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Abstract

In this paper, we tackle the challenging problem of 3D keypoint estimation of general objects using a novel implicit represen-
tation. Previous works have demonstrated promising results for keypoint prediction through direct coordinate regression or
heatmap-based inference. However, these methods are commonly studied for specific subjects, such as human bodies and faces,
which possess fixed keypoint structures. They also suffer in several practical scenarios where explicit or complete geometry
is not given, including images and partial point clouds. Inspired by the recent success of advanced implicit representation in
reconstruction tasks, we explore the idea of using an implicit field to represent keypoints. Specifically, our key idea is employing
spheres to represent 3D keypoints, thereby enabling the learnability of the corresponding signed distance field. Explicit key-
points can be extracted subsequently by our algorithm based on the Hough transform. Quantitative and qualitative evaluations
also show the superiority of our representation in terms of prediction accuracy.

CCS Concepts
• Computing methodologies → Shape analysis; Shape representations;

1. Introduction

In this paper, we study the challenging and under-explored problem
of 3D keypoint estimation for general shapes. As a key component
in many downstream tasks, an accurate and robust 3D keypoint es-
timation method can provide useful clues for various applications,
including 3D object detection [MBO06, LWT20, BABM19], ob-
ject tracking [SGG∗08,CC10,BKB18], shape matching [ZHDQ08,
BKB18, WGY∗18], and shape registration [BF08, LHM∗15, BMS-
GJL16].

Although existing methods have demonstrated great success in
the detection of facial landmarks as well as human body joints
[BADDB11, CPA11, PZK∗17, PZK∗17, GSX∗21], they are de-
signed for shapes with consistent structures. It is commonly not
easy to extend such methods for 3D keypoint estimation of gen-
eral shapes which usually present diverse geometric topologies and
irregular numbers of keypoints. Recently, You et al. [YLL∗20b]
proposed the first large-scale 3D keypoint dataset of 16 general
object categories in ShapeNet [CFG∗15] and established a bench-
mark for the task of keypoint prediction. All the methods evaluated
in [YLL∗20b] focus on complete point cloud input, where the key-
point prediction can be converted into a classification task for each
point. However, explicit or complete geometry is typically expen-
sive to obtain. For example, the input for keypoint estimation can
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Figure 1: 3D keypoint estimation via our implicit sphere learning.
Given a single image or partial point cloud, we learn the SDF of
keypoint spheres, and the sphere meshes are extracted for the final
keypoint estimation. To enhance visualization, we draw lines con-
necting the keypoints.

be images or partial point clouds. This makes classification-based
methods infeasible since the expected 3D keypoints cannot be ex-
plicitly obtained from the input.
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To tackle the challenge of keypoint estimation for general ob-
jects, alternative methods leverage deep neural networks and can
be roughly grouped into two categories, i.e., point coordinate re-
gression [FSG17] and heatmap inference [ORL18]. Methods that
directly regress spatial coordinates of keypoints are straightforward
but increase the risk of overfitting. Moreover, both order and num-
ber of keypoints generally need to be fixed for the design and im-
plementation of the network, which is unreasonable for shapes with
varying structures and topologies. On the other hand, the heatmap
representation is often proposed for 2D keypoint estimation.The
consumption of calculation and storage increases significantly for
3D scenarios, leading to low-resolution heatmap prediction and
poor accuracy of keypoint estimation. Neither point regression nor
heatmap inference is adequate to generate accurate 3D keypoints in
irregular and unordered cases.

Inspired by the recent success of accurate 3D reconstruction with
implicit shape learning [MON∗19, PFS∗19, CZ19, CAPM20], we
propose a novel implicit representation for 3D keypoints estima-
tion. Specifically, 3D keypoints are represented as the centers of
distinct spheres with a user-specified radius, then the signed dis-
tance field (SDF) of these spherical shapes can be inferred using
classical implicit learning methods. Given a point cloud or a single-
view image, we adopt a deep neural network to learn the SDF field
and extract explicit sphere meshes, followed by keypoint extraction
using the Hough transform. With this new formulation, we are able
to not only handle uncertain number and order properties of general
object keypoints but also to improve the performance of keypoint
estimation for incomplete point cloud or image inputs, as shown
in Figure 1. Furthermore, we explore the semantic keypoint pre-
diction with implicit learning using the proposed stacked unsigned
distance field (UDF), in order to benefit applications that require
semantic information.

We conduct experiments about 3D keypoint regression on the
KeypointNet dataset [YLL∗20b] to compare our method with two
alternative representations, i.e., the point coordinate and heatmap.
Comparisons for complete point cloud, partial point cloud, and
single-view image input settings are presented respectively. Both
quantitative and qualitative results demonstrate the superiority of
our implicit representation for 3D keypoint estimation.

Our contributions can be summarized as follows:

• We introduce the continuous implicit field as a sparse point
representation for the first time and propose a consistent 3D
keypoint estimation framework for general objects with various
topologies and geometry.

• With our implicit representation, we also propose a novel archi-
tecture that can generate keypoints with semantic labels.

• We conduct extensive experiments on 3D keypoint estimation
with various inputs including complete point clouds, partial point
clouds, and single-view images, which demonstrate the superior-
ity of our implicit representation.

