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Figure 1: Shape matching results produced for an example pair by some of the models we consider in the comprehensive ablation study that
we perform. On the top row, we visualize correspondent points with the same color. On the bottom row, we encode the error of the estimated
correspondence through the colorbar; exact matchings are white, while dark colors mean significant errors.

Abstract
The fast development of novel approaches derived from the Transformers architecture has led to outstanding performance in
different scenarios, from Natural Language Processing to Computer Vision. Recently, they achieved impressive results even in
the challenging task of non-rigid shape matching. However, little is known about the capability of the Transformer-encoder
architecture for the shape matching task, and its performances still remained largely unexplored. In this paper, we step back
and investigate the contribution made by the Transformer-encoder architecture compared to its more recent alternatives, fo-
cusing on why and how it works on this specific task. Thanks to the versatility of our implementation, we can harness the
bi-directional structure of the correspondence problem, making it more interpretable. Furthermore, we prove that positional
encodings are essential for processing unordered point clouds. Through a comprehensive set of experiments, we find that at-
tention and positional encoding are (almost) all you need for shape matching. The simple Transformer-encoder architecture,
coupled with relative position encoding in the attention mechanism, is able to obtain strong improvements, reaching the current
state-of-the-art.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry;

1. Introduction

Over recent years the growing availability of acquisition devices
and the corresponding significant increase in generated 3D data,
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shape matching, and 3D registration have drawn interest in the sci-
entific community. This attention is motivated by the numerous
instances of these problems in different scenarios, from medical
imaging to statistical shape analysis, from geological modeling to
virtual and augmented reality, to name a few. In this work, we focus
on the shape matching task, which aims to find a correspondence
between the points that discretize a pair of shapes, a fundamental
and initial step for 3D registration.

After their appearance on the scene of machine translation
[VSP∗17], Transformer architectures have been employed in
several different applications of Natural Language Processing
[DCLT19], Computer Vision [JGB∗21], and Graphics [ZWC22]
among many others. Taking root in the translation task, the Trans-
formers naturally fit the 3D registration and non-rigid shape match-
ing tasks that aim to “translate” the discrete representation of the
geometry of one object into the discretization of a second one.

Inspired by this idea, Trappolini and colleagues [TCM∗21] re-
cently adopted the Perceiver Transformer [JGB∗21], initially pro-
posed for Computer Vision, as geometrical translator to solve the
3D registration problem. Key-aspect of their method is the defini-
tion of a novel attention, the surface attention that forces the model
to take into account the width of the patch of the surface repre-
sented by each point in the discretization. This attention better en-
codes the continuous nature of the surface underlying the sampled
3D points giving rise to state-of-the-art performances and robust-
ness to different sampling densities. This solution outperforms the
competitors on different datasets laying the groundwork for a fam-
ily of Transformer-based methods for the 3D registration task.

Beyond its accurate performance, a series of questions arise from
this work. Is the surface attention sufficient or necessary to adapt
the Transformers architecture for the shape matching task? Is the
Perceiver [JGB∗21] the best choice to target this specific task?
What is the Transformer architecture learning to address the match-
ing problem? What geometry of the shapes is the attention mecha-
nism encoding?

With our preliminary analysis, we aim to answer the aforemen-
tioned questions to the purpose of revealing some insights on the
fundamental role of each Transformer component. Specifically, we
first explore different ways to assemble the components of the sim-
ple Transformer encoder architecture [VSP∗17]. By this analysis,
we aim to discover if Transformers can target the shape matching
problem without resorting to any explicit geometric bias as done
in [TCM∗21]. The experimental evaluation confirms that our im-
plementation outperforms the recent competitors in different sce-
narios without requiring additional data or computational costs. As
depicted for a pair in Figure 1, we validate, through an extensive
ablation, each component we include in our framework to clarify
their job and discover their role in the whole procedure.

Our contribution is threefold: i) we show which implementation
choices are better suited to target the shape-matching task with a
simple Transformer encoder; ii) we analyze the role of positional
encodings in shape matching; iii) we interpret the patterns that arise
in the attention mechanism, highlighting their geometric structures,
providing some insights about their functionality.

2. Related work

Transformers models: one in many. Transformers came on the
stage in 2017, in the seminal paper [VSP∗17]. This architec-
ture was originally proposed for machine translation following the
sequence-to-sequence paradigm. Later works successfully applied
Transformer-based models to various Natural Language Processing
tasks [ZHLL20, PSS20], typically adopting the pretrain-then-fine-
tune paradigm [DCLT19]. Its flexibility has been then proven with
success also in other domains, such as Computer Vision [DBK∗21],
Computer Graphics [LYZ22], Speech Processing [WML∗20], Re-
inforcement Learning [CLR∗21], and on mixed modalities, such
as Vision and Language [KSK21]. At the same time, recent re-
search has proposed several Transformer variants, from changing
the order of layer components [PSL20], and incorporating persis-
tent memory [SGL∗19], to a more general-purpose architecture for
handling long-context tasks [HJC∗22]. Several Transformer vari-
ants have also been used for point clouds related tasks [ZWC22].
However, little is known about the ability of the plain Transformer
encoder to address the shape matching task. To bridge this gap, we
investigate how this architecture is capable of solving the afore-
mentioned task and what properties arise from the training of this
model.

