
Eurographics Symposium on Rendering 2023
T. Ritschel and A. Weidlich
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 4

Accelerating Hair Rendering by Learning
High-Order Scattered Radiance

Aakash KT†1,2, Adrian Jarabo1, Carlos Aliaga1, Matt Jen-Yuan Chiang1,
Olivier Maury1, Christophe Hery1, P. J. Narayanan2, Giljoo Nam1

1Meta Reality Labs Research
2CVIT, International Institute of Information Technology, Hyderabad (IIIT-H)

Ours β=1 Ours β=5 Ours β=9 Path Tracing

0 2000 4000
spp

0.01

0.02

0.03

0.04

0.05

M
AP

E

Path Tracing
Ours β=1
Ours β=5
Ours β=9

(a) (b)

Figure 1: We propose to use a small multi-layer perceptron (MLP) to approximate higher order scattering in hair without any pretraining,
by online learning of the error between biased and unbiased light paths. Our method converges faster compared to path tracing and provides
control over it’s bias & speedup via the max. path depth parameter β. This figure shows the characteristics of our method on messy white
hair, with the MAPE metric against a 10k spp reference: (a) Our method with β = 1 converges to about one-half the error in one-fourth of
the time while tracing the same amount of samples per pixel (100 spp). By increasing β, the error and time required to render approaches the
time taken by path tracing. (b) Equal spp convergence graphs show that with lower β values, our method converges to a lower error faster
(since same spp takes less time) but to a biased result at high spp (MAPE of path tracing eventually crosses over to a lower value). With
higher β, our method’s bias reduces eventually approaching path tracing.

Abstract
Efficiently and accurately rendering hair accounting for multiple scattering is a challenging open problem. Path tracing in hair
takes long to converge while other techniques are either too approximate while still being computationally expensive or make
assumptions about the scene. We present a technique to infer the higher order scattering in hair in constant time within the path
tracing framework, while achieving better computational efficiency. Our method makes no assumptions about the scene and
provides control over the renderer’s bias & speedup. We achieve this by training a small multilayer perceptron (MLP) to learn
the higher-order radiance online, while rendering progresses. We describe how to robustly train this network and thoroughly
analyze our resulting renderer’s characteristics. We evaluate our method on various hairstyles and lighting conditions. We
also compare our method against a recent learning based & a traditional real-time hair rendering method and demonstrate
better quantitative & qualitative results. Our method achieves a significant improvement in speed with respect to path tracing,
achieving a run-time reduction of 40%−70% while only introducing a small amount of bias.

CCS Concepts
• Computing methodologies → Ray tracing; Parametric curve and surface models; Volumetric models;

† Work done during an internship at Meta Reality Labs Research

1. Introduction

Accurately rendering hair & fur is a challenging open problem.
The appearance of hair is the result of light-matter interactions at

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

e14895 pp. 1 - 13

DOI: 10.1111/cgf.14895

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14895

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

different scales. On the one hand, local scattering at each individ-
ual fiber is responsible for glints and anisotropic highlights. On the
other hand, multiple scattering of light between the potentially large
number of hair strands generates a colored low-frequency shading,
especially in light colored hair.

It is precisely this combination of high-frequency local scatter-
ing and potentially large number of global scattering events that
make hair rendering computationally expensive: light transport in
hair involves tracing rays for a near caustic light path and the fi-
nal color is obtained only when the radiance from many such paths
is averaged. Even with hardware accelerated ray tracing, the large
number of scattering events result in slow convergence. Thus, ac-
celerating computation and convergence of path tracing in hair is
an active research area.

Several works have been proposed that accelerate multiple scat-
tering by caching the illumination [MM06; MWM08], approxi-
mating it using diffusion [YSJR17], or by means of asymptotic
approximations under certain assumptions such as dual scatter-
ing [ZYWK08]. These methods are either too complex while gain-
ing little computational advantage, or make assumptions about the
scene & lighting or impose strong approximations lacking the vi-
sual fidelity of hair.

Our work starts from the observation that light transport in hair
presents two different regimes: (1) A low order scattering term re-
sponsible for highlights, glints and a directional glow, (2) A high
order scattering term which further contributes to this glow along
with a diffuse-like scattering component. These regimes are not ex-
clusive to hair and manifest in other discrete media as well. We thus
follow a similar approach to methods proposed for granular media
[MPH*15; MPG*16] and decompose the light transport of hair into
these regimes.

Similar to these methods for granular media, our aim is to avoid
precomputations and assumptions on the scene structure. However,
unlike such methods and other hair rendering techniques, we aim
for: (1) constant time to render the high-order scattering compo-
nent, and (2) controllable bias and speedup of the renderer with an
accurate estimate of render time. To this end, we propose to use a
small multi-layer perceptron (MLP) to approximate the high order
scattering component on-the-fly.

Specifically, in our approach, rendering a frame consists of three
stages: In the first stage, we train an MLP, on a small fixed-size
dynamic set of light path pairs within the hair volume. Each pair
consists of a short path which can be chosen according to a given
render time budget, and a long path which is an extension of the
short path until termination. The MLP is tasked to learn the error
between these paths. In the second stage, we trace one short path
per pixel from the camera and accumulate its radiance. In the final
stage, the error of these short paths is inferred from the MLP and
corrected for, resulting in a final radiance accounting for low and
high order scattering. This process is repeated every frame which
progressively renders the scene. Since the MLP is always trained
and inferred on fixed size data, the time required for the first &
third stages is constant. This coupled with the fact that short paths
can be adjusted for a specific time budget gives an upper bound on
the render time.

We derive the quantity learnt by the MLP and show that it is
bounded and converges. We then describe a methodology to ef-
ficiently train and use the MLP within the rendering loop. We
demonstrate that our method renders the true color of the hair due
to multiple scattering in a short time as opposed to path tracing
which gradually recovers it. We further show that in the best case,
our method achieves a 40%−70% speedup in run-time at the cost
of minimal bias. We analyse our method extensively and show that
it naturally provides a control over its bias and speedup by control-
ling the maximum path depth β of these short paths. In effect, our
method can trade off less bias for more speedup & vice versa.

Fig. 1 demonstrates two characteristics of our method on messy
white hair: (a) smaller error & time required to trace equal num-
ber of samples per pixel as path tracing, (b) controllable bias &
speedup.

2. Related Work

Physically-based hair scattering. The seminal work of
Marschner and colleagues [MJC*03] modeled the scattering of hair
as a bidirectional curve scattering function (BCSDF) [ZW07], ap-
proximating each fiber as a dielectric filament with circular cross
section. Inspired by Marschner’s model, several works have been
proposed improving its accuracy [dFH*11; HHH22; XWM*20],
generalizing to elliptical cross sections [KM17; BP21], or mak-
ing it more practical for production scenarios [PHVL15; SPJT10;
CBTB16]. While advanced hair scattering models can improve the
efficiency of rendering, our work is independent of specific a scat-
tering model used and provides a general rendering acceleration so-
lution, with a focus on accelerating computations of multiple scat-
tering between hair strands.