In the following sections of this paper, we will first review re-
lated work about 3D keypoint detection and estimation, as well
as implicit representation learning in Section 2. Then, we propose
our implicit keypoint representation and architecture for keypoint
learning, extraction, and semantic prediction in Section 3. Next,
we evaluate and compare our method with existing approaches both

quantitatively and qualitatively in Section 4. Lastly, we summarize
our method and discuss its limitations and future work in Section 5.

2. Related Work

Keypoint detection. 3D keypoint saliency detection, which picks
up keypoints from a full point cloud, has been a classical task
for many downstream applications, such as object detection, pose
estimation, shape matching, and registration. Traditional meth-
ods mainly utilize hand-crafted geometric features to select the
most salient keypoints, but they either ignore the semantic in-
formation of keypoints or tend to generate misaligned keypoints
[NN07, Zho09, SOG09, TSDS10, SB11, KZK17]. Li et al. [LL19]
pioneer a learning-based 3D keypoint detector, named USIP. How-
ever, USIP takes advantage of probabilistic Chamfer loss which
may greatly enhance the repeatability of inferred keypoints. Where-
after, Wei et al. [WMW∗21] attempt to jointly learn the 3D key-
point saliency and correspondence to improve accuracy. Recently,
Fernandez et al. [FLCP∗20] propose an unsupervised method to
learn aligned 3D keypoints by decomposing keypoint coordinates
into low-rank non-rigid shape registration. This approach is suit-
able for the detection of similar shapes but cannot perform well
on general objects with various topologies and geometry. Shi et
al. [SXYL21] improve the unsupervised detector with the guidance
of skeletons and a proposed composite Chamfer distance. In con-
trast to these detection-based methods, our method focuses on key-
point generation of general objects, where the inputs can be incom-
plete (e.g., partial point clouds and single-view images).

Keypoint estimation. Although 3D keypoint detection has
achieved great success, it is not suitable for acquiring full key-
points from incomplete inputs. Most of the 3D keypoint regres-
sion methods are designed for specific object categories with con-
sistent topologies, such as human faces [EMXD19] and human
bodies [KKA19, CYW∗19, DZ19, DGM∗19, YWS∗21]. The key-
point generation of general objects remains challenging since there
are diverse topologies and geometric structures in general objects.
Recently, He et al. [HSH∗20] introduce a voting network for 3D
keypoint estimation for point cloud input. Zhou et al. [ZKG∗18]
propose an unsupervised domain adaptation method for 3D key-
point prediction from a single depth scan or image. Suwajanakorn
et al. [SSTN18] also explore an end-to-end geometric reason-
ing method for the discovery of latent 3D keypoints without su-
pervision. However, this unsupervised method takes pose estima-
tion as a downstream target, and it may not generate useful key-
points for other applications like shape deformation. Vasconcelos
et al. [VMB∗19] also utilize the domain knowledge for keypoint
estimation of general objects, but the performance suffers from the
limited dataset. Afterward, You et al. [YLL∗20b] provide the first
large-scale dataset of annotated keypoints for 16 general object cat-
egories. In this paper, we utilize this dataset and propose a unified
architecture for 3D keypoint estimation of general objects.

Implicit representation learning. There are various representa-
tions for 3D shape learning, such as volumes [CXG∗16], point
clouds [FSG17], and implicit fields [MON∗19,PFS∗19,CAPM20].
However, it is not effective or proper to represent 3D keypoint as
volumes. Besides, directly regressing 3D point coordinates is not
reasonable since it requires a fixed number of points. Inspired by
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Figure 2: Overview of our implicit keypoint estimation framework. In the inference stage, we extract keypoints from the learned SDF and
fetch their coordinates to generate the corresponding semantic labels by the learned stacked UDF.

2D heatmap regression [PCZ15,BT16,ORL18], an alternative key-
point representation is heatmap [PZDD17], but the consumption
of calculation and storage increases extremely for 3D scenarios,
leading to low-resolution 3D heatmap prediction and poor accuracy
of keypoint estimation. As implicit learning has exhibited its great
power for 3D reconstruction, we adopt it for 3D keypoint learning
in this paper and validate its superiority in our experiments.

3. Method

In this section, we formally introduce our method, including an im-
plicit representation of 3D keypoints and a framework to extract
3D keypoints from various forms of inputs based on the proposed
representation. Specifically, we formulate 3D keypoints as implicit
spheres represented by SDF and train a deep neural network to in-
fer SDF from various inputs, such as complete/partial point clouds
and single-view images (Section 3.1). We then utilize Marching
Cubes [LC87] to obtain explicit spheres’ surfaces and estimate cen-
ters of spheres with Hough transform algorithm [CVC14] as our
final keypoints (Section 3.2). Furthermore, we introduce stacked
UDF learning for semantic keypoint prediction (Section 3.3).

