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Figure 1: We propose an interpolation method that generates a continuous map between a mesh and its discrete planar parameterization
(left). Even for coarse meshes, our result (right) produces a smooth map which is superior to the default linear interpolation (middle) and
the projective interpolation by [BBS17] (left).

Abstract
We propose a novel Möbius interpolator that takes as an input a discrete map between the vertices of two planar triangle
meshes, and outputs a continuous map on the input domain. The output map interpolates the discrete map, is continuous between
triangles, and has low quasi-conformal distortion when the input map is discrete conformal. Our map leads to considerably
smoother texture transfer compared to the alternatives, even on very coarse triangulations. Furthermore, our approach has a
closed-form expression, is local, applicable to any discrete map, and leads to smooth results even for extreme deformations.
Finally, by working with local intrinsic coordinates, our approach is easily generalizable to discrete maps between a surface
triangle mesh and a planar mesh, i.e., a planar parameterization. We compare our method with existing approaches, and
demonstrate better texture transfer results, and lower quasi-conformal errors.

1. Introduction

Given two triangle meshes with the same connectivity, a natural
vertex-to-vertex map is induced by the shared connectivity. In ad-
dition, a natural triangle-to-triangle map is induced by the unique
linear map between corresponding triangles. These piecewise lin-

ear maps are used almost exclusively in graphics and geometry
applications to transfer quantities such as texture between meshes
with the same connectivity.

While simple, piecewise linear maps lead to visible discontinu-
ities when applied to coarse triangulations that undergo large defor-
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mations. Furthermore, even when the vertex-to-vertex map is dis-
crete conformal [SSP08], the corresponding piecewise linear map
can induce very large angular distortions (see Fig. 2).

We propose an alternative triangle-to-triangle map, denoted
blended piecewise Möbius (BPM), which is based on Möbius trans-
formations, and leads to considerably less artefacts. First, when
the vertex-to-vertex map is discrete conformal, BPM yields a low
quasi-conformal distortion. Furthermore, BPM is equivariant to
global Möbius transformations, and is Möbius transformation re-
producing. This allows us to define BPM between surfaces and pla-
nar meshes, by defining the map locally. Finally, BPM is applicable
to any vertex-to-vertex map, and leads to smoother texture transfer
compared to the alternatives.

1.1. Related work

There is a large number of works on computing conformal maps,
whether approximated, e.g., [VMW15; SC17], under some defini-
tion of discrete conformality, e.g. [SSP08], or defined smoothly on
the domain e.g. [WBG09; WBGH11].

Our work, however, deals with the interpolation of a given
discrete map, to a smooth map with different properties. To the
best of our knowledge, there are very few such interpolators.
Of course, one can use a smooth conformal [WBG09] or quasi-
conformal [WBGH11] map, and add constraints for the interpo-
lated vertices. However, such an approach will often lead to over
constrained systems, which either do not interpolate the constraints,
or create double covers.

In terms of local interpolators, it is possible to use a piecewise-
linear map; however, it leads to visible artefacts for coarse triangu-
lations. Furthermore, our goal is to design an interpolator that com-
mutes with Möbius transforms, and of course, a linear (or higher or-
der) map will in general not have this property. Finally, it is possible
to use a projective interpolation scheme [SSP08; BBS17; GSC21].
This approach leads to nice results when applied to discrete confor-
mal maps; however it is discontinuous on general deformations.

We note that some methods [CPS11; CPS15] approached con-
formal mappings by designing a discretized, rather than discrete
(cf. [VMW15]) field of rotations and scale factors that were inte-
grated into a map which was conformal up to integrability. Specifi-
cally, [CPS15] constructed a representation of this field in volumes
that by itself construes an interpolation of Möbius maps. However,
these works did not explicitly present a continuous and interpolat-
ing blend for triangle meshes as we do.

Figure 2: Piecewise-Linear map of a CETM vertex-to-vertex map
[SSP08]. The input vertex to vertex map (a) and the pullback of the
texture (b). Note the large angular distortion.

1.2. Contributions

Our main contributions are:

• BPM: A vertex-interpolating, non-linear triangle-to-triangle
map, which is smooth across triangles.

• BPM is equivariant to Möbius transformations, and has low
quasi-conformal distortion when the vertex-to-vertex map is dis-
crete conformal.

• BPM provides a smooth texture pullback, even for very coarse
triangulations, and for any vertex-to-vertex map.

2. Background

We describe our method first as a plane-to-plane map in global pla-
nar coordinates, and show how it is easily generalizable to curved
surfaces with local intrinsic coordinates in Section 4.

