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Abstract
Learning functions defined on non-flat domains, such as outer surfaces of non-rigid shapes, is a central task in computer vision
and geometry processing. Recent studies have explored the use of neural fields to represent functions like light reflections
in volumetric domains and textures on curved surfaces by operating in the embedding space. Here, we choose a different
line of thought and introduce a novel formulation of partial shape matching by learning a piecewise smooth function on a
surface. Our method begins with pairing sparse landmarks defined on a full shape and its part, using feature similarity. Next,
a neural representation is optimized to fit these landmarks, efficiently interpolating between the matched features that act as
anchors. This process results in a function that accurately captures the partiality. Unlike previous methods, the proposed neural
model of functions is intrinsically defined on the given curved surface, rather than the classical embedding Euclidean space.
This representation is shown to be particularly well-suited for representing piecewise smooth functions. We further extend the
proposed framework to the more challenging part-to-part setting, where both shapes exhibit missing parts. Comprehensive
experiments highlight that the proposed method effectively addresses partiality in shape matching and significantly outperforms
leading state-of-the-art methods in challenging benchmarks. Code is available at https://github.com/davidgip74/
Learning-Partiality-with-Implicit-Intrinsic-Functions

1. Introduction

Non-rigid shape matching is an essential task in computer vision,
with applications spanning augmented reality, 3D medical modeling,
and computer-aided design. Real-world scenarios frequently involve
handling 3D data captured with partial views and occlusions, neces-
sitating the development of methods capable of addressing shape
matching under partiality. In these situations, only certain regions
of the shapes are expected to exhibit similarity due to missing ge-
ometry. In this paper, we present a novel formulation of partiality in
non-rigid shape matching. Partiality is represented as a piecewise
smooth function defined on a target shape and is modeled as an indi-
cator function that identifies the effective support of a part within
a full shape. This formulation leads to an effective framework for
partial shape matching consisting of two principal stages: feature
matching and partiality function optimization. During the feature
matching stage, sparse anchors are generated between shapes ac-
cording to the similarity of features extracted using a pretrained
neural network. The function representing partiality is then encoded
by a neural network optimized to fit these anchors.

Representing functions with neural networks, also known as neu-
ral fields, aligns with recent studies that parameterize the physical
properties of scenes using coordinate-based Multilayer Perceptrons
(MLPs). Here, the neural representation serves as a regularization
technique that encourages piecewise smoothness of the partiality
function. This approach enables efficient interpolation of the sparse
anchors, leading to a function that accurately captures partiality.

In contrast to previous studies that employ neural fields for 3D
objects operating on Cartesian coordinates, we adopt an intrinsic
neural representation for functions defined on curved surfaces. This
representation circumvents dependence on the geometry of the Eu-
clidean embedding space and is based on the eigenvectors of the
Laplace-Beltrami Operator (LBO). Our choice is motivated by their
optimality as a truncated basis for approximating smooth functions
on Riemannian manifolds [ABK15].

Initially, we address the partial shape matching setting, consider-
ing a full and a partial shape. Our framework is then extended to the
more challenging partial-to-partial configuration. Extensive experi-
ments demonstrate that the proposed approach achieves state-of-the-
art results while maintaining robustness to mesh discretization and
computational efficiency.

The main contributions of this paper include,

• A novel perspective on partiality in shape analysis that is ef-
fectively modeled as a piecewise smooth function, leading to a
general, robust, and flexible framework for addressing partiality
in non-rigid shape matching.

• An experimental analysis of the approximation of piecewise
smooth functions defined on 2-Riemannian manifolds, show-
casing the advantages of the proposed intrinsic approach over
previous extrinsic ones.

• A novel framework for both partial and partial-to-partial shape
matching, demonstrated through extensive experiments on stan-
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dard benchmarks, such as SHREC’16 CUTS [CRB*16] and CP2P
[APO21], outperforming state-of-the-art methods while maintain-
ing computational efficiency.

Figure 1: The first eight eigenvectors of the Laplace-Beltrami Oper-
ator (LBO) of quasi-isometric shapes. The eigenvectors of the LBO
are invariant to isometry up to a sign change.

