superior ability to generate more real-
istic crowd behaviours. We also demonstrate that the hierarchical
nature of crowd motions can improve the visual quality of a simula-
tion method by comparing Heter-Sim++ to the original Heter-Sim
method [RXX*21]. Heter-Sim++ achieves more accurate visual
results and lower quantitative scores for performance about states
(ADM, PLM, and distance distribution) than the original Heter-Sim
method, according to the statistical results shown in Table 4.

To further assess the adaptability and plausibility of our
acceleration-aware data-driven optimization scheme when lever-
aging different goal-directed control models, we first build Our-
DirCon, a model that replaces the continuum model in our
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Figure 15: The visual results of OurDirCon: (a) a snapshot of the
simulation result and (b) the generated trajectories.

Table 5: Benchmark scores on the trajectory similarity to the real
data [LCL07], the lower is the better. The ADM and PLM methods’ values
are normalized by sample size. The best results are highlighted in bold font.

PowerLaw
[KSG14]

Vision-based
[DMN*17]

Heter-Sim
[RXX*21] Our method

ADM 0.0946 0.3139 0.0977 0.0440
PLM 0.2828 0.4825 0.2494 0.0685

approach with the local direction control used in the baseline meth-
ods [KSG14, DMN*17, RXX*21]. Then, we compare OurDirCon
to these baseline methods. OurDirCon’s initialization method and
parameters are the same as that of our method. Figure 15 shows the
visual results of OurDirCon. When compared to the baselines (see
Figures 12b-12d), OurDirCon produces smoother trajectories (see
Figure 15b). This is because, under the control of our agent-agent
interaction model, the agents tend to move in parallel lines to avoid
potential collisions (see Figure 15a). We also show the distributions
in Figure 13 and the quantitative metrics in Table 4. According to
Table 4, OurDirCon outperforms the baseline methods in terms of
both motion dynamics and states. This demonstrates that when us-
ing different goal-directed control models, our acceleration-aware
data-driven optimization scheme can generate motions statistically
more similar to real-world motion decision.

Comparisons of trajectory in a street scenario. Because of the
confined space, the agents tend to have similar velocities in the pre-
vious hallway scenario. In this experiment, we use the PowerLaw
method [KSG14], the vision-based method [DMN*17], the Heter-
Sim method [RXX*21] and our method to simulate a sparse street
scenario similar to [LCL07], where agents’ velocity choices are
more diverse. The compared Heter-Sim method [RXX*21] makes
use of a dataset from [LCL07].We assess the plausibility of the gen-
erated trajectories by comparing them to the real ones. 148 agents
are simulated in about 6 min at 25 fps, just like in the data. Dur-
ing simulation, each agent follows a different short-term trajectory
based on its corresponding real-world trajectory. Each agent’s com-
fort speed is its average speed when moving toward its current goal
in real data. In our experiment, we set the length of each cell in the
grid map to 0.1m in order to accurately locate each agent’s goal.

The ADM and PLM metrics proposed by [WGO*14] are used to
quantitatively evaluate the generated trajectories, and the results are
shown in Table 5.When compared to the baseline methods [KSG14,
DMN*17, RXX*21], the quantitative results show that our method
has the lowest score. This indicates that the trajectories produced
by our method are more plausible than those produced by the other

Figure 16: The trajectories generated by the least-human-solution
model.

methods. In comparison to the non-data-driven PowerLaw method
[KSG14] and the vision-based method [DMN*17], our method can
generate more realistic motion decisions by referencing the real
dataset. The Heter-Simmethod [RXX*21] tends to enforce continu-
ous motion by selecting a new velocity similar to an agent’s current
one, which may take longer time to steer towards the goal when the
goal is changed dynamically. Our acceleration-aware data-driven
optimization scheme, on the other hand, can mimic natural veloc-
ity changes from real data by employing the state similarity energy,
which leads the agent to quickly find a new velocity to move toward
its new goal.