Accelerating multiple scattering. Multiple scattering is respon-
sible of hair coloration, specially in light colored hair, but extremely
expensive due to the long light paths and forward scattering. Moon
and colleagues proposed to use photon mapping to cache the ra-
diance at the hair volume [MM06], which was later improved by
encoding radiance in spherical harmonics [MWM08]. Another ap-
proach for accelerating multiple scattering is to separate light trans-
port into different regimes (ballistic, directionally diffuse, diffuse):
Dual scattering [ZYWK08] approximated multiple scattering by
deriving closed-form approximations of the near and far scattering
components. Meng et al. [MPH*15] and Müller et al. [MPG*16]
used a similar light regime decomposition in the context of particu-
late media. Dual scattering however fails to reproduce the soft look
and saturation visible in light colored hair. Yan et al. [YSJR17] ex-
tended dual scattering to fur, by adding a diffusion term. For human
hair, their method falls back to dual scattering.

Hery and colleagues [FHP*18, Chap.7] proposed to reduce the
multiple scattering albedo of hair (i.e. its overall color) by some
factor and compensate for the energy loss by multiplying the il-
lumination by the same factor. This effectively reduced the path
weight, increasing the possibility of early termination which led
to increased efficiency. They demonstrated that by using a factor
of two, render times decreased by 45% while achieving a similar
look. However, increasing the factor will result in shorter paths with
larger deviation from the desired look.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

2

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

Zhu et al. [ZZW*22] accelerated multiple scattering in fur by
reducing the fur density, and increasing the fiber thickness using
learned aggregate scattering behaviour; this approach is similar to
the similarity theory [WPW89; ZRB14] where the optical param-
eters of general media are altered for reducing the density of the
medium and therefore reducing the amount of scattering events.
However, their approach is not directly applicable to hair with long
unordered strands, unlike fur. This makes the aggregation of hair
difficult.

Our method takes a different approach, avoiding precomputa-
tions and accelerating hair rendering by inferring high-order scat-
tered radiance in hair using an online-trained & small multi-layer
perceptron.

Deep Learning in Rendering. A number of works have focused
on accelerating global illumination using neural networks. As men-
tioned above, Zhu et al. [ZZW*22] aggregate hair strands and learn
the aggregated scattering with an MLP. In the context of optically
thin, high albedo volumes, Kallweit et al. [KMM*17] render at-
mospheric clouds by training a network to learn the spatial and
directional distribution of radiant flux from cloud exemplars. For
translucent, optically thick materials, Vicini et al. [VKJ19] pro-
posed to learn the Bidirectional Subsurface Scattering Distribution
Function (BSSRDF) of a target object with any shape and mate-
rial properties. Also for translucent objects, Che et al. [CLZ*20]
infer material properties from images by training an auto-encoder
with a differentiable Monte Carlo volume renderer as a decoder. All
of these methods pre-train neural networks for lower-dimensional
sub-problems (the scattering functions). Our approach on the other
hand, works directly in the high-dimensional path space, and learns
a mathematically well-defined function of the total radiance at a
given ray.

With a more generic goal, Müller et al. [MMR*19] presented
neural importance sampling, an approach for online learning of
the directional distributions and path sampling and guiding for
simulation of light transport, as well as a neural version of con-
trol variates [MRKN20]. Closer to our work, Müller and col-
leagues [MRNK21] presented a neural radiance caching technique
that approximates a 5D radiance field of a scene. Differently, we
tackle the specific case of hair volumes, which exhibit high fre-
quencies both spatially (i.e. there are around 200k hair strands in
a human head) and angularly (highly directional, anisotropic scat-
tering). Such properties, which are particularly enhanced for light
colored hair where light paths undergo many bounces inside the
volume, make the previous techniques either impractical or lack the
visual fidelity. Instead of learning the complex 5D radiance field in
the hair volume, we train a similar small MLP to learn and infer the
error between biased low-order scattered radiance and full unbiased
scattered radiance (effectively, high-order scattered radiance).

3. Preliminaries

We begin with a recap on path tracing, which also helps establish
notation of our paper. We also briefly describe Russian roulette, a
technique to achieve early termination of low energy paths. Our
method is described in Sect. 4.

3.1. Path Tracing

The radiance L at arriving at a pixel is modeled by the path inte-
gral [Vea98] as:

L =
∞
∑
k=1

∫
Ωk

f (x̄)dµ(x̄), (1)

where Ωk is the space of light paths x̄ = x0..xk ∈ Ωk of length
k with k + 1 path vertices. xk and x0 are 3D points placed on a
light source and the sensor respectively, and the differential mea-
sure dµ(x̄) models the area/volume integration for each vertex in
the path. The path contribution f (x̄) is defined as:

f (x̄) = Le(xk → xk−1)T (x̄), (2)

where Le is the emitted radiance of the light source at xk towards
xk−1, and T (x̄) is the path throughput:

T (x̄) =
k−1

∏
i=1

S(xi+1 → xi → xi−1)G(xi+1 ↔ xi), (3)

where S is the scattering kernel (e.g. the BCSDF in the case of hair)
and G the the geometric term between xi and xi+1.

Path tracing numerically approximates Eq. (1) using the unbi-
ased Monte Carlo (MC) estimator:

L ≈ ⟨L⟩= 1
N

N

∑
i=1

f (x̄i)

p(x̄i)
, (4)

where x̄i is a randomly generated light path sampled from Ω ∈
{Ω1,Ω2, ...,Ω∞} with probability p(x̄i). In practice, path tracing
recursively builds this path by sampling new vertices starting from
x0, until a light source is reached. In case of scenes with hair and
especially light coloured hair, the radiance estimate ⟨L⟩ is dom-
inated by multiple scattering, which means most of the sampled
paths x̄i need to be long and should also cover a wide range of
path lengths. However the energy contribution of deeper path ver-
tices drops quickly for a few of these lights paths, thus lowering the
overall efficiency.

3.2. Path Termination with Russian Roulette

Russian Roulette (RR) is used to improve efficiency of ⟨L⟩ by
probabilistically terminating long paths with low energy. During
recursive sampling of path vertices, at each vertex or scattering
event x j on x̄, the path is terminated by a probability pRR(x j).
The integral at the terminated vertex is not evaluated and is ze-
roed. We note that an estimate that better represents this integral
can be used instead [SSK03] which may help to further reduce
variance, and our method as is can potentially provide this esti-
mate. There are multiple ways for computing pRR(x j), based on
the single scattering albedo at x j [AK90], the expected incident
radiance [VK16; RGH*22], or the accumulated subpath weight
w(x̄ j) = T (x̄ j)/p(x̄ j) [PJH16], with x̄ j = x0..x j.