2. Related Efforts

We provide an overview of recent advances related to the proposed
approach. Our review begins with methods addressing shape match-
ing under partiality, followed by an examination of neural represen-
tations of functions on meshes.

2.1. Non-Rigid Partial Shape Matching

The task of non-rigid shape matching under partiality was initially
addressed by Bronstein et al. in 2009 [BBBK09], demonstrating
superior performance compared to early non-rigid ICP algorithms
[CR03]. Later, Partial Functional Maps (PFM) [RCB*17] extended
the functional maps framework [OBS*12] to handle partial shapes
by alternately optimizing partial shape localization and correspon-
dence. Notable follow-up papers include a joint diagonalization
method that aligns the spectral bases of a complete and a partial
shape in the spectral domain [LRBB17] and an iterative refine-
ment procedure [MRR*19] that alternates between coarse matching
estimated with PFM and an up-sampling strategy. Recently, Deep
Partial Functional Map (DPFM) [APO21] was introduced as the first
learning method specifically dedicated to partial non-rigid shape
correspondence. DPFM uses a neural architecture based on Dif-
fusion Net [APO21] to extract features and generate a functional
map, which is trained using a loss function inspired by the partial
functional map framework [OBS*12]. Additionally, Rampini et al.
[RTO*19] and Bensaïd et al. [BBK23] solve the problem of partial
shape similarity using spectra alignment procedures.

2.2. Partial-to-Partial Shape Matching

Partial-to-partial shape matching involves identifying similar over-
lapping regions between two incomplete shapes. It generalizes the
partial shape matching configuration, where one shape is assumed
full. Early methods for partial-to-partial shape matching relied on

rotation-invariant features, which were unsuitable for non-rigid ob-
jects [LSP08]. The Fully Spectral Partial (FSP) shape matching
framework [LRBB17] marked a notable attempt to address partial-
to-partial non-rigid shape matching. Litany et al. [LRB*18] build
upon FSP [LRB*18] and PFM [RCB*17] by proposing a solution for
non-rigid puzzles that combines part-to-full matching with clutter
handling. In 2021, Attaiki et al. demonstrated that DPFM [APO21],
the current state-of-the-art learning method for partial shape match-
ing, can be adapted to the partial-to-partial configuration.

2.3. Neural Fields

Representing implicit functions with Multilayer Perceptrons (MLPs)
is a widely used technique in computer vision and graphics, known
as neural fields. MLPs operating in the Euclidean embedding
space have been probed to represent visual signals such as images
[WPG10; Sta07] and 3D scenes [MON*19; PFS*19]. Tancik et al.
[TSM*20] proposed to replace coordinate based MLPs with MLPs
operating on a Random Fourier Features (RFF) embedding [RR07]
of the Cartesian coordinates p ∈ R3,

fθ([sin(2πbT
j p) ,cos(2πbT

j p)]kj=1), (1)

where {b j|b j ∈ R3}k
j=1 is a set of normal (Gaussian) random vec-

tors and fθ : R2k → Rm is a MLP. The injection of high frequency
harmonics in Eq. 1 improves the representation capacities of neural
fields and leads to state-of-the-art results in numerous applications
[TSM*20]. This idea paved the way for learned representations
parameterized with MLPs, such as Neural Radial Field (NeRF)
[MST*21] and its extensions [BMV*22; MESK22; YYTK21].

The method proposed by Tancik et al. [TSM*20] relies on the
notion of positional encoding. The design of positional encoding
for representing the position of an element in an organized set
has received significant attention in various fields such as natural
language processing and graph learning. Early methods include
sinusoidal functions [VSP*17; XRK*19], while more recent ap-
proaches consider learned positional embeddings [LSL*21]. The
use of the eigenvectors of the Laplacian to encode locations has
recently been explored in the context of graphs [DLL*21] and for
texture reconstruction of meshes from multiple views [KGM*22].