6.3. Method analysis

6.3.1. Human-solution prior knowledge

In the following, we analyse our method using the narrow hallway
scenario in Section 6.2.2 to demonstrate the significance of utiliz-
ing the human-solution space in two ways: comparing our method
with a least-human-solution model that solves Equation (2) with-
out referencing a dataset and a reduced-human-solution model that
references an incomplete dataset to demonstrate the significance of
referencing the human-solution space and illustrate the trade-off be-
tween quality and size of dataset.

Least-human-solution model.The key assumption of our research
is that human-solution is a just a subspace of the entire solution
space, and solving the optimization in human-solution space gives
more realistic motions than in the whole solution space. To inves-
tigate this question, we build a least-human-solution model that
uses the same parameters and initialization method as those in Sec-
tion 6.2.2. The comparison is conducted by solving Equation (2)
with different amounts of human-solution knowledge. As a base-
line, we set the energy terms for state similarity to 0 and constrain
the magnitudes of velocities within [vdmin, vdmax], where vdmin and
vdmax are the minimal and maximal speeds in the real data. This way,
we induce the minimal amount of knowledge from the data, that is
only knowing the speed range but no motion dynamics.

The results are shown in Figure 16. Compared with other meth-
ods/settings shown in Figure 12, the least-human-solution model
can simulate reasonable trajectories in the sense that flows are also
relatively separate as in real data in Figure 12f. We also conduct nu-
merical comparisons. The comparisons of distributions are shown in
Figure 17, and the KL divergence are shown in Table 6. Although
the least-human-solution model visually generates similar results,
its distributions on crowd state and dynamics are vastly different
from the real data (Figure 17). This shows how vital it is to explic-
itly incorporate the relevant energy terms in our model.
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Figure 17: The distribution comparisons of the least-human-
solution results, our full model and the real data [ZKSS12].

Table 6: KL divergence of our result by referencing different datasets on the
statistical similarity to the ground-truth data from [ZKSS12].

Least-human-solution

Reduced-human-solution

D20% D40% D60% D80%

Velocity 0.2013 0.0310 0.0215 0.0203 0.0202
Distance 0.4484 0.1943 0.1785 0.1639 0.1817
Acceleration x 0.3509 0.1233 0.1070 0.0999 0.0974
Acceleration y 0.3657 0.0155 0.0093 0.0069 0.0058

Reduced-human-solution model. Although distinguishing be-
tween the human-solution space and the entire solution space is sim-
ple, the question of how much prior knowledge is required remains.
To investigate this question, a reduced-human-solution model is
built. The reduced-human-solution space is generated from the en-
tire human-solution space in this experiment by randomly remov-
ing a portion of the entire dataset. Experiments with four different
dataset sizes were tested by randomly selecting 20%, 40%, 60%
and 80% of the total dataset and naming them D20%, D40%, D60%,
D80%, and each experiment was iterated ten times. In Figure 18,
we compare the distributions of the reduced-human-solution model
with our full model (D) in terms of KL-divergence, and show intu-
itively the curve of the average KL-divergence of each experiment.
Table 6 shows the corresponding numerical metrics, indicating that,
while reducing the size of the dataset reduces the plausibility of our
method, it still outperforms the compared methods, implying that
our method has the potential to be used to recover incomplete tra-
jectory datasets while maintaining accuracy.

6.3.2. Ablations on energy terms

To further demonstrate the importance of the behavioural models
in our method, using the narrow hallway scenario in Section 6.2.2,
we show the results of several ablation studies. The ablation studies
mainly show how the result changes with pruning an energy term in
Equation (2).

Figure 18: Statistical figures for comparing the results of the
reduced-human solution model with different dataset sizes to our
full model. The KL divergence of each experiment is depicted as
light blue scatter points. To demonstrate the trend of the result with
increasing dataset size, the average KL divergence of each reduced-
human solution model is concatenated into a dark blue polyline.

Figure 19: The trajectories generated by the ablation experiments.

Figure 20: The distribution comparisons of the ablation experi-
ments on the state similarity energy term and the global control en-
ergy term, our full model and the real data [ZKSS12].

