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Abstract
In physics-based cloth animation, rich folds and detailed wrinkles are achieved at the cost of expensive computational resources
and huge labor tuning. Data-driven techniques make efforts to reduce the computation significantly by utilizing a preprocessed
database. One type of methods relies on human poses to synthesize fitted garments, but these methods cannot be applied to
general cloth animations. Another type of methods adds details to the coarse meshes obtained through simulation, which does
not have such restrictions. However, existing works usually utilize coordinate-based representations which cannot cope with
large-scale deformation, and requires dense vertex correspondences between coarse and fine meshes. Moreover, as such meth-
ods only add details, they require coarse meshes to be sufficiently close to fine meshes, which can be either impossible, or
require unrealistic constraints to be applied when generating fine meshes. To address these challenges, we develop a tempo-
rally and spatially as-consistent-as-possible deformation representation (named TS-ACAP) and design a DeformTransformer
network to learn the mapping from low-resolution meshes to ones with fine details. This TS-ACAP representation is designed to
ensure both spatial and temporal consistency for sequential large-scale deformations from cloth animations. With this TS-ACAP
representation, our DeformTransformer network first utilizes two mesh-based encoders to extract the coarse and fine features
using shared convolutional kernels, respectively. To transduct the coarse features to the fine ones, we leverage the spatial and
temporal Transformer network that consists of vertex-level and frame-level attention mechanisms to ensure detail enhancement
and temporal coherence of the prediction. Experimental results show that our method is able to produce reliable and realistic
animations in various datasets at high frame rates with superior detail synthesis abilities compared to existing methods.

CCS Concepts
• Computing methodologies → Physical simulation; Artificial intelligence;

1. Introduction

Creating dynamic general clothes or garments on animated charac-
ters has been a long-standing problem in computer graphics (CG).
In the CG industry, physics-based simulations (PBS) are used to
achieve realistic and detailed folding patterns for garment anima-
tions. However, it is time-consuming and requires expertise to syn-
thesize fine geometric details since high-resolution meshes with
tens of thousands or more vertices are often required. For exam-
ple, 10 seconds are required for the physics-based simulation of
a frame for detailed skirt animation shown in Fig. 1. Not surpris-
ingly, garment animation remains a bottleneck in many applica-
tions. Recently, data-driven methods provide alternative solutions
to fast and effective wrinkling behaviors for garments. Depend-
ing on body poses, some data-driven methods [WHRO10, FYK10,

† Corresponding authors are Lin Gao (gaolin@ict.ac.cn) and Shibiao Xu
(shibiaoxu@bupt.edu.cn).

dASTH10, SOC19, WSFM19, PMJ∗22] are capable of generating
tight or loose-fitting cloth animations successfully.

Instead of using human poses as guidance, wrinkle augmentation
on coarse simulations provides another alternative. It utilizes very
efficient coarse simulations to recover high-level deformation and
leverages learning-based methods to add realistic wrinkles. Previ-
ous methods [KGBS11, ZBO13, CZY21, CYJ∗18] commonly re-
quire dense correspondences between coarse and fine meshes, so
that local details can be added without affecting global deforma-
tion. Such methods also require coarse meshes to be sufficiently
close to fine meshes, as they only add details to coarse meshes. To
maintain the correspondences for training data and ensure close-
ness between coarse and fine meshes, weak-form constraints such
as various test functions [KGBS11,ZBO13,CYJ∗18] are applied to
make fine meshes track the coarse meshes, but as a result, the ob-
tained high-resolution meshes do not fully follow physical behav-
ior, leading to animations that lack realism. An example is shown in
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(a) coarse skirt (b) tracked skirt (c) fine skirt
Figure 1: One frame of the skirt in different representations. (a) coarse
mesh (207 triangles), (b) tracked mesh (13,248 triangles) and (c) fine mesh
(13,248 triangles). Both coarse and fine meshes are obtained by simulating
the skirt using a physics-based method [NSO12]. The tracked mesh is ob-
tained with a physics-based simulation involving additional constraints to
track the coarse mesh. The tracked mesh exhibits stiff folds while the wrin-
kles in the fine simulated mesh are more realistic.

Fig. 1 where the tracked skirt (b) loses a large amount of wrinkles
which should appear when simulating on fine meshes (c).

Without requiring the constraints between coarse and fine
meshes, we propose the DeformTransformer network to synthe-
size detailed thin shell animations from coarse ones, based on
deformation transfer. This is inspired by the similarity observed
between pairs of coarse and fine meshes generated by PBS. Al-
though the positions of vertices from two meshes are not aligned,
the overall deformation is similar, so it is possible to predict
fine-scale deformation with coarse simulation results. Most pre-
vious works [KGBS11, ZBO13, CYJ∗18] use explicit vertex co-
ordinates to represent 3D meshes, which are sensitive to transla-
tions and rotations, so they require good alignments between low-
and high-resolution meshes. In our work, we regard cloth anima-
tions as non-rigid deformation and propose a novel representa-
tion for mesh sequences, called TS-ACAP (Temporally and Spa-
tially As-Consistent-As-Possible) representation. TS-ACAP is a lo-
cal deformation representation, capable of representing and solving
large-scale deformation problems, while maintaining the details of
meshes. Compared to the original ACAP representation [GLY∗19],
TS-ACAP is fundamentally designed to ensure the temporal con-
sistency of the extracted feature sequences, and meanwhile, it can
maintain the original features of ACAP to cope with large-scale
deformations.