Inside Transformers: many in one. Interpreting the repre-
sentations of a Transformer-based model is an active area of re-
search, fueled by the recent breakthroughs in different domains
[RT18, VST21, NRK∗21]. Several lines of research explored the
architecture in depth from different angles, from formalizing and
measuring what properties the models learn, and how the systems
can be biased to build better representations [RKR20, RVCT21].
In line with these directions, one of the main analyzed components
of the Transformer architecture is the so-called multi-head attention
module [KRRR19,BMPH21]. A typical example of the outcome of
interpreting the attention weights and connections is in the Natural
Language Processing field, where attention scores seem to correlate
to certain types of linguistic phenomena [TXC∗19, CKLM19], re-
vealing which one could be pruned to reduce parameters footprint
without performance loss [VTM∗19, MLN19]. In a similar fash-
ion, recent work in computational biology has shown which struc-
ture emerges from the task of protein sequence modeling in Trans-
former encoder models [VMV∗21]. However, to the best of our
knowledge, no attempt has been made to target the shape matching
problem with a plain Transformer encoder, analyzing which struc-
ture is uncovered from the training on this task.

Non-rigid shape matching. Given a pair of surfaces that un-
dergo a non-rigid deformation, non-rigid shape matching con-
sists of assigning each point from the first to the correspond-
ing point on the second. Solving this problem is fundamental for
many applications, such as statistical shape analysis, texture trans-
fer, and shape interpolation, among many others. For this rea-
son, numerous contributions on this topic have been raised in
the last decades. This brief overview is not meant to be exhaus-
tive, and we refer the interested reader to the available surveys
[VKZHCO11, TCL∗13, BCBB16, Sah20, DYDZ22].

A family of approaches is based on the iterative closest point
procedure (ICP) [BM92, ARV07, LSP08], which iteratively alter-
nate two steps: i) deform the 3D coordinates of the first sur-
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face to fit the geometry of the second; ii) compute the correspon-
dence as a nearest neighbor search in the 3D space. Descriptors-
based methods are a valid alternative. They assign to each point
a vector invariant to a specific set of deformations. Then, they
compute correspondence by comparing these vectors and picking
the most similar ones as corresponding points. Several descrip-
tors [Rus07, SOG09, ASC11, MRCB16] arise from the Laplacian
[PP93] and its eigendecomposition [Tau95, Lev06, LZ10] which
promotes invariance to isometric deformations. Other signatures
exploit a local analysis of the extrinsic geometry of the neigh-
borhood of each point [TSDS10, MST∗19]. Other methods tar-
get the shape-matching task by proposing different representa-
tions of the correspondences, such as parametric [APL15] or as
blended across multiple maps [KLF11]. In [EEBC20], the proposed
pipeline first computes an initial correspondence among landmarks
by exploiting an evolutionary genetic algorithm. Then it extends
this sparse mapping to a dense correspondence by minimizing a
local metric distortion. Another valuable solution is the functional
map framework [OBCS∗12], which focuses on the functional map-
ping induced by the point-to-point correspondence. Several vari-
ants of this framework have been proposed, adding regularizers
[OCB∗17,NO17,NMR∗18,RPWO18,DCMO22], addressing clut-
ter and partialities [RCB∗17, CRM∗16], or exploiting the relation
between pointwise and functional mapping [MRR∗19, HRWO20,
RMOW20, PRM∗21, RMWO21, PKO22].

With the rise of machine learning, different data-driven strategies
have been applied to boost the functional maps [LRR∗17, DSO20,
APO21]. In [MRMO20], the authors propose a learning procedure
to apply functional maps to 3D point clouds exploiting the PointNet
network [QSMG17]. 3DCoded [GFK∗18] adapts an autoencoder
architecture to register a fixed template to an input surface so that
every pair of shapes can be matched through the registered tem-
plate. Recently, Trappolini and colleagues [TCM∗21] targeted the
shape registration task by exploiting the power of the Transformer
architecture from [JGB∗21]. In their model, which from now on we
name SRTT, they define the surface attention, which consists of a
weighted attention mechanism that, for each point, takes into ac-
count the patch of the continuous surface that it represents. This in-
formation makes the model resilient to different surface samplings
and densities. The obtained model outperforms all the competi-
tors on different benchmarks. Both 3DCoded and SRTT solve the
matching task as a registration problem, which also aims to fit the
bi-dimensional surface that represents a first shape on the geometry
of a second one. In this paper, we focus on shape-matching, which
only targets discrete maps among the set of 3D points that represent
the surface and thus is more general and can be seen as an initial
step for registration.

3. Background and motivations

In this Section, we introduce the shape matching task emphasizing
its main properties and challenges.

Y X

The problem A discrete shape or sur-
face X , is a collection of nX ∈N points
X ∈ RnX×3 in the 3D space, which
approximates a 2-dimensional smooth

manifold embedded in R3. Given a pair
(or a collection) of surfaces X and Y that undergo a non-rigid de-
formation T (i.e., Y = T (X )), and their discretizations X and Y ,
non-rigid shape matching consists of assigning each point of X the
unknown corresponding point in Y and vice-versa. These points can
own connectivity as a triangular or polygonal mesh, but we focus
on the more general setting of point clouds without any additional
structure. The inset figure shows an example of correspondence for
a pair of surfaces X , Y , represented as point clouds, which dis-
cretize the underlying white surfaces that we render just for visual-
ization purposes. We represent the correspondence through color-
coding: the same color means correspondent points.