State similarity. In this experiment, the weight of the state sim-
ilarity energy term is 0 while the others are set the same as those
in Section 6.2.2. The generated trajectories of this experiment are
qualitatively shown in Figure 19a. We compare the distribution sim-
ilarity in Figure 20, and the KL divergence in Table 7. Comparing
with our quantitative result in Table 4, removing the state similarity
term leads to severe performance degradation on motion dynamics.
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Table 7: KL divergence of the ablation studies about the energy terms on
the statistical similarity to the real data [ZKSS12].

Ablation on
state similarity

Ablation on
macroscopic control

Velocity 0.1365 0.0212
Distance 0.2575 0.0685
Acceleration x 0.3997 0.1565
Acceleration y 0.1208 0.0098

Macroscopic control. In this experiment, the weight of the macro-
scopic motion control energy term is 0 while the others are set the
same as those in Section 6.2.2. The generated trajectories are shown
in Figure 19b. We compare the distribution similarity in Figure 20,
and the KL divergence in Table 7. Compared with our quantitative
result shown in Table 4, without macroscopic control in our model,
the generated trajectories are greatly different from the real ones
(see Figure 12e), as there is no global control during simulation,
interactions among agents may change the motion tendency of an
agent and result in a relatively different trajectory compared with
the ground truth in the real data. Note that ablating the macroscopic
control term has a small influence on the motion dynamics, as the
state similarity term tries to imitate the motion decision mechanism
from the real data.

6.3.3. Local navigation

Because collision avoidance is an important component of local
navigation in crowd simulation, we use an antipodal scenario with
20 agents to compare our method to the RVO method [vdBLM08]
and Heter-Sim [RXX*21]. In the antipodal scenario, the agents are
initialized on a circle with the same spacing, and each agent at-
tempts to move to the circle’s antipodal position. The datasets used
in Heter-Sim [RXX*21] and our method are both from [LCL07].
All shared parameters (e.g. agent radius, initial velocity and pre-
ferred speed, simulation timestep) are initialized in the same way.
For the remaining parameters, we just use the ones of each com-
pared model in their papers [vdBLM08] [RXX*21]. Our model’s
weights are [1.0, 1.0, 1.0, 0.5, 0.5, 0, 1.0, 1.0]. To avoid sudden ve-
locity changes when potential collisions are detected, we empiri-
cally set both collision avoidance weights to 0.5 in our method.

Figures 21a, 21b and 21c show the trajectories generated by each
method with the simulation �t = 0.04s. The results show that our
method produces smoother trajectories than RVO [vdBLM08] and
Heter-Sim [RXX*21]. Because the RVO model is limited to local
planning in a small neighbourhood for better performance, there are
suddenmotion changes around the centre of the circle in Figure 21a.
The results of Heter-Sim (Figure 21b) and our method (Figure 21c)
show that using a long-range collision avoidance technique can pre-
vent intense local interactions near the circle’s centre. In Figure 21b,
agents may detour to reach their goals, as in Heter-Sim, when the
distance between two agents is less than a threshold, the discontin-
uous local interaction method causes agents with nearby goals to
move at the same velocity to avoid collisions, causing some agents
to deviate from their goals.

Figure 21: Local navigation comparisons between RVO [vd-
BLM08] (a), Heter-Sim [RXX*21] (b) and our method (c, d). Each
agent’s starting position is represented by the corresponding disk
on the trajectory.

As our method employs a continuous collision detection tech-
nique, we also present a result with �t = 0.1s to demonstrate our
method’s ability to generate collision-free continuous trajectories
for agents with large timesteps. Figure 21d depicts how the agents
avoid potentially damaging collisions near the circle’s centre.