With TS-ACAP representations for both coarse and fine meshes,
we leverage a sequence transduction network to map the defor-
mation from the coarse to fine level to ensure the temporal co-
herence of generated sequences. We propose DeformTransformer,
a Transformer-based [VSP∗17] deep model to deal with the se-
quential deformation mapping problem in a spatial-temporal in-
ference manner. DeformTransformer consists of vertex-level and
frame-level attention mechanisms for mesh sequence transduction
optimization. More concretely, the spatial inference network takes
a mesh in each frame individually and learns the self-attention in-
formation from the coarse TS-ACAP domain and maps it into the
fine space. Additionally, the attention between multiple frames is
learned in the temporal coherence network both in the encoder and

decoder phases. Unlike existing works using recurrent neural net-
works (RNN) [SOC19], our network is based entirely on attention,
without recursion modules, so that it can be trained significantly
faster than architectures based on recurrent layers. With tempo-
rally consistent features and the DeformTransformer network, our
method achieves stable general cloth synthesis with fine details in
an efficient manner.

In summary, the main contributions of our work are as follows:

• We propose a novel framework for fast synthesis of cloth dynam-
ics, by learning temporally consistent deformation from low-
resolution meshes to high-resolution meshes with realistic dy-
namics.

• To achieve this, we propose a temporally and spatially as-
consistent-as-possible deformation representation (TS-ACAP)
to represent the cloth mesh sequences. It is able to deal with
large-scale deformation, essential for mapping between coarse
and fine meshes, while ensuring temporal coherence.

• Based on the TS-ACAP, we further design an effective neural
network architecture (named DeformTransformer) with spatial
and temporal Transformer components, which successfully en-
ables the high-quality synthesis of dynamic wrinkles with rich
details on thin shells and maintains temporal consistency on the
generated high-resolution mesh sequences.

We qualitatively and quantitatively evaluate our method for various
cloth types (T-shirts, pants, skirts, square, and disk tablecloth) with
different motion sequences. In Sec. 2, we review the work most re-
lated to ours. We then give a detailed description of our method in
Sec. 3. We present experimental results, including extensive com-
parisons with state-of-the-art methods and ablation study for key
components evaluation in Sec. 4, and finally, we draw conclusions
and discuss future work in Sec. 5.

2. Related work
2.1. Cloth Animation

Physics-based techniques for realistic cloth simulation have been
widely studied in computer graphics, using methods such as im-
plicit Euler integrator [BW98, HVS∗09], iterative optimization
[TPBF87, BMF03, GHDS03], collision detection and response
[Pro97, VM95], etc. Although such techniques can generate real-
istic cloth dynamics, they are time-consuming for detailed cloth
synthesis, and the robustness and efficiency of simulation systems
are also of concern. To address these, on the one hand, graph-
ics researchers [FTP16,WY16,WWW22] have devoted themselves
to exploring a variety of optimization methods, such as precon-
ditioned conjugate gradient, accelerated gradient descent and L-
BFGS. For example, Wu et al. [WWW22] propose a GPU-based
multilevel additive Schwarz preconditioner to simulate cloth with a
high resolution, 50K to 500K vertices, in real-time. On the other
hand, alternative methods have also been developed to generate
the dynamic details of cloth animation via adaptive techniques
[LYO∗10, MC10, NSO12], data-driven approaches [dASTH10,
GRH∗12, WHRO10, KGBS11, ZBO13] and deep learning-based
methods [CYJ∗18, CZY21, GCS∗19, LCT18, ZWCM20, BME20,
GCP∗20, SOC22, PMJ∗22, TB23, ZWCM21, ZCM22], etc.

Data-driven methods offer faster cloth animations, but exist-
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ing methods are limited to tighter garments [dASTH10, GRH∗12,
KKN∗13, KV08]. Some approaches [KGBS11, ZBO13] learn a
mapping from coarse to detailed garment shapes for free-flowing
cloth simulation, but high-resolution cloth is required to track low-
resolution cloth, thus cannot exhibit full high-resolution dynamics.

Recently, deep learning-based methods have been successfully
applied for 3D animations of human faces [CWW∗16, JZD∗18],
hair [ZWW∗18, YSZZ19] and garments [LZT∗19, WSFM19]. As
for garment synthesis, some approaches [LCT18,SOC19,PLPM20]
are proposed to utilize a two-stream strategy consisting of global
garment fit and local wrinkle enhancement. Lähner et al. [LCT18]
present DeepWrinkles, which recovers the global deformation
from a 3D scan system and uses a conditional generative adver-
sarial network to enhance a low-resolution normal map. Zhang
et al. [ZWCM20] further generalize the augmentation method
with normal maps to complex garment types as well as vari-
ous motion sequences. These approaches add wrinkles on nor-
mal maps rather than geometry, and thus their effectiveness is
restricted to adding fine-scale visual details, not large-scale dy-
namics. Based on the skinning representation, there is a tremen-
dous amuount of research focusing on body- or skeleton-guided
garment generation with neural networks, which aims to general-
ize to multiple body shapes [GCS∗19, SOC19, GCP∗20], loose-
fitting garments [PMJ∗22], semi-supervised or unsupervised gen-
eration [ZCM22, BME20, SOC22]. In addition, other works are
devoted to generalizing neural networks to various cloth styles
[PLPM20] or cloth materials [WSFM19]. Despite training with
tight garments dressed on characters, some deep learning-based
methods [CYJ∗18, OLL18, ZWCM21] are demonstrated to work
for cloth animation with higher degrees of freedom. Chen et al.
[CYJ∗18] represent coarse and fine meshes via geometry images
and use a super-resolution network to learn the mapping. Oh et
al. [OLL18] propose a multi-resolution cloth representation with
fully connected networks to add details hierarchically. Since the
free-flowing cloth dynamics are harder for networks to learn than
tight garments, the results of these methods have not reached the re-
alism of PBS. From another perspective, Zhang et al. [ZWCM21]
propose to generate coarse garment proxies depending on joints,
and then enhance realistic details in the garment image space. Still
focusing on meshes, our method based on a novel deformation rep-
resentation and network architecture has superior capabilities of
learning the mapping between coarse and fine meshes, generating
realistic cloth dynamics.