Unordered point clouds The lists of points that represent each
surface do not share a common order, and, in the general case, their
cardinality is different (i.e., nX ̸= nY ), usually belonging to the in-
terval [1K,200K]. The shape matching problem is thus a combina-
torial problem, and there is no information in sorting the 3D points.
In fact, given two random permutations of the rows of X and Y , a
shape matching solution should be able to recover the same corre-
spondence independently from the order of the points.

Rigid and non-rigid deformations Each shape/surface X may
undergo to different transformations, making the task particularly
challenging. These transformations can be broadly grouped into
two main categories: rigid, such as scale, translation, and rotation,
and non-rigid, such as pose variations, different subjects, and artic-
ulated movements. Moreover, to further increase the complexity of
the task, each deformation can be a composition of both rigid and
non-rigid transformation.

Different densities of the sampling Shape matching solutions
tend to suffer from the different densities of the surface discretiza-
tion. Even though the bijection nature of the task mitigates this
problem, current systems still struggle to match two sets of points
with different cardinality [MMR∗19].

Bi-directional nature The shape matching problem is bidirec-
tional in its nature, i.e., finding a solution for the correspondence
from X to Y , also provides some information about the match-
ing in the opposite direction, from Y to X . Such property can be
leveraged to transfer knowledge in both directions. This provides
a strong signal in case of a bijection between the two shapes, i.e.,
when they have the same cardinality, while less effective when the
two shapes are represented by a different number of points. For ex-
ample, if X has fewer points than Y , the correspondence from X
to Y leaves some points of Y unmatched.

4. Proposed implementation

The gist of our solution lies in the combination of the Transformer
encoder [VSP∗17], positional encoding, and attention specializa-
tion. In Figure 2, we report a schema of the implemented architec-
ture.

Transformer encoder architecture The Transformer encoder
architecture consists of a number of stacked multi-head attention
and feed-forward blocks. The multi-head attention is a concate-
nation of several attention functions called heads, typically im-
plemented with a scaled dot-product attention module [VSP∗17].
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More formally, given an input with sequence length n and dimen-
sionality d, first, it is processed into three linear projections, queries
Q ∈ Rn×d , keys K ∈ Rn×d and values V ∈ Rn×d , and then an at-
tention energy ξ is computed over the queries and keys:

ξ = softmax

(
QK⊤
√

d

)
∈ Rn (1)

where d is the dimensionality of the key. Finally, this attention en-
ergy ξ is used to compute the weighted average of the values V :

Att(ξ,V) = ξV ∈ Rd (2)

This mechanism is computed h times, defined as the number of
attention heads. Each attention head is then concatenated and fed
to a two-layer feed-forward block with ReLU activation. To sta-
bilize training, multi-head attention and feed-forward blocks are
interweaved by layer normalization modules.

Positional encoding (RoPE) There are various methods to in-
tegrate position information into a Transformer model, broadly
divided into two groups, absolute and relative positional encod-
ing [DSS22]. Moreover, there are two approaches for incorporating
such positional information, either added together with the input to
the model or by directly modifying the attention matrices in ev-
ery layer. In our work, we used rotary position encoding (RoPE) to
encode relative positions within the model [SLP∗21]. This method
applies rotation matrices, built from sine and cosine functions, to
each query and key attention heads in every layer. The main intu-
ition is that it gives the model the ability to have knowledge that re-
flects the relative distance between each input point. As we input to
the Transformer encoder two shapes to be matched, the positional
knowledge is essential to enhance the capability of the network to
distinguish the two shapes. The RoPE encoding is incorporated as
follows:

ξ = softmax

(
QRd

ΘK⊤
√

d

)
∈ Rn (3)

where Rd
Θ is a block-diagonal matrix with rotation matrices on

its diagonal for each input position. More specifically, following
[SLP∗21], we use Θ = {θi = 10000−2(i−1)/d , i ∈ [1,2, ...,d/2]}.
Given an input position m, the matrix Rd

Θ,m has the following rota-
tion matrices on its diagonal:(

cosmθi −sinmθi
sinmθi cosmθi

)

Residual Attention (RA) The multi-head attention mechanism
is one of the core components of the Transformer model. Each at-
tention head usually learns different patterns useful to address the
underlying task. In our scenario, in order to match two different
shapes, a model should learn at least two crucial patterns, the shape
itself, so recognizing a single shape and its target one. We incor-
porate this hunch by introducing a residual attention mechanism to
improve the model to specialize each attention head to specific pat-
terns [HRKA21]. Residual attention (RA) simply adds a connection
to each attention matrix, propagating attention scores of the previ-
ous layer. This improves the model to learn sparse and specialized

attention heads, which is effective for the shape-matching task. Fi-
nally, given a i-th layer, the attention energy function is defined as:

ξi = softmax

(
QRΘK⊤

√
d

+ξi−1

)
∈ Rn (4)