We use RR based on accumulated subpath weight. Typically, RR
termination is applied only after the first n path vertices (for exam-
ple, PBRT [PJH16] uses n = 3). However, we apply RR from n = 1
for our method and path tracing. We note that our method and for-
mulation is independent of the choice of n.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

3

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

Russian Roulette
terminated Hair Volume

Unbiased Radiance
Estimate

Network
inference point

Camera

=-

≈+

Rendering

Training

Max
depth β

Biased Radiance
Estimate

Figure 2: We learn the error ⟨E⟩ (Eq. 6) between radiance esti-
mates of long unbiased paths ⟨L⟩ (red, Eq. 1) and short biased
paths ⟨L′⟩ (blue, Eq. 5) using an MLP. The short paths are traced
until termination by Russian Roulette (RR) or upto a small max
depth β and the long paths are traced until termination by RR. The
network σ is trained to reproduce ⟨E⟩ = ⟨L⟩− ⟨L′⟩. During ren-
dering, the radiance at the camera is computed as the radiance of
the short path plus the error inferred by the network at the primary
path vertex (green). The thick yellow lines depict hair strands.

4. Method

In this section, we describe our method to approximate higher order
radiance in hair using an MLP. We begin by setting a maximum
depth β << ∞ in Eq. (1), giving the radiance L′ arriving at the
pixel:

L′ =
β

∑
k=1

∫
Ωk

f (x̄)dµ(x̄). (5)

We estimate ⟨L′⟩ inplace of ⟨L⟩ during rendering. Modifying
Eq. (1) in this way effectively sets a maximum depth for path ter-
mination, which introduces bias/error in ⟨L′⟩, given by:

E = L−L′

=
∞
∑
k=1

∫
Ωk

f (x̄)dµ(x̄)−
β

∑
k=1

∫
Ωk

f (x̄)dµ(x̄)

=
∞
∑

k=β+1

∫
Ωk

f (x̄)dµ(x̄),

(6)

which we can estimate using the Monte Carlo estimate ⟨E⟩ in the
same fashion as Eq. (4). This error estimate ⟨E⟩ is bounded and
converges in expectation, and captures the missing higher-order
scattering component in ⟨L⟩. In effect, ⟨E⟩ represents the error be-
tween the expected value of unbiased path contributions & the con-
tribution from early terminated paths. Furthermore, ⟨E⟩ is itself un-
biased, since its form is similar to Eq. (4), except that the paths x̄
are instead sampled from Ω ∈ {Ωβ+1,Ωβ+2, ...,Ω∞}.

We task an MLP σ to learn ⟨E⟩ at the primary path vertex x1,
given the view direction ω = x0−x1

||x0−x1|| and the hair tangent t1 at x1:

σ(x1,ω, t1)≈ ⟨E⟩. (7)

Fig. 2 shows an overview of our method, which computes ⟨E⟩ to
train the network σ and uses the network’s inferred output at the
primary path vertex to correct for the bias in ⟨L′⟩.

Discussion. We aim to avoid precomputations, which precludes
training the MLP σ offline. Therefore, limited by the time con-
straints of online training and inference, we use a small MLP. Fur-

β=1 β=2 β=5 β=9

Figure 3: Visualization of the target function ⟨E⟩ and its learned
approximation for β = 1,2,5 and 9. For lower values of β, the tar-
get function has higher frequencies which the network is unable to
reproduce. At higher β’s, the target function is lower frequency and
the network can better represent it, which is also confirmed by the
MAPE values. The full rendering can be found in Fig. 4

thermore, the computation of ⟨E⟩ to train the network is done on
a small percentage (∼ 1%) of the total paths traced per frame. In
Sec. 5, we describe our implementation to efficiently train σ during
rendering.

Learning an estimate of the error ⟨E⟩ instead of directly learning
an estimate of the full radiance field has two major advantages:

• The frequency of ⟨E⟩ over paths x̄ starting at x0 and with a shared
common first hair vertex x1 is low: The magnitude of L′ closely
follows the magnitude of L for their single sample MC estimates
thanks to RR termination, given that these estimates share the
same path vertices. This makes ⟨E⟩ smooth over paths and of
lower magnitude.

• The estimate ⟨E⟩ is a high-order radiance estimate, and thus has
lower spatial frequency compared to ⟨L⟩, which has high fre-
quencies as a result of complex primary visibility within hair
and high dynamic range BCSDF lobes. This also follows from
the observation that high order scattering in hair is diffuse-like
[MJC*03; dFH*11; MM06].

We demonstrate this by visualizing the target signal ⟨E⟩ and its
learned approximation with σ in Fig. 3, for β = 1,2,5 & 9. For
lower β’s, ⟨E⟩ has higher frequencies (highlights) due to the spec-
ular & directional nature of the hair BCSDF. Although the network
is able to sufficiently capture spatial variation, it does not repro-
duce these highlights. For higher β’s, the frequency is attenuated
and the network is better able to reproduce the target signal. This
is also confirmed by the mean absolute percentage error (MAPE)
[LKB*22] values computed with respect to ⟨E⟩, which are lower
for higher β’s. Thus, choosing ⟨E⟩ as the target for the MLP makes
it robust and better represent the signal, more so since we are lim-
ited to a small MLP with limited learning capacity.

Our second goal of controllable bias and efficiency is also nat-
urally achieved by means of the parameter β. For large β, ⟨E⟩ has
even lower frequency and amplitude (since the error vanishes) and
thus the network’s output closely matches the ground truth. In the
limit for very large β, ⟨E⟩ approaches zero, and our method is
equivalent to unbiased path tracing. This comes at the cost of ef-
ficiency, since the rendering cost with ⟨L′⟩ approaches that of ⟨L⟩,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

both consisting of long paths. On the other hand, for a very small
β, ⟨E⟩ increases in frequency, starting to reach the network’s learn-
ing capacity. This not only results in an overall increase in bias, but
the efficiency also increases since rendering with ⟨L′⟩ now requires
shorter paths to be traced.

In summary, learning the error instead of the full radiance field
makes the network learning robust and better match the target sig-
nal. Furthermore, our formulation for learning this error naturally
allows for control over the bias and speedup. In the next section, we
describe our implementation for efficiently training σ while render-
ing & give details on the network structure.

5. Implementation

We implement our approach using CUDA and OptiX [PBD*10]
for hardware accelerated ray tracing and use tiny-cuda-nn [Mül21]
for efficient network evaluation and training. We use path tracing
as a baseline within the same framework. For better convergence,
we use Quasi Monte Carlo with Sobol random number generation
for our method as well as path tracing. Furthermore, all direct light-
ing computations use multiple importance sampling [Vea98] with
BCSDF and environment map importance sampling. Alg. 1 shows
the pseudo code for rendering a frame using the inferred error from
the network, while also training it per frame.