2.1. Discrete and continuous maps

Consider a triangle mesh M = {V,E ,T }, embedded in the com-
plex plane C without overlaps. We parameterize the embedding by
the vertex coordinates, Z = {zv ∈ C |v ∈ V}. A map F : Z → W ,
which transforms the vertex positions by F(zv) = wv, is denoted
discrete. We are mainly interested in computing an interpolation of
a discrete map F into a continuous map f : Z → C, where Z is the
union of all the triangles defined by T with vertex coordinates in
Z. Such a map is interpolating when ∀v ∈ V, f (zv) = F(zv). We
define the interpolator as the operator o : (Z,F)→ C, such that:

f (z) = o(z,F).

For instance, barycentric interpolation is an interpolator that gener-
ates piecewise-linear functions.

2.2. Holomorphic maps

A differentiable map f : R2 → R2, f = (u(x,y),v(x,y)) with a
Jacobian of the form ∇ f =

( a b
−b a

)
, is holomorphic, when con-

sidered as a function on the complex plane, f : C→ C, where
f (x+ iy) = u(x,y) + iv(x,y). Alternatively, this can be written as
∂ f
∂z̄ = 0, indicating that a complex function that is independent of z̄
is holomorphic. Holomorphic maps preserve the angle between any
two intersecting curves, and are therefore detail preserving and use-
ful for texture mapping. A simple example of a holomorphic map
f :C→C is the complex affine map f (z) = az+b, for some a,b∈C,
which is a global similarity transformation (i.e., scale, rotation and
translation). Such a map is uniquely defined by the transformation
of two points.

Perhaps the quintessential holomorphic map is the Möbius trans-
formation (defined on the extended complex plane Ĉ = C∪∞),
which has the form m(z) = az+b

cz+d , for some a,b,c,d ∈C such that
ad−bc ̸= 0. The parameters a,b,c,d are unique up to a multiplica-
tive factor α ∈C. We therefore additionally assume the normal-
ization ad − bc = 1, which leads to uniqueness of the parameters
up to sign. By working with complex homogeneous coordinates,
a Möbius transformation m(z) can also be represented as a matrix
M =

(
a b
c d

)
∈C2×2 with determinant 1. Then, we have M[z;1] =
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[az+ b;cz+ d] ≡ [m(z);1]. The matrix representation of the com-
position of two Möbius maps m1(m2(z)) is given by the multipli-
cation of their matrix representations, i.e., by M1M2. Similarly, the
matrix representation of m−1 is M−1. Möbius maps include simi-
larities and inversions in spheres, and are defined uniquely by the
transformation of three points. Since both M and −M represent the
same transformation m, we use ≡ to denote matrix equality up to
sign, i.e. M ≡ −M. The choice of the sign is only required when
taking a unique root or logarithm of a Möbius matrix, as elaborated
in Sec. 3.2.

Barycentric blends of complex affine maps have been used
successfully for generating interpolators for polygonal do-
mains [WBGH11], by blending the complex affine maps defined
by the deformation of the polygon edges. We generalize this idea,
and propose to use blends of Möbius maps for generating an in-
terpolator for a discrete map between two planar triangle meshes,
by blending the Möbius maps defined by the deformation of the
triangles.

2.3. Piecewise-Compatible Möbius Maps

We parameterize any discrete map F : Z →W with a set of Möbi-
us transformations {mt | t = (i, j,k)∈T } defined uniquely per tri-
angle by the transformation of the vertices: mt(zi) = wi,mt(z j) =

w j,mt(zk) = wk. We denote by {Mt ∈C2×2 | t∈T } the correspond-
ing matrices, with components at ,bt ,ct ,dt ∈C.

Compatibility condition. A set of transformations {Mt} is com-
patible with a map F :Z →W if the transformations of neighboring
triangles agree on the map of their common vertices. Specifically,
given two adjacent triangles t1 = (i, j,k), t2 = ( j, i, l)∈T with a
shared edge e = (i, j), we have that wi = Mt1(zi) = Mt2(zi) and
similarly for z j .

Given a triangle mesh M, a set of Möbius transformations
{Mt} that fulfills the compatibility condition defines a Piecewise-
Compatible Möbius (PCM) Map [VMW15]. It is advantageous
to consider general deformations as PCMs (as opposed to, e.g.,
piecewise-affine maps) due to their natural connection to confor-
mal and discrete conformal deformations. For example, PCM maps
are closed under global (single) Möbius transformations. Namely,
given a matrix representation Mg of a global Möbius transfor-
mation mg, we have that the set of transformations {MtMg} and
{MgMt} are also PCM maps. In addition, discrete conformality
(CETM) [SSP08] has an elegant description in the PCM represen-
tation in terms of the corner variables {Xt,i∈C | t∈T , i∈t,vi∈V},
where Xt,i = (ctzi + dt)

−1. Specifically, a PCM map is a discrete
conformal equivalence if and only if |Xt,i| does not depend on t.
Then, |X·,i|= eui/2, where u :V → R is the conformal factor.

