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Figure 1: A tetrahedral mesh (left) and its associated boundary mappings to five alternative base domains supported in VOLMAP (right):
cube, tetrahedron, pyramid, octahedron and star. VOLMAP also provides boundary maps to spheres and simple (star-shaped) polycubes.
Model: 39507 .mesh from group G3.

Abstract

Correspondences between geometric domains (mappings) are ubiquitous in computer graphics and engineering, both for a
variety of downstream applications and as core building blocks for higher level algorithms. In particular, mapping a shape
to a convex or star-shaped domain with simple geometry is a fundamental module in existing pipelines for mesh generation,
solid texturing, generation of shape correspondences, advanced manufacturing etc. For the case of surfaces, computing such
a mapping with guarantees of injectivity is a solved problem. Conversely, robust algorithms for the generation of injective
volume mappings to simple polytopes are yet to be found, making this a fundamental open problem in volume mesh processing.
VOLMAP is a large scale benchmark aimed to support ongoing research in volume mapping algorithms. The dataset contains
4.7K tetrahedral meshes, whose boundary vertices are mapped to a variety of simple domains, either convex or star-shaped.
This data constitutes the input for candidate algorithms, which are then required to position interior vertices in the domain
to obtain a volume map. Overall, this yields more than 22K alternative test cases. VOLMAP also comprises tools to process
this data, analyze the resulting maps, and extend the dataset with new meshes, boundary maps and base domains. This article
provides a brief overview of the field, discussing its importance and the lack of effective techniques. We then introduce both the
dataset and its major features. An example of comparative analysis between two existing methods is also present.

spaces [BLP* 13, PCS*22] or simplexes of base domains that are
used for cross-parameterization [HPS08] and morphing [Ale02].

1. Introduction

One-to-one correspondences (mappings) between geometric do-

mains are the underlying workhorse of countless downstream ap-
plications in graphics, engineering and medicine, where they are
used to transfer signals of various kind from one domain to the
other. Of particular interest for many of these applications are the
mappings to parametric domains with simple topology and ge-
ometry, such as convex polygons [FHO5], spheres [GGS03], grid
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These basic mappings are in fact used as atomic building blocks
in many higher level pipelines, where it is often required solving
numerous instances of these problems, on input data for which very
little assumptions can be made (in the wild). For this reason, map-
ping methods to base domains are expected to operate as trusted
black-boxes, that is, to be both efficient and unconditionally robust.
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While for the surface case there exist robust methods that ful-
fill these requirements [Tut63, Flo97, GGT06, SJZP19, Liv23a],
none of these approaches currently extends to 3D, making the
fully robust computation of injective volume mappings a promi-
nent open problem for practitioners in graphics and engineer-
ing [FSZ*21,NNZ21]. Indeed, the volume mapping problem has
been the subject of extensive research in recent years, but satisfac-
tory solutions to this problem are still lacking (Section 2).

In this paper we introduce VOLMAP (volmap.github.io):
a dataset aimed to support ongoing research on volume mapping
to simple base domains. VOLMAP comprises 4.7K input tetra-
hedral meshes, all endowed with a set of boundary mappings
to a variety of alternative simple base domains, such as cubes,
tetrahedra, pyramids, octahedra, spheres and, following the ca-
pabilities of recent constructive methods for provably injective
mapping [Liv23a, NCB, HC], also star-shaped domains. Overall,
VOLMAP amounts to more than 22K alternative inputs for al-
gorithms, which are then required to complete the boundary map
we provide by positioning interior vertices inside the base domain,
generating an injective volume map. In addition to this, we also re-
lease various scripts and code to assess the quality of the generated
results, compare to alternative methods, or enrich the dataset with
additional meshes, boundary maps or base domains.

Connecting to the evaluation criteria listed in the call for dataset
papers, VOLMAP is:

o Novel: no alternative dataset for the same task was ever released.
Large scale datasets of volumetric meshes were already released
for the related problem of untangling a tetrahedral mesh con-
taining inverted elements (e.g., [DAZ*20, DKZ*22]). However,
since most of these meshes are not convex or star-shaped, they
cannot be used for the task that we aim to support;

e Impactful: considering the centrality of volume mappings
in many tasks, the growing amount of articles published in
recent years, and the lack of input data, we expect VOLMAP
to have a significant impact in the graphics community and
other communities alike. While there cannot be guarantees
in this regard, we observe that prior large scale datasets such
as ThingilOK [ZJ16] have arguably increased the evaluation
standards, becoming a de facto mandatory validation step for
diverse algorithms that make claims on scalability or robust-
ness [HZG*18, HSW*20, CLSA20, LPC22, CPAL22, DA21,
TNK?22, TBFL19, FDBH22, DAZ*20, GSC21]. With VOLMAP,
we wish to extend this practice also to volume mesh processing,
contributing to the creation of truly robust volume mapping
algorithms;

e Accessible: VOLMAP data will be hosted at the servers of CNR
IMATI. Prominent datasets of 3D shapes in our community have
already been hosted at the same institution for many yearsT,
thus guaranteeing the reliability and permanent accessibility to
the data. Considering the large number of meshes and additional
information contained in VOLMAP, the dataset is split into

T http://visionair.ge.imati.cnr.it

smaller thematic chunks that can be downloaded separately. For
file formats, all input meshes are in the popular MESH format,
and conversion facilities to alternative VTK formats are also
provided. MESH and VTK are arguably the two most widely
used file formats to exchange volume meshes in our community,
and are largely supported by existing academic and commercial
tools.

e Ethical: data in VOLMAP was mostly created by processing
previously existing meshes included in other datasets, per-
forming tetrahedralization and boundary maps as detailed in
Sections 4 and 5. Prior to collecting data, we ensured that all
the sources we considered did not prevent the processing or
redistribution of their models with a restrictive license.