Training. The training procedure is given in lines 1-10. We train
the network on paths originating from randomly sampled points
that are visible to the camera. Given a sampled point x on hair,
we trace two paths: A short path with maximum depth β, and a
long path which extends this short path until termination (lines 2-
6). This is depicted by the use of the same random number sequence
for tracing these paths (line 4). In practice, the computations of the
short path are reused. Note that both short and long paths are termi-
nated by RR, although short paths are strictly terminated at bounce
β. The sampled short and long paths are used to estimate Eq. (5)
and Eq. (1) respectively. We then compute the error (Eq. (6)) in
line 7, and update the network weights using the relative L2 lumi-
nance loss [LMH*18; MRNK21] (lines 8-10). We use the same
training setup (optimizer, learning rate) as [MRNK21].

Rendering. Rendering a frame consists of two stages, which are
described in lines 17-28 in Alg. 1. In the first stage, the network is
trained for one second (lines 19-21), ensuring that large errors from
an untrained network are not propagated into the final render. A cru-
cial point to note is that this training is frame independent, which
allows for more initial training iterations and a better converged
network. The next stage is responsible for both training the net-
work and rendering the frame. After the initial training and before
a sample is traced, the network is trained on a fixed size (size N),
small & dynamically sampled set of path pairs (lines 23-25), start-
ing from a visible point. Using a small set is crucial since training
is repeated for every sample that is traced. In our implementation,
we set the number of training samples N = 16,384, which is 1% of
our render resolution of 1024×1024. After training, for each pixel
we trace short paths with maximum depth β and estimate Eq. (5)
(line 26, 27, 13). We also record a G-buffer at the primary inter-
section of the camera rays. We then evaluate the network to get
inferred error estimate E′ and add it back to the biased short path
estimate L′ (lines 14-16).

ALGORITHM 1: Rendering a frame while training the MLP

1 Def trainNetwork(β, x):
2 t = getHairTangent(x)
3 ωo = norm(cam.origin - x)
4 ξ = randomSequence() // Seq. of rand. num
5 L = pathTrace(x, ωo, k ∈ {1,∞}, ξ) // Eq. (1)
6 L′ = pathTrace(x, ωo, k ∈ {1,β}, ξ) // Eq. (5)
7 E = L - L′ // Eq. (6)
8 E′ = σ[hashGrid(x), ob(ωo), ob(t)] // MLP σ forward
9 loss = Lrel

2 (E, E′) // Rel. L2 luminance
10 loss.backward() // Update weights of σ

11 Def renderPixel(pix, β):
12 /* Trace short path & get G-Buffer */
13 L′,Gbu f = pathTraceCam(pix, k ∈ {1,β}) // Eq. (5)

/* Evaluate MLP σ on G-Buffer */
14 E′ = σ[hashGrid(Gbu f .x), ob(Gbu f .ωo), ob(Gbu f .t)]

/* Add inferred error */
15 L = L′+E′

16 return L

17 Def renderFrame(β: Max. depth, SPP: spp, N: # Train Samples):
18 /* Init. training for 1 sec */
19 while time ≤ 1sec do
20 x = sampleVisible()
21 trainNetwork(β, x)

/* Render Loop */
22 for sample in SPP do
23 for n in N do
24 x = sampleVisible()
25 trainNetwork(β, x)

26 for pix in PIXELS do
27 L = renderPixel(pix, β)
28 accumulate(pix, L)

Network structure. We use a 64-neurons wide and 2-layers
deep MLP σ with ReLU activations (except the last layer). We use
a multi-resolution hash grid (hashGrid)[MESK22] for encoding the
3D point x, and one-blob (ob) encoding [MMR*19] for the view di-
rection ωo and the hair tangent t (Alg. 1, line 14). Multi-resolution
hash grids can better represent the target signal than frequency en-
coding with a minimal performance penalty, and have also been
shown to work well for radiance caching [MESK22].

Discussion. Since we use OptiX and CUDA in our implementa-
tion, the loops in line 19, 23, 26 of Alg. 1 are parallelized across
GPU cores. Thus, the function sampleVisible returns a buffer of
visible points on hair. Consequently, the function trainNetwork op-
erates on this buffer in one single pass. Similarly, the function ren-
derPixel operates on a buffer of all image pixels.

6. Results, Analysis & Comparison

In this section, we show the rendering results of our method and
analyse its characteristics. We also compare against Neural Radi-
ance Caching [MRNK21], which uses a similar MLP for inferring
the full radiance field, and Dual Scattering [ZYWK08] which is
a real-time method for rendering multiple scattering in hair. We

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

5

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

C
ur

ly
B

lo
nd

(O
ut

do
or

)

5000 spp Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

M
es

sy
B

lo
nd

(O
ut

do
or

)

5000 spp Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

St
ra

ig
ht

B
lo

nd
(O

ut
do

or
)

5000 spp Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

Figure 4: We show results of our method for β = 1,2,5,9 & 13 and compare to path tracing at 5k spp, along with false colour difference
images with respect to path traced reference (10k spp). We also report time (in seconds) and the MAP error for all variants. Our method
converges in error to unbiased path tracing for large β, while exhibiting larger bias at lower values. On the other hand, at lower β, the time
taken for 5k spp is halved to that of path tracing, increasing for larger values. This demonstrates the control that our method provides over
it’s bias & speedup.

demonstrate better qualitative & quantitative results than both these
approaches.

To evaluate our method on a spectrum of challenging scenes, we
use three different hair styles: Curly, Messy & Straight, and two dif-
ferent HDR lighting setups: Indoor & Outdoor. Table 1 shows the
statistics of different hair styles. Rendering is done with Disney’s
hair BCSDF model [CBTB16] for four absorption coefficients
resulting in different hair colors: White σa = (0.01,0.01,0.01),
Blond σa = (0.06,0.1,0.2), Brown σa = (0.2,0.3,0.5) and Black
σa = (3.35,5.58,10.96). We note that significant multiple scatter-
ing occurs with small σa values and our goal is to accelerate its
computation. Thus, we majorly show results on Blond & White
hair. Results on other σa values are shown for completeness. We

also note that renderings of our method are generated by initially
training the network for the one second (Sect. 5). For a fair compar-
ison, we start path tracing and all other methods without the initial
one second gap (i.e. start rendering from 0 seconds), unless other-
wise stated. Furthermore, the network continues training for each
sample that is traced, as mentioned in Sect. 5.

