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Figure 1: Hot tea lit by sunlight (a) forms a layer of levitating droplets that appear colored due to interference between scattered and
reflected paths, a phenomenon known as Quetelet scattering. To render this scene (b), we use our new scattering model to render a collection
of droplets, with density according to an image texture and parameters inferred from thermal imaging of a hot water surface. We also render
steam particles above the water surface. This paper analyzes the causes of iridescence in levitating droplets and steam and shows how to
render both phenomena. Photo by Vivien Parmentier.

Abstract
Looking at a cup of hot tea, an observer can see color patterns and granular textures both on the water surface and in the steam.
Motivated by this example, we model the appearance of iridescent water droplets. Mie scattering describes the scattering of
light waves by individual spherical particles and is the building block for both effects, but we show that other mechanisms
must also be considered in order to faithfully reproduce the appearance. Iridescence on the water surface is caused by droplets
levitating above the surface, and interference between light scattered by drops and reflected by the water surface, known as
Quetelet scattering, is essential to producing the color. We propose a model, new to computer graphics, for rendering this
phenomenon, which we validate against photographs. For iridescent steam, we show that variation in droplet size is essential to
the characteristic color patterns. We build a droplet growth model and apply it as a post-processing step to an existing computer
graphics fluid simulation to compute collections of particles for rendering. We significantly accelerate the rendering of sparse
particles with motion blur by intersecting rays with particle trajectories, blending contributions along viewing rays. Our model
reproduces the distinctive color patterns correlated with the steam flow. For both effects, we instantiate individual droplets and
render them explicitly, since the granularity of droplets is readily observed in reality, and demonstrate that Mie scattering alone
cannot reproduce the visual appearance.

CCS Concepts
• Computing methodologies → Reflectance modeling; Ray tracing;

1. Introduction

Water often forms small particles that interact with light in beauti-
ful and surprising ways, and in this paper we focus on very small
droplets in small-scale scenes. Our motivating example (seen in the
accompanying video) is a cup of hot tea, where the right lighting

conditions reveal color patterns dancing across the water surface
and in the steam rising from the cup.

In this paper, we explain these two appearance effects, each an
instance of a broader phenomenon, and build models that combine
aspects of dynamics and appearance to reproduce them. Specifi-
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cally, iridescence on the water surface is an example of Quetelet
scattering, an optical interference pattern occurring at a reflective
surface covered by particles; and iridescence in steam is driven
by the dynamics of condensation and evaporation, which changes
droplet sizes, and therefore scattering properties, over time.

We compare three different Quetelet scattering models with dif-
ferent accuracy and select a first-order model that exactly accounts
for single scattering by the particles with reflection from the sur-
face before and/or after scattering. To get the required parameters,
we build an empirical model that relates temperature to droplet size
and height with the aid of thermal infrared images. Based on this
scattering model we implement a Quetelet phase function, to ren-
der particle collections on surfaces, and a Quetelet BRDF, to render
surfaces when individual granules are not visible. We validate our
model against Quetelet patterns photographed on a mirror dusted
with monodisperse silica particles.

For steam iridescence, we identify droplet size variation as an es-
sential contributor to the distinctive color patterns in steam. Based
on the output of an existing fluid simulator, we introduce a model
for the growth and shrinkage of droplets due to condensation and
evaporation, which enables us to instantiate individual droplets
with realistic size variations. Combining this with Mie scattering,
we produce iridescent steam whose color patterns resemble real
video of steam much more closely than simply using uniform size
droplets. To efficiently render large numbers of fast-moving, sparse
steam particles with motion blur, we adopt a technique in motion
blur [NSG11], which intersects rays with particle trajectories and
blends contributions along viewing rays. This achieves 10x speed
up compared to the brute force temporal sampling method.

The familiar model of Mie scattering from wave optics is a build-
ing block for both models, but we explain and demonstrate that
reproducing the appearance of Quetelet scattering and steam iri-
descence requires applying Mie scattering in the context of other
phenomena, namely interference and droplet dynamics. By adding
this context, we extend the range of particle scattering effects that
can be rendered in computer graphics and provide the tools to re-
produce other appearance phenomena, such as iridescent clouds or
dusty specular surfaces, which stem from the same causes. This
work shows the value of considering dynamics and appearance to-
gether and demonstrates how an integrated study of physics simula-
tion and rendering can improve the rendering of complex materials.