2. Field Overview

The goal of this section is to provide the reader with a comprehen-
sive overview of topics related to volume mapping to simple base
domains. We first discuss methods for the generation or repairing
of injective mappings, emphasizing the lack of robust volume tech-
niques and the inability to extend the existing surface methods to
volumes (Section 2.1). Then, we briefly mention relevant volume
pipelines that rely on the existence of injective volume mappings
(Section 2.2), also discussing related datasets that were released to
the community to support research in these areas.

2.1. Existing Mapping Methodologies

For simplicial complexes of dimension 2 (triangle meshes), fully
robust methods to map a surface with simple topology to a con-
vex domain have been known since 1963, when Tutte introduced
his celebrated embedding [Tut63]. Geometric and topological re-
laxations that extend the applicability of Tutte [GGT06, WZ14,
XCGL11] or that offer superior robustness against limited preci-
sion floating point implementations [SJZP19] have also been pro-
posed. However, none of these methods is applicable to simplicial
complexes of dimension 3 (tetrahedral meshes), leaving the volume
mapping problem largely unsolved.

Tutte 3D. Trivial extensions of the Tutte embedding to three di-
mensional spaces are notoriously prone to failures. A variety of
failure examples have been shown in literature [CDL95, CSZ16,
DVPVO03], also for trivial meshes containing only four boundary
and two internal vertices [FP06, Liv20a]. Chilakamarri and col-
leagues conjectured that a subclass of graphs for which the Tutte’s
theorem extends to 3D exists, without formalizing it [CDL95].
Only recently, Alexa proved that 4-connected graphs not having
K¢ and K3 3 | minors admit a valid three-dimensional Tutte embed-
ding [Ale23]. However, quoting the author, "this result has little
direct consequence on the practice of using the commonly gener-
ated tetrahedral meshes for creating PL mappings: almost all of
them have a Kg minor and, consequently, a convex combination
mapping will likely not be an embedding". In Section 8, we test
Tutte 3D on our benchmark, verifying that in all our experiments
the so generated maps contain inverted elements.
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Progressive Embeddings. Floating point implementations of the
(2D) Tutte embedding may fail to produce an injective map due
to numerical cancellation errors. Shen and colleagues extended
the seminal idea of progressive meshes [Hop96] to the genera-
tion of simplicial mappings, obtaining higher practical robustness.
They called their algorithm Progressive Embeddings [SJZP19].
This method operates by first removing all inverted elements from
an existing input map through a sequence of edge collapses and
then insert back all the previously removed elements by means of
vertex splits, ensuring that no vertex insertion changes the orien-
tation of its incident triangles, thus ensuring injectivity. Despite
the main ingredients of this algorithm (edge collapse, vertex split)
are well defined also for tetrahedral meshes, extending Progressive
Embeddings to the generation of volume maps seems overly com-
plex. In fact, differently from triangle meshes, tetrahedral meshes
cannot always be collapsed through a sequence of edge collapses,
and even deciding whether a given mesh is collapsible is an NP-
complete problem [Tan16, MFO8, ADGL16]. Barycentric subdivi-
sion ensures collapsibility [AB20] but, even if a valid collapsing
sequence of a refined mesh is guaranteed to exist, the size of the
search space is exponential w.r.t. the number of mesh edges. Failed
attempts to heuristically compute a valid collapsing sequence are
reported in [Liv20a, Liv20b]. According to [LN21], the chances to
get stuck at an incollapsible configuration along a randomly se-
lected collapsing sequence grow exponentially with the number of
simplexes in the mesh.

Numerical approaches. Considering the limits of topological ap-
proaches, to date, the most reliable methods for the generation of
volume maps is through numerical optimization. As detailed in two
recent surveys on the topic [FSZ*21,NNZ21], numerical methods
compute injective mappings by solving difficult non convex prob-
lems. The vast majority of existing approaches solves directly for
the xyz coordinates of the mesh vertices. However, explicitly im-
posing injectivity in this formulation yields cubic constraints, mak-
ing the numerical problem impossible to optimize with any ex-
isting solver. A variety of relaxed formulations that promote in-
jectivity without strictly imposing it have been proposed over the
years [AL13, KABL14, KABL15, FL16, SFL19, SLS22, ASGS22,
NZZ720,0KN21,POK23,DAZ*20,GKK*21], often showcasing re-
markable results even on extremely challenging tests. In Section §,
we tested the authors’ implementation of [DAZ*20] on a portion of
our dataset: in 34% of the cases it fails to produce an injective map.
This emphasizes the complexity of the problem we consider, also
suggesting that numerical methodologies that do not offer strict the-
oretical guarantees of correctness are perhaps intrinsically too brit-
tle to reliably compute mappings to simple base domains. A critical
aspect of methods in this class is that they often assume that the in-
put mesh connectivity is fixed. As shown in recent research, this as-
sumption hinders the overall robustness of mapping methods, who
often need to refine the mesh to open the space of solutions and per-
mit the existence of a valid mapping [Liv23a, NCB,HC]. VOLMAP
is designed to test algorithms also on this aspect, providing inputs
for which an injective mapping is not guaranteed to exist for a fixed
mesh connectivity.