3.1. Implicit Keypoint Estimation

3.1.1. Implicit Keypoint Network

Implicit representation such as SDF has demonstrated its advan-
tages in shape reconstruction with various topologies and geomet-
ric structures [MON∗19, PFS∗19, CZ19, CAPM20]. In this work,
we introduce SDF for 3D keypoint representation to handle irreg-
ular and unordered keypoints of general objects. Specifically, we
expand a keypoint pi to a keypoint sphere ∂B(pi,r) with a user-
specified radius r (r is empirically set as 0.08 and is fixed in all
of our experiments) where B(pi,r) = {x ∈ R3|∥x−pi∥2 ≤ r}, and
define keypoint spheres S for K keypoints {pi}K

i=1 as:

S = ∂

(
K⋃

i=1
B(pi,r)

)
We adopt the SDF of the keypoint spheres to encode keypoints po-
sition for our proposed network, with the definition of SDF as:

f (p) : R3→ s, (1)

where p ∈ R3 is an arbitrary point in the space, and s = sign(p) ·d.
Here, d represents the distance from p to the closest point of the
sphere surface. We set sign(p) 1 for the points outside the spheres
and -1 for the inside. According to recent work [SMB∗20], f should
also satisfy the following Eikonal equation:

∥∇ f (p)∥= 1, ∀p ∈ R3,a.e. (2)

f (p) = 0, ∀p ∈ S, (3)

where S is the keypoint spheres. Our key insight is that we can
encode keypoints implicitly with an SDF function f . The function
is appropriate for an arbitrary number of keypoints and can be well
approximated by a neural network function fθ.

We now bridge the 3D keypoint estimation and various types
of inputs of 3D general objects (e.g., images and point clouds)
by modeling fθ conditioned on input from the specified space X .
Given an observation x ∈ X , the function takes (p,x) ∈ R3×X to
output an SDF value s, which can be formulated as:

fθ : R3×X → s. (4)

We regard this function as our implicit keypoint network and utilize
advanced neural architectures to optimize the parameters θ.

3.1.2. Network Training

Our network adopts the encoder-decoder architecture used in
DeepSDF [PFS∗19] to learn the implicit field defined w.r.t keypoint
spheres. Given the observation of a point cloud or a single-view im-
age, we randomly sample points in the 3D space (i.e., [−1,1]3) and
fetch them into our network to obtain SDF values. As shown in
Figure 2, we utilize different encoders for different inputs (Point-
Net [QSMG17] for point clouds and ResNet [HZRS16] for single-
view images), and use a multi-layer perceptron (MLP) as the de-
coder of SDF. Positional encoding is also applied for each sam-
pled point p before concatenating it with the observation features,
to help the network learn high-frequency components of the input
position. Following the work of NeRF [MST∗20], the positional
encoding function we use is:

ψ(p) = (sin(20
πp),cos(20

πp), ...,sin(2N
πp),cos(2N

πp)). (5)

The function ψ is applied separately to each coordinate value of p.
In our experiments, we set N = 6.

As mentioned in SIREN [SMB∗20], SDF learning benefits from
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high-frequency features. Therefore, we adopt a sinusoidal activa-
tion function, i.e., σ(·)= sin(ω∗·), where ω= 30 is a specified con-
stant in [SMB∗20]. We also follow SIREN to initialize the weights
of our decoder MLP.

In our experiment, we adopt SDF loss, gradient loss, and normal
loss to supervise the training. Specifically, given an observation x
and data pairs {(pi,si)} of the queried points and the corresponding
SDF values, the SDF loss is defined as the L1 difference between
the predicted values and the ground truth:

LSDF = ∑
x,i
| fθ(pi,x)− si|. (6)

According to Eq. (2), the norm of∇pi fθ(pi,x) should be restricted
to 1 over R3. For a point on the sphere surface S, ∇pi fθ(pi,x)
equals to the normal vector ni at pi, if ni can be defined here. Thus
we add two losses associated with the gradient of our network:

Lgrad = ∑
x,i
|∥∇pi fθ(pi,x)∥−1|, (7)

Lnormal = ∑
x,pi∈S

(1− ∇pi fθ(pi,x) ·ni

∥∇pi fθ(pi,x)∥
). (8)

Lnormal is used to penalize the cosine similarity between
∇pi fθ(pi,x) and ni.

Our final objective of the training is a weighted sum of the three
terms:

L = λ1LSDF +λ2Lgrad +λ3Lnormal, (9)

where λ1, λ2, λ3 are the corresponding weights. More details are
given in the experimental setup (Section 4.1). Note that the posi-
tional encoding, sinusoidal activation, and losses associated with
the gradient are combined to use for improving the smoothness of
keypoint spheres, which can improve the accuracy of the subse-
quent keypoint estimation from the inferred SDF.

3.2. Keypoint Extraction

To obtain 3D keypoints from the learned SDF, we utilize the March-
ing Cubes (MC) algorithm [LC87] to first extract the keypoint
spheres mesh from the inferred SDF. However, these spheres might
intersect each other, hindering the subsequent keypoint extraction.
Notice that sphere detection from a point cloud is a well-studied
problem, where Hough transform can be used to acquire spheres
from point clouds efficiently and robustly [CVC14]. Inspired by
this idea, we take the vertices of intersected spheres as input and uti-
lize a Hough transform-based method to extract the distinct spheres
as well as their centers. Note that the keypoint extraction task can
be simplified and performed on every mesh-connected component
of the output mesh, and the underlying spheres should possess the
same radius, which greatly reduces the complexity of the calcula-
tion. Therefore, we propose Algorithm 1 to extract the keypoints of
an unknown number.

In Step 1 of Algorithm 1, we follow the standard Hough trans-
form to voxelize the bounding box of the input point cloud (i.e.
one connected component) with a grid size d and perform sphere
center voting for all input points. In Step 2, we find out possible
clusters containing sphere centers by clustering bins, whose votes

are beyond a given threshold Nvote. Then we select points with the
maximum votes in each cluster as candidate sphere centers.