2. Related Work

Before discussing how to model and reproduce iridescent levitating
drops and steam, we will review relevant computer graphics liter-
ature on topics including physics literature on Quetelet scattering
and levitating drops, as well as iridescence and wave optics models
for scattering and reflection.

Volume scattering and atmospheric phenomena. Lorenz-Mie
theory describes the scattering of an electromagnetic plane wave
by a homogeneous sphere and is widely used in atmospheric optics
[vdHul57]. In computer graphics, Frisvad et al. [FCJ07] applied
Mie scattering, which we also use as one component of our mod-
els, to compute the scattering properties of participating media and

translucent materials. Guo et al. [GJZ21] relax the far-field scatter-
ing assumption and present a framework that considers near-field
light transport between particles.

When thinking of colorful water droplets, the first phenomenon
that comes to mind is probably the rainbow, with its multicolored
arcs appearing when sunlight illuminates falling rain. To render
rainbows, Sadeghi et al. [SML*12] propose a wavefront tracing al-
gorithm, since Mie scattering is not suitable in their case because
raindrops are too large to be modeled accurately as spheres. In this
paper, we explore other types of color effects in water droplets that
are quite distinct from the rainbow. Water droplets in steam are on
the scale of several to tens of microns as compared to millimeters
for raindrops, and the scene scale is much smaller, so the granular-
ity of droplets is visible. The major cause of color in the rainbow is
dispersion (variation of refractive index with wavelength), whereas
in our problem, colors are produced by interference and diffraction,
and dispersion is not necessary to simulate them.

Regarding atmospheric phenomena, there are also many meth-
ods for rendering the sky [BN08; NSTN93; Wen07; HW12]. These
works all render continuous volumes using radiative transfer, while
we instantiate particles and render them directly.

Levitating droplets and Quetelet scattering. Droplets levitat-
ing above a hot water surface are a fascinating phenomenon that
has been actively studied in the physics community [Fed04; Fed05;
FDN17; UONI15]. The most widely accepted explanation is that
the Stokes drag force in the rising evaporation flow [Fed05] holds
droplets away from the surface. The levitation height depends on
the local air flow, which is influenced by the surface temperature.
Researchers are trying to better explain and model the mechanism
of levitation, as well as verify the relationship between levitation
height, radius, and temperature. Water droplets also tend to form
regular clusters [Fed12] above the water surface. Related levitat-
ing phenomena can also be found over a solid surface [ZKAK17].
Ajaev et al. [AK21] provide a recent survey of this topic.

We identify that the interference between light paths scattered
by the drops and reflected by the water surface is essential to the
color patterns we observe. This effect is known as Quetelet scat-
tering, named after the astronomer Adolphe Quetelet, who stud-
ied it. Bobbert et al. [BVG86] modeled it using Debye potentials,
while Wriedt et al. [WD98] derived an equivalent formulation us-
ing spherical wave functions that is more compact and amenable to
numerical evaluation [Mac08]. Germer [Ger97] introduced a model
that accounts for the interference between all first-order paths, con-
sidering only far-field interactions between the sphere and the sur-
face and assuming the observer is far away. Further approximations
can be made by introducing a virtual sphere below the water surface
using mirror-image symmetry. This is called the bi-sphere model
and was proposed by Suhr et al. [SS09]. In our work, we compare
these three models and show that the first-order model is suitable
for our application as it is efficient and has good accuracy when not
close to the normal direction. Note that Quetelet scattering is dif-
ferent from thin-film iridescence [BB17] and, since spheres scatter
differently than surfaces, the color predictions are different. Pre-
viously in rendering, Gu et al. [GRBN07] modeled and rendered
dusty windows using radiative transport theory, but they did not
consider Quetelet scattering or other wave optics effects in their
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Figure 2: An overview of generating and rendering iridescent levitating droplets and steam. For levitating drops, we capture temperature
information using an infrared camera and predict the height and radius of the drops using an empirical model (Section 4.2). These parameters
are used in a Quetelet scattering model to compute interference between light scattered by particles and reflected by the surface (Section 4.1).
This produces color patterns on the water surface. For steam, we use our droplet growth model to post-process temperature, concentration
and velocity fields from an existing fluid simulation to drive droplets’ motion and size variation based on their histories. Then we render
droplets explicitly using Mie scattering to reproduce color patterns in the steam.

model. Quetelet scattering phenomena are readily observable but
have not previously been modeled and reproduced in rendering.