Foliations. Campen and colleagues propose a topological
method to construct bijective volume mappings to cubes and
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spheres [CSZ16] based on simplicial foliations. To date, this is the
only published method that is guaranteed to produce a valid map.
However, the algorithm applies only to bi-shellable simplicial
complexes and, most importantly, the maps it generates are not
piecewise linear. In the article, the authors discuss a technique
to convert their mappings into a piecewise linear form, but this
operation involves huge refinement steps that trigger mesh growths
even by orders of magnitude, making this algorithm hardly usable
in practical cases. Since its introduction in 2016, we are not aware
of any method that internally uses it to compute volume maps.
Another foliation algorithm for volumetric mapping to spheres
was presented in [CBC19]. However, in this case the approach is
numerical, hence it does not provide guarantees of correctness.

2.2. Applications that Enjoy a Volume Map

Volume mappings to simple geometric domains play an important
role in a variety of applications. Here we briefly mention a few
important ones.

Solid Texturing. Mapping a mesh to the unit cube is used for
solid texturing, which is the analog of 2D texturing in UV
mapping [PCOS10]. 3D textures are typically used to design
the interior material of objects that would break or be sliced,
showing their internal structures [TOIIO8]. This is relevant to
model wood, stones, fruits, but also tissues in medical applica-
tions [DFRVDVM14]. Solid texturing is also used in advanced
manufacturing to map atomic elements of periodic microstructures
inside objects [PZM*15,SBR* 15, ABC*19], obtaining lightweight
pieces with a controlled physical response. Furthermore, cube
mappings are also relevant in CAD, where IGA methods exploit
them to fit tensor product splines for the numerical resolution of
PDEs [ZC21, YLSF21,LYLF20].

Low Distortion Injective Mappings. Mappings to convex do-
mains are a fundamental building block in pipelines that generate
low distortion injective maps to generic shapes. These methods op-
erate by first computing a highly distorted but provably injective
map to a convex shape. Then, they iteratively reduce distortion by
relaxing vertex positions, using line search to prevent the introduc-
tion of inverted elements. This technique was pioneered in [SS15]
and then extended in many subsequent works [RPPSH17,LYNF18,
JSP17,SYLF20,FW22], also for structured meshing [Liv23b]. Due
to the lack of robust methods to map a volume to a convex domain,
these methods are currently applicable only to surface meshes,
where the initialization step is performed using Tutte or simi-
lar techniques [Tut63, SJZP19]. For the case of volumes, it has
only been validated for tetrahedral mesh improvement (Figure 18
in [RPPSH17]), because this application does not require the gen-
eration of the initial valid map.

Shape Correspondences. Algorithms for the computation of
shape correspondences or morphing between shapes rely on the
existence of an underlying injective map. Prominent methods in
this field operate on intermediate base domains for cross param-
eterization, consisting in a coarse simplicial complex where both
shapes are mapped. Each shape is first decomposed into an atlas of
charts. Each chart is then assigned to a face of the base domain and
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mapped to it using Tutte [Tut63]. Correspondences are therefore
constructed as a global (chart-wise) cross-mapping between all the
shapes that map to the same base domain. This simple yet effective
idea has been extensively used to generate cross-mappings between
shapes [LSS*98,GVSS00,PSS01,KLS03, SAPH04], also support-
ing arbitrary positional constraints [KSG03,SJZP19]. An extension
to volumetric cross-mappings using coarse tetrahedral meshes as
base domains seems feasible and likely useful, but once again, the
lack of robust volume mapping to a tetrahedron prevents the real-
ization of this neat idea. The tetrahedron is one of the base domains
we consider in VOLMAP.

Hexmeshing. Not only single cubes, but also mappings to assem-
blies of cubes are important. In hexahedral mesh generation, these
spaces are used to generate a conforming all-hex mesh connectiv-
ity that is then projected inside a target shape through an injec-
tive map. Both polycube [LVS*13,CLS16,GSZ11,LZS*21,FBL16,
GLYL20,FXBH16,PRR*22, DPM*22, MCBC22,HJS* 14], frame-
field [LLX* 12, BBC22, NRP11,PBS20,LZC* 18, KLF16, SVB17,
CC19, RSR*18, SRUL16] and skeleton-based methods [LAPS17,
MCKO08, LZLW15] operate on grid spaces of this kind. In the
last 10 years there has been a lot of research on this topic
in the graphics community, but these technologies still strug-
gle to transition to industry because of their lack of robustness,
which largely depends from a lack of injectivity of the underly-
ing maps [PCS*22](§8.2). Pratictioners in the field have also re-
leased volumetric datasets to support their research activities. The
Hexalab project [BTP*19] hosts hexahedral meshes that were
produced with these and alternative hexmeshing methods. Con-
versely, Hex Me If You Can [BRK*22] hosts challenging tetra-
hedral meshes that can be given in input to these methods. None
of these datasets are aimed to support research on the more spe-
cific problem that we tackle in VOLMAP. It should be noted that,
in the general case, the domains used for hexmesh generation are
not convex or star-shaped, therefore they fall outside the scope of
VOLMAP. Nevertheless, due to their grid structure they can be eas-
ily split into (sub) mappings to single cuboids, thus benefitting from
advancements in this field.