2.2. Representation for 3D Meshes

Unlike 2D images with a regular grid of pixels, 3D meshes have
irregular connectivity, making learning difficult. Existing deep
learning-based methods turn 3D meshes to various representa-
tions [XLZ∗20], such as voxels, images, point clouds, meshes,
etc. Volumetric representation has a regular structure but suf-
fers from high space and time consumption. Thus Wang et al.
[WLG∗17] propose an octree-based convolutional neural network
and encode the voxels sparsely. Image-based representations in-
cluding depth images [EPF14, GGAM14] and multi-view images
[SMKL15,LTT∗19] are proposed to encode 3D models in a 2D do-
main. It is unavoidable that both volumetric and image-based rep-
resentations lose some geometric details. Alternatively, geometry

images are used in [SBR16,SUHR17,CYJ∗18] for mesh classifica-
tion or generation, which are obtained through cutting a 3D mesh
to a topological disk, parameterizing it to a rectangular domain and
regularly sampling the 3D coordinates in the 2D domain [GGH02].
However, this representation may suffer from parameterization dis-
tortion and seam line problems.

Instead of representing 3D meshes into other formats, re-
cently there are methods [TGL∗22, TGLX18, HHF∗19, MBM∗17,
FLWM18, SACO22] applying neural networks directly to trian-
gle meshes with various features. Researchers represent meshes
as graphs and adopt graph convolutions for efficiency and conve-
nience [WPC∗20]. Mixture Model Network (MoNet) [MBM∗17]
adopts node pseudo-coordinates and a weight function to de-
termine the relative position and weight between a node and
its neighbor. There are many approaches under this framework,
such as Geodesic CNN (GCNN) [MBBV15], Anisotropic CNN
(ACNN) [BMRB16], Spline CNN [FLWM18], etc., by construct-
ing nonparametric weight functions. Gao et al. [GLL∗16] pro-
pose a deformation-based representation called rotation-invariant
mesh difference (RIMD), which is translation and rotation invari-
ant. However, it is expensive to reconstruct vertex coordinates
from RIMD. A faster deformation representation based on an as-
consistent-as-possible (ACAP) formulation is used to reconstruct
meshes, but it does not guarantee temporal consistency when ap-
plied to a dynamic mesh sequence. We propose a temporally and
spatially as-consistent-as-possible (TS-ACAP) representation, to
ensure both spatial and temporal consistency of mesh deformation
and can accelerate the computation of features.

2.3. Sequence Generation with DNNs (Deep Neural Networks)

Temporal information is crucial for stable and vivid sequence gen-
eration. Previously, recurrent neural networks (RNN) have been
successfully applied in many sequence generation tasks [MKB∗10,
MKB∗11]. However, it is difficult to train RNNs to capture long-
term dependencies since RNNs suffer from the vanishing gradient
problem [BSF94]. To deal with this problem, previous works pro-
posed some variations of RNN, including long short-term mem-
ory (LSTM) [HS97] and gated recurrent unit (GRU) [CVMBB14].
These variations of RNN rely on the gating mechanisms to con-
trol the flow of information, thus performing well in the tasks that
require capturing long-term dependencies, such as speech recog-
nition [GMH13] and machine translation [BCB14, SVL14]. Re-
cently, based on attention mechanisms, the Transformer network
[VSP∗17] has been verified to outperform many typical sequential
models for long sequences. This structure is able to inject the global
context information into each input. Based on Transformer, impres-
sive results have been achieved in tasks with regard to audio, video
and text, e.g. speech synthesis [LLL∗19,OTSK20], action recogni-
tion [GCDZ19] and machine translation [VSP∗17]. We utilize the
Transformer network to learn the frame-level attention which im-
proves the temporal stability of the generated animation sequences.

3. Approach

3.1. Overview

The overall architecture of our detail synthesis network is illus-
trated in Fig. 2. To synthesize realistic cloth animations, we propose

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



4 Lan Chen & Lin Gao & Jie Yang & Shibiao Xu & Juntao Ye & Xiaopeng Zhang & Yu-Kun Lai / Deep Deformation Detail Synthesis for Thin Shell Models

DeformTransformer

…

Coarse

Motion Sequences

Cloth 

Simulation

Coarse

…

…

Detailed

…

Detailed TS-ACAP 

…

Coarse TS-ACAP 

Cloth 

Simulation
Detailed TS-ACAP 

Detailed TS-ACAP 

Coarse TS-ACAP 

Coarse TS-ACAP 

Data Generation TS-ACAP Representation

Temporal 

Coherence

Detailed

Spatial Inference

Spatial Inference

Spatial Inference

Figure 2: The overall architecture of our detail synthesis network. At the data preparation stage, we generate low- and high-resolution thin shell animations
via coarse and fine meshes and various motion sequences. Then we encode the coarse meshes and the detailed meshes to a deformation representation TS-
ACAP, respectively. Our algorithm then learns to map the coarse features to fine features by designing a DeformTransformer network that consists of the
spatial inference module and the temporal coherence module, and finally reconstructs the detailed animations.

a method to simulate coarse meshes first and learn a temporally-
coherent mapping to the fine meshes. To efficiently extract local-
ized features with temporal consistency, we propose a new defor-
mation representation, called TS-ACAP (temporally and spatially
as-consistent-as-possible), which is able to cope with both large ro-
tations and unstable sequences. Since the vertices of the fine models
are typically more than ten thousand to simulate realistic wrinkles,
it is hard to directly map the coarse features to the high-dimensional
fine ones for the network. Therefore, convolutional encoder net-
works are applied to encode coarse and fine meshes in the TS-
ACAP representation to their latent spaces, respectively. Unlike ex-
isting works using recurrent neural networks (RNNs) [SOC19], we
use the Transformer [VSP∗17], a sequence-to-sequence network
architecture, based on attention mechanisms for our detail synthesis
task, which is more efficient to learn and leads to superior results.