Matching computation Given two shapes X and Y with nX
and nY points, the input of our network is a matrix of size (nX +
1+nY )×3, representing the 3 dimensional coordinates of the two
point clouds split by a separator SEP of size 1× 3. Similarly, the
output of the network is a matrix with the same size as the input,
which we can split into two 3D point clouds X̂ of size nX and Ŷ of
size nY by removing the SEP. X̂ is composed by the same points
of X but placed in the 3D space in order to fit the geometry of Y .
The same holds for Ŷ . Following previous work [TCM∗21], we can
extract the point-to-point correspondence between X and Y solving
for each point x ∈ X the nearest neighbor assignment problem in
the 3D space among the point of Ŷ , and similarly for all y ∈ Y
and X̂ . Thanks to the 1:1 correspondence among the shapes in the
training set, we can train our model by minimizing the sum of the
losses ℓX ,Y and ℓY ,X , defined as:

ℓ= ℓX ,Y + ℓY ,X = ∥Ŷ −X∥2
2 +∥X̂ −Y∥2

2 (5)

Additional information about the model architecture is given
in the supplementary material. Furthermore, we release our com-
plete implementation at: https://github.com/raganato/
SGP23_AttPos4ShapeMatching.

5. Experimental settings and evaluation

Our work aims to spread light on the best practices for achieving
shape matching with Transformers. We are thus not proposing a
novel model, instead, starting from the simplest Transformer en-
coder, we investigate how to adapt it to tackle shape matching,
encoding geometric features relevant to this desired task. More-
over, we analyze the role of each component we integrated into
this architecture. In this spirit, the main competitor is SRTT from
[TCM∗21], the first, and based on a recent survey [ZWC22], the
only Transformer architecture designed to solve this task. In our
experiments, we include the datasets and the training and test set-
tings from [TCM∗21], inheriting the comparisons from its evalua-
tion. In the following, we briefly list these datasets and competitors,
referring to [TCM∗21] for additional details.

5.1. Datasets and settings

Training data For the experiments on human shapes, we train
on 10K triangular meshes with 1K vertices representing different
subjects in different poses. These point clouds have been obtained
by processing meshes (with 6890 vertices) from the SURREAL
dataset [VRM∗17]. These 1K vertices are the same for all the train-
ing shapes preserving the original 1:1 correspondence. This train-
ing set is the same from [MRMO20] and [TCM∗21]. As for the
competitors, our model only accesses the 3D coordinates of these
points, ignoring the connectivity information. We additionally gen-
erate a second version of this training set by sampling 1K points of
the same original meshes. We select the first 500 by applying the
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Figure 2: A visualization of the overall architecture (on the left) and of a single Transformer layer (on the right). The model takes into input
the concatenation of two shapes X and Y in Rn×3, split by a separator SEP. After an initial series of dimensionality augmentation to fit the
Transformer parameters, a stacked 6 layers Transformer-encoder block is applied to the concatenated input, coupled with rotary position
encoding RoPE, and residual attention connection RA, placed in the multi-head attention component (right picture). Finally, a dimensionality
reduction block returns the resulting target matching points in Rn×3.

euclidean farthest point sampling. Then we randomly pick the other
500 samples among the remaining ones. We denote this sampling
strategy and all the experiments on these data with ⋆.

For the evaluation on animals, the training set consists of 20K
shapes from [ZKJB17b], divided into five classes (cat, cow, dog,
horse, hippo) and with various poses generated with the parametric
model SMAL [ZKJB17a]. As done for the human shapes, by ap-
plying the strategy ⋆, we sample 1K points from the 3889 vertices
generated by SMAL, preserving the 1:1 correspondence. Similarly,
we select 20K shapes only from the hippos class to train a dedi-
cated model. We respectively refer to these training sets as A and
H.

Applied augmentations To enforce the robustness of the model
to random rotation, we apply a random rotation which belongs,
with probability 1

3 , to one of the following types: i) the composition
of three random rotations, one for each axis in the interval [0,2π];
ii) a random rotation along one of the axes in the interval [0,2π];
iii) the null rotation. The desired output of the model should be
independent of the permutations of the input points. To push this
property, we apply a random permutation to each shape at train
time too.

Test sets We consider the following standard datasets and their
modified versions designed to assess the approaches in different
settings. The first five are for humans shapes, from the FAUST
dataset [BRLB14], while the last three are for animals. We know
the ground truth correspondence for each pair in these sets for the
evaluation. None of the test shapes were seen at training time.

F∼7K [BRLB14]: 10 subjects, in the same 10 poses, all represented
with the same triangular mesh with 6890 vertices.

F1K: The same shapes of F∼7K , remeshed to the same triangular
mesh with 1K vertices.

F1KN: The same shapes of F1K with Gaussian noise on the 3D
coordinates with standard deviation equal to 0.01.

F1KO: The same shape from F∼7K with a different sampling of
1K points. Some of them have been randomly moved far from the
surface, becoming outliers.

S19 [MMR∗19]: 44 shapes from different repositories, with vari-
ous triangulation, numbers of points, poses, and subjects. A list of
430 pairs is provided to evaluate the resiliency of the method to
different connectivities and densities.