3. Representing Piecewise Smooth Functions in non-Euclidean
Domains

In geometry processing, a shape in 3D is usually modeled by its
boundary as a two dimensional Riemannian manifold M= (S,g),
where S is a smooth two-dimensional surface embedded in R3 and
g is a metric tensor, also referred to as the first fundamental form.

3.1. The Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBO) ∆g is an ubiquitous operator
in shape analysis [BBL*17]. It generalizes the Laplacian operator to
Riemannian manifolds and can intuitively be interpreted as a local
measure of the deviation of a function a from its value around a
point [BBL*17]. Formally,

∆g f =
1√
|g|

div(
√

|g|g−1∇a) , a ∈ L2(M),
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where |g| is the determinant of the metric tensor g and L2(M) is
the Hilbert space of square-integrable scalar functions defined on
M.

The LBO is a semi-negative definite operator and thus admits
a spectral decomposition under homogeneous Dirichlet boundary
conditions [Tau95],

−∆gφi(x) = λiφi(x) , x ∈M\∂M
φi(x) = 0 , x ∈ ∂M (2)

where ∂M denotes the boundary of the manifold M. The basis
{φi}i≥0 is invariant to isometric transformations, as illustrated in Fig.
1. Since Eq. 2 also holds for the Fourier basis on Euclidean domains,
the basis defined by the LBO spectral decomposition is commonly
interpreted as its generalization on Riemannian manifolds [Tau95].
Truncating this basis has been proven to be unique and optimal in
approximating smooth functions on a given manifold [ABK15].

3.2. Intrinsic Neural Representation

Neural architectures for non-Euclidean domains have received sig-
nificant attention in recent years. The success of convolutional ar-
chitecture in Euclidean domains has motivated the development of
numerous generalizations of convolutional layers for graphs and
meshes. One prominent approach is the spectral convolutional layer
[BZSL13; BBL*17], which is grounded in a fundamental theorem
of signal processing stating that convolution in the time domain is
equivalent to multiplication in the Fourier domain. It is defined as

ξ((ĝ⊙Φ
Ta)Φ),

where a is the signal processed, ĝ is a learned filter, ⊙ represents
the Hadamard product, ξ is an activation function such as ReLU,
and Φ ∈ Rn×k is the truncated basis, determined by the LBO, with
k being its cardinality and n the number of vertices in the mesh
considered. We propose a novel neural representation that operates
in the spectral domain, building on a similar idea. In our architecture,
the i-th layer of the neural network is defined as follows:

li =

{
ξ(W1Φ

T +b1) if i = 1
ξ(Wili−1 +bi) otherwise,

where {Wi,bi} are the parameters of the i-th layer li. The proposed
neural representation can be regarded as an extension of [TSM*20],
wherein the RFF embedding utilized in Eq. 1 is substituted with an
embedding based on the LBO eigenvectors.

Fig. 2 compares the eigenvectors of the LBO with the RFF as
positional encoding. By accounting for connectivity, the LBO basis
notably allows for distinct values on separate body parts, which
may have close Euclidean embedding in certain poses. This prop-
erty is advantageous in the context of partiality, as the functions
representing partiality should isolate different body parts. Hence-
forth, we denote the proposed intrinsic neural representation as
fθ : Rn → [0,1].

4. Partial Shape Matching

4.1. Overview

We propose a novel framework for localizing the effective support
of a partial shape within a full shape. Initially, anchors across shapes

Figure 2: Comparison of Random Fourier Features (RFF) (top)
and LBO Eigenvectors (bottom) for a FAUST subject. The intrinsic
nature of the LBO eigenvectors, which account for mesh connectivity,
makes them well-suited for representing indicator functions capable
of isolating semantically meaningful body parts, such as a single
hand, even when both hands are close in the Euclidean domain.

are identified through a feature matching procedure. Specifically,
we employ a pre-trained Siamese neural network to extract features
from every vertex in both the complete and partial shapes. These
features are subsequently matched using our proposed coarse feature
matching stage, which generates landmarks across the shapes. The
neural representation, detailed in Section 3.2, is then iteratively
optimized to fit the anchors on the target shape. This representation
is leveraged to effectively interpolate between the sparse landmarks,
enabling the generation of a function that accurately captures the
partiality. Fig. 3 provides an overview of the proposed framework
and its various components.