In our experiment, the candidate centers calculated in Step 2 are
sometimes inaccurate. Therefore, in Step 3, we utilize the nearest
points to update the positions of these centers at most Nmax times.
Specifically, we formulate it as a best sphere matching problem
(Eq. (10)) with the minimum variance for a given point, which has
an analytical solution [CRT∗17] given by Eq. (11):

min
cL

NL

∑
i=1

(
∥∥∥xL

i − cL

∥∥∥2

2
− 1

NL

NL

∑
j=1

∥∥∥xL
j − cL

∥∥∥2

2
)2, (10)

cL = X̄L +
1
2

Cov(XL)
−1

γ. (11)

X̄L =
1

NL

NL

∑
i=1

xL
i , Cov(XL) =

1
NL

NL

∑
i=1

(xL
i − X̄L)(x

L
i − X̄L)

T ,

γ =
1

NL

NL

∑
i=1

(xL
i − X̄L)(x

L
i − X̄L)

T (xL
i − X̄L).

where XL = {xL
i }

NL
i=1 is the given point cloud and cL is the optimal

center with the minimal variance defined in Eq. (10).

It should be noted that in Step 3, there is a possibility of erro-
neously grouping some close points into different spheres, such as
extracting two center points from an ellipsoid-like shape (a non-
standard sphere type in our experiments). To rectify this, in Step 4,
we merge these close points by calculating their mean position and
then return to Step 3 to ensure accurate keypoint extraction.

For the implementation of keypoint estimation, we set the hyper-
parameters d = 1/32, radius = 0.08, ε = 0.01, Nvote = 80, Nmax =
10. These hyper-parameters remain constant throughout all experi-
ments, which achieves stable performance.

3.3. Implicit Semantic Learning

In the previous section, we proposed a method to predict the loca-
tion of keypoints. Practically, the semantic labels (e.g., the head of
an airplane, the foot of a chair) of keypoints also play a very im-
portant role, such as building correspondence across diverse shapes
in the same category. Taking the predicted keypoints of the above
framework as input, the semantic keypoint labeling can be treated
as a per-point classification task.

For each keypoint, a straightforward way is to extract features
conditioned on its coordinates and neighborhood and to feed into an
MLP-based classifier. Since the input is a complete point cloud, this
task is similar to conducting point-wise classification for picking up
the semantic keypoints, such as the method RSNet [HWN18] used
in [YLL∗20b]. However, it is still very challenging when the input
is a partial point cloud or a single-view image, due to the difficulty
to provide sufficient features for some unobservable keypoints.

Encouraged by the success of implicit representation learning for
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Algorithm 1: Keypoint Extraction

Input: P = {pi}NP
i=1

Output: {ci}K
i=1

Step 1.
centers of bins {bi}Nb

i=1, length d← Voxelize bounding box
of P,

set vote(bi) = 0, ∀i.
for pi in P do

vote(b j) += 1, ∀b j,
∥∥b j− pi

∥∥
2 ≤ d/2

Step 2.
Clusters {Bi}NB

i=1← Clustering {b j|vote(b j)> Nvote}
c(0)i ← argmaxb j{vote(b j),b j ∈ Bi}, i = 1,2, ...,NB
Step 3.
for k = 0 to Nmax do

P(k)
i ←{

p j ∈ P
∣∣∥∥∥p j− c(k)i

∥∥∥
2
≤
∥∥∥p j− c(k)l

∥∥∥
2
∀l ̸= i

}
,∀i =

1,2, ...,NB

c(k+1)
i ←Eq(11)

∣∣
XL=P(k)

i
,∀i = 1,2, ...,NB

if maxi

∥∥∥c(k+1)
i − c(k)i

∥∥∥
2
< ε then

break
Step 4.
if exists ci,c j such that

∥∥ci− c j
∥∥

2 < radius then
Merge all such ci,c j with average position, back to Step

3.
else

return {ci}K
i=1

Figure 3: Illustration of the stacked UDF for semantic label pre-
diction. In this case, ∀p ∈ R3, the stacked UDF of p is [di]

9
i=0,

di = ∥p−Pi∥2 , i = 0, ...,9, where Pi is a specific keypoint. Then
Label(p) = argmini[di]

9
i=0. We use a 2D Voronoi diagram to illus-

trate our learned stacked UDF, where the painted region represents
points with the same semantic label.

keypoint estimation, we also explore an implicit way to do seman-
tic keypoint learning. Inspired by the stacked fashion of heatmap-
based representation [NYD16], we propose our stacked UDF rep-
resentation. Specifically, assuming the number of semantic labels is
K, instead of placing K keypoint labels at one channel of space, we
distribute them to K channels of spaces, with one label per channel.
For each channel, the distance values from quired points to the spe-
cific keypoint of the channel can be computed, as the UDF values.

Stacked UDF learning. We use a neural network to fit stacked
UDF for implicit semantic label learning, as shown in Figure 3.
Specifically, for an arbitrary point p in the space, the continuous

stacked UDF g can be defined as:

g(p) : R3→ dK ∈ RK , (12)

where K is the maximum number of keypoint labels, dK represents
the distance from p to the corresponding keypoint of every channel.
Note that the distance value of the channel should be infinite when
the semantic label does not exist. In our experiments, we simply set
1 as the value of the nonexistent label. Given an observation x ∈X ,
we have the conditional network function:

gθ : R3×X → dK ∈ RK . (13)

The stacked UDF network shares the same structure as the SDF
branch except for the last linear layer in the MLP decoder. This
UDF branch is trained using the supervision of L1 loss on UDF
values.

