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Abstract
The idea of improving multi-sided piecewise polynomial surfaces, by explicitly prescribing their behavior at a central surface
point, allows for decoupling shape finding from enforcing local smoothness constraints. Quadratic-Attraction Subdivision de-
termines the completion of a quadratic expansion at the central point to attract a differentiable subdivision surface towards
bounded curvature, with good shape also in-the-large.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; • Mathematics of computing → Continuous func-
tions;

1. Introduction

Classical subdivision algorithms, and Catmull-Clark subdivision in
particular, have found widespread acceptance due to their intuitive
simplicity of generalizing uniform knot insertion of B-splines as lo-
cal mesh refinement. At extraordinary points, classical subdivision
can be expressed as multiplication with a sparse matrix. A series of
optimizations (‘tuning’) that use of larger footprint rules have been
proposed to address shape problems near the extraordinary point.
Guided Subdivision harnesses a larger number of degrees of free-
dom by first computing a fixed surface prototype from the control
net. The prototype surface is called the guide. A refinement step
can then be viewed as adding an inner surface ring to a nested se-
quence of rings whose limit converges to the guide. A more recent
class of ‘point-augmented’ subdivision (PAS) algorithms aims to

e

(a) c-net

ds ds+1

p

(b) PAS: d-net + p

q

(c) QAS□: d-net + q

Figure 1: Evolution of control nets (a) c-net (thick lines) for
Catmull-Clark subdivision (CC) (b) 12n nodes of the d-net and a
point p define Point-Augmented Subdivision (PAS) (c) A d-net and
the attracting quadratic q define the shape of Quadratic-Attraction
Subdivision (QAS□).

.

combine the simplicity of classical algorithms with the observed
good shape of guided subdivision: PAS surfaces exhibit consid-
erably better curvature distribution than optimized classical algo-
rithms, both in-the-large and in the vicinity of the extraordinary
point – but, like classical algorithms, can still be implemented as
repeated matrix multiplication. However, PAS algorithms are not
curvature bounded. (C2 continuity would require increased degree
of the surface rings [PR08, Chap 6].) Tuned algorithms achieve
bounded curvature, but ostensibly at the price of oscillating cur-
vature. This raises the question whether low-degree matrix-based
algorithms can be both curvature-bounded and deliver good shape?

(a) CC (b) PAS3 + p (c) QAS4 + q

Figure 2: Contracting sequences of surface rings generated from
the input of Fig. 1. (a) 3n bicubic (bi-3) pieces per ring; (b) 12n
bi-3 pieces (c) 3n bi-4 pieces.

The contribution of this paper is to show that a generalization of
the PAS-approach yields all three desiderata for, by choice, either
bicubic (bi-3) or biquartic (bi-4) subdivision surfaces. Moreover,
the rules have a smaller footprint and yield increased flexibility at
the central point. Nevertheless, the control net can remain the same
as for PAS algorithms with only the augmenting point p replaced
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by a quadratic expansion q and different formulas. Honoring its
ancestor, the new approach is called Quadratic-Attraction Subdi-
vision abbreviated as QAS□. (The □ serves to disambiguate from
[BS07] which generates an everywhere piecewise total degree 3-
sided quadratic approximation to Loop subdivision [Cha87].) Re-
markably, the derivation of QAS□ shows an alternative derivation of
visually identical variants of the PAS algorithms, all in a common
framework. These relations are summarized in Fig. 12. Besides
guaranteeing bounded curvature, the freedom in setting q yields
higher flexibility at the central point (see Fig. 14). This benefits ap-
plications, not elaborated here, ranging from Hermite interpolation
to solving differential equations.

Overview Section 2 gives a focused review of the relevant subdi-
vision algorithms. Section 3 prepares some basic technical tools.
Section 4 presents curvature-bounded QAS4 subdivision and Sec-
tion 5 its limit analysis. Section 6 derives a curvature-bounded bi-
cubic QAS3 from QAS4. Section 7 explains how the refinement
rules of additional PAS-like algorithms are obtained from QAS□

algorithms. Section 8 compares the resulting subdivision surfaces.

2. Subdivision Surface Synopsis

We focus on linear and uniform subdivision algorithms, the class
to which the QAS□-algorithms belong. The two subsections review
classical and guided subdivision algorithms, and the recent Point-
Augmented (PAS) algorithms.

2.1. Classical and guided subdivision algorithms

Subdivision surface algorithms can be viewed as generating a se-
quence of contracting surface rings, see Fig. 2, by refining a control
net and interpreting the nodes of the net as weights of basis func-
tions. Classical subdivision surfaces, like Catmull-Clark subdivi-
sion [CC78], are controlled by a c-net, see Fig. 1a: an extraordinary
node e at the center is irregular, i.e. has fewer or more than the regu-
lar n = 4 neighbors, and is surrounded by layers of the quadrilateral
facets, a.k.a. quads. All internal nodes other than e are regular and
define bicubic (bi-3) surface pieces; the outermost nodes can be
irregular. Correspondingly, except for the extraordinary node, all
nodes are refined by uniform bi-3 B-spline knot-insertion rules. Re-
quiring just one special rule for each extraordinary node simplifies
implementation [NLMD12]. However, the simple rules often result
in unwanted non-uniformly distributed highlight lines [BC94] near
the limit of the extraordinary node, the extraordinary point.

Subdivision tuning [Sab91] aims to better control curvature at
the extraordinary point by adjusting the eigenexpansion of the lin-
ear subdivision rules. For example, [MM18] provides carefully
chosen rules not just for the extraordinary node but also for its 2n
nearest neighbors and replaces each bi-3 patch of Catmull-Clark
subdivision by 2 × 2 bi-3 macro-patches. The resulting shape is
improved and the curvature is bounded, but highlight lines oscil-
late at the transitions between the surface rings, see also [PU98].
Another example of tuning, [LFS16] prescribes a part of the Taylor
expansion explicitly to address unequal spacing.

Guided Subdivision [KP07, KP18, KP19] may be viewed as
prescribing a limit shape at the central point p via an initially-
computed guide surface. Empirically, guided subdivision results in

very good highlight line distribution, but implementation requires
to first construct the guide surface and then sample it to complete
the contracting rings.

2.2. Point-Augmented Subdivision (PASd)

The idea of improving the construction of multi-, non-four-sided
surface configurations, by explicitly prescribing their behavior at a
central surface point, has been explored repeatedly [Pra97, Lev06,
KP18]. The approach may be viewed as smartly mixing interpola-
tion and approximation where n pieces come together at an extraor-
dinary point. However, leaving the description of the limit behavior
to the designer is skirting the main challenge of how to, as a default
and automatically, set those degrees of freedom to achieve good
shape. Moreover, providing a separate interface for manipulation of
each n-sided neighborhood yields a complex implementation and
wielding it may be impractical for large objects. Even when set
automatically, as for Guided Subdivision, separate data structures
complicate the implementation and downstream use. The recently
proposed Point-Augmented Subdivision, abbreviated as PAS3 for
the bi-cubic version [KP23c] and PAS4 for its better-shaped bi-
quartic relative [KP23a], have therefore aimed to replicate the good
surface shape of the guide by baking the guide construction into
the subdivision rules. The contracting control net neighborhood of
each extraordinary point, when multiplying the net with a subdi-
vision matrix, provides nested subdivision surface rings. Remark-
ably, PAS3 and PAS4 match the surface quality of Guided Subdivi-
sion while formulated as explicit formulas familiar from classical
or tuned algorithms.

Figure 3: PAS3: c-net → d-net.

