
Eurographics Symposium on Geometry Processing 2023
P. Memari and J. Solomon
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 5

Feature-Preserving Offset Mesh Generation
from Topology-Adapted Octrees

D. Zint1,3 , N. Maruani1 , M. Rouxel-Labbé2 , and P. Alliez1

1Inria center at Université Côte d’Azur, France
2GeometryFactory, France

3New York University, USA

(a) Input shape (b) Dual Contouring (2%) (c) Offset (2%) (d) Dual Contouring (5%) (e) Offset (5%)

Figure 1: Method overview: (a) The input consists of a mesh and two main user-defined parameters: offset radius and maximum normal
deviation; (b,d) The topology of the initial offset mesh is computed with Dual Contouring on a topology-adapted octree; (c,e) A high-quality
offset mesh is obtained through remeshing.

Abstract
We introduce a reliable method to generate offset meshes from input triangle meshes or triangle soups. Our method proceeds
in two steps. The first step performs a Dual Contouring method on the offset surface, operating on an adaptive octree that is
refined in areas where the offset topology is complex. Our approach substantially reduces memory consumption and runtime
compared to isosurfacing methods operating on uniform grids. The second step improves the output Dual Contouring mesh
with an offset-aware remeshing algorithm to reduce the normal deviation between the mesh facets and the exact offset. This
remeshing process reconstructs concave sharp features and approximates smooth shapes in convex areas up to a user-defined
precision. We show the effectiveness and versatility of our method by applying it to a wide range of input meshes. We also
benchmark our method on the Thingi10k dataset: watertight and topologically 2-manifold offset meshes are obtained for 100%
of the cases.

CCS Concepts
• Computing methodologies → Shape modeling;

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14906

e14906 pp. 1 - 12

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4491-1685
https://orcid.org/0009-0005-0866-7058
https://orcid.org/0009-0006-5838-8097
https://orcid.org/0000-0002-6214-4005
https://doi.org/10.1111/cgf.14906

2 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

Figure 2: Cut-view of simple input meshes (gray) with complex
offset surfaces (blue). The inside tube of the pipe (left) can be ar-
bitrarily small as the offset radius grows. The offset surface of two
spheres (right) is the union of two larger spheres that can share a
non-manifold point.

1. Introduction

Rolling a ball of fixed radius over a surface describes a volume
whose boundary is referred to as the offset surface. More formally,
this operation is known as the Minkowski sum of the surface and
the ball. The offset surface can also be defined as the level-set of the
unsigned distance field to the input. The construction of offset sur-
faces is a fundamental tool in many applications such as computer-
aided design (CAD), collision detection, path planning, boundary
layer mesh generation, architectural design, design exploration, etc.

Despite being a simple, well-defined mathematical operation, the
reliable generation of discrete offset surfaces is a notoriously diffi-
cult scientific challenge, as even simple inputs can lead to complex
offset surfaces (see Figure 2). This complexity has caused offset
surface computation to be studied mostly in the context of discrete
inputs and outputs. Using discrete inputs and outputs is neverthe-
less reasonable, given the discrete nature of most real-world data.
In addition, a discrete approximation of the offset that lies within a
user-defined error bound is often sufficient, or even required.

1.1. Focus and Problem Statement

This paper addresses the problem of generating a discrete offset
in the form of a surface triangle mesh, given a surface mesh as in-
put, with two main user-defined parameters: an offset radius δ and a
maximum normal deviation in degrees σmax. Minimum edge length
and maximum octree depth are optional parameters that provide ad-
ditional control to the user. The maximum normal deviation σmax
provides a means to control the approximation error. The minimum
edge length and the maximum octree depth limit the mesh com-
plexity. Our main focus is to guarantee a closed, combinatorially
2-manifold output surface triangle mesh through a process that is
robust to input defects such as self-intersections or holes. We also
aim to generate offset meshes with well-shaped (isotropic) triangles
everywhere, except near sharp features subtending small angles.

1.2. Related Work

The literature abounds with the generation of offset meshes as it
is a complex, multifaceted problem. We observe no consensus on
the best methodological approach due to multiple dilemmas: exact
vs. inexact, over-refinement followed by filtering vs. coarse-to-fine,
etc. As such, some approaches aim at constructing data structures

in relation to the structure of the distance function in space (gen-
eralized 3D Voronoi diagrams), while others aim at understanding
the structure of the exact local offset. Some approaches reformulate
the problem as the approximation of Minkowski sums, and many
approaches utilize volumetric discretizations.

Generalized 3D Voronoi Diagram. The distance field d(x) of a
triangle mesh is C∞ continuous almost everywhere but is only C0
in some areas. More specifically, the distance field is only C0 when-
ever the nearest primitive (vertex, edge, face) changes. For exam-
ple, when we move in the proximity of a concave edge, the gradient
of the distance field jumps at some point. The nearest primitive to
each point in space is encoded by the generalized 3D Voronoi di-
agram. The distance field is C∞ inside Voronoi cells, while it is
only C0 on its bisectors. Offset generation can thus be seen as a
sub-problem of generating the generalized 3D Voronoi diagram. If
we had the exact 3D diagram, we could simply compute the offset
for each cell, a simple task due to the C∞ continuity, and then cut
the offsets at the bisectors. However, contrary to 2D where gen-
eralized Voronoi diagrams are well studied, with available imple-
mentations [Kar22], the reliable generation of such a diagram in
3D is still open and only partial or approximate methods exist. In
3D, Boada et al. approximate the generalized Voronoi diagram us-
ing a voxel grid [BCMA08]. Hemmer et al. compute the exact 3D
Voronoi diagram but only for lines [HSH10]. The complexity of
computing the generalized 3D Voronoi diagram in Euclidean space
is well described by Yap et al. [YSL12]. To our knowledge, there is
no method that can compute either the exact diagram or an approx-
imation with the precision required by our problem.

Exact local offsets. Instead of using the complete generalized 3D
Voronoi diagram, Aubry et al. use its local subset, namely the gen-
eralized spherical Voronoi diagrams around vertices, to compute
the offset [ADMK17]. This elegant approach makes it possible to
compute the exact topology of the offset around a vertex (with the
crucial requirement of computing the exact generalized Voronoi di-
agram on the sphere) and therefore to create an offset mesh with
arbitrary precision. However, this method does not yet extend to
global intersections, i.e. when two non-adjacent elements are closer
than twice the offset distance.