Unfortunately, unlike the piecewise-affine interpolation, the triv-
ial interpolation of a discrete PCM map, where the Möbius trans-
formation Mt is applied to every point z ∈ t, is not continuous be-
tween triangles. A simple way to see this is that a Möbius map is
uniquely determined by 3 points. Therefore, the transformation of
all the points on the edge shared by two triangles is compatible by
both triangles if and only if they are transformed by a single Möbius
transformation, which means that the entire mesh is. Our challenge
is then to find an interpolator of PCM maps.

3. Blended Piecewise Möbius Maps

3.1. Blended Maps Desiderata

Given an input discrete map F :Z→W , denote by M(F) = {Mt | t ∈
T } the PCM map (i.e., the Möbius matrices) induced by F . We
define a map interpolator o(Z,F) using a continuous Möbius ma-
trix interpolator O : (Z,M(F))→C2×2, namely a Möbius transfor-
mation O(z,M(F)) with spatially varying blended coefficients. We
then define O and o such that:

[o(z,F);1]≡ O(z,M(F))[z;1]. (1)

Our requirements from the PCM interpolator O(z,M) of M are:

1. Locality. O(z,M) should depend only on the local neighbor-
hood of z.

2. Identity reproduction. O(z,{Mt ≡ Id})≡ Id.
3. Continuity. The resulting map o(z,F) should be at least C0-

continuous between neighboring triangles.
4. Möbius equivariance. The interpolator should commute with

Möbius transformations. That is, for any global Möbius trans-
formation Mg we have:

O(z,{MgMt})≡ MgO(z,M).

O(z,{MtMg})≡ O(z,M)Mg. (2)

Namely, interpolating the discrete map and performing a global
Möbius transformation can be done in any order for the same
result.

5. Möbius reproduction. If all vertices are transformed by the
same Möbius transformation Mg then the interpolator O repro-
duces that Möbius transformation, i.e., O(z,Mg) ≡ Mg. This is
a corollary of Properties (2) and (4).

We note that Möbius equivariance is essential for the consistency
of interpolating CETM maps; the set of CETM maps are closed un-
der Möbius transformations; specifically, any global Möbius trans-
formation induces a CETM map. Properties (4) and (5) then guar-
antee that this property carries over to our interpolator.

We prove in Sec. 3.2.3 that our requirements are met by the in-
terpolator that we define in Sec. 3.2. We further list objectives for
the interpolator that we empirically witnessed in all our examples:

1. CETM interpolation. If the interpolator is applied to a CETM
map M, then the result should be a close approximation to a
continuous conformal map.

2. QC Errors are bounded. The quasiconformal error of the in-
terpolated M(z) for any z ∈ t ∈ T is bounded above by the (dis-
crete) quasiconformal error of t in M.

We list the above as objectives since we do not have explicit proofs
that they are always true; nevertheless we provide ample empirical
evidence in Sec. 5.

3.2. Möbius Interpolator

3.2.1. The Möbius ratio

Let Mt ,Mu ∈ C2×2 be two normalized Möbius matrices represent-
ing transformations on two faces adjacent at edge ei j (see Fig. 3).
The Möbius ratio δtu is given by:

δtu = MtM−1
u . (3)
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Figure 3: Our notation.

Intuitively, the Möbius ratio describes the difference between ap-
plying Mu and applying Mt , in the sense that Mt = δtuMu. It is easy
to check that δ

−1
tu ≡ δut , and δtu ≡ Id if and only if Mt ≡ Mu. Fur-

thermore, due to the PCM compatibility between Mt and Mu, we
have that F(zi) and F(z j) are fixed points of the transformation δtu.

We additionally define the log Möbius ratio, given by:

ℓtu = log(Sign(Tr(ℜ(δtu))) ·δtu) , (4)

where ℜ() is the real part of a complex number, Tr() is the trace
operator, and Sign() is the sign of a real number (outputting ±1).

Thus, ℓtu is the log of either δtu or −δtu, whichever is closer to
the identity in the Frobenius norm (see Appendix B). The square
root of the Möbius ratio is correspondingly given by:

√
δtu =

exp( 1
2 ℓtu).

Boundary edges. If ei j is a boundary edge, then we set its ratio
to Id. That encodes the choice that the transformation “beyond”
the edge is the same Möbius transformation of t, which naturally
adheres to our requirements.