Point-augmented subdi-
vision, PAS3 refines a
d-net consisting of 12n
nodes plus a central fixed
point p, see Fig. 1b. If the
input is a c-net. the d-net
is derived by regular bi-
cubic refinement (uniform
knot insertion) of the el-
igible parts of the c-net,
as illustrated in Fig. 3: the
12n • of the d-net are de-
rived from the thick subnet
in Fig. 1a. Notably, PAS3

preserves the second-order
Hermite data defined by the d-net and therefore of any original c-
net, whereas various tuned algorithms (e.g. [MM18]), do not pre-
serve the second order data. A sector of each ring consists of three
2×2 bi-3 macro-patches, see Fig. 2b. The 6n refined nodes marked
as • in Fig. 4a have special rules, but rotational and sector-diagonal
symmetries reduce the number of distinct rules to five. Although
five special rules is more than Catmull-Clark (one) and the best
tuned, [MM18] (three), the rules are explicit and operate directly
on input data. While delivering highlight lines akin to Guided Sub-
division that make the surface essentially better than Catmull-Clark
and [MM18], structurally PAS3 is therefore simpler than Guided
Subdivision. The key to this good shape is a piecewise polyno-
mial guide baked into the PAS3 rules. The baked-in guide changes
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p

(a) PAS3 refinement

p

(b) PAS4: d-net+ p (c) PAS4 refinement

Figure 4: PAS refinement of a d-net. (a) PAS3 defines 6n new nodes,
marked •, by special rules that take into account the augmenting
point p; the remaining nodes are obtained by regular bi-cubic re-
finement (knot insertion). (b) 12n nodes of the d-net corresponding
to uniform C2 bi-4 spline refinement. (c) PAS4 refinement: 6n ma-
genta nodes • are defined by special rules and p; the remaining
nodes are obtained via regular C2 bi-4 refinement (knot insertion).

for each refinement step. That is, in contrast to guided subdivision
where the guide is explicitly constructed and static, these evolving
guides have been computed symbolically as a formula from which
the refinement rules have been derived. Since they are baked-in,
the existence of the guides can be ignored for implementation as a
matrix multiplication. The curvature of PAS3 at the limit point p is
nominally unbounded but increases slowly.

In PAS4 [KP23a] each sector of the contracting ring consists
of only three (not twelve) bi-4 patches, but the number of nodes,
connectivity of d-net and augmentation look like PAS3: compare
Fig. 4c vs Fig. 4a. The essential difference is that the nodes of d-
net are, just as for QAS4, interpreted as C2 bi-4 B-spline coeffi-
cients. For these uniform C2 bi-4 (B-)splines, tensoring the single
variable case leads to three types of nodes illustrated in Fig. 4b and
corresponding to: simple knots in both directions (marked as ◦);
double knots in both directions (marked as •); a simple knot in one
and a double knot in the other direction, marked as the circled gray
bullets.

3. Preliminaries and Building Blocks

The subdivision surface rings consist of tensor-product patches of
degree bi-d in Bernstein-Bézier form (BB-form, [dB87,Far88]): for
Bernstein polynomials Bd

k (t) :=
(d

k
)
(1− t)d−ktk,

p(u,v) :=
d

∑
i=0

d

∑
j=0

pi jB
d
i (u)B

d
j (v), 0 ≤ u,v ≤ 1.

The BB-coefficients pi j ∈ R3 are connected to pi+1, j and pi, j+1
wherever possible and this forms the BB-net.

(
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Figure 5: Three corner jets (rotated by π/2 for • and −π/2 for • so
that the corner BB-coefficient is f evaluated at the corresponding
corner of the unit square) assembled into an L-net of degree bi-4.

The construction repeatedly uses Taylor expansions or jets in
BB-form, at corners of patches and along boundaries of patches,
called tensor-borders. For example, the second-order Taylor ex-
pansion of a map f at a corner of its unit square domain can be
collected in the matrix of partial derivatives at a corner point, see
Fig. 5, left, that is re-expressed as a 3 × 3 BB-net (right of ∼)
of some degree bi-d. Three corner jets (cyan, orange and blue)
of degree bi-4 can be merged into an L-net by averaging the BB-
coefficients at overlapping locations.

In order to derive bi-3 PAS3 and QAS3 subdivision from their
corresponding bi-4 algorithms PAS4 and QAS4, we recall the well-
known change of basis from B-spline to BB-form (B-to-BB),see
[KP23a, Eq. 6] for bi-4 C2 splines. Fig. 6 shows the bijection

↓ ↓

−→
T 4

3

d ḋ
00 10 20 40

01 11 21 41

02 12 22 42

bi-4: B-to-BB bi-3: B-to-BB

00 20 40

01 21 41

02 22 42

−→
T̆ 4

3

Figure 6: Transformation T 4
3 : d → ḋ.

T 4
3 between the net d of the bi-4 constructions and net ḋ of the

bi-3 constructions via the invertible tensor-border transformation
T̆ 4

3 , preceded by the bi-4 B-to-BB conversion and followed by the
inverse bi-3 B-to-BB conversion. In more detail, the bi-4 tensor-
border Fig. 6, bottom,left is evenly split and its 3× 3 corner jets
at the cyan and blue corner points are presented in bi-3 form, see
Fig. 6, bottom,right. The corner jets in bi-3 form are then joined
C1 by setting the BB-coefficients of the thick line as averages of
their horizontal neighbors. Remarkably, this bi-3 tensor-border is
C2. By construction, T̆ 4

3 preserves the 3×3 corner jets at cyan and
blue corners. We can explicitly state T 4

3 and its inverse:

ḋi j :=di j, i = 0,2, j = 0,2;

ḋi1 :=
1
8
[1,6,1] [di0,di1,di2]

T , i = 0,2;

ḋi j :=
1
8
[1,6,1] [di−1, j,di j,di+1, j]

T , i = 1, j = 0,2;

ḋi1 :=
1

64
[1,6,1,6,36,6,1,6,1] Di, i = 1,

(T 4
3 )

Di := [di−1,0,di0,di+1,0,di−1,1,di1,di+1,1,di−1,2,di2,di+1,2]
T .

di j := ḋi j, i = 0,2, j = 0,2;

di1 :=
1
6
[−1,8,−1] [ḋi0, ḋi1, ḋi2]

T , i = 0,2; ((T 4
3 )

−1)

di j :=
1
6
[−1,8,−1] [ḋi−1, j, ḋi j, ḋi+1, j]

T , i = 1, j = 0,2;

di1 :=
1

36
[1,−8,1,−8,64,−8,1,−8,1] Ḋi, i = 1,

Ḋi := [ḋi−1,0, ḋi0, ḋi+1,0, ḋi−1,1, ḋi1, ḋi+1,1, ḋi−1,2, ḋi2, ḋi+1,2]
T .

Both formulas have a ‘shift by 2’ symmetry: in ḋrs, r,s = 0,1,2,
replacing the di j by di+2, j, i, j = 0,1,2, yields ḋr+2,s; in drs,
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r,s = 0,1,2, replacing the ḋi j by ḋi+2, j, i, j = 0,1,2, we get dr+2,s.
It suffices to describe T 4

3 and (T 4
3 )

−1 on one 3 × 3 dark-gray
and one light-gray sub-net shown in Fig. 7 since their formulas
are symmetric with respect to i = 1 and j = 1 and diagonal flip.

Figure 7: d ↔ ḋ.