Minkowski sum. Varadhan and Manocha approximate the
Minkowski sum of polyhedral models by computing distance
fields and reconstructing the surface with a variant of Marching
Cubes [VM04]. Campen and Kobbelt proposed a powerful method
to compute intersections of polygonal meshes and leverage it to
generate approximate Minkowski sums between the input mesh and
a sphere [CK10a; CK10b]. A polygonal surface mesh approximates
the sphere swept over the input mesh. For the context of manufac-
turing, approximating this sphere by a zonotope is often sufficient.
Martinez et al. use this property to provide an efficient method for
approximating offset surfaces [MHCL15]. However, when aiming
for high accuracy, especially in concave areas, the sphere must be
discretized with a dense mesh.

Volumetric discretizations. To avoid the difficulty of construct-
ing exact offset surfaces, most methods shift their objective towards

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees 3

approximating the offset. Marching Cubes [LC87] and Dual Con-
touring [JLSW02] are both widely applicable isosurfacing methods
that have been constantly improved over the past decades. Qu et al.
use an approach similar to Schaefer and Warren’s Dual Marching
Cubes that is based on a structured irregular grid [QZS*04]. While
this approach can represent sharp features, it is based on a dense
voxel grid, which limits its practicality. Liu and Wang successfully
use a modified version of Dual Contouring to generate intersection-
free offset surfaces [LW10]. This method is also based on a dense
voxel grid. Pavić and Kobbelt use an octree to avoid the overhead
caused by voxel grids [PK08]. However, the octree is subdivided
to the lowest level whenever cells are non-empty, causing milder
but similar types of over-refinement. Features are reconstructed in
a post-processing step by setting a threshold on the normals and
adding features by subdividing faces and edges. Outliers and low-
quality elements are removed by further post-processing. Although
the aforementioned methods are reliable and robust, the uniform
grid resolution (or maximal octree depth) aspect hampers scalabil-
ity and generates transient over-refined meshes.

GPU-based and sampling methods. Whenever a method relies
on structured data, GPUs can reduce runtime significantly by per-
forming several thousands of operations in parallel. Wang and
Manocha use Layered Depth Images on GPUs to sample the sur-
face of the input mesh [WM13]. This method can deliver more than
100 times speedup in comparison to related CPU methods. Chen et
al. compute offset surfaces with an efficient dexel data structure
that stores an array of cells containing a list of intersections with
rays [CPD19]. While these methods solve the runtime issues that
many volumetric approaches have, they still generate meshes with
large complexity. Meng et al. distribute sample points uniformly
across the offset [MCS*18]. This method requires dense sampling
to ensure the correct representation of concave creases.

Meshing and Remeshing. In many cases, the raw output of
the methods described above requires post-processing to treat is-
sues like self-intersections or low-quality elements. Additionally,
remeshing can be used to recover features and reduce the discretiza-
tion error. One such technique is the isotropic remeshing introduced
by Botsch and Kobbelt, which focuses on element quality [BK04].
While this method succeeds in its objective, it is not sufficient in
our context as the method assumes that the underlying surface is
continuously differentiable, i.e. it does not contain sharp features,
which is not true for offsets. Shen et al. approximate implicit sur-
faces in [SOS04] but their method also smoothes away small fea-
tures. The remeshing approach contributed by Pavić and Kobbelt in
[PK08] first detects feature lines in the previously generated offset
mesh by setting a threshold on the normal deviation within a trian-
gle and reconstructs them by adding vertices along the feature line
and flipping edges to reconstruct the features. Smoothing is applied
to improve element quality and reduce the discretization error.

2. Method Overview

Given an input triangle surface mesh T and an offset radius δ,
the offset surface S(T ,δ) is defined as the isosurface d(x,T) = δ

where d(x,T) is the distance field of T . If the input is a closed

mesh, the distance field of T can be signed, and the offset is com-
posed of multiple closed surfaces. We denote by V(T ,δ) the vol-
ume bounded by S(T ,δ).

Our approach consists of two distinct yet complementary steps,
depicted in Figure 1:

Octree construction and Dual Contouring: This step is de-
signed to generate an initial offset mesh with the desired topol-
ogy: closed, combinatorially 2-manifold, and approximately (up to
a user-defined tolerance) equivalent to the offset surface. The octree
is constructed using several topological criteria to drive refinement.
The geometry of the generated mesh is still crude with, e.g., no
particular care given to sharp features. See Section 4.

Remeshing: This step applies a novel remeshing algorithm tai-
lored to offset surfaces to improve the geometric precision while
keeping the topology unchanged. See Section 5.

3. Positioning and Contributions

Our approach builds upon several existing methods related to offset
mesh generation and sharp feature recovery.

Adapted Octrees. At first glance, the method of Pavić and
Kobbelt [PK08] is closest to ours: it is based on a similar two-
phase approach. Its first phase is also based on an octree, but the
octree is refined to its maximum depth everywhere around the off-
set surface. This has a number of disadvantages. First, it causes
a significant computational overhead because one subdivides cells
even in topologically and geometrically simple regions, see Sec-
tion 6.2.1. It also means that the maximum depth is limited as the
octree becomes exceedingly large. Furthermore, the user must se-
lect a maximum octree depth. While the relationship to the approx-
imation error is clear, the one to the topological errors is not in-
tuitive. Finally, such a dense refinement translates into a complex
intermediate mesh, which slows down further processing steps such
as remeshing.

Varadhan et al. make use of a topology-adapted octree for com-
puting Minkowski sums [VM04; VKSM04]. The offset needs to
be approximated by sweeping a discretized sphere over the input
mesh. The offset quality depends on the sphere discretization and
the computation of pairwise-convex Minkowski sums is computa-
tionally expensive.