Steam in computer graphics has been simulated similarly to
smoke using fluid simulation [Sta99b; FSJ01; ZBG15]. Steam is
often rendered using radiative transfer as a continuous volume, and
usually particles are not instantiated. However, as we can see in the
capture, the discreteness of water droplets is visible when we are
close to the steam. In our work, we make use of an existing fluid
simulation (the Pyro solver in Houdini 18.5) and adopt a diffusive
droplet growth model [PK12] to model the condensation and evap-
oration of droplets. This allows us to acquire droplet sizes for each
frame. With precise droplet geometry and position, we are able to
render collections of drops explicitly using Mie scattering. Color
effects in steam have been observed and recorded [Ste09], but they
have not been previously modeled or rendered. To efficiently render
droplets in the steam with motion blur, we use a capsule primitive
that extends a sphere into a swept volume. Tracing the swept vol-
ume is a technique that has been used for rendering motion blur
[NSG11; Van85; Lei95; SYK*17]. A similar idea has been applied
to anisotropic surface roughness and to account for the temporal
surface normal variation due to motion blur [THDD20].

Granular media. Media consisting of visible particles has been
studied in rendering. Moon et al. [MWM07] precomputed shell
transport functions that summarize the spatio-angular light trans-
port within assemblies of discrete particles. Müller et al. [MPG*16]
rendered heterogeneous and dynamic granular mixtures with spa-
tially varying grain properties. Zhang et al. [ZZ20] proposed a sym-
bolic and differentiable Monte Carlo process to render grains with
different properties that can reuse a single precomputation. Guo et
al. [GHC*22] applied a geometrical optics approximation (GOA)
to render discrete media with different particle distributions. Un-
like these works, we render fast-moving assemblies and explicitly
represent individual droplets.

Wave optics based scattering models and light transport.
In addition to using Mie scattering to render participating media,
wave optics have also been extensively used for modeling rough
surface reflectance. For instance, models have been developed for
surfaces with random [HTSG91] or periodic [Sta99a; HP17] sta-
tionary statistics, and for predicting the average [DWMG16] and
fine-scale appearance [YHW*18] of surfaces with known geomet-
ric microstructures or fine scratches [WVJH17]. Recently, Xia et al.
[XWM*20] developed a wave optics fiber scattering model based
on full wave simulation. Guillén et al. [GMG*20] developed a ma-
terial model for pearlescent materials. Beyond wave-based scat-
tering models, researchers have also applied wave optics to the
light transport problem [SSY22; SY21]. In our work, we focus on
the material level, specifically the wave optics effects produced by
spherical particles and specular surfaces.

3. Overview

Colors on hot water surfaces and in steam are both caused by
light scattering from droplets, and the sizes and positions of these
droplets are dictated by their environment. In this section, we sum-
marize the mechanisms behind these phenomena and our pipelines
to reproduce each appearance effect.

In both effects, the droplet size is on the scale of microns, so due
to surface tension, the droplets can be approximated as spheres.
Mie scattering is therefore very useful in modeling these optical
phenomena—but it alone is not enough to reproduce the effects.

3.1. Iridescent levitating droplets

In Figure 1 and the supplemental video, we can observe granular
dots on the water surface. These are levitating droplets, and the
strong colors that sometimes arise are due to Quetelet scattering
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(see Section 2). We propose a scattering model for spherical par-
ticles near a surface, which takes the particle size and particle-to-
surface distance as input and predicts the rings, stripes, and colors
observed in a range of conditions. Based on this model, we pro-
pose both a Quetelet scattering phase function, used for rendering
individual particles in scenes where they are visible (Figures 1, 12),
and a Quetelet scattering BRDF, used to render surfaces when in-
dividual granules are not visible (Figures 3, 6, 8, 9).

To model the temporally and spatially varying parameters of our
Quetelet scattering model, we propose an approximate empirical
model, calibrated by observations of cooling water surfaces, that
relates surface temperature with droplet height and size. The over-
all pipeline for reproducing colors in levitating droplets, illustrated
in Figure 2 top, involves first acquiring temperature fields using
an infrared camera, then predicting spatially varying droplet height
and size, and finally using our Quetelet scattering model in a ray
tracer to render the appearance.