Semantic label prediction. Given the keypoints estimated in Sec-
tion 3.1, we can obtain their corresponding dK with learned stacked
UDF. Labels of keypoints can then be obtained by using an
‘argmin’ operation to pick out the channel which owns the mini-
mum distance. Notice our method is invariant to the order of input
keypoints, making it suitable for unordered keypoint input.

In our semantic learning, we utilize UDF instead of SDF for sev-
eral reasons. Although using UDF may have a slightly larger fitting
error for keypoints compared to using SDF, it still yields compara-
ble results in the task of semantic learning. This is because the ac-
curacy of label prediction is not highly sensitive to the fitting error.
Additionally, UDF offers advantages in terms of implementation
simplicity, data preparation, and faster inference speed.

Note that in our approach, we separate the tasks of keypoint esti-
mation and semantic learning to achieve optimal performance. An
alternative solution is jointly learning keypoint spheres and seman-
tic labels using a similar stacked SDF representation. In this repre-
sentation, each channel corresponds to the SDF of keypoints asso-
ciated with a specific label. However, training a stacked SDF model
learning requires much more data sampling to ensure accurate key-
point estimation for all channels, significantly increasing the con-
sumption of calculation and storage. Joint learning also may bring
more artifacts thus possibly increasing the difficulty of training and
the subsequent keypoint extraction. Therefore, we choose to divide
the problem into two subtasks to ensure optimal performance.

4. Experiment Results

In this section, we introduce the dataset and implementation de-
tails in our experiments (Section 4.1) and evaluate our implicit
keypoint learning scheme on the task of keypoint detection (Sec-
tion 4.2), keypoint estimation (Section 4.3), and semantic label in-
ference (Section 4.4). An ablation study is also conducted for ana-
lyzing our architectural design (Section 4.5).

4.1. Experimental Setup

Dataset. We use the KeypointNet dataset [YLL∗20b] which con-
tains 103,450 annotated keypoints and 8,234 3D models spanning
16 object categories from ShapeNet [CFG∗15]. We choose 10 pop-
ular categories, i.e., the airplane, bathtub, car, chair, guitar, knife,
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Method Metric Airplane Bath Chair Car Guitar Knife Laptop Motor Table Vessel

PointNet
BHD 0.366 0.422 0.310 0.474 0.612 0.890 1.022 0.542 0.660 0.360
CD 0.070 0.081 0.097 0.198 0.249 0.376 0.552 0.276 0.253 0.110

DGCNN
BHD 0.321 0.354 0.421 0.247 0.183 0.775 0.635 0.474 0.159 0.320
CD 0.098 0.156 0.119 0.023 0.019 0.113 0.433 0.166 0.073 0.054

Ours
BHD 0.124 0.235 0.148 0.121 0.097 0.147 0.097 0.194 0.117 0.260
CD 0.015 0.031 0.018 0.009 0.007 0.025 0.015 0.017 0.026 0.053

Table 1: Comparison results of PointNet [QSMG17], DGCNN [WSL∗19], and Ours using complete point cloud input. Average BHD and CD
are reported, the lower value is better. Our method utilizes the same encoder as PointNet while adopting different keypoint representations.
DGCNN is the best keypoint saliency benchmark in KeypointNet [YLL∗20b].

Method Metric Airplane Bath Chair Car Guitar Knife Laptop Motor Table Vessel

Coords
BHD 0.190 0.249 0.245 0.154 0.126 0.174 0.127 0.219 0.133 0.281
CD 0.028 0.047 0.060 0.013 0.012 0.036 0.025 0.025 0.025 0.060

Heatmap
BHD 0.241 0.474 0.366 0.163 0.189 0.248 0.834 0.256 0.213 0.611
CD 0.086 0.345 0.196 0.018 0.030 0.076 1.315 0.049 0.148 0.600

Ours
BHD 0.124 0.235 0.148 0.121 0.097 0.147 0.097 0.194 0.117 0.260
CD 0.015 0.031 0.018 0.009 0.007 0.025 0.015 0.017 0.026 0.053

Table 2: Comparison results of coordinate regression, heatmap inference, and Ours using complete point cloud input. Average BHD and CD
are reported, the lower value is better.

laptop, motorcycle, table, and vessel, for our experiments with
point cloud input, and pick rendered images of the corresponding
categories in the dataset of 3D-R2N2 [CXG∗16] for the experi-
ments using image input. We randomly split the data into a train set
(80%) and a test set (20%). More specifically, all the 3D models are
normalized into a bounding box of [−1,1]3. To acquire data pairs
for training SDF fields of keypoints, we first represent keypoints
as spheres of radius 0.08, created in MeshLab with 2,562 vertices.
Subsequently, we uniformly sample 100,000 points in [−1,1]3 and
collect the NS × 2,562 (NS is the keypoint number of S) sphere
surface points, along with their corresponding SDF values, respec-
tively. For data in semantic learning, samples are kept the same with
the SDF setting, and the corresponding distances (i.e., UDF values)
to all keypoints will be calculated for each sample point.