Our first main contribution is an octree generation that estimates
the offset conservatively at all times and is therefore guaranteed
to never miss the exact offset, up to floating point precision. Ad-
ditionally, our conservative cell-to-triangle distance approximation
is computationally lighter than the methods presented in [VM04]
and [PK08], and does not require the input to be closed or mani-
fold, e.g. see Figure 3. Our topology-adapted octree reduces com-
putational overhead and output complexity by performing fewer
subdivisions in regions with disk topology. In our framework, the
maximum depth parameter is not as much a limiting factor as in
other methods because the maximum depth can be set to a large
value without hampering runtime when such a maximum depth is
not utilized.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

(a) Bunny triangle soup (b) 0.5% offset (c) 5% offset

Figure 3: Our method handles triangles soups well and guarantees that the output is closed and manifold, even in complex scenarios.

The intermediate offset mesh is reconstructed by Dual Contour-
ing, which generates closed meshes by design. By post-processing
this output, we also guarantee that the final offset mesh is not just
closed but also topologically 2-manifold everywhere.

Remeshing. Meshes generated by Dual Contouring may contain
low-quality or tangled elements. Our second main contribution re-
duces this limitation and improves on existing remeshing algo-
rithms. More specifically, we contribute a novel remeshing algo-
rithm tailored to offset surfaces, which generates elements with
overall good quality while ensuring that the offset mesh still ap-
proximates the offset well. The remeshing algorithm departs from
earlier approaches in two ways: (1) It is driven by normal deviation
instead of by the common edge length or approximation error, and
(2) Its vertex relocation operator utilizes the quadric error metric
(QEM) initially devised for mesh decimation [GH97]. The result-
ing remeshing algorithm is feature-aware and recovers a faithful
discretization of concave creases and corners. It also yields high-
quality reconstructions of challenging geometric features such as
thin tunnels. Finally, it is independent of the octree and can also be
applied as a post-processing step to other offset mesh generation
methods such as [PRH*22] or [CK10b].

QEM-based remeshing has been explored before, for example by
Valette et al. [VCP08]. This is however a fundamentally different
remeshing approach: surfaces are sampled and sampling points are
regrouped into clusters. Starting from those clusters, a Centroidal
Voronoi Diagram is generated by minimizing an energy term. Er-
ror quadrics are used to relocate centers of Voronoi cells, which
has the effect of snapping vertices to feature lines or corners. Al-
though effective, this method cannot be applied to offset surfaces
due to its implicit nature. If we were to approximate the offset with
a mesh, we could not guarantee that this mesh does not contain any
tangling that cannot be resolved by remeshing. In addition, the re-
sulting mesh might contain non-manifold edges or vertices. Finally,
in the case of Valette et al., the method generates a user-defined
number of vertices. While this is an important feature for surface
decimation, when generating offset meshes the complexity of the
output is often unknown a priori.

4. Octree Construction and Dual Contouring

The octree construction begins with its initialization by a single
cell made large enough to contain the input mesh and its offset. We
utilize the offset surface S(ti,δ) and the enclosed volume V(ti,δ)
of individual triangles of T = {ti}. Each octree cell is subdivided
recursively until one of the following criteria is met:

1. No triangle offset V(ti,δ) intersects the cell;
2. The cell is fully enclosed inside the offset surface of a trian-

gle V(ti,δ);
3. The offset surface S(T ,δ) is topologically equivalent to a disk

within the cell;
4. A user-defined maximum octree depth is reached.

The first two criteria are devised to stop the refinement of cells that
do not intersect the offset. They are regrouped in the so-called In-
tersection criterion, described in Section 4.1. The third criterion
aims to stop the refinement of cells that are intersected by the off-
set, but where subdivision does not add any relevant topological
information. We call it the Disk criterion, Section 4.2. Finally, we
might have to subdivide cells to circumvent the known issue that
Dual Contouring may generate non-manifold vertices and edges.
This step is detailed in Section 4.3. All criteria are evaluated con-
servatively, meaning that we might over-refine but never terminate
too early.

Checking these criteria with all triangles at all cells would be
prohibitive. Instead, we store for each octree cell all triangles such
that V(ti,δ) intersects the circumscribing sphere of the cell, simi-
larly to Pavić and Kobbelt [PK08]. Our initial cell thus contains all
input triangles and each new subdividing cell needs only find those
that are relevant within the triangles of its parent cell.

4.1. Intersection Criterion

Octree cells are only of interest if the offset surface intersects them.
However, checking for the exact intersection of a cell with all tri-
angle offsets is costly. We accelerate this test by approximating
the cell with its enclosing sphere. To check whether the offset of
a triangle ti intersects this sphere, we find the nearest point p̃i

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees 5

(a) Input (b) 5% offset (c) -5% offset

Figure 4: Closed meshes like caesar can have positive or negative
offsets.

of the cell center pc on the triangle. Next, we compute the dis-
tance di = ∥p̃i− pc∥ to that point. The sphere intersects the triangle
offset if the difference between the absolute offset radius |δ| and the
distance is at most the radius r of the sphere,

di − r < |δ|< di + r. (1)

Triangles whose offset do not intersect the sphere are culled from
the cell’s triangle list.

As cells are divided, some cells become fully enclosed within
the offset of a triangle,

di + r < |δ|. (2)

In this case, the whole triangle list is discarded and the cell is re-
moved from the subdivision queue.

So far, the intersection criterion only considers the unsigned off-
set radius. When the input mesh is closed, we use the signed offset
by checking whether the cell contains the correct offset sign for any
of its primitives,

ds,i − r < δ < ds,i + r. (3)

We utilize the signed distance ds,i with a negative sign when the
cell center pc is on the bounded side of a closed mesh. The sign
is determined with Side_of_triangle_mesh from the CGAL compo-
nent Polygon Mesh Processing [LRTY23]. A negative offset radius
corresponds to offsetting towards the inside, see Figure 4. A cell
in which no triangle ti satisfies Equation (3) is not subdivided any
further, as it does not contain the offset of interest.

4.2. Disk Criterion

An offset tends to have simple topology in most areas but it can
be very complex in areas where multiple offset sheets touch. Cap-
turing the topology then requires a high level of octree refinement.
As we wish to preserve the topology of the exact offset surface, we
apply a criterion to capture topological features: A cell in which
the offset surface is topologically equivalent to a disk is no longer
subdivided. To evaluate this predicate, we construct a sphere with
radius δ for every projection point p̃i from Section 4.1. If the set
of spheres has a non-empty intersection, the union of triangle off-
set surfaces

⋃
ti∈T V(ti,δ) form a star domain, as the offset of a

triangle is always convex, see Figure 5. Any star domain is simply

pc

p~
0

p~
1

Figure 5: We project the center of the cell (red) on each input tri-
angle (black). If the spheres with offset radius centered at the pro-
jection points have a non-empty intersection (light red), the union
of triangle offsets is guaranteed to be a star domain (blue).

connected and therefore of genus 0. It follows that any closed and
manifold subset has disk topology.