4. Degree bi-4 Quadratic-Attraction
Subdivision: QAS4

To be integrated into the QAS4 refine-
ment rules, high-quality guides must be
derived symbolically. We use the d-net-
labels displayed in Fig. 8a (a copy of
Fig. 1c) and look at Fig. 8b for the re-
fined structure. We focus on the initialization of the quadratic q in
Section 4.2 since the refinement, reviewed in Section 4.1, is akin
to [KP23a] and [KP23c]. The explicit formulas of the refined net in
terms of the input net, and the complete QAS4-Algorithm are then
stated in Section 4.3.

ds ds+1

ds−1

q

00 10 20 30
01 11 21 31

02 12 22 32

0002

30

12

32

22
31

00

30
31 32

(a) QAS4: d-net + q

d̃s d̃s+1

q̃

11 21 31
12 22 32

20 30

02

(b) QAS4 refinement

Figure 8: (a) Labels of the d-net. (b) The nodes marked as •, ◦ and
the circled • are obtained from d-net via regular C2 bi-4 refine-
ment. In each sector s, the 12 refined nodes of d̃s are surrounded by
dashed cyan lines.

4.1. Derivation of the refinement step (d,q)→ (d̃, q̃)

Fig. 9a shows the bi-4 tensor-border in BB-form, with L-shaped
sectors, obtained by applying B-to-BB conversion to the d-net.
Fig. 9b shows the BB-net of an intermediate map g△ of total degree
5 [Far88, Ch.17]. The map is piecewise C1, has a unique quadratic
expansion q at the central point p that is determined, for exam-
ple, by the 6 coefficients of the first sector q0

i , i = 1, . . . ,6, where
q0

1 := p. Setting for s = 1, . . . ,n−1,
qs+1

1

qs+1
2

qs+1
3

qs+1
4

qs+1
5

qs+1
6

 := A


qs

1
qs

2
qs

3
qs

4
qs

5
qs

6

 , A :=


1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

2(1−c) −1 0 2c 0 0
0 0 0 2(1−c) −1 2c

4(1−c)2 4(1−c) 1 8c(1−c) −4c 4c2

 ,

(1)
where c := cos(2π/n), defines the remaining sectors. For refine-
ment, the domain of q is scaled down, towards the origin, by
the subdominant eigenvalue λ of Catmull-Clark subdivision. This

(a) input

q

(b) intermediate g△

q
q̃

p
→λ12

3
5

4 2

6 3

4
6

5
qs qs+1

(c) q̃:=λq

p

(d) guide g

→L
−1

χ L−1 ◦χ

OO

(e) linear L

1−λ : λ O

(f) λχL

Figure 9: Guide and refinement derivation steps. (e,f) O denotes
the origin in R2. (b) The relevant (active) points of the intermediate
guide g△ are joined by solid lines.

yields q̃, the restriction of q to the down-scaled domain:
q̃s

1
q̃s

2
q̃s

3
q̃s

4
q̃s

5
q̃s

6

 := S


qs

1
qs

2
qs

3
qs

4
qs

5
qs

6

 , S :=


1 0 0 0 0 0

1−λ λ 0 0 0 0
(1−λ)2 2(1−λ)λ λ

2 0 0 0
1−λ 0 0 λ 0 0

(1−λ)2 (1−λ)λ 0 (1−λ)λ λ
2 0

(1−λ)2 0 0 2(1−λ)λ 0 λ
2

 . (2)

Fig. 9d shows the increase of degrees of freedom when the do-
main of g△ is mapped, by composition, to multiple parallelograms
to form a piecewise bi-5 G1 map g as follows. The linear shear
map L of Fig. 9e transforms the unit square into a unit parallel-
ogram with opening angle 2π

n . Piecewise composition with L im-
plies that the gray-underlaid BB-coefficients of g determine the
same Hermite data as the total degree Bézier points of g△ joined
by solid lines. Then g is sampled with L−1 ◦ χ to create one sec-
tor of tensor-borders; the unmarked 16n BB-coefficients are un-
known (free) and set to match the 3×3 corner jets of input tensor-
border. Remarkably, although 16n > 9n, all degrees of freedom can
be pinned-down without loss of quality, i.e. the guide g captures
well the second-order Hermite data of input tensor-border. Sum-
marizing this part of the derivation, the BB-coefficients of g are
expressed via the nodes of the input d-net plus 6 coefficients q0

i ,
i = 1, . . . ,6 that determine the quadratic expansion q.

Fig. 9f shows the restriction of sector gs to the λ-down-scaled
domain. Sampling the jets at corner locations of λL−1 ◦ χ results
in L-shaped C2 bi-4 tensor-borders. These tensor-borders are
re-expressed by BB-to-B conversion (see Section 3) as the refined
nodes d̃s

i j, i = 1,2,3, j = 1,2 (• in Fig. 8b). The remaining 6 nodes
d̃s

i0, i = 0, . . . ,3, d̃s
0 j, j = 1,2, are obtained by regular refinement of

d. Without sacrificing good shape, we can truncate the resulting
linear map (d,q) → (d̃, q̃) to 5 digits after the decimal point (as
was done in [KP23c, KP23a]) and list all entries scaled by 105

as integers. The Appendix presents the corresponding integer
matrices K and T for valencies n = 3,5, . . . ,10.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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4.2. Initializing q from the d-net

The choice of q is important to achieve high QAS4 surface quality.
With the bi-5 guide g determined in Section 4.1, the 5 coefficients
q0

i , i = 2, . . . ,6, are set to minimize the functional

Fk f :=
∫ 1

0

∫ 1

0
∑

i+ j=k,i, j≥0

k!
i! j!

(∂i
s∂

j
t f (s, t))2 ds dt , (3)

for k = 5, over all n bi-5 sectors of g. The central point qs
1 := p,

s = 0, . . . ,n−1, is set as in [KP23a, Eq. 3] for a c-net and [KP23a,
Eq. 4] for a d-net input. Truncation of q to 5 digits after the decimal
point and scaling by 105 yields a compact listing as integers, but
results in a quadratic expansion defined only with 10−5 accuracy
and approximate curvature-boundedness.

An exact quadratic expansion q is obtained by computing, for
each sector r, a slightly different proposal q̄r,0 using the truncated
pre-calculated weights. The q̄r,0 are C0 connected and require only
small corrections to satisfy the C1 and the C2 constraints. Each
propose a similar quadratic expansion. (This freedom of proposals
can also be used for design, see Fig. 14.) Given q̄r,0

i , i = 1, . . . ,6,
r = 0, . . . ,n− 1 satisfying q̄r,0

1 := p, q̄r+1,0
2 := q̄r,0

4 , q̄r+1,0
3 := q̄r,0

6 ,
the following two steps re-establish an exact quadratic expansion
q:

- For each r and s = 1, . . . ,n−1, formula (1) defines

(q̄r,s
1 . . . q̄r,s

6 )T := A(q̄r,s−1
1 . . . q̄r,s−1

6 )T . (4)

- For s = 0, . . . ,n−1, set qs
1 := p and compute

qs
k :=

1
n

n−1

∑
r=0

q̄s−r,r
k , k = 2, . . . ,6 . (5)

We summarize how to compute a unique q from the truncated
formulas:
(S1) Set the central point qs

1 := p, s = 0, . . . ,n−1, as in [KP23a,
Eq. 3] for a c-net and [KP23a, Eq. 4] for a d-net input.
(S2) For each valence n and k = 4,5, let Q̄k := Qk

n. For i =
0, . . . ,3, j = 0,1,2, s = 0, . . . ,n−1, set

µk,s
i j := 10−5Q̄k

s+1,1+4 j+i and µ̇k := 1−
n−1

∑
s=0

2

∑
j=0

3

∑
i=0

µk,s
i j .