3.2.2. Ratio interpolator

Consider a face t = i jk∈T and neighboring triangles u,v,w∈T
adjacent to the edges ei j,e jk,eki∈E , respectively (Fig. 3). Each face
has a corresponding Möbius matrix Mt ,Mu,Mv,Mw, and each edge
has a corresponding log Möbius ratio of its neighboring triangles:
ℓut , ℓvt and ℓwt . We define the log ratio interpolator as:

ℓt(z,M) =
Bi j(z)ℓut +B jk(z)ℓvt +Bki(z)ℓwt

Bi j(z)+B jk(z)+Bki(z)
, (5)

for some edge barycentric coordinates 0 ≤ Be(z)≤ 1, with e∈Et =
{ei j,e jk,eki}. We require that for e,ẽ∈Et , and a non-vertex point
z ∈ ẽ,z /∈ {zi,z j,zk} we have that Be(z)/∑ê∈Et

Bê(z) = 1 if e = ẽ
and 0 otherwise. In addition, we require that the sum of the co-
ordinates does not vanish. Specifically, we take Be(z) = d(z,e)−1,
where d(z,e) is the distance of z to the line the edge e lies on. See
Appendix A for the implementation details.

Finally, our Möbius interpolator is given by:

O(z ∈ t,M) = exp
(

1
2
ℓt(z,M)

)
Mt =

√
δt(z,M)Mt . (6)

Discussion. Our interpolator is similar in spirit to the rotation in-
terpolant of Alexa [Ale02], and is based on the general approach of
interpolation in Lie groups [Mar99]. By linearly interpolating the

log Möbius ratio, we guarantee that the blended matrix O(z,M) is
normalized (i.e., has determinant 1) if the input matrices M are nor-
malized. That is because the zero-trace property is invariant under
a linear blend.

3.2.3. Properties

Our interpolator is local (Req. (1)) since it is defined using a trian-
gle and its 3 neighbors, and it is easy to check that it reproduces the
identity (Req. (2)).

Continuity on edges. Without loss of generality, when z ∈ ei j,z ̸=
zi,z j, we have that ℓt(z) = ℓut and ℓu(z) = ℓtu, and thus our inter-
polation reduces to:

O(z,M) =
√

δut ·Mt ≡
√

δtu ·Mu, ∀z ∈ ei j,z ̸= zi,z j (7)

Hence, the Möbius interpolator on the edge ei j only depends on the
two faces t,u adjacent to the edge, and it is symmetric in t,u (up to
sign) leading to the same map O(z,M). Note that Eq (7) is similar
to SLERP interpolation for quaternions [Sho85].

Continuity on vertices. Note that the barycentric coordinates are
not continuous on a vertex (e.g. zi), hence the ratio interpolant is
also not continuous at the vertex. However, we have that F(zi) is a
fixed point of the Möbius ratios, and thus we interpolate the original
PCM map at zi. This leads to continuity on vertices across different
triangles, as needed by Req. (3).

Möbius equivariance. We first note that the ratios δ are invariant
to right composition Mt|u|v|wMg with a global Möbius transforma-
tion Mg; thus, the interpolant O is trivially equivariant to right com-
position. For left composition MgMt|u|v|w (first PCM then global),
we have a conjugated ratio δtu = Mg(MtM−1

u )M−1
g . Since trace is

invariant to cojugation, and since conjugation commutes with ma-
trix logarithm and exponent, the entire interpolant becomes:

O(z ∈ t,{MgMt}) = Mgδ(z,{Mt})M−1
g ·MgMt = MgO(z ∈ t,M).

(8)
Thus, we also fulfill Req. (4), and with (2) we fulfill Req. (5).

Local injectivity. Möbius transformations are locally injective in
a region that does not contain poles. Specifically, if a single Möbi-
us transformation mt of a triangle t does not flip or degenerate the
triangle edges, we have that mt has a positive Jacobian anywhere
inside. Nevertheless, for the blended Möbius transformation we do
not have such a guarantee. In practice, our maps are well behaved
for the blending weights that we have chosen, however extreme
cases may exist (see Figure 10).

4. Curved surfaces

Our method is also applicable for mapping from curved surfaces
to the plane. The discrete mapping is computed locally for each
triangle, by flattening it and its neighboring three triangles isomet-
rically to the plane to generate the source triangles Z. The contin-
uous mapping is then computed by blending inside the triangle,
using the same scheme as in the two-dimensional case, and pulling
the resulting map back to the surface.

© 2023 The Authors.
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Figure 4: Notation for 3D Framework.

More formally, consider a triangle mesh M = {V,E ,T }, em-
bedded in R3. Let X =

{
xv ∈ R3 |v ∈ V

}
be its vertex coordi-

nates. The discrete map F : X → W transforms the vertex posi-
tions by F(xv) = wv ∈ C. We are interested in computing a con-
tinuous interpolating map f : X → C, where X is the union of
all the triangles defined by T with vertex coordinates in R3 and
∀v ∈ V, f (xv) = F(xv).