Problem formulation. We formulate the problem of partial shape
similarity as the task of finding a suitable binary function defined
on a full shape. Specifically, given a full shape Mf and a partial
shape Mp, the proposed framework outputs an indicator function
o : Mf →{0,1}, which indicates the effective support of the partial
shape within the full shape. The indicator function should satisfy

Mo ∼Mp,

where Mo = {x ∈Mf|o(x) = 1} denotes the subset of the full
shape that is effectively supported by the partial shape, and ∼ stands
for an isometry relation.

4.2. Finding Anchors

Feature extractor. We employ a feature extraction module based
on Diffusion-Net [SACO22], a geometric neural network that relies
on intrinsic operations. This architecture has been shown robust
to various shape discretizations and invariant to isometries. We
apply the feature extractor in a Siamese manner, using the same
network and identical weights for both the full and partial shapes.
The extracted features are denoted as Ff ∈ Rnf×k and Fp ∈ Rnp×k,
where k represents the number of extracted features, and nf, np
correspond to the number of vertices in the full and partial shape,
respectively.
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Figure 3: Overview of the proposed framework for partial shape matching. Features of the partial and full shapes are extracted using a
previously trained Siamese Feature Extractor. These features undergo a Feature Matching stage to identify corresponding sparse anchors
across the shapes. An intrinsic neural representation is then iteratively optimized to fit these landmarks, enabling efficient interpolation
between them and accurately capturing the partiality within the full shape.

The feature extractor is pretrained independently from the re-
maining components of the framework. To achieve this, we utilize a
regularized functional map module [DSO20] to predict a functional
map C between shapes. The functional map C is obtained by solv-
ing the following least squares problem in a differentiable manner
[LRR*17],

C = argmin
C′

∥Φ
TFf −C′

Ψ
TFp∥F , (3)

where ∥ · ∥F denotes the Froebenius norm, Ψ is the truncated basis
for the partial shape, and Φ is the truncated basis for the full shape.
Following [DSO20], we incorporate to Eq. 3 additional regulariza-
tion terms on C. The feature extractor is trained using a spectral
loss

Lspectral = ∥C−Cgt∥2
F ,

which compares C to the ground truth functional map Cgt .

It is important to emphasize that, during inference, functional
maps are not employed; rather, we only rely on the features pro-
duced by the Siamese neural network. The proposed approach har-
nesses the functional map framework [OBS*12] to efficiently train
the feature extractor by solving function-based matching problem
within a low-dimensional space rather than a point-based one. Func-
tional maps also offer the substantial advantage of being adaptable
to unsupervised setting [HLR*19; RSO19]. Nevertheless, the trans-
formation of a functional map into a point-wise correspondence
map presents a non-trivial challenge and is an active research field
[CRB23; PRM*21; VRBC17; EB17]. It can be computationally
expensive and typically results in a many-to-one mapping [CB22].

To circumvent these challenges, at inference, we resort to a direct
feature similarity approach to derive anchors. This strategy aligns
with recent studies [LAO22; CB22] which also rely on the similarity
of features learned via the functional map framework to determine
point-to-point correspondences during inference.

Matching scheme. Following feature extraction, the goal is to iden-
tify landmarks in the full shape that correspond to points of the
partial shape. This task is achieved by constructing a permutation
matrix P ∈Rnf×np , which accounts for partiality using the generated
features. The matrix is defined as

P = Softmax(FfFT
p ),

where Softmax(·) denotes a softmax operation applied to each col-
umn. Each row in P corresponds to a vertex in the full shape and the
associated column indicates the probability of matching the vertex
in the partial shape corresponding to that particular column.