A non-empty intersection exists if there is a point with a distance
to all primitives smaller than the offset. Such a point is found by
constructing the minimal sphere that contains all projection points.
If this sphere has a radius smaller than the offset, then an intersec-
tion exists. We also perform a cheap test by checking if all trian-
gles share a vertex, which trivially guarantees the existence of a
non-empty intersection.

We need to ensure that the above genus 0 object can also be
reconstructed with Dual Contouring. Therefore, if all cell corners
are located on the same side of the offset, the cell must be further
subdivided.

While we can guarantee that the union of triangle offset surfaces
forms a star domain, the second part, showing that the intersection
of the cell with the star domain is a closed manifold, is more com-
plex. A proof that the intersection of all triangle offset surfaces and
also the cell is non-empty would be required. In the case of creases
subtending very small angles, Dual Contouring tends to yield the
wrong topology, as the second part of the disk criterion is no longer
met. We alleviate this issue by subdividing a cell if the offset nor-
mals within the cell vary by more than 120 degrees. Nevertheless,
when the offset contains very sharp creases, we cannot guarantee
the topological correctness of our offset mesh as it may contain
small holes or disconnected islands.

Our disk criterion relates to the subdivision criteria introduced
by Varadhan and Manocha [VKSM04], but its use and evaluation
differ significantly.

4.3. Subdivision for Manifoldness

A known pitfall of the Dual Contouring method is the possible cre-
ation of non-manifold edges and vertices. If an occurrence of such
a configuration is detected, we apply a subdivision step to the cells
involved. If such a subdivision is forbidden because we reach the
user-defined maximum octree depth, non-manifoldness is resolved
by duplicating vertices that are either non-manifold or incident to
an edge that is non-manifold. Alternatively, replacing Dual Con-
touring by the Manifold Dual Contouring presented in [SJW07]
would also be feasible.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

5. Offset-Aware Remeshing

We use the common mesh operators used for surface remeshing:
edge splits, edge collapses, edge flips, and vertex relocation. In-
stead of driving the remeshing process by the edge length as com-
mon in previous work, we utilize the normal deviation between the
offset mesh triangles and the exact offset.

Definition 5.1 The normal deviation σ(t) of a triangle t is the max-
imal angle between the triangle normal nt and the offset normal no
in the offset area this triangle is mapped to:

σ(t) = max∠(nt ,no(x)),

where x denotes any location in the triangle offset area.

Normal deviation can be understood as a measure of offset cur-
vature, but with the advantage that normal deviation is still well
defined at concave creases, where the offset curvature is discon-
tinuous. Therefore, it can be used to isotropically refine smooth
regions, implicitly adapting elements to the curvature, and detect
concave creases.

Each operation fulfills a different task in the remeshing. Edge
splits increase the number of vertices in regions where the nor-
mal deviation is too large. More vertices lead to more flexibility in
adapting the mesh to the desired geometry. Edge collapses do the
exact opposite, they reduce the mesh complexity in regions with
low normal deviation, e.g. in planar regions. Edge flips improve
element quality and snap edge to concave creases. Vertex reloca-
tion minimizes the normal deviation using QEM. Operations are
performed subsequently, in the order they are mentioned above.

5.1. Computing Normal Deviation

Computing the exact normal deviation is time-consuming as it re-
quires the use of optimization for searching the local mapping. As
the distance field is only C0-continuous, the optimization problem
is challenging. Instead, we sample the triangles of the offset mesh
uniformly and project the sample points onto the input mesh. For
each sample point, the offset normal nt is then constructed by the
normalized vector pointing from the projection point p̃s to the sam-
ple point ps. The maximum normal deviation of a triangle is com-
puted by taking the maximum angle between the triangle normal
and all offset normals at the sample points within the triangle. We
use CGAL’s AABB tree data structure [ATW23] to project sample
points onto the input mesh.

5.2. Edge Split

We perform a batch of edge split operations. The list of candidate
edges for splitting is found by searching for triangles with σ(t) >
σmax, where σmax is a user defined maximum normal deviation.
The longest edge of such a triangle is considered as a candidate.
The new vertex inserted by the edge split operator is located as
described in the vertex relocation step, see Section 5.5.

Note that we perform only a single batch of edge split opera-
tors, without considering the newly created edges as candidates for
recursive splitting. The edge split operator does not guarantee a re-
duction of normal deviation, but adding more vertices to the mesh

adds new degrees of freedom that are later used in the vertex relo-
cation.

Our method contains an optional parameter so that the user can
set a minimum length. If an edge is already smaller than the mini-
mal length, the edge will not be refined. This option avoids resolv-
ing smaller features that are not of interest to the user.

5.3. Edge Collapse

In areas that contain more vertices than necessary, we perform a se-
ries of halfedge collapse operations to reduce the mesh complexity.
A vertex is collapsed into another one when the normal deviation
in all its incident faces is smaller than the user-defined maximum
deviation.

Our remeshing operations were designed under the assumption
that the mesh is isotropic. Therefore, we must avoid rapid changes
in element size. If we collapse all edges only according to the nor-
mal deviation, flat areas would be fully collapsed, and the assump-
tion of isotropy would not hold any longer. We avoid this by only
collapsing edges that are smaller than twice the maximum edge
length in convex offset regions, lmax = 2δsin(σmax).