We define for each t∈T , a local discrete map F̃t : Z̃t →W where
Z̃t is an isometric embedding in 2D of the face t and its neigh-
boring faces u,v,w. The corresponding Möbius matrices M(F̃t) =
{Mt ,Mu,Mv,Mw} are defined as before, as is the matrix interpola-
tor O(z,M(F̃t)), and correspondingly the interpolator o(z, F̃t). Let
z̃t ∈C be the planar point that corresponds to some point x ∈ t on
the mesh under the local isometric embedding. The interpolator is
defined ∀t ∈ T as follows:

ft(x) = ft(z̃t) = o(z̃t , F̃t). (9)

4.1. Continuity

We need to show that this definition is well-posed, since it is defined
for each triangle separately. We get this since (1) Our interpolator
is Möbius equivariant, (2) there exists a Möbius map between iso-
metric embeddings, and (3) the map of points on the edge depends
only on the Möbius matrices of its neighboring triangles.

Formally, Let t,u∈T , be two triangles that share an edge ei j,
and let Z̃t , Z̃u be the corresponding (independent) isometric embed-
dings of each triangle and its neighboring faces. See Fig. 4 for our
notation. Since the two embeddings map the triangles t,u isomet-
rically to the plane, there exists a Möbius transformation mg such
that ∀x∈ t ∪u, its corresponding planar points z̃t ∈ Z̃t and z̃u ∈ Z̃u
satisfy z̃u = mg(z̃t). We denote by Mt(F̃t),Mt(F̃u) the Möbius ma-
trices corresponding to t induced by F̃t , F̃u, respectively, and simi-
larly for Mu(F̃t),Mu(F̃u). By construction, we have that:

Mt(F̃t)≡ Mt(F̃u)Mg, Mu(F̃t)≡ Mu(F̃u)Mg, (10)

where Mg is the Möbius matrix that corresponds to mg.

Let x∈ ei j be a point on the mutual edge of t and u, with the
corresponding planar points z̃t , z̃u. The interpolator of a point on
the edge depends only on the Möbius matrices of its neighboring
triangles, and is given by Equation (7). We have:

δtu(F̃t) = Mt(F̃t)M−1
u (F̃t) = Mt(F̃u)MgM−1

g M−1
u (F̃u) = δtu(F̃u).

(11)

Thus, the matrix interpolator is given by

O(z̃t ,M(F̃t)) =
√

δut(F̃t)Mt(F̃t) =

=
√

δut(F̃u)Mt(F̃u)Mg = O(z̃u,M(F̃u))Mg.

(12)

Finally, we have:

[o(z̃t , F̃t);1] = O(z̃t ,M(F̃t))[z̃t ;1] =

= O(z̃u,M(F̃u))MgM−1
g [z̃u;1] = [o(z̃u, F̃u);1].

(13)

Hence, we have that the map interpolation is consistent, as re-
quired. Note that this consistency generalizes to any locally defined
interpolator, as long as it is equivariant to maps between the local
flattened patches. We present results in Fig. 1 and in Sec. 5. Note
that our map is at least C0 continuous, but not C1 in general.

We provide the pseudo code for our algorithm in Appendix C.

5. Experimental Results

We use a variety of examples to demonstrate the effectiveness of
our interpolators. For each example, we show the source and target
meshes, and visualize the map by (1) pulling back a texture from
the target mesh to the source mesh, as well as (2) pushing forward
a texture from the source mesh to the target mesh. Note that on the
target mesh, the edges are curved. While our interpolator is smooth
and in closed-form, computing the resulting Quasi-conformal (QC)
distortion introduces a complicated expression which varies non-
linearly within the triangle. To facilitate its visualization, we simply
approximate the resulting QC error by refining the source mesh
using 4 levels of subdivision, applying the computed (continuous,
non-linear) interpolator to the refined vertices, and computing the
QC distortion of the linear map between the subdivided triangles.
For a single subdivided triangle, the QC distortion is given by the
ratio of the singular values of the linear map [SSGH01].

For the input discrete deformations we use different defor-
mations/parameterization techniques. We use Conformal Equiva-
lence of Triangle Meshes (CETM) [SSP08] and Boundary-First
Flattening (BFF) [SC17] for generating discrete conformal input
maps. For pure planar deformations, we use As-Möbius-as-possible
(AMAP) [VMW15] for discrete maps with small QC and CETM

Figure 5: CETM as input. (left) The input CETM deformation.
(right) The QC errors of the input discrete deformation and the
BPM mapping. Note that the error of BPM is considerably lower
than the input errors.

© 2023 The Authors.
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Figure 6: Non-uniform triangulations. (a) The input triangulation,
(b) the pullback and (c) push-forward of the texture shown in a
black frame with our mapping.

distortion. We use Cauchy coordinates (CC) [WBG09] to gen-
erate discrete deformations sampled from continuous conformal
maps. We additionally use As-Killing-As-Possible shape defor-
mation (AKVF) [SBBG11] to generate inputs that are far from
conformal. For additional mappings of surfaces to the plane we
use models from the recent parameterization dataset [SSS22] in
Figs. 16, 18. The parameterization method used is mentioned in
each example.