6.1. Rendering Results

High sample count, equal spp. Fig. 4 shows our results at var-
ious values of β at 5k samples per pixel (spp) compared to path
tracing for the same sample count. We also show false color dif-
ference images and report the MAPE metric with respect to a path
traced reference rendered at 10k spp. We also show render times

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

M
es

sy
W

hi
te

(I
nd

oo
r)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

M
es

sy
B

lo
nd

(I
nd

oo
r)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

M
es

sy
B

ro
w

n
(I

nd
oo

r)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

M
es

sy
B

la
ck

(I
nd

oo
r)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

Figure 5: Equal spp (100 spp) renders of our method for β = 1,2,5,9,13 compared to path tracing. For white hair, our method with β = 1
achieves one-third the error in one-fourth the time. These metrics approach path tracing with increasing β. For darker hair, the gain is less
pronounced but still significant. Our method behaves equivalently to path tracing on black hair.

(in seconds) for both methods. This comparison illustrates the be-
haviour of the bias introduced by our method for a high spp and
also demonstrates the bias-speedup control. At β = 1, our method

achieves the maximum speedup of ∼ 60% with respect to path trac-
ing. However, the MAP error is also larger due to higher bias from
the network, as also shown by the difference images. In general,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

7

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

C
ur

ly
B

lo
nd

(O
ut

do
or

)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

M
es

sy
B

lo
nd

(O
ut

do
or

)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

St
ra

ig
ht

B
lo

nd
(O

ut
do

or
)

Ours β=1 Ours β=2 Ours β=5 Ours β=9 Ours β=13 Path Tracing

Figure 6: We calculate variance of path tracing at 100 spp, and show results, timings & spp required for our method with β = 1,2,5,9 &
13 to reach the same variance. The variance of each method is computed as the mean-squared error (MSE) with it’s own fully converged
counterpart. This figure in combination with Fig. 4, illustrates the effect of β to trade bias in favor of performance, and shows that our method
achieves better performance than path tracing for mid-range β values.

for low values of β, the error is larger at deeper points in the hair
volume or where there is significant multiple scattering. This er-
ror is largely due to the network reaching its learning capacity and
averaging its output. At higher values of β, our method produces
results that closely match path tracing, with similar run-time. In the
end, after a certain threshold of β (e.g. 13), our method gains lit-
tle benefit and could lead to increased run-time from the additional
overhead of network training and inference steps.

Low sample count, equal spp. We show equal spp (100 spp)
renderings of our method on different scenes in Fig. 5. This fig-
ures serves to illustrate the benefit of our method at low spp. For
white hair which has the most multiple scattering, our method with
β = 1 achieves about one-third the error in about one-fourth the
time. These values approach that of path tracing with increasing
β. With blond hair and in general darker hair, the gain in run-time
and error decreases, albeit still being significant. On black hair our

Table 1: Number of strands of different hair styles, along with
run-times & MAPE of our method with β = 1 and Path Tracing
(PT) for 100 spp. Metrics are calculated with blond hair σa =
(0.06,0.1,0.2) and indoor HDR lighting. Our method converges
to around half the error in half the time compared to path tracing.

Blond (Indoor), 100 spp
Ours (β = 1) PT

Hair Geom. # Strands Sec. MAPE Sec. MAPE
Curly 60k 4 0.028 10 0.064

Messy 100k 4 0.026 10 0.056
Straight 100k 4 0.020 10 0.046

method matches the performance and quality of path tracing for
all β values. Visually, our method has lesser noise and takes lesser

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

Messy White (Indoor) Messy Blond (Indoor) Messy Brown (Indoor) Messy Black (Indoor)

0 100 200 300 400 500
Time (s)

0.02

0.04

0.06

0.08

0.10

0.12

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 100 200 300 400 500
Time (s)

0.02

0.04

0.06

0.08

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 100 200 300
Time (s)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 50 100 150 200
Time (s)

0.01

0.02

0.03

0.04

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

Figure 7: Equal time convergence graphs with the MAP error metric. Our method showcases the most benefit for light hair, where the
convergence is significantly faster than path tracing for lower β values. For higher values, the convergence starts to approach path tracing.
For darker hair, the convergence is closer to that of path tracing, for all β’s. We refer the reader to the supplementary video to better
understand the convergence behaviour.

Messy White (Indoor) Messy Blond (Indoor) Messy Brown (Indoor) Messy Black (Indoor)

0 2000 4000
spp

0.01

0.02

0.03

0.04

0.05

0.06

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 2000 4000
spp

0.01

0.02

0.03

0.04

0.05

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 2000 4000
spp

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

M
AP

E
Path Tracing
Ours β=2
Ours β=5
Ours β=9

0 2000 4000
spp

0.005

0.010

0.015

0.020

0.025

0.030

M
AP

E

Path Tracing
Ours β=2
Ours β=5
Ours β=9

Figure 8: Equal spp convergence graphs with the MAP error metric. Our method converges to a lower error for the same spp, especially for
light hair. These graphs also show that at high spp, our method converges to a biased result, and this bias can be reduced by using higher β

values.

time to trace 100 spp compared to path tracing, especially for light
coloured hair. Table 1 consolidates the run-time and MAPE values
for blond hair with different hair styles rendered for 100 spp with
indoor HDR lighting.

Equal variance. We analyze the convergence characteristics of
our method by comparing equal levels of variance for different β

against path tracing (Fig. 6). For each β, the variance is computed
as the render’s mean-squared error (MSE) with respect to it’s own
fully converged counterpart (10k spp). This figure in combination
with Fig. 4, illustrates the effect of β to trade bias in favor of perfor-
mance. For lower β, our method can achieve the same levels of vari-
ance as the path tracing with much fewer spp and lower time. This
is at the cost of progressively introducing more bias as β decreases,
that nevertheless remains reasonable at its peak β = 1, depending
on the target application. Our method achieves better performance
for both low and high β until up to very high values, where obvi-
ously the learning overhead does not compensate for the very little
energy left, in which case the performance of path tracing is better.

Convergence. To further analyze the convergence characteris-
tics, we plot the MAP error against time for our method and path
tracing in Fig. 7. We also similarly plot the MAP error against spp
in Fig. 8. These graphs are plotted for messy white, blond, brown &

black hair styles for β = 2,5,9. Note that, as mentioned before, we
train our network for one second before rendering starts, while the
rendering is started immediately for path tracing. These plots show
that in general, our method converges to a lower error faster, espe-
cially for light hair, even with the additional training delay at the
beginning. Note however that for larger values of β, our method’s
convergence approaches that of path tracing, as at these values the
paths are longer and there is less bias from the network. Since path
tracing converges to an unbiased solution, unlike our method, there
always exists a time at which the error of path tracing will crossover
to a lower value than that of our method. This is shown in Fig.
8, where for very large spp, the error of path tracing is lower. For
darker hair, both extremes of β result in similar convergence closely
following that of path tracing. To that end, our method is less bene-
ficial for darker hair. We refer the reader to the supplemental video
for a better judgement of the convergence behaviour for different
hair styles and β’s.