3.2. Iridescent steam

Steam is produced when water vapor rises from hot water and
condenses on pre-existing nuclei in the air. Mie theory accurately
models scattering from spherical droplets. However, Mie scattering
with uniform-sized particles predicts stable concentric arcs of color
around the light source. The main visual feature of steam irides-
cence is the fleeting color patterns observed mostly near the edges
of plumes of steam. This is because condensation and evaporation,
which depend on local temperature and humidity, produce rapid
changes in droplet size. Modeling this size variation is essential to
the appearance. To faithfully reproduce this effect, we first simu-
late fluid flow, then model droplet growth, and finally ray trace the
droplets in the pipeline illustrated in Figure 2 bottom. Rendering
these large collections of sparse, fast-moving particles is very slow
with conventional temporal sampling. We propose to approximate
the mean of a random temporal sampling process by intersecting
rays against particle trajectories, rather than against particle posi-
tions at particular times. We assume that the probability of hitting
a particle, conditioned on having intersected its trajectory, is inde-
pendent of other particles along the ray. This leads to a simple alpha
blending computation for the final color of the ray.

In Sections 4 and 5, we will further discuss Quetelet scattering
and iridescent steam models. In Section 6, we provide practical
details about rendering, including the motion blur algorithm. We
present results in Section 7, and discuss limitations and further ap-
plications in Section 8.

4. Quetelet scattering and iridescent levitating droplets

Quetelet scattering (or Quetelet rings) is an interference phe-
nomenon caused by fine particles that are at a consistent distance
from a reflective surface. As shown in Figure 3, this can be read-
ily observed on a flat, smooth surface coated with dust or dirt,
such as an exterior window or dusty bathroom mirror, appearing
as stripes near the reflected image of a strong light source. We will
first describe several models that we could use to simulate Quetelet
scattering, explain why we chose one specific model for our ap-

a) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photo

Figure 3: Besides the levitating water drops, Quetelet scatter-
ing can be also observed on other surfaces. This is a photo-
graph[Boy09] of a window covered by dust particles and lit by sun-
light exhibits Quetelet stripes.

plication, and then discuss how we acquire the parameters for this
model.

4.1. Quetelet scattering

The color in Quetelet scattering is mainly caused by interference
between different light paths that involve scattering from spheres
and reflection from the specular surface underneath. Figure 4 illus-
trates the first-order light paths that contribute to this phenomenon,
where order refers to the number of interactions between the light
and the particle. There are in theory infinitely many scattering or-
ders to be considered, and the most accurate way to compute scat-
tering from this system is to fully account for the near-field interac-
tion between the sphere and the specular surface. In the following,
we will first describe the exact model, then explain how to apply
a first-order approximation to significantly improve the efficiency
without losing much accuracy. We will also briefly mention a bi-
sphere model used to simulate Quetelet scattering and show that
this further approximation results in noticeable visual differences
in all cases. Thus in practice we use the first-order model to simu-
late Quetelet scattering. When we discuss the wave optics models
used for Quetelet scattering, we assume time-harmonic waves so
we can drop the time dependence and operate only on complex-
valued phasors.

4.1.1. Exact solution

Bobbert et al. [BV86; BVG86] developed an exact solution to the
sphere-on-surface scattering problem that in theory can account for
all orders of near-field interaction between the sphere and the sur-
face. The method applies Debye potentials to expand both the inci-
dent wave and the scattered wave into the same set of basis func-
tions, then relates the coefficients using a linear system. Follow-
ing their notation, we use Vi to denote (the coefficients of) the di-
rectly incident plane wave, Vir to denote the incident wave that is
reflected by the surface, Ws to denote the wave that is scattered by
the sphere, and Vsr to denote the scattered wave from the sphere
reflected by the surface. Scattering and reflection are linear opera-
tions on wave fields that can be expressed as linear transformations
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(I) (II)

(III) (IV)

Figure 4: The first-order paths in Quetelet scattering are those
that scatter from the sphere exactly once. There are four types: (I)
Light only scattered by the sphere—this is simply Mie scattering.
(II) Light first scattered by the sphere and then reflected by the wa-
ter surface. (III) Light first reflected by the water surface and then
scattered by the sphere. (IV) Light reflected by the water surface
twice, scattering once in between.