SMAL: 100 random pairs selected among 300 shapes generated
with SMAL (3889 vertices).

HIPPO: 100 random pairs of different hippos from SMAL.

TOSCA: [BBK08] 100 random pairs of synthetic triangular
meshes belonging to different classes (dog, horse, wolf) with var-
ious poses (∼ 10K vertices). We only consider pairs composed of
shapes from the same class.

Out of training distribution of the test sets All the shapes in-
volved in our experiments have never been seen during the training.
We emphasize that the shapes in S19 and TOSCA differ from the
training set, respectively on the human and animal classes. They
represent different subjects and have completely different poses,
often never seen at training time. Furthermore, the density of the
points distributions in the original shapes is, in some cases, signifi-
cantly different from the ones from which we generate the training
data. The results on these test sets show the generalization ability
of our method, at least in the intra-class scenario. Finally, the re-
sults on animals show that through an appropriate second training
phase, our model can target a different class even if initially trained
on human shapes.

Test on shapes with more than 1K points Due to the size of the
training data and the design of the model we adopt, at test time, we
can only input two point clouds of dimension 1K. We note that the
self-attention mechanism employed in the Transformer architecture
has quadratic time and space complexity relative to the length of the

© 2023 Eurographics - The European Association
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input. Although there are other memory-efficient variants that could
fit longer input [TDBM22], investigating their implementation is
beyond the scope of this work, and we leave this to future studies.
This choice simplifies the architecture, but we should apply an al-
ternative procedure for testing on shapes with more points, such as
the ones from F∼7K and S19. Given the pair X ,Y , we apply the
⋆ sampling to select 1K points from both shapes and compute the
output on them. Then, maintaining the 500 determined by the Eu-
clidean farthest point sampling algorithm on Y , we iteratively pick
at random 500 points among the ones we excluded in the previous
iterations. For each iteration, we run the model, and we aggregate
the output only for the new 500 random points to the previous one
respecting the original order. When we finish all the points from
Y , we stop the process, eventually adding some samples twice in
the last iteration to reach 500 points. By doing this, we obtain an
aggregated Ŷ with the exact dimension of Y , and we can perform
the matching comparing X and Ŷ . We refer the interested reader to
the supplementary material for more details on this step.

Competitors In addition to SRTT, we consider all the other com-
petitors from [TCM∗21] that we introduced in Section 2. We
namely refer to them as 3DC [GFK∗18], DiffNet [DSO20], Lin-
Inv [MRMO20] and to the results of the model we implemented
as Ours. We also include a modification of Ours, injecting explicit
geometrical information about the input shape, using the surface
attention from [TCM∗21] in the Transformer encoder architecture
as we describe in the supplementary materials. We denote the re-
sults obtained exploiting this modification as OursSA.

Evaluation metrics Given the ground truth correspondence Π
GT
X ,Y

between X and Y (i.e., y = Π
GT
X ,Y (x) ∈ Y is the correct match

∀x ∈ X ), we compute the geodesic error EΠ
X ,Y (x) of the estimated

correspondence Π as:

EΠ
X ,Y (x) = GY (ΠGT

X ,Y (x),Π(x)) , (6)

where GY is the geodesic distance on the surface Y . The average
geodesic error, namely AGE, is the average value of this error on
all the points that discretize X . In the tables, for each dataset, we
report the average value of the AGE on a collection of pairs. For
visualization, we encode this error in a colormap, points with large
errors have dark colors while 0 errors are white.

5.2. Results

Table 1 resumes the comparison for the five human datasets. No-
tably, we significantly improve the results on all the test sets de-
rived from FAUST, reducing the error of more than 30% com-
pared to SRTTR, which is the refined version of the method from
[TCM∗21], which was the state-of-the-art on these datasets. In Fig-
ure 3, we visualize the error for the same pair from F1K , F1KN,
F∼7K . In all the cases, we reduce the error compared to SRTT.

On S19, even if competitive, we are slightly worse than SRTT.
We charge this performance drop to the extreme sampling varia-
tion in the shapes from S19. We cannot perform better even with
OursSA, which implements the surface attention. This result mo-
tivates our claim that the accuracy of SRTT could only partially
arise from the surface attention proposed in [TCM∗21]. Instead, we

suppose that the registration could induce the performance gap by
forcing the source surface to fit the target one in the 3D embedding
and correcting some of the wrong assignments of the matching.
Furthermore, we remark that only SRTTR, which involves a refine-
ment procedure, achieves the slightest error. Many postprocessing
and refinement strategies to improve the quality of the output of our
procedure are possible. For instance, we can convert the computed
maps into functional maps and exploit the smooth prior provided by
the functional representation. The relevance of the constraints pro-
vided by the registration task and the impact of the refinement pave
the way for further explorations that do not depend on the choice of
the transformer architecture and are out of the scope of this paper.

However, excluding S19, our model still generalizes to different
sampling like or even better than SRTT. In Figure 4, we depict the
estimated correspondences on a pair varying the discretization of
the Y surface. From left to right, we consider F1K with the same
sampling of X , the one of F∼7K, and the ⋆ sampling. This qualita-
tive result shows that in some cases Ours is more robust than SRTT
to sampling variations, proving that the surface attention is not suf-
ficient to make the model invariant to different sampling. For this
reason and to exploit the Transformer architecture power without
any explicit geometric bias, we prefer to avoid surface attention.