Efficiency. To further study our method’s characteristics with re-
spect to β, we analyze it’s efficiency for 5k spp renders with respect
to a 10k spp reference. We compute efficiency as 1

time·error , with
time in seconds and the MAP error. Note that efficiency is typically
computed using variance instead of error; however, we use the lat-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

9

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

Messy White Messy Blond Messy Brown Messy Black

1 5 9 13 17 21 25 29
β

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ef
fic
ie
nc
y

Indoor
Outdoor

1 5 9 13 17 21 25 29
β

0.6

0.7

0.8

0.9

Ef
fic
ie
nc
y

Indoor
Outdoor

1 5 9 13 17 21 25 29
β

0.9

1.0

1.1

1.2

1.3

Ef
fic
ie
nc
y

Indoor
Outdoor

1 5 9 13 17 21 25 29
β

1.5

1.6

1.7

1.8

1.9

2.0

Ef
fic
ie
nc
y

Indoor
Outdoor

Figure 9: We plot β vs. efficiency graph to analyse the characteristics of our method. Efficiency is computed as 1
time·error with time in seconds

& the MAP error. For white hair, maximum efficiency is achieved at larger β ∈ {13,25}. This peak shifts as the hair gets darker. Within a
hair style, the maximum efficiency depends on the lighting condition, however the peak is roughly in a similar β range.

4.0s 4.0s: Col. Diff. 6.0s 6.0s: Col. Diff. 4.0s 4.0s: Col. Diff. 6.0s 6.0s: Col. Diff.

Figure 10: Our method is beneficial at low spp & small render times to get an accurate estimate of the true color of hair, as shown in the
color difference images which have a larger color component for path tracing.

Table 2: Decomposition of timings of our method and path tracing
(PT). For our method, we show timings for tracing rays upto a max
path depth β along with training and inference timings. All timings
are in milliseconds (ms) and averaged over ten runs.

Ours time (ms) for 1spp
Hair Geom. β = 2 β = 5 β = 9 Train Infer PT

Curly 46 69 96 3 0.05 112
Messy 44 69 89 2 0.06 117

Straight 45 64 97 2 0.06 116

ter to account for both bias and variance, which helps us evaluat-
ing which value of β achieves the maximum speedup with the least
bias. The plots are shown in Fig. 9 for messy white, blond, brown &
black hair styles, each with two different lighting setups (indoor &
outdoor). For white hair, maximum efficiency is achieved at larger
β ∈ {13,25}. This peak shifts as the hair gets darker, ultimately be-
ing the most efficient at β = 1 for black hair. Within a hair style, the
maximum efficiency depends on the lighting condition (max. value
is different for indoor & outdoor lighting). However, the peak is
roughly in the same β range for both lighting types.

Progressive, equal time. We demonstrate another benefit of our
method at low spp & small render times: to get an accurate visual
estimate of the true color of hair. Fig. 10 shows equal-time renders

of our method with β = 1 compared to path tracing, sampled at dif-
ferent time budgets, for curly blond and messy white hair. We also
show a color difference image with respect to a 10k spp path traced
reference. Path tracing gradually recovers the color with time as
more samples are traced. This can be seen in the difference im-
ages where they have a larger color component for path tracing.
On the other hand, the difference images of our method show that
the difference is majorly in the intensity. Indeed, as compared to
path tracing, our method produces the multi-scattered color the hair
from the start. This is useful in situations where the parameters of
the hair need to be constantly adjusted to achieve a desired look. In
such situations, it is beneficial to have an accurate estimate of how
the hair looks from the start, allowing quicker iteration.

Upper bound on run-time. By fixing β, we get an estimate of
the maximum number of rays that need to be traced for each pixel,
giving an upper bound on render time. This coupled with the fact
that the network training and inference take constant time (since
N = 16,384 for training, and N = 1024×1024 for inference, Sect.
5, Alg. 1), we get an accurate estimate of the total time required to
render a 1spp frame. Table 2 shows timings to render one spp for
the three hair styles, averaged over ten runs. Note that the training
& inference timings of our method are the same irrespective of β,
as mentioned above.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

M
es

sy
W

hi
te

(I
nd

oo
r)

NRC NRC++ Dual Scattering Ours β=1 Ours β=5 Reference

C
ur

ly
B

lo
nd

(I
nd

oo
r)

NRC NRC++ Dual Scattering Ours β=1 Ours β=5 Reference

C
ur

ly
B

lo
nd

(O
ut

do
or

)

NRC NRC++ Dual Scattering Ours β=1 Ours β=5 Reference

Figure 11: We compare 5k spp renderings of our method for β = 1,5 to 5k spp renderings of Neural Radiance Caching (NRC) [MRNK21],
dual scattering [ZYWK08] & a 10k spp path traced reference. We also compare to a version of NRC where all the training paths are unbiased
(NRC++). All these methods fail to reproduce the soft look and saturation in hair. Our method with β = 1, which is the most efficient but also
the most biased, not only achieves a lower MAP error in most cases, but also reproduces the saturation and soft look.

6.2. Comparison with previous work

Fig. 11 shows 5k spp renderings of our method for two values
of β = 1,5 in comparison to 5k spp renders of Neural Radiance
Caching (NRC) [MRNK21], dual scattering [ZYWK08] & a 10k
spp path traced reference. We also compare to a modified version
of NRC, referred to as NRC++.

Dual Scattering. Dual scattering is a real-time hair rendering
method that efficiently approximates multiple scattering. We use it
in the offline context with ray-shooting, as described in their paper.
In essence, at the primary path vertex, we shoot multiple rays to-
wards the light source and apply dual scattering for each ray and
average their radiance to obtain the final color. Renders using dual
scattering are unable to reproduce the soft look and miss a signifi-
cant component of multiple scattering, especially for light hair (Fig.

11, top row). For darker hair, the renders are slightly better, but still
have considerable bias, as depicted by the MAPE values.

NRC. NRC shares a similar approach to ours: They also use
a small MLP [Mül21] to efficiently compute global illumination.
However, our approach differs in the following:

• We learn on the final accumulated radiance, instead of radiance
at each path vertex. The latter is useful in surfaces (NRC’s target
application) with energy quickly degrading deeper in the path,
and results in more training data for the same number of paths.
However, in hair, this leads to averaging in the network due to
excessively long path lengths.

• We train on higher order radiance (E in Eq. (6)), which has much
less frequency than the full radiance field. The small MLP is thus
able to represent the target signal better (Fig. 3, Sect. 4).