Subsequently, a mask m ∈ Rn f indicating the anchors is inferred
from P by considering the corresponding points of the partial shape
predicted with high confidence,

mi =

{
0 if (P1)i < c
1 if (P1)i ≥ c

,

where 1 is a vector of ones, and c ∈ R. (P1)i corresponds to the
estimated probability of vertex i belonging to the partial shape. The
threshold c determines the required probability for a vertex to be
considered as an anchor.
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Figure 4: Region localization. Comparison of the proposed ap-
proach for partial shape similarity with state-of-the-art learning
[APO21] and geometric [BBK23] methods applied to SHREC’16.
The red regions indicate the estimated match of the query parts
(left column); the geometrical IoU is shown below each mask. The
proposed method is effective in handling challenging cuts (top) and
produces precise results thanks to the regularization on the queried
area (bottom).

4.3. Learning Partiality

The intrinsic neural representation fθ : Rnf → [0,1] introduced in
Section 3.2 is optimized via the following objective,

L = Lanchor +λLarea ,

where λ ∈R+ is a regularization parameter. Lanchor is a binary cross
entropy loss promoting the inclusion of the produced anchors,

Lanchor = BCE( fθ,m)

=
1

n f

n f

∑
i=1

mi log( fθ(pi))+(1−mi) log(1− fθ(pi))

where pi is the embedding of the vertex i. Larea regularizes the area
of the mask predicted by fθ to ensure it corresponds to the partial
shape’s area,

Larea = ∥trace(Af h( fθ))− trace(Ap)∥2
2,

where Af and Ap are the mass element matrices [Tau95] of the full
and partial shapes, respectively and h : Rnf → [0,1]nf is a function
applying onto each entry h(x) = 1

2 (1+ tanh(αx− 1
2 )), with α ∈ R.

The proposed intrinsic neural representation can be regarded
as a regularization technique that controls the smoothness of the
partiality function over the manifold considered. As explained in
Section 3.1, the LBO generalizes the Fourier basis, and the degree
of smoothness is controlled by the number of LBO eigenvectors
considered.

4.4. Generalization to Partial-to-Partial Shape Matching

Here, the framework introduced for partial shape matching is ex-
tended to address the partial-to-partial matching task. Specifically,
building upon the formulation proposed in Subsection 4.1, we for-
mulate the partial-to-partial shape matching problem as determin-
ing two piecewise smooth functions. These functions represent the
maximal overlapping region between the two partial shapes under

consideration. Formally, let Mp1
and Mp2

be two partial shapes
and o1 : Mp1

→{1,0}, o2 : Mp2
→{1,0} two indicator functions.

o1 and o2 should satisfy

{o1,o2}= argmax
{o′1,o

′
2}

Ap1
o′1 +Ap2

o′2 s.t. Mo1 ∼Mo2 ,

where Ap1
and Ap2

are the mass element matrices [Tau95] of Mp1

and Mp2
, respectively, and Moi = {x ∈Mpi

| oi(x) = 1} for i =
1,2.

In partial shape matching, each point of the partial shape has a
corresponding point in the full shape. This assumption does not hold
in the partial-to-partial setting, and the permutation matrix P is thus
defined as

P = Fp1
FT

p2
,

where Fp1
and Fp2

are normalized features (each channel has a
L2 norm of 1) extracted with the Siamese network introduced in
Subsection 4.2. Two masks, denoted m1 ∈ Rn1 and m2 ∈ Rn2 , are
subsequently inferred from P.

Next, two intrinsic neural representations, f 1
θ : Mp1

→ R and
f 2
θ : Mp2

→ R, are concurrently optimized to represent o1 and o2,
respectively. We consider the loss function

L = Lanchor1 +Lanchor2 +λ1Larea1 +λ2Larea2 ,

with λ1,λ2 ∈ R+.

Lanchori , with i = 1,2, is a binary cross entropy loss enforcing the
inclusion of the anchors on Mpi

,

Lanchori = BCE( f i
θ,m)

=
1

npi

npi

∑
j=1

mi
j log( f 1

θ (pi
j))+(1−mi

j) log(1− f 1
θ (pi

j)).(4)

Larea1 ensures that the overlapping regions defined by f 1
θ and f 2

θ

have equal areas

Larea1 = ∥trace(Ap1
h( f p1

θ
)− trace(Ap2

h( f p2
θ
)∥2

2 ,

Finally, Larea2 favors the largest possible overlapping region

Larea2 =−
2

∑
j=1

trace(Ap j h( f
p j
θ
)).