3.2. Deformation Representation

As discussed before, large-scale deformations are essential to rep-
resent thin shell mode dynamics such as cloth animations, be-
cause folding and wrinkle patterns during animation can often be
complicated. Moreover, cloth animations are in the form of se-
quences, hence temporal coherence is very important for realism.
Using 3D coordinates directly cannot cope with large-scale defor-
mations well, and existing deformation representations are gen-
erally designed for static meshes, and directly applying them to
cloth animation sequences on a frame-by-frame basis does not take
temporal consistency into account. To cope with this problem, we
propose a mesh deformation feature with spatial-temporal consis-
tency, called TS-ACAP, to represent the coarse and fine deformed
shapes, which exploits the localized information effectively and re-
constructs meshes accurately.

Take coarse meshes C for instance and fine meshes D are pro-
cessed in the same way. Assume that a sequence of coarse meshes
contains n models with the same connectivity. A mesh with the
same topology is chosen as the reference model, such as a garment

mesh worn by a character in the T pose. We calculate the deforma-
tion gradient Tt,i to represent the local shape deformation firstly.
Using polar decomposition, Tt,i can be decomposed into a rotation
part and a scaling/shearing part Tt,i = Rt,iSt,i. The scaling/shearing
transformation is uniquely defined, while the rotation Rt,i corre-
sponds to infinite possible rotation angles (differed by multiples of
2π, along with possible opposite orientation of the rotation axis).
Typical formulations often constrain the rotation angle to be within
[0,π] which is unsuitable for smooth large-scale animations.

In order to handle large-scale rotations, we first require the ori-
entations of rotation axes and rotation angles of spatially adjacent
vertices on the same mesh to be as consistent as possible. Espe-
cially for our sequence data, we further add constraints for adjacent
frames to ensure the temporal consistency of the orientations of ro-
tation axes and rotation angles on each vertex. We first consider
consistent orientation for axes.

argmax
ot,i

∑
(i, j)∈E

ot,iot, j · s(ωt,i ·ωt, j,θt,i,θt, j)

+ ∑
i∈V

ot,i · s(ωt,i ·ωt−1,i,θt,i,θt−1,i)

s.t. ot,1 = 1,ot,i =±1(i ̸= 1) (1)

where t is the index of the frame, E is the edge set, and V is the
vertex set. Denote by (ωt,i,θt,i) one possible choice for the rotation
axis and rotation angle that match Rt,i. ot,i ∈ {+1,−1} specifies
whether the rotation axis is flipped (ot,i = 1 if the rotation axis is
unchanged, and −1 if its opposite is used instead). The first term
promotes spatial consistency while the second term promotes tem-
poral consistency. s is a function measuring orientation consistency,
which is defined as follows:

s(ωt,i,ωt, j) =


0, |ωt,i ·ωt, j| ≤ ε1 or θt,i < ε2 or θt, j < ε2

1, Otherwise if ωt,i ·ωt, j > ε1

−1, Otherwise if ωt,i ·ωt, j <−ε1
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(2)

The first case here is to ignore settings where the rotation angle is
near zero, as the rotation axis is not well defined in such cases. As
for rotation angles, we optimize the following

argmin
rt,i

∑
(i, j)∈E

∥(rt,i ·2π+ot,iθt,i)− (rt, j ·2π+ot, jθt, j)∥2
2

+ ∑
i∈V

∥(rt,i ·2π+ot,iθt,i)− (rt−1,i ·2π+ot, jθt−1,i)∥2
2

s.t. rt,i ∈ Z, rt,1 = 0. (3)

where rt,i ∈ Z specifies how many 2π rotations should be added to
the rotation angle. The two terms here promote spatial and tempo-
ral consistencies of rotation angles, respectively. These optimiza-
tions can be solved using integer programming, and we use the
mixed integer CoMISo [BZK09] which provides an efficient solver.
See [GLY∗19] for more details. A similar process is used to com-
pute the TS-ACAP representation of the fine meshes.

(b)(a)

ACAP

TS-ACAP

Coordinates

Figure 3: Comparison of shape interpolation results with different repre-
sentations: coordinates, ACAP and TS-ACAP. (a) and (b) are the source and
target models respectively with large-scale deformation to be interpolated.
The interpolated models with ACAP feature show plausible wrinkles in each
frame while resulting in self-intersections and causing inconsistency in the
temporal domain.

Compared to the ACAP representation, our TS-ACAP represen-
tation considers temporal constraints to represent nonlinear defor-
mation for optimization of axes and angles, which is more suit-
able for consecutive large-scale deformation sequences. We com-
pare ACAP and TS-ACAP using a simple example of a simulated
disk-shaped cloth animation sequence. Once we obtain deforma-
tion representations of the meshes in the sequence, we interpo-
late two meshes, the initial state mesh and a randomly selected
frame, using linear interpolation of shape representations. In Fig.
3, we demonstrate the interpolation results with ACAP representa-
tion, which shows that it cannot handle such challenging cases with
complex large-scale deformations. In contrast, with our temporally
and spatially as-consistent-as-possible optimization, our TS-ACAP
representation is able to produce consistent interpolation results.