6.3.4. Data generalization to different scenarios

Since the importance of human-solution space and each behavioural
model has been demonstrated in the preceding sections, the remain-
ing question is how general our method is in using a dataset to gener-
ate other scenarios that differ from the dataset’s scenario. The visual
results shown in Section 6 have answered this question (please re-
fer to Figures 5–8). Furthermore, to demonstrate the generalization
of our method, we generate a one-way bottleneck scenario similar
to [SPS*09] by referencing the bi-directional hallway dataset from
[ZKSS12] and generate a bi-directional hallway scenario the other
way around, where the generated crowds are quite different from
that of their referenced datasets. Both experiments use the same
initialization method and parameters as their corresponding sim-
ilar simulation experiments in Section 6.1 for the bottleneck sce-
nario and Section 6.2.2 for the hallway scenario. Figure 22 shows
snapshots of simulation results compared to ground-truth real data.
In Figure 23, we compare the generated trajectories of our method
with ground-truth real data by referencing different datasets from
different real scenarios. Given reasonable motion preferences from
the ground-truth real data (e.g. initial speed, maximum speed), our
method can find the best velocity from the reference data to match
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Figure 22: Results by referencing datasets from various scenarios.

Figure 23: Comparisons of the trajectories of our results refer-
encing various datasets from various scenarios and real data. The
trajectories of different crowds in a one-way bottleneck are shown
in (a)-(c): (a) referencing the bidirectional dataset [ZKSS12], (b)
referencing the bottleneck evacuation dataset [SPS*09] and (c)
real trajectories [SPS*09]. (d)-(f) are crowd trajectories in the bi-
directional hallway scenario: (d) referencing [SPS*09], (e) refer-
encing [ZKSS12] and (f) real trajectories [ZKSS12].

the target behaviour observed from the ground-truth real data during
simulation. The results show that our method can generate visually
similar crowd scenarios even when the referenced dataset’s scenario
is not similar to the ground-truth scenario.

7. Conclusion

In this paper, we present a generic model-based data-driven con-
tinuum method that can generate plausible and scalable crowd an-
imations in different scenarios. Our method is adaptive to dif-
ferent datasets to generate similar scenarios as the real data (see

Figures 9a–9d). Our method is scalable in generating different
scales of crowds in different scenarios in similar environments to
real data (see Figures 5a and 5b). Our method is also able to gener-
ate diversified crowds that may differ from the reference data (see
Figures 5c, 7, 8, 22a, 22c). Compared with the state-of-art methods,
our method can generate results that are significantly closer to the
real data. In addition, our model is fast and can be used for interac-
tive simulation (see Table 2).

Limitations and future work. Similar to other data-drivenmeth-
ods, the quality of the simulation result relies on the quality of the
reference data. If the reference data deviates significantly from nor-
mal crowds, for example only containing large velocities, the simu-
lator might not be able to resolve congestion as the algorithm cannot
find a proper velocity to slow down the agents. However, we argue
that data with a good variety of velocities can be easily acquired.
Even in data with noise, the motion dynamics based on velocity and
acceleration can still be reliably extracted. Furthermore, combining
data from various crowd scenarios can help to avoid data limitations.

The second limitation is that our approach is ‘model-based’ com-
pared with pure data-driven models. This suggests that it requires
certain expertise to design the underlying physics-based model and
our method cannot just ‘plug and play’ on data. However, we ar-
gue this effort provides model explicability which leads to insights
of crowd behaviours, rather than fitting data in a black-box man-
ner. Furthermore, we represent the agents as discs with fixed radii.
However, human beings in the real world have more complicated
personal spaces. We will use more precise geometries for better col-
lision avoidance in future. Furthermore, we only consider explicit
motion features, that is velocity and acceleration. We intend to in-
vestigate more trajectories’ characteristics in the future by incor-
porating deep neural networks into our model to capture arbitrary
non-linearity in motion dynamics. Because we use 2D captured data
as input, our method can only simulate crowd motions in 2D space.
Our method will be expanded to include uneven terrain and complex
environments with stairs. Besides, the macroscopic control model in
our simulation framework are mainly focused on pedestrian groups
with group-desired goals, which may not efficient for agent-desired
motion control. Although we can separately model the macroscopic
control map for agents with different goals, it involves trade-offs
between memory usage and computing performance, especially for
large crowds. A feasible solution is to replace the continuum model
with other goal-directed motion control methods, for example local
direction control model used in [RXX*21], A* algorithm for global
path planning.
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