4.5. Implementation Considerations

The intrinsic neural representation fθ is implemented with three
hidden layers of width 128 and we consider 15 eigenvectors of the
LBO as input. The discrete LBO is computed using the cotangent
scheme (first order finite elements approximation). For partial shape
matching, we set λ = 0.1 and α = 5. For the partial-to-partial setting
we set λ1 = 10, λ2 = 0.1 and α = 5. The selection of c impacts
the trade-off between precision and recall. Specifically, a smaller
c value enhanced precision, while a larger c fosters higher recall.
We tuned c on the training data to obtain a satisfactory balance be-
tween precision and recall and set c = 0.02 for all experiments. The
optimization is performed for 150 steps using the Adam optimizer
with a learning rate of 10−4. We use an Intel i7 processor and an
NVIDIA RTX 2080 Ti GPU card for all experiments.
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Figure 5: Partial-to-Partial Shape Matching. Comparison between the proposed framework and DPFM, the current state-of-the-art approach,
[APO21] for partial-to-partial shape matching. The red regions represent the estimated match between the overlapping regions, and the
geometrical Intersection over Union (IoU) is shown below each mask.

5. Experiments and Results

The proposed framework is evaluated on established benchmarks in
non-rigid partial and partial-to-partial shape matching. Our method
is compared with state-of-the-art approaches for partial shape match-
ing, including the spectrum alignment procedure proposed by
Rampini et al. [RTO*19], the dual spectra alignment procedure
proposed by Bensaïd et al. [BBK23], Partial Functional Correspon-
dences (PFC) [RCB*17], and a bag-of-words aggregation [TCF09]
of SHOT descriptors [STD14]. Additionally, we compare the pro-
posed method to Deep Partial Functional Map (DPFM) [APO21],
the state-of-the-art deep learning framework for partial and partial-
to-partial shape matching. We employ the original codes provided
by the authors and apply the best reported hyper-parameters.

5.1. Partial Shape Matching

We evaluate the proposed framework on SHREC’16 CUTS
[CRB*16], the standard benchmark for non-rigid partial shape

matching. The benchmark consists of 120 partial shapes from 8
classes, including quadrupeds such as dogs, horses, centaurs, wolves,
and cats, as well as human subjects. Fig. 4 provides a qualitative
comparison of frameworks for partial shape matching and demon-
strates the efficacy of our approach in handling challenging cuts and
produces precise results. For quantitative evaluation, we consider
standard segmentation metrics, namely geometric Intersection over
Union (IoU), precision, and recall. Fig. 6 (Left) compares the cumu-
lative IoU of our framework and alternative techniques, while Table
1 summarizes their performances. The proposed method outper-
forms competing methods and achieves a significant improvement
of 28% in IoU over the current state of the art in SHREC’16 CUTS
[CRB*16]. Table 1 also presents the running time of each method
in identical conditions. Our method executes in less than 5 sec-
onds when applied to high-resolution meshes of SHREC’16, which
comprise over 20,000 vertices, using the hardware configuration de-
scribed in Subsection 4.5. Specifically, the proposed approach offers
a significant speed-up advantage over competing iterative methods,

© 2023 Eurographics - The European Association
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Figure 6: (Left) Partial Shape Matching. Cumulative Intersection over Union (IoU) comparison of various methods on SHREC’16 CUTS
dataset. The areas under the curves are the mean IoUs reported in Table 1. (Right) Partial-to-partial. Cumulative IoU comparison of the
proposed method and DPFM on CP2P [APO21]. The areas under the curves correspond to the mean IoUs reported in Table 2.