3.3. DeformTransformer Networks

Unlike [TGLX18, WSFM19] which use fully connected layers
for mesh encoder, we perform a convolution operator on vertices
[DMI∗15, TGL∗22] where the output feature f at a vertex is ob-
tained as a linear combination of input in its one-ring neighbors
along with a bias (please see detailed formulation in the supplemen-
tary material). Let FC = {fC1 , . . . , fCn} be the sequence of coarse
mesh features, and FD = {fD1 , . . . , fDn} be its counterpart, the se-
quence of detailed mesh features. To synthesize FD from FC , the

DeformTransformer framework is proposed to solve this sequence-
to-sequence problem. As illustrated in Fig. 4, the DeformTrans-
former framework consists of two sub-networks: the Spatial Infer-
ence module, which learns feature mapping of individual frames
using mesh transformer encoders and upsampling networks, and
the Temporal Coherence module, which consists of two temporal
transformer encoders and a temporal transformer decoder to gener-
ate temporally-coherent deformations.

Spatial Inference Module. Since input mesh features share the
same vertex numbers and connected edges, we infer the high-
resolution features while maintaining a fixed detailed mesh topol-
ogy at the spatial level. We design a mesh transformer encoder to
capture the deformations among all vertices. For coarse meshes
with VC vertices, the input features fCi are (VC ,K) dimensional,
where K is the number of filter kernels in the last mesh convo-
lution layer (where we set K as 9 in all our experiments). Then
point-wise features are fed into the mesh transformer encoder com-
posed of identical blocks each with two sub-modules, where one
is the multi-head self-attention mechanism, and the other is the
frame-wise fully connected feed-forward network. Here, an atten-
tion function [BCB14] learns a mapping from a query and a set
of key-value pairs to an output. The layer output is computed as a
weighted sum of the values and the weight on each value is com-
puted by a compatibility function of the query with the correspond-
ing key. Multi-head self-attention [VSP∗17] uses different linear
projections in parallel and the layer outputs are concatenated and
once again projected, resulting in the final values. It is more ben-
eficial than single attention with jointly learned information from
different representation subspaces at different positions. We then
employ a residual connection around the multi-head self-attention
layer and the feed-forward layer, followed by layer normalization.
After learning the vertex-wise relationships within the mesh fea-
ture maps, we use fully-connected mesh upsampling layers (where
the layer number depends on the face scale factor, e.g. 3 layers for
64 times upsampling) and mesh convolutional layers relying on the
adjacency of detailed mesh. Here we adopt upsampling and mesh
convolution instead of a transformer decoder due to the huge GPU
cost for the detailed meshes with more than ten thousand vertices.

Temporal Coherence Module. The temporal coherence module
consists of several stacked encoder-decoder layers. To take the or-
der of the sequence into consideration, triangle positional embed-
dings [VSP∗17] are injected into frames of FC and FD , respec-
tively. The features of N frames {fC1 , ...fCN} are concatenated and
reshaped into (N,VC ·K). The coarse temporal transformer encoder
takes these sequential coarse features as input and encodes them to
a temporally-dependent hidden space. The architecture of the en-
coder module is similar to the spatial mesh transformer encoder, but
here we consider temporal-level element relationships. The multi-
head attention is able to build the dependence between any frames,
thus ensuring that each input can consider the global context of the
whole sequence. Meanwhile, compared with other sequence mod-
els, this mechanism splits the attention into several subspaces so
that it can model the frame relationships in multiple aspects. Be-
sides, a masked temporal transformer encoder takes fine mesh se-
quence FD as input and encodes it similarly to the coarse encoder.
Unlike the coarse encoder, detailed meshes are generated sequen-
tially, and when predicting frame t, it should not attend to subse-
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Figure 4: The architecture of our DeformTransformer network. The coarse and fine mesh sequences are embedded into feature vectors using the TS-ACAP
representation which is defined at each vertex as a 9-dimensional vector. Then two convolutional encoders map coarse and fine features to their latent spaces,
respectively. The inference from sequential coarse to fine latent vectors is then modeled as spatial-temporal joint reasoning with our DeformTransformer
network. The upper part shows the Spatial Inference module. The latent vectors in all vertices from one mesh are fed into a spatial mesh transformer encoder
to learn feature embeddings in the spatial dimensions. Then the upsampling layers and mesh convolutional layers are applied to predict detailed features in
each frame. The lower part illustrates a Temporal Coherence module consisting of two temporal transformer encoders embedding sequential features from
coarse and fine spaces respectively, and a temporal transformer decoder for temporally-coherent deformation generation. The spatial and temporal predictions
are fused, followed by a mesh convolution layer to get the detailed TS-ACAP features. Notice that in the training phase the input high-resolution TS-ACAP
features are those from the ground truth, but during testing, these features are initialized to zeros, and once a new high-resolution frame is generated, its
TS-ACAP feature is added. With predicted feature vectors, realistic and stable cloth animations are generated.

quent frames (with the position after frame t). To achieve this, we
utilize a masking process for the multi-head self-attention mod-
ule [VSP∗17]. With the encoded coarse and fine latent vectors,
the temporal transformer decoder network aims to reconstruct a se-
quence of fine mesh features. It performs multi-head attention over
the output of the encoder, thus capturing the long-term dependen-
cies between coarse mesh features FC and fine mesh features FD .