For comparison, we consider piecewise linear (PL) inter-
polation, and circumcircle preserving projective interpolation
(PROJ) [SSP08; BBS17].

5.1. Properties

We first validate the two objectives mentioned in Sec. 3.1.

CETM as input. When the discrete input map is a conformal
equivalence, i.e., fulfills the CETM conditions, our interpolator
leads to a low QC distortion, even when the QC distortion of the
input map is quite large. We demonstrate this for two input defor-
mations in Fig. 5.

Bounded QC Errors. In all cases the QC error of our map is
lower than the QC error of the input map. When the input defor-
mation is close to conformal (Figs. 11, 12, 15), our method gives
the best results. However, even for deformations far from confor-
mal, (Fig. 13), our mapping is smooth with small QC errors.

5.2. Robustness

We demonstrate the robustness of our approach to different meshes.

Non-uniform triangulations. We use a mesh whose left and right
halves are meshed differently. We deform it using AKVF, and show
the interpolation results in Fig. 6. Note that the texture deformed
using our map looks similar on the left and right side of the mesh,
thus our method is not sensitive to meshing.

Non simply connected. Our method is applicable to meshes of
any topology. We demonstrate it on a few non-simply connected
meshes in Fig. 7.

Different resolutions. We remesh a model to 4 different resolu-
tions, and apply the same deformation by sampling the continuous
Cauchy Coordinates, using the same source and target cages. We
show the result in Fig. 8, and compare with piecewise-linear inter-
polation. Note that, unlike the PL map, our results are virtually in-
distinguishable across resolutions, despite the very different mesh
resolutions.

Large deformations. We assume that the discrete map is slowly
varying between triangles, therefore δtu is close to Id or −Id, and
the chosen logarithm branch will be the same for the 3 edges of
the triangle. However, even if this is not the case, our interpola-
tor is smooth, but may be more oscillatory. In this experiment, we
demonstrate that our map is resilient to large changes in the defor-
mation of neighboring triangles. In Fig. 9 we show a discrete map
with very large deformations, where our map is still smooth.

Local injectivity as mentioned in Sec. 3.2, our interpolator is not
formally guaranteed to be locally injective. In fact, as we demon-
strate in Fig. 10, this might be the case even if the deformed tri-
angles are not flipped. This happens when the ratios δ are very
different between the edges of the same triangle, which eventu-
ally results from a big variation in the Möbius transformation be-
tween neighboring triangles. Since parameterization algorithms try
to avoid such variations with regularization, we do not expect this
to occur often in practice.

5.3. Comparisons

Interpolators on triangles. We compare our approach to PL and
projective interpolation, for inputs created with a variety of defor-
mation methods (AMAP, CETM, BFF, AKVF, CC). The projective
interpolation requires the computation of scaling factors per vertex,
which we compute individually per triangle. Note that for meshes
that are not CETM, the scaling factors do not agree between differ-
ent triangles sharing vertices, and therefore the interpolation can be
discontinuous. We show in Figs. 11, 12, 15, 13 the resulting texture
maps, as well as the QC distortion for each example. Note that for
discrete conformal maps (CETM), and for maps that are close to

Figure 7: Non simply connected meshes. (a) The pull-back, and (b)
the push-forward of the texture (shown in a black frame) using our
mapping for two non simply connected meshes.
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Figure 8: Multiple resolutions. Pull-back of our mapping. from
left to right: increased mesh density. Note that our mapping of the
coarse triangulation (bottom left) is comparable to the linear map
on the much denser triangulation (top right).

conformal (BFF, PCM), both the projective interpolation and our
approach achieve a good result, though our QC error is lower. Fur-
thermore, our method is applicable to any discrete map, whereas
projective interpolation is discontinuous for non-CETM maps. This
is clearly visible for meshes deformed using AKVF, which can in-
duce significant angle distortion (see Fig. 13). Compared to PL in-
terpolation, our map is smoother even for very coarse triangulations
(see also Fig. 8).

Continuous interpolators. Instead of interpolating each triangle
separately, or by blending, we attempt to use a continuous interpo-
lator with constraints. Namely, we use a method for which the map
is given on the full source triangulation domain (and not only on the
vertices), and constrain the vertices to the locations prescribed by
the discrete input map. We use Cauchy Coordinates as a smooth in-
terpolator, as it is exactly holomorphic. Fig. 14 shows the result of
the comparison. On a coarse mesh, if we use a small number of ver-
tices for the cage, the constraints on the vertices cannot be achieved.
If, on the other hand, we use a large number of cage vertices, the
map generates poles and overlaps. Furthermore, deformation with
Cauchy Coordinates is only feasible for a mesh with a small num-
ber of vertices, as it is a global approach, that requires solving a

Figure 9: Even when the input map is far from conformal (here
computed using AKVF), our interpolator leads to a smooth map.