To enforce resilience on these challenges, we continue the train-
ing of SRTT , Ours and OursSA for 24 hours on the ⋆ training
set. We report the results after this second learning phase in the last
three rows of Table 1. Ours⋆ performs better than Ours in the most
challenging test settings (the rightmost three) where the sampling
density is most different from the standard training set. Similarly
for OursSA⋆ and OursSA while SRTT⋆ does not improve through
this additional training. We compare Ours and SRTT and their ver-
sion ⋆ on pairs where X is from F1K and Y is from F∼7K . We refer
to this setting as F1to7K . A qualitative test on a pair from F1to7K is
depicted in the center of Figure 4, while we report the quantitative
results in the supplementary materials. All the models provide simi-
lar performance when testing the same pairs from F1to7K and F∼7K .
Ours⋆ is more stable than Ours, proving that the second training
phase helps to target pairs with different samplings while it does
not help for SRTT. We remark that, working with a simple Trans-
former encoder, training with a different sampling provides a more
significant improvement than adding the surface attention to the
model. Indeed, Ours⋆ is the best result among the methods without
refinement. These findings indicate that the training data sampling
process plays a crucial role in enhancing the model’s robustness
against sampling variations, prompting a compelling research ques-
tion regarding potential approaches to mitigate such variations.

In Figure 5, we report a pair of examples for the texture transfer
application. On the left is a pair from S19, on the right from F1K.
For both pairs, we report the ground truth for comparison. Even if
numerically worse than SRTT on S19, we are accurate enough to
target this application.

In Table 2, we report the results for the animal test set, one for
each column. For SRTT, Ours and OursSA, we consider three
training settings. Starting from the respective model trained on hu-
man shape, for the models denoted with A and H, we continue the
training for 24 hours on the corresponding training set. The last
training setting starts from the A model and executes a one-shot
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Table 1: Comparison to existing methods

Method F1K F1KN F1KO F∼7K S19
3DC 0.0542 0.0712 0.2306 0.0776 0.2138
DiffNet 0.0534 0.0985 0.3509 0.0656 0.1509
LinInv 0.0471 0.0618 0.1738 0.0942 0.1284
SRTT 0.0419 0.0510 0.1657 0.0513 0.0802
Ours 0.0135 0.0286 0.0518 0.0236 0.0930
OursSA 0.0146 0.0302 0.0520 0.0229 0.0981
3DCR 0.0367 0.0526 0.2101 0.0485 0.1935
SRTTR 0.0263 0.0410 0.1479 0.0369 0.0615
SRTT⋆ 0.0364 0.0477 0.0952 0.0436 0.0971
Ours⋆ 0.0133 0.0279 0.0224 0.0199 0.0773
OursSA⋆ 0.0170 0.0320 0.0558 0.0217 0.0890

0

max

Y
X

X

SRTT

Ours

F1K

Y
X

X

SRTT

Ours

F1KN

Y
X

X

SRTT

Ours

F∼7K

Figure 3: A visualization of the geodesic error EΠ
X ,Y for SRTT

[TCM∗21] (top) and Ours (bottom) on the same pair from different
test sets (from left to right: F1K , F1KN, F∼7K).

Y
X

X

SRTT

Ours
Y

X

X

SRTT

Ours
Y

X

X

SRTT

Ours

Figure 4: A qualitative comparison between SRTT [TCM∗21] (top)
and Ours (bottom) on the same pair varying the sampling adopted
to discretize Y . From left to right: the same F1K used for X , 7K
points from F∼7K , F1K distributed as in the training set ⋆.

Source Transfer results (S19)

Ground
Truth SRTT Ours

Source Transfer results (F1K )

Ground
Truth SRTT Ours

Figure 5: Texture transfer results for two pairs (on the left from
S19, on the right from F1K). For each pair, from left to right, we vi-
sualize the source shape with the texture, the ground truth transfer,
the output of SRTT, and our result.

Table 2: Comparison to SRTT [TCM∗21] on the animal shapes.

Method SMAL HIPPO TOSCA
SRTTA 0.0683 0.0369 0.3293
OursA 0.0505 0.0279 0.1499
OursSAA 0.0687 0.0422 0.1539
SRTTH 0.2599 0,0303 0.3549
OursH 0.1623 0.0173 0.2722
OursSAH 0.1693 0.0218 0.3148
SRTTC 0.0820 0.0516 0.3172
OursC 0.0659 0.0385 0.0997
OursSAC 0.0831 0.0579 0.1052

0

max

Y

X

Ground Truth SRTT Ours

SRTT Ours

Geodesic Error

0

max

Y

X

Ground Truth SRTT Ours

SRTT Ours

TOSCA

Geodesic Error

Figure 6: Comparison between Ours and SRTT [TCM∗21] on
SMAL (upper images) and TOSCA (lower images).

training on a single pair of cat shapes from TOSCA. We denote
this training with C. For this reason, we exclude the cat class from
the tests. In Figure 6, we visualize the comparison for two pairs,
one from SMAL (top) and one for the horse class from TOSCA
(bottom), respectively, with the A and C models. On SMAL, even
if the errors are similar, our wrong matches are sparser than the
ones from SRTT, which fails on an entire cow’s leg and the tail.
On TOSCA, we outperform SRTT. These results and Table 2 prove
that Ours can better and faster learn to generalize to other cate-
gories both respect SRTTand OursSA. We remark that also in these
scenarios, the surface attention does not generate any improvement.