5.4. Edge Flip

Edge flip operators are used to favor well-shaped (isotropic) trian-
gles. As they should not interfere with the optimization for normal
deviation, we introduce the following metric for a triangle:

mq = 2
√

3A/(l2
1 + l2

2 + l2
3) (4)

m∠ = 1−∠(nt ,no)/90◦ (5)

mflip = mqm3
∠, (6)

where A denotes the triangle area, li, i∈ [1,2,3] is the length of each
edge incident to the triangle, nt is the triangle normal, and no is the
offset normal at the triangle center. Equation (4), also known as the
mean-ratio metric, was already used for mesh optimization [Ban98;
RL17]. Equation (5) denotes the normalized angle between the tri-
angle and the offset surface normal at the triangle center. Equa-
tion (6) combines these two metrics, with a greater preference given
to the angle metric. Finally, an edge is flipped if the minimum mflip
quality of its two incident triangles is improved. Flips on triangles
with σ(t) < σmax that causes the normal deviation to exceed the
user-defined maximum are prohibited.

5.5. Vertex Relocation

Vertices are relocated using a combination of Laplace smoothing
and minimization of error quadrics. This approach is similar to the
one presented in [VCP08]. Intuitively, our vertex relocation opera-
tor improves the shape of triangles in smooth areas and snaps ver-
tices onto creases or corners if there are any within the umbrella of
a vertex.

Given a vertex v at position x, we first compute the center of mass
of its neighboring vertices,

x′ = 1
|N(v)| ∑

xn∈N(v)
xn, (7)

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees 7

where N(v) denotes the set of neighboring vertex locations
and |N(v)| denotes the number of neighbors. This step is referred
to as Laplace smoothing [Fie88].

We then compute the weighted error quadrics of tangential
planes at all sampling point projections onto the offset ŝ. We use
the same sampling as for computing the normal deviation, see
Section 5.1, on each triangle incident to v. The tangential planes
are weighted by the area of the triangle they belong to. For each
point ŝi, the offset normal n̂i and triangle area ai are required. The
sum of weighted error quadrics is minimized by solving the follow-
ing linear system of equations:

Ax′′ = b (8)

A =
nsamples

∑
i=1

ai · n̂in̂
⊤
i (9)

b =
nsamples

∑
i=1

ai · n̂⊤i ŝi. (10)

Solving Equation (8) is often not possible because A does not
have full rank, e.g. in planar regions all normals n̂i are similar. We
compute the pseudo-inverse with singular value decomposition, as
proposed by Lindstrom [Lin00]:

A = UΣV⊤ (11)

A+ = VΣ
+U⊤ (12)

x′′ = x′+A+(b−Ax′). (13)

Using the pseudo-inverse requires a starting position x′, chosen as
the previously computed center of mass, Equation (7). This way, the
vertices are relocated by the error quadrics minimization only when
there is a distinct minimum. If the quadrics minimization yields
a line or plane of optimal points, then we choose the one that is
closest to x′.

6. Results

We evaluate our method on a wide range of input meshes with vary-
ing offset radii. Section 6.1 demonstrates robustness by running
our method on the Thingi10k dataset. Section 6.2 offers a more
in-depth analysis, discussing the impact of parameters on quality
and runtime.

Our method was implemented in C++ and depends on the li-
braries Eigen [GJ*10] and CGAL [The23]. For measuring runtime,
the code was serially executed on a cluster with Intel Xeon Plat-
inum 8268 processors that have a base frequency of 2933 MHz.

6.1. Validation

We generated offsets for all meshes from the Thingi10k dataset
[ZJ16]. Unless stated differently, all results presented in this paper
use the following default values. We use a maximum octree depth
of 10 plus two additional levels for resolving non-manifoldness.
The remeshing step performs 10 iterations and uses a maximum
normal deviation of σmax = 7◦. Figure 6 showcases results gener-
ated from the Thingi10k dataset.

Our implementation expects non-degenerate triangles as input,

Figure 6: Showcase of our results on Thingi10k.

(a) 10% offset

(b) 5% offset

Figure 7: εm and σm for the models of Thingi10k sorted by εm.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

(a) Offset mesh (b) self-intersections (c) post-processed

Figure 8: 10% offset on mesh 87687 from the Thingi10k
dataset with self-intersections. Back-faces are colored in red. Self-
intersections are resolved completely by post-processing.

but the underlying principles make it feasible to operate on point
clouds or meshes with dangling edges. Eventually, we ran our
method on 9,952 meshes. All generated offset meshes are closed
manifolds. Besides the aforementioned default values, we set a rel-
ative offset radius of 10% and 5% with respect to the largest edge of
the bounding box, see Figure 7. For evaluation, we densely sample
the offset mesh and compute the distance to the offset and the nor-
mal deviation using the Libigl geometry processing library [JP*18].

We denote by εm the discretization error, measured as the mean
distance of a mesh to the offset surface relative to the given offset
radius, and denote by σm the mean normal deviation. For almost all
offset meshes, εm is below 0.5%. This means that for a mesh with
an offset radius of 0.05, the exact offset is missed by an average
of 0.00025. The average maximum distance of all offset meshes
relative to the given offset radius is 2.12% and 2.49% for δ = 10%
and 5% respectively.

Dual Contouring has no guarantees for reconstructing the cor-
rect topology of a given implicit surface. This is a fundamental
issue of all reconstruction methods based on structured volumet-
ric discretization and is subject to many studies but has not been
resolved entirely yet [ZGG22; RSA16; Gro16]. In our case, this
means that the topology might be incorrect at concave creases
with an angle that is too small to be resolved by the octree. As
remeshing expects that the given offset mesh has the correct topol-
ogy, it may create self-intersections in such areas. For δ = 10%,
self-intersections appear in 2.9%, and for δ = 5% in 6.9% of all
meshes. The discretization error remains small even in those re-
gions because self-intersecting regions are pushed towards the con-
cave creases. The appearance of self-intersections can be effec-
tively reduced using the CGAL function remove_self_intersections
from the CGAL component Polygon Mesh Processing [LRTY23]
to 0.19% and 0.65% for δ = 10% and 5% respectively, without im-
pact on the first three significant digits of σm and εm. An example
is depicted in Figure 8.

We also measure runtimes on Thingi10k, see Figure 9. For
δ = 10%, we observe a correlation between input complexity and
runtime for the topology-adapted Dual Contouring. In contrast,
remeshing does not show any correlation, not even to the output
complexity. The same behavior is observed for δ = 5%. The mean
full runtime of our method is 91 and 148 seconds for δ = 10% and
5% respectively. While these values are insufficient to show corre-
lation, they show that runtime tends to increase for smaller offset

Figure 9: Runtime of our method measured on Thingi10k for δ =
10%.

radii. The increased runtime for δ = 5% can be explained by the
increasing offset complexity that needs to be captured. A larger
offset radius is more likely to seal features like tunnels. The mean
runtime is dominated by a few offsets that are compute intensive.
Over 70% of all offset meshes are computed in less than 1 and 2
minutes respectively.