Network and training. For the network structure, we deploy
classical encoders w.r.t diverse kinds of input followed by the
same decoder to estimate keypoints. Specifically, we employ
ResNet [HZRS16] for single image input and PointNet [QSMG17]
for point cloud input. The dimension of the last layer in all encoders
is set to 256. We also incorporate the positional encoding, generat-
ing a 39d (where d means dimension) feature for each queried point
in space. This feature is then concatenated with the 256d feature en-
coded from the input. Subsequently, the 295d feature is forwarded
to the implicit decoder. The decoder is an MLP-based network con-
sisting of 5 fully connected layers with a sine activation between
layers. The output channels are 256, 256, 256, 256, and 1, respec-
tively. During the training of the SDF field, we randomly generate
10,000 volume-based samples and 10,000 surface-based ones (if in-
sufficient, we just add those uniform samples) for each shape. The
batch size is set to 4. For training details, in our experiments, we set
ω = 30 in the sine function and use λ1 = 1.0,λ2 = 0.1,λ3 = 0.05 in
the weighted training loss function L. Adam optimizer is adopted
to train our network with an initial learning rate of 1e-4, β1 = 0.9,
and β2 = 0.999. We train our network with 300 epochs for all tasks
on one GTX 2080ti GPU.

Evaluation metrics. The Chamfer Distance (CD) for traditional

point cloud generation work [FSG17] is adopted to evaluate the dis-
tance between the predicted keypoints and the ground truth where
the number of points might be different. We also utilize Bidirec-
tional Hausdorff Distance (BHD) to measure the similarity between
two point sets. Suppose S1,S2 are two point sets, BHD (dH ) and CD
(dC) are defined as:

dH(S1,S2) =
1
2
(max

p∈S1
min
q∈S2
∥p−q∥2 (14)

+max
q∈S2

min
p∈S1
∥p−q∥2)

dC(S1,S2) =
1
|S1| ∑

p∈S1

min
q∈S2
∥p−q∥2

2 (15)

+
1
|S2| ∑

q∈S2

min
p∈S1
∥p−q∥2

2 .

4.2. Comparisons on Keypoint Detection

Although our method focuses on keypoint estimation of general ob-
jects, especially for incomplete input, we first compare our method
with state-of-the-art methods in the field of keypoint detection. Ta-
ble 1 presents the results of our method, PointNet [QSMG17] (us-
ing the same encoder as ours), and DGCNN [WSL∗19] (the best of
keypoint saliency benchmark in KeypointNet). Both of these clas-
sification methods have a tendency to predict an excessive number
of keypoints, resulting in significant errors in BHD and CD met-
rics. Our method outperforms them significantly in terms of BHD
and CD, showcasing its superiority.

We further report mIoU curves in line with Keypoint-
Net [YLL∗20b] in Figure 4. Our method outperforms DGCNN
when the distance threshold is bigger than 0.04. It also achieves
better results than an unsupervised keypoint generation method, i.e.
UKPGAN [YLL∗20a]. The lower mIoU of our method at a small
threshold is basically caused by the error of off-surface distance.
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Method Metric Airplane Bath Chair Car Guitar Knife Laptop Motor Table Vessel

Coords
BHD 0.171 0.209 0.196 0.135 0.135 0.144 0.084 0.201 0.105 0.294
CD 0.025 0.036 0.036 0.010 0.013 0.023 0.010 0.020 0.019 0.068

Heatmap
BHD 0.236 0.359 0.412 0.141 0.155 0.388 0.616 0.315 0.433 0.504
CD 0.097 0.248 0.279 0.01 0.026 0.206 0.79 0.087 0.456 0.43

Ours
BHD 0.136 0.209 0.186 0.111 0.097 0.149 0.111 0.187 0.124 0.331
CD 0.020 0.036 0.032 0.007 0.007 0.030 0.051 0.017 0.029 0.123

Table 3: Comparison results of coordinate regression, heatmap inference, and Ours using partial point cloud input. Average BHD and CD
are reported, the lower value is better.

Figure 4: The mIoU results under various distance thresh-
olds (0-0.1) for compared algorithms, i.e., our method (SDF),
DGCNN [WSL∗19], and UKPGAN [YLL∗20a]. Note that our
method is significantly better than UKPGAN and outperforms
DGCNN when the threshold is larger than 0.04.

4.3. Comparisons on Keypoint Estimation

To validate the effectiveness of our proposed implicit learning ap-
proach for 3D keypoint estimation, we conduct experiments on
general objects using different input types, i.e., complete point
clouds, partial point clouds, and single-view images. The baselines
are based on coordinate regression and heatmap inference meth-
ods. Because the output dimension of the point regression network
is forced to be fixed, we adapt it by learning a binary mask for each
predicted keypoint, making it usable for number-varying point pre-
diction. For the heatmap-based method, we represent all keypoints
in a 3D heatmap (1283) to alleviate the calculation and storage con-
summation. To ensure fairness and efficiency, we employ the same
encoder for different methods. Specifically, PointNet [QSMG17]
and ResNet18 [HZRS16] are chosen for point cloud and image in-
put, respectively.

Results on complete point clouds. For the complete point cloud
input, we employ the same encoder, i.e. PointNet, for different
methods. Our method performs the best across almost all categories
for all metrics, as demonstrated in Table 2. Visual results are also
shown in Figure 5 (the second row).