For r = 0, . . . ,n−1, set q̄r,0
1 := p, and for k = 4,5,

q̄r,0
k :=

n−1

∑
s=0

2

∑
j=0

3

∑
i=0

µk,s
i j dr+s

i j + µ̇kp; q̄r+1,0
2 := q̄r,0

4 ;

q̄r,0
6 :=

1
2c
(
q̄r,0

5 + q̄r+1,0
5 −2(1− c)q̄r,0

4
)
, q̄r+1,0

3 := q̄r,0
6 .

(S3) Apply formulas (4), (5).

4.3. Explicit formulas of the refined net: d̃s
i j, i = 1,2,3, j = 1,2

With κ from the tables K and τ from tables T in the Appendix, for
i = 1,2, j = 1,2, and s = 0, . . . ,n−1:

d̃s
i j :=

1

∑
r=−1

2

∑
m=0

3

∑
l=0

κ
s
lmds+r

lm +
6

∑
k=2

τi j,kqs
k+

(1−
1

∑
r=−1

2

∑
m=0

3

∑
l=0

κ
s
lm −

6

∑
k=2

τi j,k)p,

(6)

For i = 3, j = 1,2, and s = 0, . . . ,n−1:

d̃s
3 j :=

2

∑
r=−1

2

∑
m=0

3

∑
l=0

κ
s
lmds+r

lm +
1
2

6

∑
k=2

τ3 j,kqs
k +

1
2
(
τ3 j,2qs+1

4 +

τ3 j,3qs+1
6 + τ3 j,4qs+1

2 + τ3 j,5qs+1
5 + τ3 j,6qs+1

3
)
+

(1−
2

∑
r=−1

2

∑
m=0

3

∑
l=0

κ
s
lm −

6

∑
k=2

τ3 j,k)p .

(7)

We summarize:

QAS4 Algorithm

1. If the input is a c-net, convert it to a d-net as in [KP23a,
Fig. 5] and set qs

1 := p, s = 0, . . . ,n−1 by [KP23a, Eq.
3]; else set p by [KP23a, Eq. 4].

2. Compute q by (S1), (S2), (S3).
3. Iterate

a. Refine the d-net to d̃ (Fig. 8b): compute 24n nodes
marked •, ◦ and • by uniform bi-4 C2 spline knot
insertion; compute 6n nodes • by (6) and (7).

b. Define q̃ from q by formula (2).
c. Update q̃→q and d̃ → d.
d. B-to-BB convert the 30n refined nodes to 3n bi-4

patches forming a new surface ring as in Fig. 2c.

See [PLK] for an implementation.

5. Limit analysis

0Mq

Md

q0 d

q̃0

d̃

(a) Matrix M (b) χ3
QAS4 (c) χ6

QAS4

Figure 10: (a) Structure of the subdivision matrix M. (b,c) One
sector of the characteristic map of QAS4 for n = 3 and for n = 6.

The (12n+6)× (12n+6) subdivision matrix M splits into four
submatrices, see Fig. 10a, of which one has zero entries. Mq is
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equal to matrix S in (2) whose eigenvalues are 1,λ,λ,λ2,λ2,λ2.
Numerical calculation shows that all eigenvalues of Md to be less
than λ

2 in absolute value. Therefore QAS4 is curvature bounded.
Visually almost identical to [KP23a, Fig 9], the BB-nets of the
characteristic map n = 3,5, . . . ,10, look very similar to (but are not
identical to) the degree-raised characteristic maps of Catmull-Clark
subdivision, see Fig. 10b,c. Numerical computation confirms pos-
itivity of ∂uχ

n
QAS4 × ∂vχ

n
QAS4 for n = 3,5, . . . ,10, i.e. injectivity of

the QAS4 characteristic map for valencies n = 3,5, . . . ,10.

6. Degree bi-3 Quadratic-Attraction Subdivision: QAS3

QAS3 has the same net structure as QAS4, cf. Fig. 11 and Fig. 8.
However, the QAS3 nodes ḋ are interpreted as control points of C2

bi-3 splines rather than C2 bi-4 splines. T 4
3 and (T 4

3 )
−1 of Section 3

transform technical operations from QAS4 to QAS3, see Steps 2, 3a
below.

ḋs ḋs+1

ḋs−1

q

00 10 20 30
01 11 21 31

02 12 22 32

0002

30

12

32

22
31

00

30
31 32

(a) QAS3: d-net + q

˜̇ds ˜̇ds+1

q̃

11 21 31
12 22 32

20 30

02

(b) QAS3 refinement

Figure 11: (a) Labeling of ḋ-net. (b) 30n refined nodes: the inner
12n form the refined net ˜̇d. The outer nodes marked as • are ob-
tained from ḋ-net via regular C2 bi-3 refinement, while the • are
defined by the special rules.

QAS3 Algorithm

1. If the input is a c-net, convert it to a ḋ-net as in Fig. 3
and set qs

1 := p, s = 0, . . . ,n− 1 by [KP23c, Eq.(1)];
else set p by [KP23c, Eq.(2)].

2. Apply (T 4
3 )

−1 to express d in terms of ḋ. Then compute
q according to Section 4.2.

3. Iterate

a. Refine the ḋ-net (Fig. 11): compute the 24n nodes
marked • in Fig. 11b by uniform bi-3 spline knot
insertion; for the 6n •, apply (T 4

3 )
−1 to be able to

use formulas (6) and (7) in terms of ḋ, and apply T 4
3

to transform the result back from d̃ to ˜̇d.
b. Define q̃ from q by formula (2).
c. Update q̃→q and ˜̇d → ḋ.
d. B-to-BB convert the 30n refined nodes to 12n bi-3

pieces forming a new surface ring of 2× 2 macro-
patches as in Fig. 2b.

quadratic-attraction bi-4
QAS4

point-augmented bi-4
PAS4−→

↓

quadratic-attraction bi-3
QAS3 −→

↓

point-augmented bi-3
PAS3

curvature-bounded almost curvature-bounded

Figure 12: Genealogy of the subdivision algorithms presented in
this paper.

Remark. One can reduce the arithmetic operations in 3a by de-
riving expressions of refined nodes ˜̇ds

i j explicitly in terms of (ḋ,p).

Limit analysis Since the submatrix Mq is the same as for QAS4

(cf. Fig. 10), its dominating eigenvalues in the QAS3 matrix imply
curvature-boundedness. The BB-nets of the characteristic maps are
visually very similar to those of Catmull-Clark subdivision, when
its bi-3 patches are split into 2×2 pieces. The injectivity of QAS3

characteristic map has been verified by numerical computation.

7. Alternative PAS algorithms

From the QAS□- algorithms we can derive PAS-type subdivision
algorithms that differ only slightly from [KP23a] and [KP23c]. To-
gether this yields the academically satisfying unified derivation il-
lustrated in Fig. 12. The main difference in the d-net refinement
rules for QAS4 vs PAS4 [KP23a] lies in the λ-scaled sampling of
the guide g, displayed in Fig. 9f. In QAS4, the BB-coefficients of
g are expressed via the nodes of input d-net plus 6 coefficients
q0

1 := p, q0
i , i = 2, . . . ,6. In PAS4, the expressions (5) are substi-

tuted for q0
i , i = 2, . . . ,6, retaining only a symbolic p, so that the

BB-coefficients of g are expressed via the nodes of the input d-net
and p. Then, formulas (6) and (7) complete the refinement step.