6.2. Analysis

In this section, we give an in-depth analysis of the two main parts,
Dual Contouring on the topology-adapted octree, Section 6.2.1, and
offset remeshing, Section 6.2.2.

6.2.1. Topology-Adapted Dual Contouring

The major added value of our octree in comparison to those that
always refine to the maximum level, e.g. [PK08], is that we avoid
over-refinement in topologically simple regions. This is especially
important when the offset has small features like narrow tunnels.
This fact is exemplified by the couplingdown model that contains
several drill holes. We generate the offset surface twice, once with
the regular octree as described in Section 4 and once with the octree
where the maximum level of subdivision is enforced by ignoring
the disk criterion defined in Section 4.2. For a relative offset of 3%,
an octree depth of 8 is required to capture all the tunnels within
the drill holes, see Figure 10. In both scenarios, the topology was
reconstructed correctly. However, generating the Dual Contouring
mesh requires 34 seconds without our disk criterion but only 11
seconds with it. Additionally, the Dual Contouring mesh is substan-
tially more complex and contains 523,784 triangles, while the disk
criterion reduces the complexity to 45,392 triangles. After remesh-
ing, which also takes longer without the criterion, 155 seconds vs.
110 seconds, both meshes have a low εm of 0.11% and 0.18%. The
meshes then contain 104,724 and 67,840 triangles. Thus, remesh-
ing can reduce the over-refinement caused by the octree very well
but the mesh generated using the disk criterion remains less com-
plex.

The advantage of the adaptive octree depends on the complex-
ity of the offset topology and may not be that severe all the time.
However, by using the adaptive octree, the user does not require a

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees 9

(a) Input (purple) and offset (blue)

(b) Octree on maximum depth
runtime: 190 seconds

F = 105k
εm = 0.11%
σm = 1.07◦

(c) Topology-adapted octree
runtime: 121 seconds

F = 68k
εm = 0.18%
σm = 1.31◦

Figure 10: A hole in the input creates an arbitrarily thin tunnel in
the offset surface. Our octree is automatically refined to fit small
details on the offset.

priori knowledge of the offset topology and does not need to run
the method multiple times until the octree depth is large enough to
cover all topological features. Thus, this not only improves perfor-
mance but also simplifies the method for the user.

6.2.2. Remeshing

The remeshing step is designed to reduce the distance and normal
deviation from the offset meshes to the exact offset. Figure 11 il-
lustrates remeshing at work on the anchor mesh with δ = 2% and
σmax = 3◦. The discretization error εm is effectively reduced and
converges after only 6 iterations.

We perform offsetting on the anchor model with offset radii δ =
15%, 10%, and 5%. For each radius, we set the maximum normal
deviation to σmax = 20◦,10◦, and 5◦. Both, σm and εm correlate
to σmax, independent of the offset radius. The output meshes are
depicted in Figure 12.

6.3. Applying Remeshing to Other Offset Methods

Mesh sharpening. Remeshing is completely independent of the
octree constructed in Section 4 and can be applied to other meth-
ods that generate offset meshes. Alpha wrapping [PRH*22] is such

Figure 11: Remeshing reduces both, σm and εm. Renderings visu-
alize εm after 0, 1, 2, and 9 remeshing steps.

εm = 1.59%
σm = 4.86◦

εm = 0.64%
σm = 3.24◦

εm = 0.14%
σm = 1.59◦

εm = 1.35%
σm = 4.18◦

εm = 0.53%
σm = 2.75◦

εm = 0.12%
σm = 1.34◦

εm = 0.90%
σm = 3.11◦

εm = 0.36%
σm = 2.05◦

εm = 0.09%
σm = 1.02◦

Figure 12: Anchor: δ = 15%,10%,5% (top to bottom), σmax =
20◦,10◦,5◦ (left to right)

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

(a) Input (b) Alpha-wrapper
εm = 10%
σm = 7◦

(c) Remeshed
εm = 0.3%
σm = 0.8◦

(d) Input (e) Alpha-wrapper
εm = 10%
σm = 12◦

(f) Remeshed
εm = 1.3%
σm = 2.5◦

Figure 13: Remeshing successfully reconstructs concave creases
and reduces the discretization error εm on outputs of the alpha-
wrapper.

a method: it aims to construct a manifold englobing volume around
an input and for this generates an offset mesh with a user-defined
precision. Although the method guarantees the absence of inter-
sections with the input mesh, it does not recover sharp features in
the output offset surface. Our remeshing step is relevant for post-
processing such an output. To avoid over-refinement in convex re-
gions, we set a maximum normal deviation of 15 degrees during
remeshing. For the degree-three corner model (Figure 13a) σm re-
duces from 6.5◦ to 2.6◦ and εm from 14% to 0.7%. A similar result
is achieved on the screw nut, Figure 13d, with σm reducing from
10◦ to 2.8◦ and εm from 13% to 0.9%. In this process, the concave
creases in the offset are reconstructed, as depicted in Figures 13c
and 13f.

Minkowski sums. Offsets can be also computed via Minkowski
sums. Such a Minkowski-based approach was used by Campen
and Kobbelt [CK10b]. We compare with this approach and show
the effectiveness of our remeshing step by applying it to its output
meshes, see Figure 14. On the filigree model, the Minkowski sum
approximation consists of 732,230 triangles for an absolute offset
of approximately 0.07. For an absolute offset of 0.035 it consists of
1,051,354 triangles (Figure 14a). In comparison, our method yields
20,090 and 65,528 triangles, respectively (Figure 14c). When ap-
plying our remeshing approach to the Minkowski sum approxi-
mations, the complexity reduces to 22,892 and 73,772 triangles
(Figure 14b). Additionally, triangle quality is significantly im-
proved. While the Minkowski sum approximations contain self-
intersections, ours contain none. Our remeshing successfully re-
moves them also from the Minkowski sum approximations.