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

11

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

• Our method & formulation provide explicit control over the ren-
der’s bias & speedup. The bias in NRC however cannot be di-
rectly controlled.

As shown in the figure, NRC renders do not faithfully reproduce
the color saturation from multiple scattering.

NRC++. NRC takes inspiration from Q-learning and trains the
neural network on it’s own output. Only a small percentage of their
training paths are truly unbiased. We found that using this approach
leads to extremely short paths altogether, which are unable to cap-
ture higher-order scattering in hair. We thus also compare to a ver-
sion of NRC where all the training paths are traced in an unbiased
fashion. We refer to this version as NRC++. As shown in Fig. 11,
NRC++ is better able to capture the higher-order energy, as com-
pared to NRC which is darker, thanks to better training data. On
the other hand, renders of dual scattering result in similar MAPE
values as NRC++.

All of the above methods (NRC, NRC++, dual scattering) fail to
reproduce the soft look, saturation & multiple scattered component
in hair. Our method with β = 1, which is the most efficient but also
the most biased, not only achieves a lower MAP error in all cases,
but also reproduces the saturation and soft look.

6.3. Summary

Our method is most beneficial in light hair where it achieves a sig-
nificant speed & error reduction for small spp. Furthermore, the
amount of bias induced by our method can be controlled with β,
where larger values result in similar performance & quality as un-
biased path tracing. We show that there exists a value of β that
achieves the maximum efficiency for a given hair style. The param-
eter β also gives an upper bound on our method’s run-time. This
achieves both goals stated in Sect. 1. For darker hair, our method
behaves very similarly to unbiased path tracing and has little ben-
efit, suggesting that one could automatically adjust β based on the
luminance of the albedo or even turn our method off with dark hairs
and β> 9. Finally, the most biased variant of our method with β= 1
has a consistently lower error compared to NRC, NRC++ and dual
scattering. Visually, our method reproduces the saturation & soft
look better than previous approaches (Fig. 11).

7. Conclusions, Limitation & Future Work

We presented an approach to efficiently compute the multi-
scattered radiance in hair by learning error between biased short
paths and unbiased long paths using an MLP. We described an im-
plementation that efficiently and robustly trains this MLP on the
fly, while rendering. We demonstrate the ability of our approach
to provide a control over the bias & speedup, specifically allowing
to trade unbiasedness for gain run-time and vice versa. We thor-
oughly analyzed our method and demonstrated that it achieves a
speedup of 40%−70% with respect to path tracing at the cost of a
little bias. We also demonstrated that our method achieves the true
color of hair from the get-go, which is useful in look-dev situations.
Finally, we compared against an existing general technique that in-
corporated small MLPs to estimate global illumination (NRC) and

with an approximate hair rendering technique for recovering mul-
tiple scattering (dual scattering), and showed that our method qual-
itatively & quantitatively outperforms both.

A limitation of our approach stems from the initial training:
training the network from scratch for each frame in an animation
setting may lead to temporal artifacts. Although this could be alle-
viated by choosing a proper β, it needs further investigation. An-
other limitation is that since the network output is used directly, it
may exhibit patterns or colour inaccuracies (Fig. 6 first & last row,
Fig. 5 first row). This is less visible when the render converges, but
nonetheless needs to be carefully handled. Typical production set-
tings have multiple characters and thus multiple hair grooms in a
single frame. For such cases, using a single network with our ap-
proach may not be feasible due to network size & learning capacity
limitations. One can imagine the use multiple networks for each
hair groom and index the corresponding network for different pix-
els, depending on which groom is visible. However, this remains to
be investigated & efficiently engineered.

For future work, we would like to gracefully handle temporal
inconsistencies and efficiently render multiple hair-grooms to make
our approach truly suitable for production. We would also like to
push this technique towards the real-time realm, while maintaining
the visual fidelity. Finally, as mentioned in Sect. 3.2, the integral
at the last vertex of a path terminated by Russian Roulette can be
better estimated, potentially using our network’s output, to further
reduce variance. This is an interesting direction that can be explored
for path tracing of general scenes.

References
[AK90] ARVO, JAMES and KIRK, DAVID. “Particle transport and image

synthesis”. Proceedings of the 17th annual conference on Computer
graphics and interactive techniques. 1990, 63–66 3.

[BP21] BENAMIRA, ALEXIS and PATTANAIK, SUMANTA. “A combined
scattering and diffraction model for elliptical hair rendering”. Computer
Graphics Forum. Vol. 40. 4. Wiley Online Library. 2021, 163–175 2.

[CBTB16] CHIANG, MATT JEN-YUAN, BITTERLI, BENEDIKT, TAPPAN,
CHUCK, and BURLEY, BRENT. “A Practical and Controllable Hair and
Fur Model for Production Path Tracing”. Computer Graphics Forum.
Vol. 2. 35. 2016, 275–283 2, 6.

[CLZ*20] CHE, CHENGQIAN, LUAN, FUJUN, ZHAO, SHUANG, et al.
“Towards learning-based inverse subsurface scattering”. 2020 IEEE In-
ternational Conference on Computational Photography (ICCP). IEEE.
2020, 1–12 3.

[dFH*11] D’EON, EUGENE, FRANCOIS, GUILLAUME, HILL, MARTIN, et
al. “An energy-conserving hair reflectance model”. Computer Graphics
Forum. Vol. 30. 4. Wiley Online Library. 2011, 1181–1187 2, 4.

[FHP*18] FASCIONE, LUCA, HANIKA, JOHANNES, PIEKÉ, ROB, et al.
“Path tracing in production”. ACM SIGGRAPH 2018 Courses. 2018, 1–
79 2.

[HHH22] HUANG, WEIZHEN, HULLIN, MATTHIAS B, and HANIKA,
JOHANNES. “A Microfacet-based Hair Scattering Model”. Computer
Graphics Forum. Vol. 41. 4. Wiley Online Library. 2022, 79–91 2.

[KM17] KHUNGURN, PRAMOOK and MARSCHNER, STEVE. “Azimuthal
scattering from elliptical hair fibers”. ACM Trans. Graph. 36.2 (2017), 1–
23 2.

[KMM*17] KALLWEIT, SIMON, MÜLLER, THOMAS, MCWILLIAMS,
BRIAN, et al. “Deep scattering: Rendering atmospheric clouds
with radiance-predicting neural networks”. ACM Trans. Graph. 36.6
(2017), 1–11 3.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12

KT et al. / Accelerating Hair Rendering by Learning High-Order Scattered Radiance

[LKB*22] LIN, DAQI, KETTUNEN, MARKUS, BITTERLI, BENEDIKT, et
al. “Generalized resampled importance sampling: foundations of Re-
STIR”. ACM Trans. Graph. 41.4 (2022), 1–23 4.