Analogously, the ḋ-net refinement rules for PAS3 follow from
QAS3 by expressing the BB-coefficients of g in terms of the ḋ-net
plus an undetermined central point p and substituting into formulas
of refined nodes ḋ derived by Step 3a of the QAS3 algorithm.

The refinement rules of the new PAS4 and PAS3 are similar to
those in [KP23a] and [KP23c] and yield surfaces of comparable
quality, see Section 8. They differ in that [KP23a] and [KP23c]
minimize F4, while the unified derivation minimizes F5. If instead
F4 is minimized, the observed differences are negligible for n =
3,5,6 and the surfaces are like twins. But, due to truncation, for
n = 8,9,10 the surface quality of the unified PAS4 and PAS3 suffer
when F4 is minimized, see Fig. 13.

8. Discussion and Examples

In the hope that enforcing bounded curvature constraints will im-
prove shape, tuned subdivision, e.g. [MM18], has worked hard with
the full net of 12n+ 1 nodes displayed in Fig. 1a to find rules that
tame the additional degrees of freedom. In [MM18] new rules are

© 2023 Eurographics - The European Association
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ultimately applied only to the 2n nodes nearest the extraordinary
node. [KP23c] pioneered the idea of introducing a sequence of
guide surfaces directly into the refinement formulas. This has the
advantage that new refinement rules can be defined for 6n nodes of
the d-net while supporting predictable design of shape.

But first, we demonstrate, in Fig. 13, the difference between ap-
plying F4 vs F5 for high valences n, and convex input. The n = 10
sectors in Fig. 13a are planar. The top row of Fig. 13 shows (b) a
surrounding green bi-3 surface and the red subdivision surface and
(c) the artifact-free transition from one to the other (typical for all
schemes derived in this paper). The views from the top, in rows 2
and 3, zoom in on the first 8 rings so as to just fit into the red subdi-
vision region. The red and cyan lines in (e) point to the oscillations
in the highlight lines of (d), compared to applying F5 in (f). Where
do these oscillation originate? (g) and (h) show them to be ‘first step
artifacts’: applying F4 once and then F5 yields strong oscillations
compared to one step of F5 followed by F4. Clearly just focusing
on the limit for shape tuning is not a good strategy. The highlight
lines of the two bottom rows are taken so close to the limit point as
to be irrelevant for most applications, yet confirm that the careful
guide construction for bounded curvature also pays off in the limit.

The reduction in highlight line oscillations is not the main im-
provement of QAS4 over PAS4. Fig. 14 illustrates a key advantage
of Quadratic-Attraction of QAS4 over PAS4: q can be modified as
a whole in the spirit of moving a group of NURBS nodes for design.
For example, we apply an affine transformation to the default ini-
tial q. Additionally, one can vary individual points of the quadratic
expansion, noting that this requires the post-treatment (4) and (5)
of Section 4.2 to ensure a unique quadratic expansion. Note the
increased expressiveness of (e) QAS4 over (g) PAS4. This allows
for better approximation both in the geometry and any functions
on the geometry expressed in terms of QAS□. Fig. 14c,d illustrate
good shape of the default QAS4 surfaces. A variety of strong mod-
ifications of q are handled well by QAS4, see in (g-n). By contrast,
for PAS4 only the point p can be modified, restricting the design
options. Analogous modifications can of course be applied to the
corresponding bi-3 subdivision surfaces.

Fig. 15 top row applies PAS4 to an input mesh containing tightly
packed irregular nodes of valence n = 3,5,6. For these valen-
cies, the new PAS4 surfaces are visually very similar to those of
[KP23a]. Fig. 15 bottom row applies PAS3. The resulting surfaces
are very similar to the ones generated by [KP23c].

Fig. 16 compares 8 rings of various subdivision surfaces for a
low valence, yet challenging input. While the highlight lines of con-
ventional and tuned subdivision algorithms [CC78,MM18,WM23]
oscillate those of QAS3 are calm. PAS3 highlight lines look iden-
tical even in Gauss curvature shading. The point of this exam-
ple is that PAS3 does not formally guarantee bounded-curvature,
while [MM18, WM23] do. Yet, as with earlier tuned versions of
Catmull-Clark subdivision, the theoretically superior quality at the
extraordinary point results in undesirable oscillations. Thanks to
the guided approach, despite formally unbounded curvature, PAS
yields a calm highlight line distribution. QAS□ retains, and even
slightly improves, the highlight line distribution, achieves bounded
curvature, an advance in subdivision theory, has more local refine-
ment rules and offers increased flexibility at the center.

(a) input (b) layout (c) highlights

(d) F4

(e) oscillation
directions in
(d) (f) F5

(g) F4,F5,F5, . . . (h) F5,F4,F4,. . .

(i) PAS4 F4 (j) PAS4 F5

(k) F4 (l) default F5

Figure 13: Discussion of functionals for a convex shape, n = 10.
All surfaces except (i) and (j) are generated using QAS4. (d) – (h)
show bi-4 rings 1, . . . ,8. (i) – (l) show rings 8, . . . ,15. That is, the
shape difference to PAS4 is minute.
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(a) input n = 6 (b) QAS4

(c) highlight lines (d) mean curvature

(e) QAS4 mod1 (f) (g) PAS4 mod (h)

(i) QAS4 mod2 (j) (k) BB-net

(l) QAS4 mod3 (m) (n) BB-net

Figure 14: Quadratic flexibility of QAS□ illustrated by three modi-
fications of q of the monkey saddle.

Fig. 17 compares 12 rings of bi-3 subdivision surfaces for n =
9. Again the highlight lines exhibit oscillations for [MM19] and
[WM23] but not for QAS3 – with default initialization of q and
therefore almost identically shaped to its sibling PAS3. The curva-
ture distributions of QAS3 and PAS3 are visually very similar: even
after 12 refinement steps, the curvatures, although unbounded for
PAS3, are barely growing.

The cost for QAS□ or PAS subdivision is only slightly higher
than for Catmull-Clark subdivision or its tuned variants [MM18,
WM23]. If we treat sectors of q as independent with a common
central point p, then the QAS□ control net has 5n more nodes than
the 12n+1 nodes forming the control nets of all other subdivision

(a) input (b) QAS4 (c) highlight lines

(d) input (e) QAS3 (f) highlights

Figure 15: Two meshes with node valencies n = 3,5,6. (b,c) zoom.

(a) input (b) layout (c) QAS3 (d) PAS3

(e) [MM18] (f) [WM23] (g) QAS3

Figure 16: (a) Convex input with n = 6 flat 3× 3 facets outlining
a parabolic shape. (b) bi-3 input ring and contracting rings; (c,d)
Gauss curvature in range [0..0.79] for QAS3 and [0..0.81] for PAS3;
(e,f,g) highlight lines.

algorithms considered in this paper. The proportion of zeros in the
subdivision matrices increases with the valence, n = 3,5, . . . ,10.
The percentage of zeros is [84..95] for [CC78, MM18, WM23],
[43..46] for PAS and [72..91] for QAS□. Implementing QAS□ in
lieu of Catmull-Clark only requires switching out the subdivision
matrix and initializing d from the c-net and, if wanted, a default q
from d by applying a matrix of size 5n× (12n+ 1). ( Implement-
ing the subdivision step-by-step as explained in Section 4, instead
of assembling the matrix, requires less storage, but all matrix sizes
are small for modern computers.)