(a) MS
F = 1051k

εm = 0.34%
σm = 1.6◦

(b) MS remeshed
F = 73k

εm = 0.20%
σm = 2.1◦

(c) Ours
F = 66k

εm = 0.23%
σm = 2.3◦

Figure 14: Comparison of our method to the approximated
Minkowski sum (MS) from [CK10b]. Applying remeshing greatly
reduces mesh complexity while keeping εm and σm low. It also pro-
duces better shaped triangles with more consistent angles.

6.4. Limitations

The proposed approach guarantees that the output meshes are
closed and combinatorially 2-manifold, but cannot guarantee the
absence of self-intersections that are caused by offset meshes that
are topologically different from the exact offset. This is an issue that
all methods based on Dual Contouring or Marching Cubes share. In
most cases, self-intersections could be resolved with a simple post
processing. Self-intersections can be an issue for downstream ap-
plications and need to be resolved in the future. The user parameters
provide a means to control the complexity of the output meshes, but
a strict upper bound on the Hausdorff error is still an open problem.
The remeshing step is effective at reconstructing sharp features, but
its running time is hard to predict as the number and size of features
present in the offset surface are unknown a priori.

7. Conclusion and Future Work

This paper introduced an approach for generating isotropic offset
meshes from input triangle meshes. A first step applies the Dual
Contouring method on an adaptive octree refined only where the
offset topology is complex. A second step operates a novel remesh-
ing method tailored to the offset that reconstructs sharp features
and reduces the deviation between the normals of the output mesh
and the normals of the offset while improving the shape of the
mesh elements. The result is a reliable algorithm that operates
even on defect-laden inputs, guarantees closed and combinatori-
ally 2-manifold output meshes, and generates faithful offset meshes

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees 11

with low approximation errors and well-shaped triangles. The novel
offset-aware remeshing approach is also applied with success to
offset meshes generated by other approaches.

In future work, we plan to explore a variant that generates
anisotropic meshes with improved complexity-distortion trade-
offs. We also wish to explore alternatives to the axis-aligned octree
data structure, such as unstructured tetrahedral meshes or binary
space partitions.

Acknowledgments

This work has been co-funded by GeometryFactory and the na-
tional France Relance recovery plan. The work of Pierre Alliez is
supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Re-
search Agency (ANR) with the reference number ANR-19-P3IA-
0002.

References
[ADMK17] AUBRY, R, DEY, S, MESTREAU, EL, and KARAMETE,

BK. “Boundary layer mesh generation on arbitrary geometries”. In-
ternational Journal for Numerical Methods in Engineering 112.2
(2017), 157–173 2.

[ATW23] ALLIEZ, PIERRE, TAYEB, STÉPHANE, and WORMSER,
CAMILLE. “3D Fast Intersection and Distance Computation”. CGAL
User and Reference Manual. 5.5.2. CGAL Editorial Board, 2023. URL:
https://doc.cgal.org/5.5.2/Manual/packages.html#
PkgAABBTree 6.

[Ban98] BANK, RANDOLPH E. Pltmg: A software package for solving el-
liptic partial differential Equations: Users’ Guide 8.0. SIAM, 1998 6.

[BCMA08] BOADA, IMMA, COLL, NARCÍS, MADERN, NARCÍS, and
ANTONI SELLARES, J. “Approximations of 2d and 3d generalized
voronoi diagrams”. International Journal of Computer Mathematics 85.7
(2008), 1003–1022 2.

[BK04] BOTSCH, MARIO and KOBBELT, LEIF. “A remeshing approach to
multiresolution modeling”. Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. 2004, 185–192 3.

[CK10a] CAMPEN, MARCEL and KOBBELT, LEIF. “Exact and robust
(self-) intersections for polygonal meshes”. Computer Graphics Forum.
Vol. 29. 2. Wiley Online Library. 2010, 397–406 2.

[CK10b] CAMPEN, MARCEL and KOBBELT, LEIF. “Polygonal boundary
evaluation of Minkowski sums and swept volumes”. Computer Graphics
Forum. Vol. 29. 5. Wiley Online Library. 2010, 1613–1622 2, 4, 10.

[CPD19] CHEN, ZHEN, PANOZZO, DANIELE, and DUMAS, JEREMIE.
“Half-space power diagrams and discrete surface offsets”. IEEE Trans-
actions on Visualization and Computer Graphics 26.10 (2019), 2970–
2981 3.

[Fie88] FIELD, DAVID A. “Laplacian smoothing and Delaunay triangula-
tions”. Communications in applied numerical methods 4.6 (1988), 709–
712 7.

[GH97] GARLAND, MICHAEL and HECKBERT, PAUL S. “Surface sim-
plification using quadric error metrics”. Proceedings of the 24th an-
nual conference on Computer graphics and interactive techniques.
1997, 209–216 4.

[GJ*10] GUENNEBAUD, GAËL, JACOB, BENOÎT, et al. Eigen v3. 2010.
URL: http://eigen.tuxfamily.org 7.

[Gro16] GROSSO, ROBERTO. “Construction of Topologically Correct
and Manifold Isosurfaces”. Proceedings of the Symposium on Geome-
try Processing. SGP ’16. Berlin, Germany: Eurographics Association,
2016, 187–196 8.

[HSH10] HEMMER, MICHAEL, SETTER, OPHIR, and HALPERIN, DAN.
“Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-
Dimensional Space”. Algorithms – ESA 2010. Ed. by de BERG, MARK
and MEYER, ULRICH. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, 398–409 2.

[JLSW02] JU, TAO, LOSASSO, FRANK, SCHAEFER, SCOTT, and WAR-
REN, JOE. “Dual contouring of hermite data”. Proceedings of the 29th
annual conference on Computer graphics and interactive techniques.
2002, 339–346 3.

[JP*18] JACOBSON, ALEC, PANOZZO, DANIELE, et al. libigl: A simple
C++ geometry processing library. https://libigl.github.io/. 2018 8.

[Kar22] KARAVELAS, MENELAOS. “2D Segment Delaunay Graphs”.
CGAL User and Reference Manual. 5.5.1. CGAL Editorial Board, 2022.
URL: https://doc.cgal.org/5.5.1/Manual/packages.
html#PkgSegmentDelaunayGraph2 2.