We train the DeformTransformer network by minimizing the
mean squared error between predicted features and the ground
truth. Using the predicted TS-ACAP feature, we reconstruct the
vertex coordinates of the target mesh applying the reconstruction
algorithm for ACAP features (please refer to [GLY∗19] for details).
After that, a collision solving process is introduced to avoid body
interaction (see details in the supplementary material).

4. Results

4.1. Runtime Performance

We implement our method on a computer with a 2.50GHz 4-Core
Intel i5 CPU for coarse simulation and TS-ACAP extraction, and

an NVIDIA GeForce® GTX 1080Ti GPU for fine TS-ACAP gen-
eration by the network and the coordinates reconstruction of the
vertices. Table 1 shows the average per-frame execution time of
our method for various cloth datasets (more detailed timing cost
is in the supplementary material such as coarse simulation, TS-
ACAP extraction, synthesis of high-resolution TS-ACAP and coor-
dinates, and collision refinement). For reference, we also measure
the time of the high-resolution physics-based simulation, with an
open-source solver called ARCSim [NSO12]. The degree of op-
timization of the numerical algorithms is the second order. The
SIMD optimization technique is AVX. This code runs in the same
CPU with the coarse simulation. Our algorithm is 10 ∼ 35 times
faster than this method. Note that there are faster physics-based
simulation methods like [WWW22], and our method can also be
highly accelerated for coarse simulation. The low computational
cost of our method makes it suitable for interactive applications.
Please refer to the supplementary material for detailed implemen-
tation and network architecture.
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(a) Input (b) Chen et al. (c) Chen et al. (d) Zurdo et al. (e) Zurdo et al. (f) Tracked (g) Ours (h) GT
w/ track w/o track w/ track w/o track

Figure 5: Comparison of the reconstruction results for unseen data on the TSHIRT and PANTS datasets with tight garments. (a) coarse
simulation, (b) results of [CZY21] trained on the tracked data, (c) results of [CZY21] trained on the full simulated data, (d) results of [ZBO13]
trained on the tracked data, (e) results of [ZBO13] trained on the full simulated data, (f) results of tracked PBS, (g) our results, (h) ground
truth generated by PBS. Our method produces detailed shapes of higher quality than Chen et al. and Zurdo et al., see the folds and wrinkles
in the close-ups. Chen et al. results suffer from seam line problems. The results of Zurdo et al. exhibit clearly noticeable artifacts. It is highly
recommended to zoom in for a detailed comparison.

(a) Input (b) Chen et al. (c) Chen et al. (d) Zurdo et al. (e) Zurdo et al. (f) Tracked (g) Ours (h) GT
w/ track w/o track w/ track w/o track

Figure 6: Comparison of the reconstruction results for unseen data in the datasets of loose garments. (a) the coarse simulation, (b) the results
of Chen et al. [CZY21], (c) the results of Zurdo et al. [ZBO13], (d) the results generated by physics-based tracking simulation [CZY21], (e)
our results, (f) the ground truth generated by PBS.

4.2. Fine Detail Synthesis Results and Comparisons

We demonstrate our method using various detail enhancement ex-
amples both quantitatively and qualitatively, including added wrin-
kles and rich dynamics. We compare our results with physics-
based coarse simulations, our implementation of a deep learning-
based method [CZY21], and a conventional machine learning-
based method [ZBO13]. Since these two methods require dense
correspondences between coarse and fine meshes, for fair compari-
son we also implement a tracking mechanism [CZY21] to produce
paired tracked data, which is more consistent with coarse simulated
results making detail refinement easier, at the cost of deviating from

real ground truth. In the following comparisons, we show their re-
sults both trained with tracked data and without tracked data.

4.2.1. Qualitative Evaluation

We compare detail synthesis results on the TSHIRT and PANTS
datasets with tight garments. In Fig. 5, we show (b∼e) the results
of two compared methods [CZY21, ZBO13] trained with/without
tracking scheme, (f) tracked PBS, (g) ours and (h) PBS as ground
truth. All methods are able to reconstruct the garments completely
with mid-scale wrinkles. However, Chen et al. [CZY21] suffer from
seam line artifacts due to the geometry image representation. A ge-
ometry image is a parametric sampling of a shape made into a topo-
logical disk by cutting through seams. The boundaries of the disk
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Table 1: Statistics and timing (sec/frame) of the testing examples
including five types of thin shell animations.

Benchmark #verts #verts ARCSim ours speedup
LR HR HR

TSHIRT 246 14,190 8.72 0.867 10
PANTS 200 11,967 10.92 0.904 12
SKIRT 127 6,812 6.84 0.207 33
SHEET 81 4,225 2.48 0.157 16
DISK 148 7,729 4.93 0.139 35

Figure 7: Generalization evaluation for draping cloth with an oc-
tahedron unseen in the training data. From top to bottom, we show
input coarse mesh, ours, and the ground truth generated by PBS.

need to be fused to reconstruct the original topology. They intro-
duce a padding scheme to align seam line vertices, but the predicted
geometry images may not be entirely accurate, resulting in impre-
cise fused boundaries, e.g. clear seam lines on the shoulder and
crooked boundaries on the left side of the waist for the examples in
Figs. 5 (b) and (c). Zurdo et al. [ZBO13] utilize tracking algorithms
for coarse and fine alignment, leading to constrained fine meshes
with rigid artifacts and not exhibiting full physics-based simulation

(a) Input (b) Coordinates (c) Ours (d) GT
Figure 8: The evaluation of the TS-ACAP feature in our detail syn-
thesis method.

behavior. But without tracking constraints, their results may have
artifacts where the meshes are not well aligned, e.g. the trouser
legs. Different from these methods that reconstruct displacements
or local coordinates, our method uses deformation-based features
in both encoding and decoding phases which does not suffer from
such restrictions and ensures physically-reliable results.