Method Precision Recall IoU Running Time

Bag-of-words of SHOT descriptors [STD14] 0.653 189 0.430 ∼ 5s
PFC [RCB*17] 0.938 0.573 0.564 ∼ 30s
Single spectra alignment [RTO*19] 0.775 0.738 0.668 ∼ 800s
DPFM [APO21] 0.975 0.576 0.569 ∼ 1s
Dual Spectra Alignment [BBK23] 0.859 0.838 0.751 ∼ 850s
Proposed method 0.847 0.949 0.818 ∼ 4s

Table 1: Quantitative comparison of partial shape matching approaches on SHREC’16 CUTS [CRB*16]. The proposed framework achieves
state of the art results.

such as [BBK23; RTO*19], which require several minutes to com-
plete. To ensure a fair evaluation, we conducted a random three-fold
split of SHREC’16. Models were trained on two folds and evaluated
on the remaining distinct fold. This procedure was repeated for each
of the splits. In contrast to the evaluation methodology for partial
shape matching suggested in [APO21], we evaluate models solely
on pairs of shapes that were not included in the training set.

5.2. Partial-to-Partial Shape Matching

Method Precision Recall IoU

DPFM [APO21] 0.653 0.589 0.430
Proposed method 0.835 0.721 0.643

Table 2: Partial-to-Partial Shape Matching. Quantitative compari-
son of the proposed framework with DPFM, the current state-of-the-
art approach, on CP2P [APO21]. Our method outperforms DPFM
in all the metrics considered, showcasing its superiority over the
current state-of-the-art approach.

Figure 7: Piecewise smooth functions from our newly introduced
dataset. The considered functions are indicators on body parts such
as the head, single or couple of hands, and feet.

In Section 4.4, we extend our framework for partial shape match-
ing to the more challenging partial-to-partial setting. In this context,
we evaluate the proposed approach using the CP2P benchmark
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Figure 8: Neural representations of ground-truth binary functions (first column). We consider three types of neural representations: a
Multilayer Perceptron (MLP) operating on Cartesian coordinates, Random Fourier Features (RFF), and our proposed approach operating
on a Laplacian Beltrami Operator (LBO) embedding. The Intersection over Union (IoU) value obtained by each neural representation is
indicated below the corresponding shape.

[APO21]. CP2P comprises 300 pairs of partial shapes with overlaps
ranging from 10% to 90% of the total area of each shape. In Table
2 and Fig. 6 (Right) we present a quantitative comparison of our
method with DPFM [APO21], the current state-of-the-art approach
for partial-to-partial shape matching. A qualitative comparison is
also shown in Fig. 5. The proposed method outperforms DPFM
in all quantitative measures considered and achieves a significant
improvement over the existing state-of-the-art by effectively address-
ing challenging overlaps and generating piecewise smooth functions
instead of fractioned masks produced by DPFM [APO21].

5.3. Approximation of Piecewise Smooth Functions in
2-Riemmanian Manifolds

In this subsection, we conduct a comprehensive ablation study to
examine the effectiveness of the proposed intrinsic neural repre-
sentation for representing piecewise smooth functions. Specifically,
we disentangle the feature matching stage and the intrinsic neural
representation to accurately assess the latter. This analysis allows to
isolate the impact of the intrinsic neural representation on the overall
performance and gain a deeper understanding of its capabilities in
approximating piecewise smooth functions.

5.3.1. Representation Capabilities of Intrinsic and Extrinsic
Neural Representations

Figure 9: Ground truth of complex indicators from SHREC HOLES
[CRB*16] (left) and the approximation provided by the proposed
neural representation (right). The representation of complex func-
tions is notably enhanced by adjusting the number of eigenvectors
considered. In this case, we consider the 50 first eigenvectors of
the LBO to enhance higher frequencies. The IoU for each shape is
indicated below it.

Here, we evaluate the proposed intrinsic approach for representing
piecewise smooth functions. We explore both intrinsic and extrin-
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sic neural representations, focusing on their capacity to capture
semantically meaningful parts of articulated shapes. To this end, we
introduce a new dataset comprising 300 piecewise smooth functions
defined on shapes from the FAUST dataset [BRLB14]. These func-
tions serve as indicators of semantically meaningful regions, such as
the head, foot, and hands, or combinations thereof in various shapes
with different poses. The introduced dataset includes various indi-
viduals, poses, and challenging cases, such as close and in-contact
body parts, that are not present in the random cuts from SHREC’16.
Fig. 7 illustrates a subset of the considered functions.