! "
#

$

Original
Locally 
injective

Self-
intersecting Stiffened

𝑣 𝑤

(a) original

(b) (c) (d)

(b) Locally 
Injective

(c) Self 
intersecting

𝑘

Figure 10: Example of a non-locally-injective transformation. (a):
original triangles with part of ei j in black and a parallel line inside
t in blue. (b): an extreme deformation with matrix M of the bottom
triangle u (while the rest are stationary) leads to edge ratios δut =
M,δvt = δwt = Id. However, the result is still locally injective. By
the barycentric blending, any line originally parallel to ei j in t is
transformed by matrices Md , with varying d < 1

2 , and thus closer

to Id than the transformation M
1
2 of ei j. In this case, ei j would be

more curved inwards than the other parallel lines within. Thus, in
(c), when M is made even more extreme, the target black circular
arc from edge ei j and the less-curved blue curve transformed by
Md intersect, causing a loss of injectivity.

linear system with a dense matrix. Hence, our local closed-form
approach is a better alternative.

5.4. Application to texture mapping

Using the intrinsic formulation presented in Sec. 4 we interpo-
late the texture coordinates of 3D meshes, leading to consider-
ably smoother textures compared to the alternatives (PL and pro-
jective). We demonstrate this in Figs. 16, 17, 18, where the inputs
are generated using CETM, BFF, and designed by artists, respec-
tively. For CETM, the results are comparable to the projective in-
terpolation, yet our approach achieves lower QC errors, and some-
what smoother outputs. For BFF and artists’ generated parameter-
izations, the projective interpolation is discontinuous, and our re-
sults are considerably smoother than both the linear and projective
approaches.

6. Conclusion and Future Work

We presented a blending scheme (BPM) of Möbius transformations
that interpolates a discrete map between triangulations to a contin-
uous map on the input domain. Our scheme leads to small quasi-
conformal errors when the input discrete map is close to conformal,
and is applicable to any discrete input map. We additionally showed
that our blending scheme can be done intrinsically, thus allowing
non-linear interpolation of the texture coordinates of a 3D mesh. In
the future we plan to explore other applications for our interpola-
tion scheme, such as surface to surface, spherical parameterization,

© 2023 The Authors.
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Figure 11: We compare BPM to linear and projective maps for planar meshes, on input deformations computed using the AMAP method.
Note the artefacts in the linear map, and the discontinuities in the projective map, highlighted in the zoomed images. Further, note that our
approach yields lower quasi-conformal distortion compared to the alternatives.

etc. In addition, we plan to investigate time interpolation in this set-
ting, as well as generalizing our scheme to blends where the input
map is approximated instead of interpolated. Finally, we aim to de-
rive theoretical bounds for the QC error of our blends, and classify
the conditions under which the map is provably bijective.
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Figure 12: We compare BPM to linear and projective maps, on two planar shapes which are conformally equivalent (CETM). On this data,
our interpolator is comparable to the projective approach, leading to similar texture transfers but lower QC errors.
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Figure 13: We compare BPM to linear and projective maps, on planar planar input computed using AKVF. Here, the maps are strongly
non-conformal, leading to visible discontinuities in the projective map, whereas our approach leads to smooth results.

Figure 14: We compare our approach to computing a smooth map using Cauchy Coordinates, with the input vertex map as constraints and
VC cage vertices. Note that the result highly depends on the number of cage vertices. Using a number that is too small (Cauchy, left), there are
not enough degrees of freedom to reproduce the constraints and the mapping becomes a double cover. Using too many cage vertices (Cauchy,
center, right) leads to visible oscillations near the boundary. Our approach (right) leads to a smooth interpolation, which is non-oscillatory,
does not require additional degrees of freedom, and is closed-form.

Figure 15: We compare BPM to linear and projective maps, on input computed using BFF. Here, our approach achieves similar QC distortion
as the projective approach. However, since the map is not exactly discrete conformal, the projective map leads to discontinuities.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10



Shir Rorberg & Amir Vaxman & Mirela Ben-Chen / BPM: Blended Piecewise Möbius Maps

Figure 16: Applying BPM for interpolating texture coordinates
generated using CETM. Projective interpolation is comparable to
BPM for CETM inputs, although it generates more artifacts and
QC errors.

Figure 17: Applying BPM for interpolating texture coordinates
generated using BFF. Note the considerably smoother texture
achieved by our approach, compared to piecewise-linear and pro-
jective interpolations.