3. Anatomy of VOLMAP
The VOLMAP dataset is composed of three main ingredients:

o Meshes: we collected 4700 tetrahedral meshes with simple
topology (genus zero) from various data sources (Section 4).
These meshes exhibit a significant variety in resolution (from
1K to more than 1M elements) and a large variety of geometries
and features, spanning from CAD to free-form shapes, scanned
objects, and artificial models designed for 3D printing and other
applications;

e Boundary Maps: the boundary of each tetmesh is associ-
ated with a set of surface maps to alternative convex or star
shaped domains. For most of the models, we provide map-
pings to five canonical polyhedra, that is: tetrahedron, cube,
pyramid, octahedron and star (Fig. 1). For models that were
collected from datasets released with mapping methods, such
as [PHO3, DAZ*20], we also provide surface mappings to

spheres and simple (star-shaped) polycubes;

e Tools: in addition to meshes and boundary maps we also release
a variety of tools for quality assessment and to support dataset
extensions. This includes: C++ code for the computation of in-
verted elements, mesh distortions, tetrahedralization, and gen-
eration of new boundary maps, possibly on brand-new base do-
mains, as well as scripts to batch process the whole (or a selected
portion) of the dataset. A tool for the visual inspection of the
generated maps and to plot inverted elements and color-coded
distortion metrics is also included in the package.

Intended usage. VOLMAP is designed to provide input data for
volume mapping algorithms that operate under strict boundary con-
ditions. As discussed in Section 2, this is relevant for a broad variety
of applications. Given a tetrahedral mesh and a surface mapping as-
sociated to it, candidate algorithms are expected to compute a vol-
ume mapping that positions boundary vertices as indicated by the
input surface map, solving for the position of internal vertices so
as to generate a piecewise linear injective mapping, that is, a map-
ping where the linear transformation associated to each tetrahedron
does not flip its orientation. A natural consequence of the proposed
setup is that the mapped mesh precisely interpolates the target do-
main without possibility to deviate from it. To this end, VOLMAP
is mostly focused on the validity of the map and not on its geomet-
ric fidelity, which is given for granted. Nevertheless, the benchmark
could also be used to asses methods that partially relax boundary
conditions (e.g. permitting tangential smoothing along the flat faces
or the sharp creases of the boundary domains). No tools to measure
geometric fidelity are provided.

Considering the number of meshes in the dataset and the boundary
mappings associated to them, overall VOLMAP provides 22642
diverse inputs for benchmarking volume mapping algorithms. It
should be noted that these mapping tasks are not guaranteed to
be well posed, meaning that a piecewise linear injective map of
the input meshes may not exist. This is a wanted feature of the
dataset, which aims to evaluate the ability of candidate algorithms
to employ local mesh refinement to open the space of solutions
and provide a valid mapping. As observed in multiple recent works
local refinement is an unavoidable step to ensure unconditional
robustness, but maintaining mesh growth within practical bounds
remains an open unsolved challenge for volume meshing algo-
rithms [CSZ16, HC,NCB].

File structure. Table 1 summmarizes the structure of the dataset,
which consists of approximately 10 Gigabytes of compressed files
accessible from volmap.github. io. To simplify download op-
erations we have split the dataset into separated chunks, grouped
w.r.t. the origin of the input models and the domain onto which the
surface was mapped. To give a practical example, the first group in
Table 1 (G1) is split into six zip archives: G1 . zip contains the 25
tetrahedral meshes contained in this group; then, surface mappings
associated to them are organized in five additional zip files, named
Gl_cube.zip,Gl_tet.zip,Gl_pyr.zip,Gl_octa.zip
and G1_star. zip, respectively. For file naming, we tried to or-
ganize data in a way that is both trivially processable with a batch
script, but also intuitive for visual inspection of the dataset fold-
ers. Whenever possible, we preserved the original name of the

© 2023 The Authors.
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Group | Meshes | Cube Tet Pyramid Octa Star Sphere Polycube | Test pairs
G1 25 25 24 25 24 25 - - 123
G2 67 67 66 66 67 67 - - 333
G3 1942 | 1932 1919 1926 1934 1924 - - 9635
G4 2633 | 2607 2366 2460 2477 2611 - - 12521
G5 26 - - - - - 26 - 26
G6 4 - - - - - - 4 4

TOT | 4697 | 4631 4375 4477 4502 4627 26 41 22642

Table 1: Composition of the VOLMAP dataset, organized in 6 different groups according to the origin of the source meshes. We detail, for
each group, how many mappings are present for each geometric domain. For ease of download, each table entry (excluding the rightmost
summary column and bottom row) corresponds to a separated zip file that can be downloaded independently from the others. Note that the
amount of maps for a given domain does not always correspond to the number of meshes in the same group. This is because in some cases it
was impossible to devise a valid injective surface mapping (details in Section 5).

source mesh, appending the suffix _tet, _cube, pyr, octa
and _star to denote the domain type associated to each surface
mapping. Meshes in groups G5 and G6 come from existing map-
ping datasets and contain maps to spheres and polycubes. Also in
this case we follow the same convention, using the additional suffix
_sphere and _pc to denote sphere and polycube base domains.