Results on partial point clouds. We render 24 views of depth
maps for each mesh in the KeypointNet dataset [YLL∗20b] and
then obtain partial point clouds (following the approach used in
ME-PCN [GNL∗21]) to evaluate the robustness of different meth-
ods. The network structures remain unchanged compared to the ex-
periments of complete point clouds. Our method also exhibits its

Method Metric Airplane Chair Car Table Vessel

Coords
BHD 0.247 0.145 0.259 0.140 0.334
CD 0.052 0.071 0.013 0.035 0.092

Heatmap
BHD 0.389 0.602 0.215 0.652 0.734
CD 0.181 0.564 0.045 1.079 0.545

Ours
BHD 0.217 0.214 0.136 0.140 0.310
CD 0.038 0.049 0.012 0.032 0.078

Table 4: Comparison results of coordinate regression, heatmap in-
ference, and Ours using single-view image input. Average BHD and
CD are reported, the lower value is better.

superiority in most categories, seen in Table 3 and Figure 5 (the first
row). However, when dealing with partial data, both the heatmap
method and our approach encounter challenges in accurately pre-
dicting the number of keypoints, which can result in potentially
larger errors.

Results on single-view images. Similar to single-view reconstruc-
tion, the goal of this task is to accurately estimate the complete set
of keypoints for a given single image. We evaluate different meth-
ods on 5 object categories, in which the rendering images come
from 3D-R2N2 [CXG∗16]. Quantitative and qualitative results are
shown in Table 4 and Figure 6. Our method outperforms others,
and the discussion of the partial data effect is similar to the case of
the partial point cloud.

4.4. Comparisons on Semantic Learning

In this paper, we introduce an exploring method of semantic la-
bel learning for the keypoints generated by our algorithm. Fig-
ure 7 illustrates a visual comparison with RSNet [HWN18],
which is the best keypoint correspondence benchmark in Keypoint-
Net [YLL∗20b]. We evaluate our method using two types of in-
puts, i.e. full and partial point clouds. To enhance visualization,
keypoints with distinct semantic labels are colored in different
ways. Our method achieves accurate semantic correspondence with
ground truth (GT) for both full and partial point cloud inputs, al-
though there might be some keypoint errors in the case of partial
inputs. RSNet demonstrates comparable performance on the full
point clouds, but it can have two keypoints with different labels
close to each other in the case of partial point cloud inputs. Our
method exhibits superiority in handling partial data inputs.

We also present a quantitative comparison between our stacked
UDF and RSNet [HWN18] on the settings of complete point cloud
input (Table 7) and partial point cloud input (Table 8). As shown in
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Figure 5: Qualitative results of keypoint estimation with a point cloud input. The input of the first and second rows are a partial point cloud
and a complete point cloud, respectively. ‘Coords’ means coordinate regression, and ‘Heatmap’ means heatmap inference.

Figure 6: Qualitative results of keypoint estimation with a single-view image input. ‘Coords’ means coordinate regression, and ‘Heatmap’
means heatmap inference. For better visualization, we draw lines among the predicted keypoints.

Metric Num BHD CD
SDF 8 0.0024 1.3e-5
UDF 7 0.0692 0.0119

Table 5: Comparisons of SDF and UDF learned on an example.
The ground-truth number of keypoint is 8. The lower of BHD or
CD, the result is better.

Radius 0.24 0.16 0.08 0.04 0.02
BHD 0.1507 0.1470 0.1472 0.2148 0.3029
CD 0.0192 0.0181 0.0173 0.0411 0.0696

Table 6: Ablation study of sphere radius. The lower of BHD or CD,
the result is better.

these two tables, the Top-1, Top-3, and Top-5 accuracy are reported.
RSNet [HWN18] can achieve comparable performance with ours

for complete point cloud input but it degenerates dramatically for
partial point cloud input. In contrast, our method can robustly pre-
dict semantic labels for both complete and partial data, as stated in
Section 3.3 of our paper.

4.5. Ablation Study

In this subsection, we provide an ablation study to validate the
effectiveness of our architectural design and hyper-parameter se-
lection. For simplicity without loss of generality, the study is per-
formed on the chair category with complete point cloud input.

Network architecture. We investigate the impact of using posi-
tional encoding, gradient loss, and different activation functions in
our network training. The results are provided in Table 9, showing
the network with positional encoding, gradient loss, and sine activa-
tion performs the best. Positional encoding helps the network learn
high-frequency features in the data as stated in NeRF [MST∗20]

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8



Zhu et al. / 3D Keypoint Estimation Using Implicit Representation Learning

Figure 7: Visualization for results of semantic learning. Left: semantic label prediction with full point cloud input; Right: prediction with
the partial point cloud. Our method predicts semantic labels of estimated keypoints by the proposed stacked UDF, while RSNet [HWN18]
performs classification on the input point cloud. As seen on the right side, RSNet may generate close keypoints with different semantic labels
and keypoints in incorrect positions due to missing data in the input.

Method Metric Airplane Bath Chair Car Guitar Knife Laptop Motor Table Vessel Mean

RSNet
Top-1 49.54 65.14 89.40 60.40 89.78 51.25 96.21 62.77 95.47 80.35 74.03
Top-3 71.99 87.06 97.97 88.61 98.63 90.00 100.00 81.55 99.39 96.09 91.13
Top-5 77.90 92.62 99.30 95.49 99.36 100.00 100.00 95.05 99.73 98.41 95.79

Ours
Top-1 76.78 58.17 93.44 80.87 86.09 67.50 100.00 57.16 99.18 49.07 76.82
Top-3 92.47 82.32 98.40 96.10 98.06 91.67 100.00 79.66 99.62 77.52 91.58
Top-5 96.02 86.43 98.94 98.74 98.72 98.75 100.00 87.47 99.66 83.23 94.80

Table 7: Comparison results of stacked UDF (Ours) and RSNet [HWN18] with complete point cloud input. The Top-1, Top-3, and Top-5
accuracy are reported. Our method performs slightly better than RSNet.