6. Analysis and Ablation

Even if simple (e.g., compared to the Perceiver [JGB∗21]), our
architecture provides excellent performance on different datasets
dealing with several challenges. Our results are even more exciting
since unlike SRTT and its surface attention, we do not inject ex-
plicit biases in the network to process geometric data or target the
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Figure 7: A visualization of some attention heads from
Ours model.

desired task. Thanks to its design, our model infers all its capacity
from the data. In the following, we analyze the main components of
our architecture, revealing how they work and clarifying their role
in achieving these impressive outcomes.

Analysis of the attention By visualizing the pattern of the atten-
tion heads across the layers, we reveal some exciting insights about
our model. In Figure 7, we depict three attention heads in Layers
2 and 4. The stronger the red color, the higher the value of the at-
tention. The blocks on the main diagonal represent self-attention,
while the ones on the other diagonal correspond to cross-attention.
The model, through the layers, specializes in each head, either self
or cross-attention. Due to lack of space, we move to the supplemen-
tary material, the figure with all the attention heads for our model
and for other models from the following ablation study discovering
remarkable structures.

Geometry in the attention To further inspect the information
encoded by the attention, in Figure 8, we plot some of the rows of
a self-attention head (top) and a cross-attention head (bottom) as
functions on the respective surfaces X and Y . We only depict the
values encoding information, the blocks on the main diagonal for
the self and the ones from the other diagonal for the cross-attention
(highlighted by the black dotted boxes). We adopt the same col-
ormap used for the attention head: white is 0, and higher values are
in darker red. With different colors we highlight the selected row
in the attention head with an arrow (left), the corresponding point
on the surfaces for the self-attention with a circle(top row), and
the respective cross-attention again with an arrow (bottom row).
The values of the self-attention are higher and resemble a Gaussian
centered in the selected point. For every point, the corresponding
cross-attention has smaller values and is less concentrated but rep-
resents a region that could correspond to the chosen point more
smoothly. While the self-attention behaves similarly for different
points, the cross-attention seems more sensitive. These results con-
firm that the learned attention heads do not only specialize in self or
cross-attention but also encode the local region around each point.
With this local information, the model learns about the local geom-
etry around the point and exploits these additional features. We note
that these findings belong to the Ours model, which does not re-

Table 3: Ablation study

Method ♯Params F1K F1KN F∼7K DEV
Ours 19.2M 0.0880 0.0826 0.0847 0.0489
OursSA 19.2M 0.0619 0.0683 0.0603 0.0432
XS-Ours 1M 0.1046 0.1129 0.1039 0.1039
4 Layers 12.9M 0.1749 0.1675 0.1425 0.0889
8 layers 25.5M 0.0856 0.0884 0.0749 0.0533
Pos [VSP∗17] 20.2M 0.4238 0.3986 0.3476 0.4214
No Pos 19.2M 0.4155 0.3996 0.3466 0.4213
Only RRRoooPPPEEE 19.2M 0.4155 0.3997 0.3466 0.4213
No Bid 19.2M 0.1284 0.1896 0.0733 0.0976
No RA 19.2M 0.0908 0.0935 0.0960 0.0573
SRTT [TCM∗21] 1.7M 0.1678 0.1763 0.1728 0.0929
SRTTXL 18.4M 0.1220 0.1332 0.1528 0.0723

quire any geometric information about the input shapes. Moreover,
our analysis discloses some intriguing questions. Is the learned at-
tention dependent on the deformations the region around the se-
lected point may undergo? As done in [YSI20, RST20], can we fix
the attention pattern as Gaussian centered around the selected point
for the self-attention heads and around the corresponding point for
the cross-attention in the Transformer encoder? These are research
directions with great potential that we reserve for future work.

Ablation study We perform a comprehensive ablation analysis
training for 24 hours on a reduced version of 1K point clouds from
the original train set for human shapes. In the same setting, for
comparison, we train two versions of the SRTTmodel: i) the one
from [TCM∗21]; ii) SRTTXL for which we augment the dimension-
ality of the overall architecture to obtain a model with more param-
eters as in Ours. We evaluate the models on F1K , F1KN, F∼7K ,
and DEV, a collection of shapes not included in the training set
but generated in the same way. Each row in Table 3 corresponds
to a model we train by disabling or modifying a specific compo-
nent of the proposed architecture. In the second column, we re-
port the number of parameters. In Figure 1, we depict a qualitative
example produced by some of these models on a pair from DEV.
Ours and OursSA refer to the same architectures we test in the
previous section. In XS-Ours, we reduce the dimensionality of the
Transformer’s input from 512 to 64. This modification streamlines
the model’s parameters but gives rise to a drop in the performance.
With 4 Layers and 8 Layers, we compare Transformers composed
of different numbers of layers. The poor results of 4 Layers and
the slight improvement provided by 8 Layers at the cost of 25% of
additional parameters motivate our choice of 6 Layers.