Limitations We assume that the input is a quad mesh and that any
quad has at most one extraordinary node. One midpoint refinement,
e.g. [CC78], can convert inadmissible quad meshes to such an in-
put. For any polyhedral mesh two steps guarantee separation.
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(a) input (b) layout (c) QAS3

(d) [MM19] (e) [WM23]

(f) PAS3 Gauss (g) PAS3 Mean

(h) QAS3 Gauss (i) QAS3 Mean

Figure 17: (a) Challenging high-valence n = 9 net, yielding the
surface in (b). (c,d,e) highlight lines; (g,i) Mean curvature with
range [−10..9]. (f,h) Gauss curvature with range [−143..k], where
k = 47 for QAS3 and k = 61 for PAS3.

9. Conclusion

The new family of attracting algorithms generate the refined net by
a linear process. Therefore the subdivision matrix, see Fig. 10a,
can be used for fast evaluation in the spirit of Sabin and Stam
[DS78, Sta98]. For the implementation, the (non-regular) Catmull-
Clark subdivision rules can be replaced by any of the QAS□ or PAS
algorithms, see the implementation of QAS4 at [PLK]. Grafting
QAS4 onto a bi-cubic tensor-product spline body preserves high-
end quality, but uniformity of degree may give QAS3 an edge.
While the guide principle in their derivation makes PAS surfaces
look similar to QAS□, QAS□has several advantages: higher flexi-

bility at the central point, bounded curvature and rules with a more
localized footprint.

Since infinite refinement is not practical, if the finest resolution,
for example to avoid pixel dropout at the extraordinary points, is
not known, one can cover the remaining hole with a tiny piecewise
smooth bi-4, respectively bi-3 cap construction from the literature,
e.g. [KP23b].
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Appendix: Qk
n for computing q

The tables Q4
n and Q5

n define the weights

µk,s
i j := 10−5Q̄k

s+1,1+4 j+i, i = 0,1,2,3, j = 0,1,2,s = 0, . . . ,n−1,

for each valence n, k = 4,5 and Q̄k := Qk
n in (S2) of Section 4.2:

Q4
3 :=

(
0 0 −22 −60 6 −28 699 2395 −16 388 3837 8400
0 6 −16 30 0 −28 388 −1197 −22 699 3837 −4200
1 −7 39 30 −7 56 −1087 −1197 39 −1087 −7675 −4200

)
Q5

3 :=
(

−2 18 −63 −101 18 −116 1214 −130 −63 1214 7588 451
1 −3 40 148 −12 61 −409 −2289 4 −2259 −8664 −9186
1 −12 4 −101 −3 61 −2259 −130 40 −409 −8664 451

)
Q4

5 :=

−69 2 190 2 18 757 −1491 −701 184 −1535 6707 9114
−69 18 184 0 2 757 −1535 −216 190 −1491 6707 2816
26 9 −76 −1 −16 −289 542 567 −67 613 −2562 −7373
86 −12 −231 −1 −12 −936 1871 567 −231 1871 −8291 −7373
26 −16 −67 0 9 −289 613 −216 −76 542 −2562 2816


Q5

5 :=

−297 186 640 55 186 2555 −6144 −1242 640 −6144 24879 16601
29 41 −223 51 −4 −460 1151 1041 −123 899 −681 −10803
42 101 −186 49 81 −936 940 185 −314 1603 −5611 −3330
42 81 −314 51 101 −936 1603 1041 −186 940 −5611 −10803
29 −4 −123 55 41 −460 899 −1242 −223 1151 −681 16601


Q4

6 :=


581 −1583 1173 88 −1405 2604 −742 −4346 1130 −1255 3747 11992
581 −1405 1130 44 −1583 2604 −1255 −2173 1173 −742 3747 5996
0 178 −43 −44 −178 0 −512 2173 43 512 0 −5996

−581 1583 −1173 −88 1405 −2604 742 4346 −1130 1255 −3747 −11992
−581 1405 −1130 −44 1583 −2604 1255 2173 −1173 742 −3747 −5996

0 −178 43 44 178 0 512 −2173 −43 −512 0 5996


Q5

6 :=


1219 −3600 3395 236 −3600 8000 −6249 −9577 3395 −6249 19545 28052
1220 −1928 778 487 −3028 2522 746 −515 1679 2178 364 −5816
56 494 −754 −30 525 −2686 2638 3461 −1395 4281 −7131 −7925

−1108 2377 −1213 −30 2377 −2417 −2253 3461 −1213 −2253 4553 −7925
56 525 −1395 487 494 −2686 4281 −515 −754 2638 −7131 −5816

1220 −3028 1679 236 −1928 2522 2178 −9577 778 746 364 28052



Q4
7 :=


2101 −4029 1523 1626 −3828 3082 3263 −11053 1657 2657 −944 14900
2101 −3828 1657 1014 −4029 3082 2657 −6891 1523 3263 −944 9290
519 −745 543 −361 −1195 761 50 2459 242 1412 −233 −3315

−1454 2899 −980 −1465 2538 −2133 −2594 9959 −1221 −1502 653 −13425
−2332 4360 −1765 −1465 4360 −3421 −3285 9959 −1765 −3285 1048 −13425
−1454 2538 −1221 −361 2899 −2133 −1502 2459 −980 −2594 653 −3315

519 −1195 242 1014 −745 761 1412 −6891 543 50 −233 9290



Q5
7 :=


6832 −12914 5811 4146 −12914 10981 6990 −28695 5811 6990 2219 40625
3858 −5871 1962 1548 −7821 4329 5353 −5201 2414 8373 −2988 580
−470 1643 −1380 −659 1411 −3290 2028 7207 −2317 4014 −4675 −12420
−1586 2639 −506 −1273 3321 −2071 −3741 6703 −1459 −3492 3987 −5024
−1586 3321 −1459 −659 2639 −2071 −3492 7207 −506 −3741 3987 −12420
−470 1411 −2317 1548 1643 −3290 4014 −5201 −1380 2028 −4675 580
3858 −7821 2414 4146 −5871 4329 8373 −28695 1962 5353 −2988 40625



Q4
8 :=


2967 −4866 916 3172 −4728 1818 6117 −14457 1124 5769 −2534 14544
2967 −4728 1124 2243 −4866 1818 5769 −10222 916 6117 −2534 10284
1229 −1820 674 0 −2154 753 2041 0 171 2882 −1049 0
−1229 2154 −171 −2243 1820 −753 −2882 10222 −674 −2041 1049 −10284
−2967 4866 −916 −3172 4728 −1818 −6117 14457 −1124 −5769 2534 −14544
−2967 4728 −1124 −2243 4866 −1818 −5769 10222 −916 −6117 2534 −10284
−1229 1820 −674 0 2154 −753 −2041 0 −171 −2882 1049 0
1229 −2154 171 2243 −1820 753 2882 −10222 674 2041 −1049 10284



Q5
8 :=


11906 −19141 4633 9663 −19141 7289 22241 −44205 4633 22241 −9810 45666
6143 −8801 2198 2230 −10667 3179 11292 −7843 1316 13998 −4854 4748
−2077 3980 −1461 −2256 3312 −2436 −2714 12602 −2466 −1032 2201 −15821
−2250 3373 −859 −1169 4295 −1963 −4001 5154 −1398 −4328 2314 −3992

35 48 551 −1169 48 16 −1532 5154 551 −1532 328 −3992
−2250 4295 −1398 −2256 3373 −1963 −4328 12602 −859 −4001 2314 −15821
−2077 3312 −2466 2230 3980 −2436 −1032 −7843 −1461 −2714 2201 4748
6143 −10667 1316 9663 −8801 3179 13998 −44205 2198 11292 −4854 45666