Figure 8: Visualization of fitting results of SDF and UDF. (a) is the
spheres’ mesh of SDF by Marching Cubes [LC87]. (b) shows the
extracted keypoints from the spheres’ mesh. (c) shows points whose
UDF values are larger than the threshold 0.08 and extracts final
keypoints by an ‘argmin’ function.

and sine activation combined with gradient loss can improve the
smoothness of underlying surface discussed in SIREN [SMB∗20].
Consequently, these architectural choices contribute to improved
keypoint extraction and yield superior results.

SDF vs UDF. As stated in Section 3.1, we adopt SDF for keypoint
learning. To compare the regression capabilities of SDF and UDF
representations, we use the same MLP network to fit the SDF and
UDF fields of 8 points randomly sampled from the [−1,1]3 space.
The numerical results are presented in Table 5. We also give a vi-
sualization for the qualitative comparison in Figure 8. For UDF
learning, we extract the underlying keypoints from the clusters if
their values are larger than the given threshold of 0.08. However,
the cluster shapes are not as good as the output of our SDF learn-

Figure 9: Ablation study about the choice of sphere radius. In this
case, mean L2 distances of keypoints are reported. As shown in
the figure, adopting a small radius tends to generate bad shapes.
Meanwhile, a large radius leads to generating intersected spheres,
increasing the difficulty of keypoint extraction.

ing, making the UDF keypoints extracted from ‘argmin’ function
deviate from the ground truth positions.

Sphere radius. The performance of our SDF representation is in-
fluenced by the choice of sphere radius. As shown in Table 6, us-
ing a small radius data or a large radius degrades the performance
of keypoint estimation. With a small radius, the spheres cannot be
well-fitted by the network probably due to local imbalances of SDF
values and some numerical issues. On the other hand, using a large
radius increases the likelihood of sphere intersections, which com-
plicates keypoint extraction and slows down the process. Figure 9
provides visual results to support these observations. Therefore, we

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

9



Zhu et al. / 3D Keypoint Estimation Using Implicit Representation Learning

Method Metric Airplane Bath Chair Car Guitar Knife Laptop Motor Table Vessel Mean

RSNet
Top-1 34.19 40.60 58.66 49.34 69.53 54.79 80.49 48.19 77.96 63.39 57.71
Top-3 58.37 64.82 78.19 78.28 89.05 88.13 99.43 72.63 97.17 87.84 81.39
Top-5 67.26 76.44 86.29 88.58 94.29 99.16 100.00 84.47 98.90 94.59 89.00

Ours
Top-1 62.65 49.57 91.86 74.75 84.45 64.38 100.00 56.86 98.07 43.71 72.63
Top-3 83.29 78.54 97.59 87.87 96.82 91.67 100.00 75.88 99.57 74.18 88.54
Top-5 88.90 82.50 98.45 93.58 98.19 99.17 100.00 82.45 99.66 82.61 92.55

Table 8: Comparison results of stacked UDF (Ours) and RSNet [HWN18] with partial point cloud input. The Top-1, Top-3, and Top-5
accuracy are reported. It shows that our method is much more robust than RSNet for partial point cloud input.

Activation ReLU SeLU Sine
Pos, Grad wo,wo wo,w/ w/,wo w/,w/ wo,wo wo,w/ w/,wo w/,w/ wo,wo wo,w/ w/,wo w/,w/
BHD 0.284 0.308 0.227 0.188 0.237 0.207 0.243 0.171 0.216 0.806 0.204 0.148
CD 0.050 0.057 0.038 0.028 0.043 0.036 0.049 0.024 0.031 0.321 0.027 0.018

Table 9: Ablation study of network architecture. We evaluate the effectiveness with (w/) or without (wo) positional encoding (Pos) and
gradient loss (Grad), as well as different activation functions (ReLU, SeLU, and Sine). The lower of BHD or CD, the result is better.

adopt a default sphere radius of 0.08, which remains fixed through-
out all our experiments.

5. Conclusion

In this paper, we propose a novel framework for general object
keypoint estimation, which is the first attempt to introduce con-
tinuous implicit field learning into the prediction of sparse and
distinct points. It addresses the challenges related to the uncertain
number and order properties of keypoints and enhances the perfor-
mance of 3D keypoint estimation on incomplete input, including
partial point clouds and single-view images. Moreover, the pro-
posed implicit representation facilitates semantic label inference.
Experimental results demonstrate that our novel keypoint estima-
tion formulation surpasses existing methods that rely on position
regression and heatmap inference techniques.

In terms of limitations and future work, our method utilizes a
predefined sphere radius for implicit field calculation. It would be
valuable to explore the potential benefits of adaptively adjusting the
radius based on the specific object categories, which could poten-
tially enhance the accuracy and robustness of keypoint estimation.
Additionally, we are intrigued by the prospect of studying dense
point scenarios that pose greater challenges for network learning
and keypoint extraction. Moreover, an interesting avenue for future
research is to develop an end-to-end architecture that directly ob-
tains keypoints from an SDF-based representation, eliminating the
need for an intermediate step. Lastly, our method is a supervised
approach that relies on an annotated keypoint dataset. In the future,
we would like to study unsupervised learning for keypoint estima-
tion which can be generalized to unseen object categories.
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