Surface attention In this setting, we note that OursSA performs
better than Ours. This improvement is not confirmed in the previ-
ous evaluations with more extended training and considerably more
training data. The surface attention acts as a geometric prior that
helps to learn faster even with reduced data but does not impact the
performance in the full training.

Importance of the positional encodings To assess the role of
the positional information and the preferable way to inject it into
the architecture, we run three different models. Only RoPE re-
ceives as input the positional encoding without the features ex-
tracted from the 3D coordinates. This input is not sufficient to solve
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Figure 8: A visualization of the self (top row) and cross-attention (bottom row) for three different points for each shape of a pair from
the FAUST dataset. We report the attention head on the left and highlight the selected points with a colored arrow. On the right, for each
selected row, we plot as a function on the surfaces the corresponding attention values restricted to the self-attention blocks in the first row
and the cross-attention block in the second row (highlighted with the dotted black boxes). In the first row, we underline the surface point
corresponding to the selected row in the attention matrix with a circle of the same color. With an arrow of the same color, we connect each
chosen point on a shape with the value of the cross-attention it generates on the second. We adopt the same colormap for the attention matrix
and for the rendering on the point clouds: attention value increases from light to darker colors.

the task proving that positional information is important but not
sufficient for shape matching. In Pos [VSP∗17], we apply the abso-
lute positional encoding proposed in [VSP∗17]. This information is
given to the network once at the beginning with the input. The bad
results of Pos indicate that this method is inadequate in addressing
the task effectively. Similarly, No Pos, which lacks the integration
of any positional information, fails to solve the task too. We hypoth-
esize that the model is not able to recognize the twofold structure of
the input, and randomly embed all the points in a common space as
suggested by the visualization on the right of Figure 9. Finally, al-
though there are several other approaches available for integrating
positional information to recognize the input shapes [DSS22], con-
ducting a comprehensive search is beyond the scope of this study,
and we defer it to future investigations.

Bi-directional nature of the problem We train the No Bid
model minimizing the loss ℓX ,Y alone. As might be expected, this
model generates larger errors on pairs for which the correspon-
dence is a bijection. Moreover, in the supplementary material, we
show that No Bid produces less cross-attention patterns.

Importance of recurrent attention [HRKA21] As we saw, our
model specializes the attention-heads across the training. We ap-
preciate that this property is less evident when we disable the re-

Ours (with RoPE) No Pos (without RoPE)

Figure 9: A PCA visualization of the embedding produced by our
model as the output of the 6th layer, with (left) and without (right)
the positional encoder RoPE [SLP∗21].

current attention in the No RA model giving rise to less accurate
performances.

Role of the augmentations In Table 4, we test the robustness of
our model to random permutations and random rotations of the in-
put point clouds. From the augmentations applied at training time,
Ours inherits rotation and permutation invariance. SRTT is ro-
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Table 4: Comparison to SRTT [TCM∗21] applying random rota-
tions on the 3-axes in the interval [0,2π], or random permutations
to the point lists of the shapes.

Method F1K F1K N F1K O F∼7K S19
SRTT 0.0419 0.0510 0.1657 0.0513 0.0802
Ours 0.0135 0.0286 0.0518 0.0236 0.0930
OursSA 0.0146 0.0302 0.0520 0.0229 0.0981

R
an

d.
ro

ta
t. SRTT 0.2441 0.2674 0.3160 0.2629 0.2841

Ours 0.0150 0.0292 0.0520 0.0239 0.0954
OursSA 0.0161 0.0311 0.0531 0.0235 0.0999

R
an

d.
pe

rm
. SRTT 0.0417 0.0511 0.1621 0.0513 0.0802

Ours 0.0126 0.0276 0.0503 0.0242 0.0943
OursSA 0.0142 0.0300 0.0519 0.0232 0.0992

bust to permutations but can not deal with random rotations due to
the limited set included in its augmentation.

7. Conclusions

By proposing a simple Transformer architecture to target the shape-
matching application with accurate precision, we offer, for the first
time, a exploratory analysis of the role and importance of many
components to train a Transformer architecture to target the de-
sired goal. Our study reveals some meaningful insights and visual-
izations into the injection of positional information and the patterns
generated by the attention mechanism. The model we train achieves
state-of-the-art performances on different datasets; when not, it is
always comparable to existing alternatives. The limitations of our
method are twofold: i) it can only be applied to pair with the same
cardinality; ii) it suffers severe differences in the sampling density
and distribution on the two shapes. Further explorations are neces-
sary to solve these issues, but preliminary results support the adop-
tion of additional data with different sampling during training as a
potential solution. Moreover, as future work, we will target other
challenging settings carrying out similar analyses for partial shape
matching where one or both the shapes have missing parts or holes
or consider shapes with topological noise induced by the acquisi-
tion process. Finally, our analysis reveals that our model generates
attention heads similar to diagonal blocks in both directions, and as
an exciting future direction, we can directly provide these patterns
to the network to speed up the learning procedure and improve per-
formance [RST20, YSI20, RVCT21].
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