All the neural representations are trained with a binary cross-
entropy loss and with identical optimization schemes. Table 3 dis-
plays the Intersection over Union (IoU) values achieved by each
neural representation. The proposed approach outperforms extrinsic
alternatives, demonstrating its superior representation capabilities in
approximating meaningful piecewise smooth functions in articulated
shapes. Fig. 8 presents qualitative comparisons with neural repre-
sentations operating on Cartesian embedding and Random Fourier
Features (RFF). It highlights the advantage of our intrinsic approach,
which, by accounting for connectivity, can isolate and separate dif-
ferent body parts, even when in contact. These results motivate the
choice of the proposed neural representation to model functions
representing parts of articulated shapes. To further assess the repre-
sentation capacity of our intrinsic neural representation beyond the
scope of the original dataset and the semantically meaningful dataset
we introduced, we examine its performance on additional complex
functions characterized by high frequencies. As demonstrated in
Fig. 9, our approach successfully handles such cases by adjusting
the cardinality of the LBO basis considered. This showcases its
adaptability and versatility for handling a wide range of piecewise
smooth functions.

Method IoU

MLP - Cartesian coordinates 0.543
MLP - RFF [TSM*20] 0.839
Ours 0.920

Table 3: Comparison of the proposed intrinsic approach with ex-
trinsic alternatives on the dataset introduced in Subsection 5.3.1.
Our framework significantly outperforms extrinsic alternatives.

5.3.2. Interpolating Sparse Anchors

We evaluate the ability of the proposed intrinsic framework to repre-
sent the ground truth of SHREC CUTS using varying numbers of
landmarks, as illustrated in Fig. 10. By utilizing ground truth match-
ing anchors, this experiment helps to disentangle approximation
errors that originate from the feature matching scheme used to deter-
mine the anchors and those stemming from the interpolation using
the proposed intrinsic neural representation. Fig. 10 is obtained by
sampling various proportions of the ground truth and training the
proposed intrinsic neural representations on those sampled points
using a binary cross-entropy loss. The results reveal that only a mod-
erate performance drop is observed even when considering as few as
10% of the points, showcasing the ability of the method to represent

functions with sparse sampling. This highlights the effectiveness of
the proposed approach in accurately interpolating sparse anchors.

1.00.80.60.40.20.1
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Figure 10: IoU as a function of the recall on the ground-truth.
We select a portion of the ground-truth, i.e. the recall, to serve
as landmarks and applied the method explored for partial shape
matching. The proposed method effectively represents the considered
functions with sparse sampling, which motivates the use of this
approach for accurately interpolating sparse anchors.

5.3.3. Robustness to Mesh Discretization

To investigate the robustness of the proposed interpolation frame-
work with respect to varying discretizations, we evaluate it on
PFARM [APO21], a dataset that includes 25 test pairs of humans
characterized by significantly distinct connectivity and vertex den-
sity. PFARM enables evaluation of the model in challenging sce-
narios that more closely resemble real-world applications. Fig. 10
demonstrates that the proposed framework for approximating piece-
wise smooth functions remains effective across different connectiv-
ity and vertex densities, exhibiting only a moderate performance
drop compared to SHREC’16 [CRB*16].

6. Conclusion

In this paper, we introduce a novel perspective on partiality in non-
rigid shape analysis by considering it as a piecewise smooth function
defined on a 2-Riemannian manifold. This formulation leads to an
effective framework for partial shape matching which employs an
intrinsic neural representation for interpolating sparse anchors. The
proposed approach significantly outperforms current state-of-the-
art methods and is demonstrated to be efficiently extendable to
the partial-to-partial configuration. In addition to achieving new
best results for partial-to-partial shape matching, this showcases
the versatility and broad applicability of the proposed approach
for dealing with partiality in shape analysis. As a future research
direction, we aim to enhance our framework to complex partiality
scenarios, such as those found in SHREC HOLES [CRB*16], by
exploring neural feature extractors capable of generating coherent
features under these challenging conditions.
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