File formats. All tetrahedral meshes in VOLMAP are stored in
the MESH file format. This is arguably one of the most widely
used file formats for volume meshes in the field, and it is supported
by both commercial and academic tools such as Gmsh [GR09],
libigl [JP*18], GeoGram [Lev23], CinoLib [Liv19] and Hex-
aLab [BTP*19]. For maximum compatibility, we also provide tools
to convert meshes in the VTK file formats (i.e., . vtu, .vtk). All
the meshes in VOLMAP encode tetrahedra implicitly, through the
ordered list of their four corners. Specifically, we stick to the fol-
lowing convention: given a tetraheron abcd, its vertices are ordered
such that the quantity

ax ay a; 1
det by by by 1
cx ¢y ¢z 1
dv dy d; 1

is strictly positive. Under this convention, the exact orientation
predicate orient 3D introduced by [She97] is strictly positive as
well. Indeed, such a predicate is used by our tools to precisely ver-
ify the correctness of the generated maps. For the boundary map-
pings, we encode per vertex boundary conditions in simple yet easy
to parse text files, according to the following convention:

id0 x0 y0 zO0
idl x1 y1 z1

idn xn yn zn

i.e., each surface vertex is encoded in a line of text, reporting its
vertex id in the tetrahedral mesh and its prescribed coordinates in
the base domain. Vertex ids start from zero. Note that this is the
same indexing that users would find in any mesh data structure for
geometry processing, but it is not the convention used internally by
the .mesh format, which enumerates vertex indices starting from

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

1. Once again, VOLMAP provides all the necessary utilities to pro-
cess data in this format.

4. Data sources

Meshes in VOLMAP have been collected by a variety of alterna-
tive sources, sometimes already composed of tetrahedral volume
meshes, some other times composed of triangular surface meshes
that were originally assembled for other tasks. In this section, we
provide details regarding the source data for each mesh group in Ta-
ble 1, also clarifying the format of the original data and the type of
processing that was necessary to import the models into VOLMAP.

G1. This group contains tetrahedral meshes that were originally
contained in a dataset released with [FBL16], where they were
used for the generation of volumetric maps in the context of poly-
cube mesh construction. The original dataset counts 106 models,
from which we extracted 25 meshes with genus zero. Most of these
models are freeform and do not contain sharp features. For the most
part, these are well known models in the field, that already appeared
in numerous articles prior to be released in this specific dataset.

G2. This group contains a subset of 67 models used in [YFL19]
for generating surface polycube mappings. As for the group before,
the original dataset contains a higher number of shapes, but only
those with trivial topology have been incorporated in VOLMAP.
Differently from group G1, meshes in G2 were originally triangle
meshes, and we transformed them into volumetric meshes using
TetGen [Sil5] with the Yq flags. The class of shapes in this group
is the same as G1.

G3. This group contains 1942 meshes from Thingil0K [Z]16], a
large scale dataset that collects thousands of triangle meshes, rang-
ing from toys to abstract and mechanical shapes, originally de-
signed for 3D printing. Most of the meshes in Thingil0K contain a
variety of geometric and topological defects, such as open bound-
aries, non-manifold edges and vertices or self-intersections. For this
reason, we considered the clean version of the dataset, which was
provided by the authors of [HZG* 18], and we used Tetgen [Sil5]
to tetrahedralize them, using the Yq flags. Overall, the dataset con-
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Figure 2: We map the abstract graph of a base domain (left) by associating its nodes (c;) to one (or a combination of) the mesh bounding box
corners. We then look for the surface vertex ( cf ) closest to it (middle). Corners are then connected with Dijkstra, and the Tutte embedding is
used to map the surface triangles to each base domain facet, completing the boundary map (right). Model: bone . mesh from G1 group.

tains around 9K meshes, but only 1942 of these have genus zero
and were included in VOLMAP.

G4. This is the largest group of meshes in VOLMAP. It con-
tains 2633 models taken from the dataset released by the authors
of [DAZ*20], and originally distributed by [LYNF18]. This dataset
contains shapes of heterogeneous classes (noteworthy is the pres-
ence of a big group of humanoids and characters that were not
present in previous groups). Since they were originally released to
support research in uv mapping and injective surface mappings,
the original meshes were mostly topological disks. Luckily, most
of these meshes were obtained by starting from a watertight model
and cutting it open along a cut graph. For all models generated with
this procedure we could therefore reconstruct the original water-
tight mesh by merging coincident vertices, thus restoring the orig-
inal topology. In case the so generated mesh had genus zero, we
completed the processing by tetrahedralizing it with TetGen [Si15]
using the Yq flags and including it in VOLMAP.