Q4
9 :=


3183 −4720 270 3966 −4632 573 7101 −14962 462 6962 −2341 12961
3183 −4632 462 3038 −4720 573 6962 −11462 270 7101 −2341 9929
1694 −2376 437 688 −2599 305 3565 −2598 −47 3917 −1245 2250
−588 990 208 −1983 737 −106 −1499 7481 −343 −1099 432 −6480
−2595 3894 −118 −3727 3729 −467 −5862 14060 −478 −5602 1908 −12179
−3388 4976 −389 −3727 4976 −610 −7483 14060 −389 −7483 2491 −12179
−2595 3729 −478 −1983 3894 −467 −5602 7481 −118 −5862 1908 −6480
−588 737 −343 688 990 −106 −1099 −2598 208 −1499 432 2250
1694 −2599 −47 3038 −2376 305 3917 −11462 437 3565 −1245 9929



Q5
9 :=


14017 −20354 1967 13664 −20354 2062 30248 −51185 1967 30248 −12462 44620
7903 −10773 1567 3614 −12119 1014 16832 −12665 −54 18097 −5800 9676
−2098 3564 −396 −3759 2728 −716 −4165 15361 −1761 −3145 4473 −15149
−3927 5626 −979 −2220 6116 −1074 −8068 9019 −1058 −8089 4665 −8269

356 −565 123 455 −56 −383 403 −1473 381 158 −1804 1848
356 −56 381 −2220 −565 −383 158 9019 123 403 −1804 −8269

−3927 6116 −1058 −3759 5626 −1074 −8089 15361 −979 −8068 4665 −15149
−2098 2728 −1761 3614 3564 −716 −3145 −12665 −396 −4165 4473 9676
7903 −12119 −54 13664 −10773 1014 18097 −51185 1567 16832 −5800 44620



Q4
10 :=



3134 −4322 −176 4267 −4264 −258 7200 −14386 −21 7174 −1768 11387
3134 −4264 −21 3452 −4322 −258 7174 −11639 −176 7200 −1768 9212
1937 −2578 141 1318 −2729 −159 4408 −4445 −263 4476 −1093 3518

0 93 250 −1318 −93 0 −42 4445 −250 42 0 −3518
−1937 2729 263 −3452 2578 159 −4476 11639 −141 −4408 1093 −9212
−3134 4322 176 −4267 4264 258 −7200 14386 21 −7174 1768 −11387
−3134 4264 21 −3452 4322 258 −7174 11639 176 −7200 1768 −9212
−1937 2578 −141 −1318 2729 159 −4408 4445 263 −4476 1093 −3518

0 −93 −250 1318 93 0 42 −4445 250 −42 0 3518
1937 −2729 −263 3452 −2578 −159 4476 −11639 141 4408 −1093 9212



Q5
10 :=



14143 −19112 −251 15685 −19112 −1732 32197 −52248 −251 32197 −10643 41144
8913 −11597 480 5547 −12500 −1114 20374 −18177 −1196 20460 −5557 13768
−744 1403 306 −3666 636 −15 −1463 12820 −1289 −1315 3348 −11019
−4619 6281 −260 −3995 6372 304 −10353 13992 −477 −10195 5534 −11694
−1230 1603 −314 244 2087 −277 −2894 −196 241 −2791 166 −54
1604 −1937 145 244 −1937 −697 3446 −196 145 3446 −3569 −54
−1230 2087 241 −3995 1603 −277 −2791 13992 −314 −2894 166 −11694
−4619 6372 −477 −3666 6281 304 −10195 12820 −260 −10353 5534 −11019
−744 636 −1289 5547 1403 −15 −1315 −18177 306 −1463 3348 13768
8913 −12500 −1196 15685 −11597 −1114 20460 −52248 480 20374 −5557 41144



Appendix: K and T for special rules 6 and 7

For n = 3,5, . . . ,10, the tables

Tn := 105


τ11,2 τ11,3 τ11,4 τ11,5 τ11,6
τ22,2 τ22,3 τ22,4 τ22,5 τ22,6
τ21,2 τ21,3 τ21,4 τ21,5 τ21,6
τ12,2 τ12,3 τ12,4 τ12,5 τ12,6
τ31,2 τ31,3 τ31,4 τ31,5 τ31,6
τ32,2 τ32,3 τ32,4 τ32,5 τ32,6

 .

encode the stencil weights τi j,k, where i j indicates the location of
refined node d̃s

i j in sector s and k labels the weights of the quadratic
expansion coefficient qs

k.

For the tables K see Fig. 18. Fig. 18a displays K consisting of
the four groups κ

r
i j, r =−1,0,1,2 in formulas (6) and (7) arranged

around a filler 0 in the center. Since even in this compact grouping
many weights κ

r
i j (scaled by 105) are 0, we focus on pieces of K.

For l = 1,2, Fig. 18b displays the only nonzero 5×5 matrices Kn
lm,

where lm , m = 1,2 is the index of the refined node d̃s
lm. For l = 3,

Fig. 18c shows the only nonzero entries dark and light underlaid.
The weights are symmetric across the center line so that only the
left (darker underlaid) 5×4 matrices Kn

3m, m = 1,2, are given.

K3
11 :=

(
0 0 −61 54 0 0 −256 1016 0 0 −1273 1980
−1 −17 −31 54 −17 1715 9345 1016 −31 9345 45137 1980
0 0 0 0 0 0 0 0 −61 −256 −1273 0

)
K3

22 :=
(

0 0 −48 −86 0 0 −1312 −1294 0 0 −3426 −1910
0 0 −30 −86 0 −4 12 −1294 −30 12 3064 −1910
0 0 0 0 0 0 0 0 −48 −1312 −3426 0

)
K3

21 :=
(

0 0 −58 −159 0 0 −1793 −2228 0 0 −4669 −2486
0 −8 30 −25 −5 171 6171 3663 −160 390 22303 9973
0 0 0 0 0 0 0 0 −149 −1335 −2753 0

)
K3

12 :=
(

0 0 −149 −25 0 0 −1335 3663 0 0 −2753 9973
0 −5 −160 −159 −8 171 390 −2228 30 6171 22303 −2486
0 0 0 0 0 0 0 0 −58 −1793 −4669 0

)
K3

31 :=
(

0 0 29 79 0 0 896 1114 29 896 4669 1243
0 4 83 74 2 −85 1433 4037 80 −195 −974 7627
0 2 80 79 4 −85 −195 1114 83 1433 −974 1243

)
K3

32 :=
(

0 0 24 43 0 0 656 647 24 656 3426 955
0 0 37 83 0 2 −124 −254 15 −6 −1365 −1182
0 0 15 43 0 2 −6 647 37 −124 −1365 955

)
T3 :=


−6513 17123 −6513 22618 17123
−15573 49756 −15573 38712 49756
−21775 46294 −9757 −826 53690
−9757 53690 −21775 −826 46294
138882 −46294 189605 −46294 24731
149268 −49756 204560 −49756 −15366
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Figure 18: Structure of matrices Kn, n > 4. (a) Labels of all co-
efficients κ

k
i j , i = 0, . . . ,3, j = 0,1,2, k = −1,0,1,2. (b) Kn

11, Kn
21,

Kn
12, Kn

22. (c) (left darker): Kn
31 and Kn

32.