Figure 18: Interpolation for the artist-UV models from the data-
set in [SSS22]. The projective interpolation is discontinuous and
generates artifacts.
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Appendix A: Limits of edge barycentric coordinates

The edge weights Be(z) that we use in Equation (5) are given in
terms of the inverse distance to the edge d(z,e)−1, which diverges
as z approaches the edge. However, the normalized barycentric co-
ordinates:

γe(z) =
Be(z)

Bi j(z)+B jk(z)+Bki(z)
(14)

have a well-defined limit as z approaches the edge (but not the ver-
tices). To avoid reaching infinity on the edge, a simple calculation
shows that the coordinates can be computed using only the dis-
tances re(z) = d(e,z):

γi j(z) =
r jk(z)rki(z)

s(z)
, γ jk(z) =

ri j(z)rki(z)
s(z)

, γki(z) =
ri j(z)r jk(z)

s(z)
,

s(z) = r jk(z)rki(z)+ ri j(z)r jk(z)+ ri j(z)rki(z)
(15)

It is easy to check that if only one of the r quantities goes to
0, i.e., z approaches an edge but not a vertex, the coordinates be-
have as required, i.e., equal to 1 on the corresponding edge, and
to 0 on the other two. However, when z approaches a vertex, the
coordinates are still undefined. Note that in our scheme the ver-
tices are interpolated by definition, and therefore we do not need
to use the coordinates to map the original vertices. In practice, we
use an epsilon value on the order of machine precision to check
if the mapped point corresponds to an input vertex. We have not
encountered any numerical instabilities with this approach.

Appendix B: Proof for equation (4)

We minimize ∥δ − I∥2
F where δ ∈ {−δtu,δtu}, in terms of the

Frobenius norm:

∥δ− I∥2
F =Tr((δ− I)∗(δ− I)) =

tr(δ∗δ)− tr(δ∗+δ)+ tr(I) =

tr(δ∗δ)− tr(2ℜ(δ))+ tr(I).

(16)

This term is minimized for max(tr(2ℜ(δ))), and thus ℓtu =
log(Sign(Tr(ℜ(δtu)))δtu).

Appendix C: Pseudo Code

We give a pseudo-code description of our interpolator, where Alg. 2
computes the planar-to-planar interpolation, and Alg. 3 computes
the curved-surface interpolation (Sec. 4).

ALGORITHM 1: ApplyMoebius

ApplyMoebius (z,M)
inputs : A point z∈C, a Möbius matrix M∈C2×2

output: w ∈ C[
w1
w2

]
= M

[
z
1

]
w = w1

w2
return w

ALGORITHM 2: BPM
BPM (F)

inputs : A discrete map F :Z→W
output: a continuous map f : Z → C
Compute the PCM map M(F) (Sec. 2.3)
foreach t∈T do

foreach z ∈ t do
u,v,w = neighboring triangles of t
Mz = MoebiusInterpolator(z,Z,Mt ,Mu,Mv,Mw)

f (z) = ApplyMoebius(z,Mz)

end
end
return f

ALGORITHM 3: BPMCurved
BPMCurved (F)

inputs : A discrete map F :X →W
output: a continuous map f : X → C
foreach t∈T do

Compute discrete isometric embedding Z̃t (Sec. 4)
Compute discrete map F̃t : Z̃t →W
Compute the PCM map M(F̃t) (Sec. 2.3)
foreach x ∈ t do

z = Z̃t(x) (embed x)
O(z,M(F̃t)) =

MoebiusInterpolator(z, Z̃t ,Mt ,Mu,Mv,Mw)
f (z) = ApplyMoebius(z,O(z,M(F̃t)))

end
end
return f

ALGORITHM 4: MoebiusInterpolator

MoebiusInterpolator z,Zt ,Mt ,Mu,Mv,Mw
inputs : A point z∈C ,Zt , The embedding of triangle t = i jk

and its neighbors u,v,w (Fig. 3),
Mt ,Mu,Mv,Mw ∈C2×2 the Möbius matrices

output: Mz the Möbius matrix interpolator at z
/* Möbius ratios (Eq. (3)) */

δut = MuM−1
t , δvt = MvM−1

t , δwt = MwM−1
t

/* log Möbius ratios (Eq. (4)) */
ℓut = log (Sign(Tr(ℜ(δut))) ·δut)

ℓvt = log (Sign(Tr(ℜ(δvt))) ·δvt)
ℓwt = log (Sign(Tr(ℜ(δwt))) ·δwt)

/* Barycentric coord. (Eq. (15)) */
s(z) = r jk(z)rki(z)+ ri j(z)r jk(z)+ ri j(z)rki(z)

γi j(z) =
r jk(z)rki(z)

s(z) γ jk(z) =
ri j(z)rki(z)

s(z) γki(z) =
ri j(z)r jk(z)

s(z)

/* Blended log ratio (Eq.(5)) */
ℓt(z,M) = γi j(z)ℓut + γ jk(z)ℓvt + γki(z)ℓwt

/* Möbius interpolator (Eq. (6)) */

Mz = exp
( 1

2 ℓt(z,M)
)

Mt

return Mz
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