GS. In this group we collected all mappings to spheres that we
could grasp from previously released data. This amounts to 20 vol-
ume sphere mappings from [DAZ*20] plus 6 surface sphere map-
pings computed with [PHO3]. For the latter, we transformed the
input surface meshes into tetrahedral meshes using TetGen [Sil5]
with the Yq flags.

G6. This group contains 4 models that realize a polycube map-
ping to a convex or star shaped polycube. These were obtained by
processing existing polycube mappings from [YFL19,FBL16] and
retaining only polycubes that had a non empty kernel. The kernel
(or absence thereof) was checked with [SBS22].

5. Boundary Maps

In this section, we provide details on how the boundary of the
tetrahderal meshes in groups G1-G4 have been mapped to the sim-
ple domains shown in Fig. 1. Meshes in groups G5 and G6 are not

Figure 3: Base domains (red) are embedded in the input shape
by fitting them into the mesh bounding box (black). Specifically,
each base domain corner is assigned one or a linear combination
of the bounding box corners, and is eventually associated to the
mesh vertex that is closest to it.

considered because they were already endowed with a mapping to
a spherical or polycube base domain.

Computing the boundary maps amounts to solving two prob-
lems: (i) embed the graph of the base domain on each tetmesh; (ii)
map the elements of the chartification induced by such embedding
inside each face of the base domain. A pictorial illustration of this
pipeline is shown in Fig. 2.

Graph Embedding. Embedding an abstract graph in a mesh is
a complex combinatorial problem that may easily produce unde-
sirable poor geometric results [BSK21]. Similarly to existing ap-
proaches, we heuristically proceed by first mapping graph nodes to
mesh vertices, and then embedding graph arcs in the mesh, defining
them as chains of edges connecting the images of their associated
graph nodes.

Corners of the base domains are mapped to the mesh by exploit-
ing a correspondence between the topological cube in the left part
of Fig. 2 and the eight corners of the mesh bounding box. Once
such a correspondence is established, nodes of the base domains
are mapped to the mesh by simply locating the vertices that are
closest to one (or to a linear combination of) the bounding box cor-
ners (Fig. 3). Specifically:

e cube nodes are associated to the mesh vertices that are closest to
each bounding box corner;

© 2023 The Authors.
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e tet nodes are associated to the mesh vertices that are closest to a
bounding box corner and to its three adjacent vertices;

e pyramid nodes are associated to mesh vertices that are closest
to the four bottom corners of the bounding box, plus the vertex
closest to the centroid of its upper face;

e octahedron nodes are associated to the mesh vertices that are
closest to the midpoint of the four vertical edges of the bounding
box, plus the points closest to the centroid of its top and bottom
faces;

e star nodes are associated to the mesh vertices that are closest to
all eight corner of the bounding box, plus the centroid of all its
faces.
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Figure 4: During graph embedding we always split edges (green
shaded) connecting previously embedded graph arcs (in red). We do
this both around graph nodes (top) and in narrow passages between
adjacent arcs (bottom). This refinement permits to always embed a
new graph arc passing in between two previously embedded ones
(right column).

Once all nodes of the base graph have been mapped, we pro-
ceed by heuristically inserting one arc at a time, using Dijkstra’s
algorithm [Dij59] restricted to operate only on the surface edges of
the tetrahedral mesh. As shown in [BSK21], the ordering at which
arcs are inserted in the mesh may have a dramatic impact on the
quality of the embedding, because each insertion creates a non in-
tersection barrier for the subsequent ones, possibly resulting in sig-
nificant deviations when connecting two nodes of the graph. We
avoid excessively distorted results by exploiting local mesh refine-
ment, ensuring that for any pair of embedded arcs there always ex-
ists a fully disjoint chain of edges that passes in between them and
that can be used for embedding a new arc, if needed (Fig. 4). Note
that since our meshes are volumetric, the necessary split operations
are performed on the tetrahedral mesh and not only on the surface.
Also note that, because of this refinement, tetrahedral meshes in
VOLMAP are not identical to the meshes in the source datasets
listed in Section 4. In particular, for each model we calculate all the
separatrices required for the maps to all five domains, so that the

© 2023 The Authors.
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Figure 5: Example of mesh refinement induced by graph em-
bedding. We show the original model (left) and the embedding
of all five base domains in Fig. 1 (right, red edges). Mesh
growth was around 5% (from 12601 to 13238 tetrahedra). Model:
duck .mesh from group G1.

connectivity of the mesh is modified only once and the same mesh
is mapped to all the available domains. Fig. 5 shows an example of
mesh structure before and after refinement.

Mapping. Emebdding the graph of each base domain induces a
chartification of the mesh surface, which can be trivially computed
by exhaustively flooding the surface triangles by starting at a seed
and propagating to adjacent triangles without crossing edges asso-
ciated to a graph arc (Fig. 1). Once a chartification is computed,
the boundary mapping is completed by positioning inner vertices
of each chart inside the convex faces of the base domain, using the
Tutte embedding.