K5
11 :=

−23 25 −1375 0 0
7 2707 4721 0 0

77 7200 57124 4721 −1375
0 2722 7200 2707 25

−17 0 77 7 −23

 , K5
22 :=

−69 578 −1827 0 0
−53 456 2700 0 0
173 −1206 22655 2700 −1827
10 −12 −1206 456 578
−1 10 173 −53 −69



K5
21 :=

 2 11 −601 0 0
−77 773 902 0 0
162 −1193 38518 16370 −316
55 −189 7137 4468 1650
0 −4 50 −28 −104

 , K5
12 :=

−104 1650 −316 0 0
−28 4468 16370 0 0
50 7137 38518 902 −601
−4 −189 −1193 773 11
0 55 162 −77 2



K5
31 :=

 −1 −5 300 0
38 −386 −451 0
−81 596 5913 33658
−27 94 2134 8588

0 2 −16 −56

 , K5
32 :=

 34 −289 913 0
26 −228 −1350 0
−86 603 −4644 8840
−5 6 581 79
0 −5 −69 19



T5 :=


−2527 7380 −2527 3320 7380
5551 17986 5551 29927 17986
437 1272 −6216 12934 24686

−6216 24686 437 12934 1272
1758 −1272 6438 786 38034
24856 −17986 29236 11116 52248


K6

11 :=

 18 4 −1758 0 0
−213 4243 3816 0 0
338 4608 60313 3816 −1758
−66 4510 4608 4243 4
−71 −66 338 −213 18

 , K6
22 :=

−134 881 −1751 0 0
−183 1012 2753 0 0
438 −2681 28732 2753 −1751
13 115 −2681 1012 881
−6 13 438 −183 −134



K6
21 :=

 53 −109 −597 0 0
−243 1557 456 0 0
339 −2339 42089 17527 −261
108 −193 6916 4270 2229
−2 −13 107 0 −252

 , K6
12 :=

−252 2229 −261 0 0
0 4270 17527 0 0

107 6916 42089 456 −597
−13 −193 −2339 1557 −109
−2 108 339 −243 53



K6
31 :=

 −26 54 298 0
121 −778 −228 0
−169 1169 7905 40111
−54 96 1655 8187

1 6 35 −75

 , K6
32 :=

 67 −440 875 0
91 −506 −1376 0

−219 1340 −4166 15895
−6 −57 963 −885
3 −6 −155 177



T6 :=


−2416 8465 −2416 399 8465
5841 15223 5841 28835 15223
1336 279 −5771 10537 22308
−5771 22308 1336 10537 279

279 −279 5628 279 28911
15223 −15223 23834 15223 47863



K7
11 :=

 79 67 −2261 0 0
−571 5727 2892 0 0
707 2372 62007 2892 −2261
−198 6316 2372 5727 67
−136 −198 707 −571 79

 , K7
22 :=

−182 1097 −1873 0 0
−358 1653 2438 0 0
720 −4032 32922 2438 −1873
−1 345 −4032 1653 1097
−11 −1 720 −358 −182

 ,

K7
21 :=

 116 −195 −717 0 0
−443 2259 21 0 0
515 −3253 44307 18253 −283
140 −96 6620 4151 2646
−9 −22 156 40

 , K7
12 :=

−390 2646 −283 0 0
40 4151 18253 0 0

156 6620 44307 21 −717
−22 −96 −3253 2259 −195
−9 140 515 −443 116



K7
31 :=

 −58 97 358 0
221 −1129 −10 0
−257 1626 9214 44198
−70 48 1214 7545

4 11 106 −62

 , K7
32 :=

 91 −548 936 0
179 −826 −1219 0
−360 2016 −3499 21611

0 −172 1162 −2264
5 0 −236 424

 ,

T7 :=


−3023 10233 −3023 −1398 10233
5479 14409 5479 27892 14409
1392 445 −5564 8885 21086
−5564 21086 1392 8885 445

335 −445 4914 555 23157
10850 −14409 22750 17968 42010



K8
11 :=

 133 180 −2734 0 0
−954 6990 2104 0 0
1092 619 62877 2104 −2734
−357 7894 619 6990 180
−195 −357 1092 −954 133

 , K8
22 :=

−219 1275 −2056 0 0
−544 2275 2040 0 0
981 −5149 35835 2040 −2056
−27 604 −5149 2275 1275
−15 −27 981 −544 −219



K8
21 :=

 174 −245 −850 0 0
−636 2835 −329 0 0
673 −3944 45740 18733 −326
154 30 6345 4083 2957
−17 −31 197 76 −505

 , K8
12 :=

−505 2957 −326 0 0
76 4083 18733 0 0

197 6345 45740 −329 −850
−31 30 −3944 2835 −245
−17 154 673 −636 174



K8
31 :=

 −87 122 425 0
318 −1417 164 0
−336 1972 10117 46915
−77 −15 858 6937

8 15 174 −36

 , K8
32 :=

 109 −637 1028 0
272 −1137 −1020 0
−490 2574 −2852 26033

13 −302 1250 −3649
7 13 −304 697



T8 :=


−3737 11875 −3737 −2513 11875
4990 14315 4990 27137 14315
1234 838 −5462 7767 20385
−5462 20385 1234 7767 838

491 −838 4452 1186 19155
8386 −14315 23016 20245 36486



K9
11 :=

 176 307 −3135 0 0
−1310 8019 1465 0 0
1446 −718 63315 1465 −3135
−517 9198 −718 8019 307
−245 −517 1446 −1310 176

 , K9
22 :=

−248 1425 −2244 0 0
−718 2829 1658 0 0
1207 −6040 37908 1658 −2244
−59 851 −6040 2829 1425
−18 −59 1207 −718 −248



K9
21 :=

 222 −272 −967 0 0
−806 3292 −600 0 0
809 −4463 46706 19065 −371
157 154 6115 4045 3194
−25 −40 231 105 −599

 , K9
12 :=

−599 3194 −371 0 0
105 4045 19065 0 0
231 6115 46706 −600 −967
−40 154 −4463 3292 −272
−25 157 809 −806 222



K9
31 :=

−111 136 483 0
403 −1646 300 0
−404 2231 10765 48801
−78 −77 579 6424
12 20 232 −7

 , K9
32 :=

 124 −712 1122 0
359 −1414 −829 0
−603 3020 −2288 29428

29 −425 1278 −4887
9 29 −359 957



T9 :=


−4380 13232 −4380 −3232 13232
4527 14476 4527 26550 14476
1040 1226 −5409 6991 19945
−5409 19945 1040 6991 1226

573 −1226 4235 1878 16211
6773 −14476 23771 22179 31709



K10
11 :=

 208 431 −3466 0 0
−1620 8844 954 0 0
1753 −1740 63528 954 −3466
−664 10255 −1740 8844 431
−284 −664 1753 −1620 208

 , K10
22 :=

−272 1553 −2414 0 0
−872 3303 1323 0 0
1396 −6746 39421 1323 −2414
−92 1070 −6746 3303 1553
−19 −92 1396 −872 −272



K10
21 :=

 261 −285 −1065 0 0
−950 3652 −809 0 0
923 −4855 47384 19304 −412
154 265 5928 4022 3377
−32 −48 258 127 −674

 , K10
12 :=

−674 3377 −412 0 0
127 4022 19304 0 0
258 5928 47384 −809 −1065
−48 265 −4855 3652 −285
−32 154 923 −950 261



K10
31 :=

−130 142 532 0
475 −1826 404 0
−461 2427 11246 50160
−77 −132 361 6007
16 24 281 20

 , K10
32 :=

 136 −776 1207 0
436 −1651 −661 0
−698 3373 −1813 32055

46 −535 1277 −5942
9 46 −403 1189



T10 :=


−4918 14316 −4918 −3714 14316
4128 14713 4128 26095 14713
860 1556 −5380 6436 19652

−5380 19652 860 6436 1556
594 −1556 4178 2519 13975
5620 −14713 24674 23806 27708
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