[LC87] LORENSEN, WILLIAM E and CLINE, HARVEY E. “Marching
cubes: A high resolution 3D surface construction algorithm”. ACM sig-
graph computer graphics 21.4 (1987), 163–169 3.

[Lin00] LINDSTROM, PETER. “Out-of-core simplification of large polyg-
onal models”. Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 2000, 259–262 7.

[LRTY23] LORIOT, SÉBASTIEN, ROUXEL-LABBÉ, MAEL, TOURNOIS,
JANE, and YAZ, ILKER O. “Polygon Mesh Processing”. CGAL User and
Reference Manual. 5.5.2. CGAL Editorial Board, 2023. URL: https:
/ / doc . cgal . org / 5 . 5 . 2 / Manual / packages . html #
PkgPolygonMeshProcessing 5, 8.

[LW10] LIU, SHENGJUN and WANG, CHARLIE CL. “Fast intersection-
free offset surface generation from freeform models with triangular
meshes”. IEEE Transactions on Automation Science and Engineering
8.2 (2010), 347–360 3.

[MCS*18] MENG, WENLONG, CHEN, SHUANGMIN, SHU, ZHENYU, et
al. “Efficiently computing feature-aligned and high-quality polygonal
offset surfaces”. Computers & Graphics 70 (2018), 62–70 3.

[MHCL15] MARTINEZ, JONAS, HORNUS, SAMUEL, CLAUX, FRÉDÉRIC,
and LEFEBVRE, SYLVAIN. “Chained segment offsetting for ray-based
solid representations”. Computers & Graphics 46 (2015), 36–47 2.

[PK08] PAVIĆ, DARKO and KOBBELT, LEIF. “High-resolution volumet-
ric computation of offset surfaces with feature preservation”. Computer
Graphics Forum. Vol. 27. 2. Wiley Online Library. 2008, 165–174 3, 4,
8.

[PRH*22] PORTANERI, CÉDRIC, ROUXEL-LABBÉ, MAEL, HEMMER,
MICHAEL, et al. “Alpha Wrapping with an Offset”. ACM Trans. Graph.
41.4 (July 2022) 4, 9.

[QZS*04] QU, HUAMIN, ZHANG, NAN, SHAO, RAN, et al. “Feature pre-
serving distance fields”. 2004 IEEE Symposium on Volume Visualization
and Graphics. IEEE. 2004, 39–46 3.

[RL17] RANGARAJAN, RAMSHARAN and LEW, ADRIAN J. “Provably
robust directional vertex relaxation for geometric mesh optimization”.
SIAM Journal on Scientific Computing 39.6 (2017), A2438–A2471 6.

[RSA16] RASHID, TANWEER, SULTANA, SHARMIN, and AUDETTE,
MICHEL A. “Watertight and 2-manifold surface meshes using dual con-
touring with tetrahedral decomposition of grid cubes”. Procedia engi-
neering 163 (2016), 136–148 8.

[SJW07] SCHAEFER, SCOTT, JU, TAO, and WARREN, JOE. “Manifold
dual contouring”. IEEE Transactions on Visualization and Computer
Graphics 13.3 (2007), 610–619 5.

[SOS04] SHEN, CHEN, O’BRIEN, JAMES F, and SHEWCHUK,
JONATHAN R. “Interpolating and approximating implicit surfaces
from polygon soup”. ACM SIGGRAPH 2004 Papers. 2004, 896–904 3.

[The23] THE CGAL PROJECT. CGAL User and Reference Manual. 5.5.2.
CGAL Editorial Board, 2023. URL: https://doc.cgal.org/5.
5.2/Manual/packages.html 7.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doc.cgal.org/5.5.2/Manual/packages.html#PkgAABBTree
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgAABBTree
http://eigen.tuxfamily.org
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgSegmentDelaunayGraph2
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgSegmentDelaunayGraph2
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/5.5.2/Manual/packages.html
https://doc.cgal.org/5.5.2/Manual/packages.html

12 D. Zint & N. Maruani & M. Rouxel-Labbé & P. Alliez / Feature-Preserving Offset Mesh Generation from Topology-Adapted Octrees

[VCP08] VALETTE, SÉBASTIEN, CHASSERY, JEAN MARC, and PROST,
RÉMY. “Generic remeshing of 3D triangular meshes with metric-
dependent discrete Voronoi diagrams”. IEEE Transactions on Visualiza-
tion and Computer Graphics 14.2 (2008), 369–381 4, 6.

[VKSM04] VARADHAN, GOKUL, KRISHNAN, SHANKAR, SRIRAM,
TVN, and MANOCHA, DINESH. “Topology preserving surface extrac-
tion using adaptive subdivision”. Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing. 2004, 235–
244 3, 5.

[VM04] VARADHAN, GOKUL and MANOCHA, DINESH. “Accurate
Minkowski sum approximation of polyhedral models”. 12th Pacific Con-
ference on Computer Graphics and Applications, 2004. PG 2004. Pro-
ceedings. IEEE. 2004, 392–401 2, 3.

[WM13] WANG, CHARLIE CL and MANOCHA, DINESH. “GPU-based
offset surface computation using point samples”. Computer-Aided De-
sign 45.2 (2013), 321–330 3.

[YSL12] YAP, CHEE K, SHARMA, VIKRAM, and LIEN, JYH-MING. “To-
wards exact numerical Voronoi diagrams”. 2012 Ninth International
Symposium on Voronoi Diagrams in Science and Engineering. IEEE.
2012, 2–16 2.

[ZGG22] ZINT, DANIEL, GROSSO, ROBERTO, and GÜRTLER, PHILIPP.
“Resolving Non-Manifoldness on Meshes from Dual Marching Cubes”.
Eurographics 2022 - Short Papers. Ed. by PELECHANO, NURIA and
VANDERHAEGHE, DAVID. The Eurographics Association, 2022. ISBN:
978-3-03868-169-4 8.

[ZJ16] ZHOU, QINGNAN and JACOBSON, ALEC. “Thingi10K: A Dataset
of 10,000 3D-Printing Models”. arXiv preprint arXiv:1605.04797
(2016) 7.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