Sanity checks. Despite provably correct, floating point implemen-
tations of Tutte 2D may generate vanishing or inverted triangles,
preventing the construction of a valid map [SJZP19]. Since surface
mappings will be used as strict boundary conditions to initialize a
volume map, it is important to ensure that the mapping is fully in-
jective, so as to permit the generation of a valid volume map. To
verify the correctness of each result we generate a tetrahedral mesh
of each base domain by adding an interior point at the centroid
of each polytope and then forming tetrahedra joining such vertex
with all boundary triangles. We then use exact orientation predi-
cates [She97] to verify that all the so generated tethrahedra have
coherent orientation. Meshes where this check fails are excluded
from the dataset. The existence of failures of this kind explains why
the number of models in each group reported in Table 1 is slightly
higher than the number of actual mappings to each base domain.
Missing boundary maps are the ones who failed to be injective due
to numerical issues in the computation. Note that while for all the
target domains currently considered in the dataset the centroid is
contained in the kernel, this property may not hold for alternative
more complex star-shaped domains. In this case, the kernel can be
explicitly computed — e.g., with [SBS22] — and the kernel centroid
used to generate the tetrahedral mesh.
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Figure 6: Snapshot of the visual tool used to inspect a given volu-
metric mapping, based on [Livl9]. In this example elements are
color coded w.rt. the MIPS 3D geometric distortion, but other
distortion metrics can also be chosen. Meshes can be sliced with
a cutting plane to inspect the interior of the mapping. Model:
maxplanck.mesh from group G6.

6. Tools

Besides tetrahedral meshes and their associated boundary map-
pings, VOLMAP includes a variety of facilities to ease the pro-
cessing of the dataset, help assess the quality of its results and also
extend it with additional models, maps and base domains. In this
section, we list and briefly introduce all such tools. All the soft-
ware facilities we provide are implemented in C++, have minor
self-contained external dependencies and can be easily (and au-
tomatically) be compiled with CMake on MacOS, Windows and
Linux.

Tetmesh checks. This tool ensures that tetrahedral meshes in
VOLMAP encode their elements according to the correct conven-
tion. Indeed, a tetrahedron can be fully encoded by the list of its
four vertices in two alternative ways: given the first three vertices,
the fourth one can be positioned either on the positive or the nega-
tive half-space defined by the previous three. From the perspective
of the correctness of the mapping, either choice is valid. What is
important is that the orientation of all mesh elements is globally
coherent. However, many algorithms make assumptions on these
orientations, often expecting a positive one. In case the input mesh
follows the opposite convention, this tool flips all its elements, mak-
ing it compatible with the VOLMAP orientation of choice.

Surface Mapping. This tool implements the graph embedding
strategy described in Section 5. The software only depends on
CinoLib [Liv19], which is internally used for low level volume
mesh processing. Besides the ability to map new tetrahedral meshes
to the previously existing base domains, the tool can also be used to
define new simple base domains to be included in the dataset. For
this latter task, practitioners can provide the description of a novel
abstract graph, an embedding of it, and a point within its kernel.
The software will then automatically proceed to embed the graph
nodes and arcs onto the surface connectivity of the mesh in the pre-

scribed order, also mapping the surface patches of the embedded
graph onto the facets of the base domain.

Surface Mapping Check. This tool takes as input a boundary
mapping computed with the previous tool and constructs a tetra-
hedral mesh of its interior to verify that all tets have strictly posi-
tive orientation, as detailed in Section 5. This can be used to ensure
that additional maps added to VOLMAP fulfill all the necessary
correctness requirements.

Metrics. This tool inputs a volume mapping computed with a
candidate algorithm and returns information regarding its valid-
ity and geometric distortion. For validity, exact orientation predi-
cates [She97] are used to verify that the linear map associated to
each tetrahedron has a positive determinant. For geometric dis-
tortion, the tool computes the per element distortion energy ac-
cording to a variety of metrics, such as Conformal [LPRMO02],
ARAP [LZX*08], MIPS 3D [FLG15], Dirichlet and Symmetric
Dirichlet [SS15]. The global distortion energy for each such met-
ric is also returned. This is computed as the normalized sum of per
element distortion energies, weighted by the volume of each input
tetrahedron. Output mesh size, and in particular its ratio with the
input mesh size, can also be regarded as an evaluation metric for
methods that employ mesh refinement to ensure the existence of a
solution. Such a refinement is in fact aimed to be minimal. Finally,
in addition to map metrics, we also give the possibility to mea-
sure the per element quality of the input or output mesh, measured
as the normalized ratio between the incircle and the outcircle, as
described in the Verdict Library [SEK*07] (§6.11). In particular,
the input mesh quality may be an indicator of the toughness of the
mapping task, especially for numerical methods that solve for the
vertex coordinates.

Map Visualization. This is the only visual tool provided in
VOLMAP. It can be used to visually inspect a volume mapping,
plotting its inverted elements and color-coding tetrahdera accord-
ing to some geometric distortion. A variety of volume inspection
tools are supported, such as slicing along axis aligned planes, filter-
ing by per element quality or manual selection of mesh elements to
be shown/hidden. All previously mentioned distortion energies are
supported and can be selected through the user interface. A screen-
shot of the application is shown in Fig. 6.

Tetmeshing. This is a simple wrap of Tetgen [Sil5] that is in-
cluded in the package to make it self-contained, and to easily allow
pratictioners to generate new volume data starting from existing
surface meshes.