[LMH*18] LEHTINEN, JAAKKO, MUNKBERG, JACOB, HASSELGREN,
JON, et al. “Noise2Noise: Learning Image Restoration without Clean
Data”. Proceedings of the 35th International Conference on Machine
Learning, PMLR. Vol. 80. 2018 5.

[MESK22] MÜLLER, THOMAS, EVANS, ALEX, SCHIED, CHRISTOPH,
and KELLER, ALEXANDER. “Instant Neural Graphics Primitives with a
Multiresolution Hash Encoding”. ACM Trans. Graph. 41.4 (July 2022),
102:1–102:15 5.

[MJC*03] MARSCHNER, STEPHEN R, JENSEN, HENRIK WANN, CAM-
MARANO, MIKE, et al. “Light scattering from human hair fibers”. ACM
Trans. Graph. 22.3 (2003), 780–791 2, 4.

[MM06] MOON, JONATHAN T and MARSCHNER, STEPHEN R. “Simulat-
ing multiple scattering in hair using a photon mapping approach”. ACM
Trans. Graph. 25.3 (2006), 1067–1074 2, 4.

[MMR*19] MÜLLER, THOMAS, MCWILLIAMS, BRIAN, ROUSSELLE,
FABRICE, et al. “Neural importance sampling”. ACM Trans. Graph. 38.5
(2019), 1–19 3, 5.

[MPG*16] MÜLLER, THOMAS, PAPAS, MARIOS, GROSS, MARKUS, et
al. “Efficient Rendering of Heterogeneous Polydisperse Granular Me-
dia”. ACM Trans. Graph. 35.6 (2016) 2.

[MPH*15] MENG, JOHANNES, PAPAS, MARIOS, HABEL, RALF, et al.
“Multi-scale modeling and rendering of granular materials”. ACM Trans.
Graph. 34.4 (2015), 1–13 2.

[MRKN20] MÜLLER, THOMAS, ROUSSELLE, FABRICE, KELLER,
ALEXANDER, and NOVÁK, JAN. “Neural control variates”. ACM Trans.
Graph. 39.6 (2020), 1–19 3.

[MRNK21] MÜLLER, THOMAS, ROUSSELLE, FABRICE, NOVÁK, JAN,
and KELLER, ALEXANDER. “Real-time neural radiance caching for path
tracing”. ACM Trans. Graph. 40.4 (2021), 1–16 3, 5, 11.

[Mül21] MÜLLER, THOMAS. tiny-cuda-nn. Version 1.7. Apr. 2021. URL:
https://github.com/NVlabs/tiny-cuda-nn 5, 11.

[MWM08] MOON, JONATHAN T, WALTER, BRUCE, and MARSCHNER,
STEVE. “Efficient multiple scattering in hair using spherical harmonics”.
ACM Trans. Graph. 27.3 (2008), 1–7 2.

[PBD*10] PARKER, STEVEN G, BIGLER, JAMES, DIETRICH, ANDREAS,
et al. “Optix: a general purpose ray tracing engine”. ACM Trans. Graph.
29.4 (2010), 1–13 5.

[PHVL15] PEKELIS, LEONID, HERY, CHRISTOPHE, VILLEMIN,
RYUSUKE, and LING, JUNYI. “A data-driven light scattering model for
hair”. Pixar Technical Memo 2 (2015) 2.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically based rendering: From theory to implementation. Morgan
Kaufmann, 2016 3.

[RGH*22] RATH, ALEXANDER, GRITTMANN, PASCAL, HERHOLZ, SE-
BASTIAN, et al. “EARS: efficiency-aware russian roulette and splitting”.
ACM Trans. Graph. 41.4 (2022), 1–14 3.

[SPJT10] SADEGHI, IMAN, PRITCHETT, HEATHER, JENSEN, HENRIK
WANN, and TAMSTORF, RASMUS. “An artist friendly hair shading sys-
tem”. ACM Trans. Graph. 29.4 (2010), 1–10 2.

[SSK03] SZÉSCI, LÁSZLÓ, SZIRMAY-KALOS, LÁSZLÓ, and KELEMEN,
CSABA. “Variance reduction for Russian-roulette”. (2003) 3.

[Vea98] VEACH, ERIC. Robust Monte Carlo methods for light transport
simulation. Stanford University, 1998 3, 5.

[VK16] VORBA, JIŘÍ and KŘIVÁNEK, JAROSLAV. “Adjoint-Driven Rus-
sian Roulette and Splitting in Light Transport Simulation”. ACM Trans.
Graph. 35.4 (July 2016). ISSN: 0730-0301. DOI: 10.1145/2897824.
2925912. URL: https : / / doi . org / 10 . 1145 / 2897824 .
2925912 3.

[VKJ19] VICINI, DELIO, KOLTUN, VLADLEN, and JAKOB, WENZEL.
“A learned shape-adaptive subsurface scattering model”. ACM Trans.
Graph. 38.4 (2019), 1–15 3.

[WPW89] WYMAN, DOUGLAS R, PATTERSON, MICHAEL S, and WIL-
SON, BRIAN C. “Similarity relations for the interaction parameters in
radiation transport”. Applied optics 28.24 (1989), 5243–5249 3.

[XWM*20] XIA, MENGQI, WALTER, BRUCE, MICHIELSSEN, ERIC, et
al. “A wave optics based fiber scattering model”. ACM Trans. Graph.
39.6 (2020), 1–16 2.

[YSJR17] YAN, LING-QI, SUN, WEILUN, JENSEN, HENRIK WANN, and
RAMAMOORTHI, RAVI. “A BSSRDF Model for Efficient Rendering of
Fur with Global Illumination”. ACM Trans. Graph. 36.6 (2017) 2.

[ZRB14] ZHAO, SHUANG, RAMAMOORTHI, RAVI, and BALA, KAVITA.
“High-order similarity relations in radiative transfer”. ACM Trans.
Graph. 33.4 (2014), 1–12 3.

[ZW07] ZINKE, ARNO and WEBER, ANDREAS. “Light scattering from
filaments”. IEEE Transactions on Visualization and Computer Graphics
13.2 (2007), 342–356 2.

[ZYWK08] ZINKE, ARNO, YUKSEL, CEM, WEBER, ANDREAS, and
KEYSER, JOHN. “Dual scattering approximation for fast multiple scat-
tering in hair”. ACM Trans. Graph. 27.3 (2008), 1–10 2, 5, 11.

[ZZW*22] ZHU, JUNQIU, ZHAO, SIZHE, WANG, LU, et al. “Practical
level-of-detail aggregation of fur appearance”. ACM Trans. Graph. 41.4
(2022), 1–17 3.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

13

https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/2897824.2925912
https://doi.org/10.1145/2897824.2925912
https://doi.org/10.1145/2897824.2925912
https://doi.org/10.1145/2897824.2925912