In addition, we show results of loose garments and free-flying
cloth, with comparisons on the SKIRT, SHEET, and DISK datasets
(shown in Fig. 6, more results are in the supplementary material).
The results of the two compared methods exhibit obvious artifacts
due to the significant misalignment between coarse and ground
truth deformations (see (c) and (e)). The results with tracking (see
(b) and (d)) smooth out sharp triangles, while only enhancing small
wrinkles on coarse meshes maintaining global shapes. Our learned
detail synthesis model provides better visual quality for shape gen-
eration and successfully reconstructs the swinging skirt (see the
small wrinkles on the waist and the medium-level folds on the skirt
hem) and overall drape of the disk (i.e. , how the tail of the disk
flies like a fan in the wind). The transformer-based temporal mod-
ule further ensures stable animation; please see the accompanying
video.

Generalization. With an appropriately trained model with reg-
ularization, our DeformTransformer can be applied to test motions
different from the training data. This capability is important for ap-
plications such as games or movies, since the variations in motions
can be large and change over time. Trained on draping cloth se-
quences crashing with different obstacles, e.g. pole, sphere, torus,
cube, icosahedron, the model is then applied to draping cloth crash-
ing with an octahedron. As shown in Fig. 7, the middle-scale wrin-
kles can be captured and the cloth is properly deformed correspond-
ing to the motions of the obstacle. However, the generalization abil-
ity of our method is still limited, as can be seen, the sharp wrinkles
caused by the corner of octahedron are not captured, because simi-
lar scenarios did not appear in the training data. Adding more com-
plicated examples in training data could address this problem.

4.2.2. Quantitative Evaluation

For quantitative comparison, we use three metrics: Root Mean
Squared Error (RMSE), Hausdorff distance as well as spatio-
temporal edge difference (STED) [VS11] designed for motion se-
quences with a focus on ‘perceptual’ error of models (shown in Ta-
ble 2). Note that for the datasets from the top to bottom in the table,
the Hausdorff distances between LR meshes and the ground truth
are increasing. This tendency is in accordance with the deformation
range from tighter garments to cloth with higher degrees of free-
dom. Since using positions cannot handle rotations well, the larger
scale the models deform, the more artifacts Chen et al. [CZY21]
and Zurdo et al. [ZBO13] would bring in the reconstructed models,
leading to increased errors. The results indicate that our method
has better reconstruction results quantitatively than the compared
methods on the 5 datasets with all three metrics. Especially for the
SKIRT, SHEET, and DISK datasets which contain loose cloth and
hence larger and richer deformation, our method outperforms ex-
isting methods significantly since tracking between coarse and fine
meshes is not required in our algorithm. We also show the distance
evaluation between the ground truth and the results of compared
methods using tracked data. Although their results have fewer ar-
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Table 2: Quantitative comparison with [CZY21] and [ZBO13] of reconstruction errors for unseen cloth animations in several datasets.

Dataset Metrics
Methods

LR Chen et al. Chen et al. Zurdo et al. Zurdo et al. Ours
w/ track w/o track w/ track w/o track

TSHIRT
RMSE ×10−2 ↓ - 1.508 0.76 1.52 1.04 0.273

Hausdorff ×10−2 ↓ 0.59 0.594 0.506 0.584 0.480 0.254
STED ↓ - 0.238 0.277 0.217 0.281 0.0684

PANTS
RMSE ×10−2 ↓ - 1.38 1.82 1.39 1.89 0.339

Hausdorff ×10−2 ↓ 0.761 0.684 1.09 0.711 0.983 0.293
STED ↓ - 0.121 0.176 0.0735 0.151 0.0308

SKIRT
RMSE ×10−2 ↓ - 3.35 2.72 3.35 2.19 0.391

Hausdorff ×10−2 ↓ 2.09 2.32 1.54 2.31 1.52 0.352
STED ↓ - 0.132 0.227 0.0586 0.178 0.0239

SHEET
RMSE ×10−2 ↓ - 3.35 4.37 3.42 3.02 0.543

Hausdorff ×10−2 ↓ 2.61 2.83 2.60 2.89 2.34 0.443
STED ↓ - 0.0407 0.155 0.0272 0.0672 0.0259

DISK
RMSE ×10−2 ↓ - 11.11 7.03 11.04 11.40 2.19

Hausdorff ×10−2 ↓ 3.12 3.49 2.27 3.48 2.23 1.46
STED ↓ - 0.0867 0.244 0.0809 0.502 0.0542

A
C

A
P

T
S-

A
C

A
P

G
T

Figure 9: Consecutive generated frames from a testing sequence in the DISK dataset with ACAP, TS-ACAP, and ground truth.

Table 3: Per-vertex error (RMSE ×10−2 ) on predictions with dif-
ferent representations: 3D coordinates, ACAP and TS-ACAP.

Dataset TSHIRT PANTS SKIRT SHEET DISK
3D coordinates 1.01 1.93 0.941 0.86 18.5

ACAP 0.614 0.785 0.693 0.606 3.51
TS-ACAP 0.273 0.339 0.391 0.543 2.19

tifacts which largely reduces the STED value, their wrinkles and
deformations are not similar to the full-model simulation thus still
resulting in high RMSE and Hausdorff distances.