Scripts. Python scripts to execute the aforementioned tools on
large collections of shapes or to launch experiments with a given
volume mapping algorithm are also included in the package.

7. How to contribute

VOLMAP is open to new contributions from the community. Prac-
titioners in volume mapping may submit new tracks of the bench-
mark by simply creating a zip file containing tetrahedral meshes

© 2023 The Authors.
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Figure 7: MIPS3D geometric distortion [FLG15] on volume mappings generated with Tutte 3D (violet) and TLC [DAZ*20] (green) on the
groups G1 and G5 of our dataset. Distortion wise methods are comparable, but Tutte 3D introduced inverted elements in all the mappings
whereas TLC could make a (barely) injective map in more than half of the cases.

and boundary conditions according to the formats and structure de-
scribed in Section 3. Data can be assembled and its correctness be
verified either by exploiting the tools described in Section 6 or by
using external software. The zip file can then be passed to the au-
thors for verification of correctness and license verification. In case
of positive checks, data will then be added to the benchmark, and a
new group with a growing progressive number will be assigned to
it (e.g., G7). In case the submitted surface maps consider a novel
target domain, a corresponding suffix for file naming (akin the ones
discussed in Section 3) will also be introduced.

8. Example Evaluation

In this section, we report on a simple experiment where we tested
Tutte 3D and TLC [DAZ*20] against VOLMAP. We emphasize
that these experiments are not meant to rank the two methods, but
rather to illustrate how the dataset can be exploited by pratiction-
ers in the field. We also remind the reader that mapping tasks in
VOLMAP are not strictly guaranteed to always admit a valid so-
lution, hence since these two methods do not employ local mesh
refinement they may be asked to solve an impossible problem. The
choice of these two techniques and not others is dictated by the
availability of reference code that we could readily use for our ex-
periments. Specifically, for Tutte 3D we used the implementation
contained in CinoLib [Liv19], whereas for TLC we considered the
author’s reference implementationi, using the default parameters
suggested in the official documentation.

Tutte 3D. We considered mappings to the four canonical domains
in Fig. 1 (cube, tet, pyramid and octahedron) for the meshes in
group G1 and sphere mappings for the meshes in group G5. Over-
all, this amounts to 98 experiments for group G1 plus 26 experi-
ments for group G5. For each such experiment we compute the vol-
umetric Tutte embedding by solving a linear system, using the com-
binatorial Laplacian matrix [XCGL11] and setting (hard) Dirichlet
boundary conditions for surface vertices according to the boundary

1 https://github.com/duxingyi-charles/lifting_
simplices_to_find_injectivity
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mappings provided in VOLMAP. Each solve produces an alterna-
tive volume map, that we then analyzed as described in the remain-
der of the section.

TLC. We used the mappings obtained with Tutte 3D to bootstrap
the TLC solver, which was then asked to remove all the vanishing
or inverted elements contained in the map. TLC requires input data
to come in a proprietary format. We exploited the scripts released
by the authors to perform this conversion, also using their reference
file to set the solver options with default arguments.

Results. The two tests above produce 124 volume mappings each,
which we then processed with the tools in Section 6 to extract the
number of success and failures and to measure the mapping qual-
ity. Not surprisingly, experiments with Tutte 3D confirm that this
naive method failed in 100% of the cases, always producing non
injective mappings with at least one element having negative vol-
ume (computed with exact orient predicates [She97]). Conversely,
TLC [DAZ*20] was able to produce a valid map in the 63% of the
cases for meshes in G1 (37 failures out of 98) and in the 77% of
the cases for meshes in G5 (6 failures out of 26), also exhibiting a
slightly lower geometric distortion (Fig. 7). To this end, it should
be noted that TLC is not designed to address distortion issues, but
rather focuses on the hard problem of removing inverted elements.
Overall, this experiment confirms that mappings to simple base do-
mains are extremely complex, and even if TLC is recognized as be-
ing one of the most robust numerical methods for injective mapping
and mesh untangling, it has collected 44 failures on 124 attempts,
suggesting that more research in the field is needed (Section 2.1).

9. Conclusions

We have presented VOLMAP, a novel large scale dataset to support
ongoing research on volume mapping algorithms to geometrically
and topologically simple base domains. In the first part of the ar-
ticle, we have discussed a variety of applications where this type
of mappings are useful, also showing that this is still an extremely
challenging problem for which no satisfactory solutions (and dedi-
cated datasets) exist. We have then introduced the VOLMAP com-
ponents: meshes, boundary mappings, and software tools. Finally,
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we have shown an example of comparative analysis of two volume
mapping methods from the state of the art. As predicted in Sec-
tion 2.1, none of these methods was able to successfully compute
all the maps, suggesting that more research in the field is indeed
needed to achieve the wanted level of robustness and scalability.
We are confident that our contribution will aid practitioners in the
field, helping them to assess their algorithms and improve their im-
plementations, finding bugs and unexpected corner cases. Last but
not least, we would like to emphasize that VOLMAP is intended
to be a live dataset, which can grow mainly in two directions: (i)
incorporating novel tetrahedral meshes and associated mappings to
the known domains; (ii) introducing interesting novel mappings to
alternative base domains. Our software tools were designed so as to
be modular and to easily support further extensions of the dataset.
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