4.3. Ablation Study

We conduct an ablation study to evaluate the effectiveness of key
components of our proposed method for several aspects: the ca-
pability of the TS-ACAP feature and the capability of the spatial
temporal modules and the Transformer network. Besides, we show
the impact of the resolution of coarse meshes on the detailed mesh
synthesis. We evaluate our method qualitatively and quantitatively
on different datasets.

Feature Representation Evaluation. The effectiveness of TS-

ACAP is verified by comparing per-vertex position errors with 3D
vertex coordinates and ACAP, with network layers and param-
eters adjusted accordingly to optimize performance alternatively.
The details of numerical comparison are shown in Table 3. ACAP
and TS-ACAP show quantitative improvements over 3D coordi-
nates. In Fig. 8, we exhibit several compared examples of animated
skirts using coordinates and TS-ACAP. The results using coordi-
nates show a rough appearance, unnatural deformation and some
artifacts, especially in the highlighted regions with details shown in
the close-ups. TS-ACAP results are more similar to the ground truth
than the ones with coordinates. ACAP has the problem of temporal
inconsistency, thus the results are shaking or jumping frequently.
Although the use of the Transformer network can somewhat miti-
gate this issue, such artifacts can appear even with the Transformer.
Fig. 9 shows several consecutive frames from a testing sequence in
the DISK dataset. TS-ACAP results show more consistent wrinkles
than ACAP thanks to temporal constraints.

Spatial Temporal Module Evaluation. Since the key compo-
nents of our network are the spatial and temporal modules, we eval-
uate the impact of each module (shown in Fig. 10). It is obvious that
without the spatial inference module, the results only exhibit large-
scale, smooth deformations without local details. As shown in the
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Input w/o temporal w/o spatial Ours GT
Figure 10: Ablation study of network architecture.“w/o spatial”
and “w/o temporal” are our method without the spatial inference
module, and without temporal coherence module, respectively.

Table 4: Comparison of RMSE between synthesized shapes and
ground truth with different networks, i.e. an encoder-decoder
(EncDec) dropping out sequential modules and multi-head atten-
tion mechanisms, EncDec + RNN, EncDec + LSTM and ours with
the DeformTransformer network.

Dataset TSHIRT PANTS SKIRT SHEET DISK
EncDec 0.00909 0.01142 0.00831 0.00739 0.0427

EncDec + RNN 0.0435 0.0357 0.0558 0.0273 0.157
EncDec + LSTM 0.0351 0.0218 0.0451 0.0114 0.102

Ours 0.00273 0.00339 0.00391 0.00543 0.0219

fourth column, the spatial sub-network improves the quality of lo-
cal details on the back of the knee of the synthesized pants. On the
other hand, the results of our model without a temporal coherence
module show inappropriate artifacts and a lack of temporal consis-
tency. By adding the temporal module, the results confirm that the
temporal transformer network does properly learn the temporal re-
lationships between coarse and fine TS-ACAP features. The spatial
inference module and temporal coherence module jointly improve
the quality of high-resolution mesh synthesis.

Transformer Blocks Evaluation. We also evaluate the impact
of the Transformer blocks in our pipeline. We compare our method
to an encoder-decoder network (EncDec) dropping out sequential
modules and multi-head attention mechanisms, EncDec with the re-
current neural network (RNN), and with the long short-term mem-
ory (LSTM) module. An example of T-shirts is given in Fig. 11,
showing 5 frames in order. The results without any temporal mod-
ules show artifacts on the sleeves and neckline since these places
have strenuous forces. The models using RNN and LSTM stabi-
lize the sequence via eliminating dynamic and detailed deforma-
tion, but all the results keep wrinkles on the chest from the initial
state, lacking rich dynamics. Besides, they are not able to gener-
ate stable and realistic garment animations that look similar to the
ground truth, while our method with the Transformer network ap-
parently improves the temporary stability, producing results close
to the ground truth. We also quantitatively evaluate the performance
of the Transformer network in our method via per-vertex error. The
RMSE of our model is smaller than the others (shown in Table 4).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: The evaluation of the Transformer blocks for wrinkle
synthesis. From top to bottom, we show (a) input coarse mesh,
(b) the results with an encoder-decoder (EncDec) dropping out se-
quential modules and multi-head attention mechanisms, (c) the re-
sults with EncDec + RNN [CGCB14], (d) the results with EncDec
+ LSTM [HS97], (e) ours, and (f) the ground truth generated by
PBS.

5. Conclusion and Future Work

In this paper, we introduce a novel algorithm for synthesizing ro-
bust and realistic cloth animations via deep learning. To achieve
this, we propose a geometric deformation representation named
TS-ACAP which well embeds the details and ensures temporal con-
sistency. Benefiting from the deformation-based feature, there is no
explicit requirement of tracking between coarse and fine meshes in
our algorithm. We also use the Transformer network based on at-
tention mechanisms to map the coarse TS-ACAP to fine TS-ACAP,
maintaining the stability of our generation. Quantitative and quali-
tative results reveal that our method can synthesize realistic-looking
wrinkles in various datasets, such as draping tablecloth, tight or
loose garments dressed on human bodies, etc.

Since our algorithm synthesizes details based on the coarse
meshes, the time for coarse simulation is unavoidable. Especially
for tight garments like T-shirts and pants, the collision solving
phase is time-consuming. In the future, we intend to generate
coarse sequences for tight cloth via skinning-based methods in or-
der to reduce the computation for our pipeline. Model compression
and acceleration can be achieved via distillation and quantization.
Another limitation is that our current network is not able to deal
with all kinds of garments with different topologies.
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