of the coefficient vectors, and we let the matrix A characterize re-
flection from the surface while matrix B characterizes scattering
from the spherical particle. We write out the relations

Ws = B
(

Vi +Vir +Vsr
)
, Vsr = AWs. (1)

Then Ws can be solved in terms of Vi and Vir:

Ws = (1−BA)−1B
(

Vi +Vir
)
. (2)

For more details, we refer the reader to the original papers [BV86;
BVG86]. In practice, the exact solution is expensive to compute
for the particle sizes we are interested in because it involves in-
verting a matrix (1−BA), whose size increases with the particle
size. Additionally, every scattering function evaluation requires a
matrix-vector multiplication (Equation (2)). An approximate model
is more suitable in the rendering context and will be discussed in
the following.

4.1.2. First-order model

Germer [Ger97] introduced a model that accounts for the interfer-
ence between all first-order paths, considering only far-field inter-
actions between the sphere and the surface and assuming that the
observer is far away. When only considering the first-order paths,
the total contribution is the sum of the four path types shown in
Figure 4.

These effects are polarization-dependent, so we need to keep
track of the light’s polarization throughout these events. This is
done using Jones vectors and matrices. The light is represented as
a sum of two polarizations, represented as a 2-vector, and each in-
teraction is represented by a 2x2 scattering matrix S (also called
an S-matrix) that transforms from the incident polarization com-
ponents to the outgoing ones. Different events may be most easily
expressed using different choices for the polarization basis, so 2x2

rotation matrices R are used to transform between different repre-
sentations of polarization.

To compute the total contribution, we first define the polariza-
tion coordinates for incoming and outgoing waves. We then estab-
lish the relation between the incident wave and the outgoing wave
by relating the two polarization components in each coordinate for
each path type. Finally, we sum the four path types together coher-
ently.

Figure 5 shows the polarization frames for the incoming and out-
going waves. We use p and s to represent parallel and perpendicu-
lar polarizations respectively. The perpendicular polarization direc-
tion, the parallel polarization direction and the wave propagation
direction form a right handed frame. The polarization frame for the
incoming wave is defined by the incoming direction and the sur-
face normal. ei

p denotes the direction of the p-polarized field that
is normal to the incident direction and in the plane defined by the
incoming direction and the surface normal. ei

s denotes the direction
of the s-polarized field that is normal to the above plane. The inci-
dent electric field Ei can be decomposed as Ei = E i

pei
p +E i

sei
s and

can be represented using the two scalar polarization coefficients E i
p

and E i
s. Similarly the polarization frame of the outgoing (scattered)

wave is defined by the outgoing direction and the surface normal.
The scattered electric field Es can be written as Es = Es

pes
p +Es

s es
s,

where Es
p and Es

s are the corresponding polarization coefficients.
The incident and the scattered fields in the far-field region can be
related using the scattering (Jones) matrix S(

Es
p

Es
s

)
=

e− jkL+ jk·L

jkL
S
(

E i
p

E i
s

)
(3)

=
e− jkL+ jk·L

jkL

(
Spp Sps
Ssp Sss

)(
E i

p
E i

s

)
. (4)

In the above equations, the 2x2 matrix S relates the parallel and
perpendicular components of the incident wave and the scattered
wave. k is wave vector, k is wave number, L is the vector point-
ing from the source to the detector and L is the distance from the
scatterer to the detector.

We would like to compute the scattering matrix S for Quetelet

ei
p

ei
s

es
p

es
s

θi θo
x

y

z

Figure 5: This figure illustrates the polarization coordinates for
the incident wave and the outgoing wave. The incoming wave is
decomposed into the parallel (p) polarized direction ei

p and the
perpendicular (s) polarized direction ei

s. The outgoing wave field
is decomposed into the parallel (p) polarized direction es

p and the
perpendicular (s) polarized direction es

s.
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Figure 6: In the first row, we compare the exact (top half) and the first-order (bottom half) Quetelet scattering models. In the second row, we
compare the first-order (top half) and the bi-sphere (bottom half) models. We visualize the full spectrum of the scattering function integrated
to RGB color. Each patch is a 20cm by 20cm surface covered by virtual particles with a radius of 1µm and a height of 2µm. The point
light and the sensor are positioned at a height of 15cm and always above the horizontal center line. Each column corresponds to a different
horizontal placement of the light and sensor, with the distance to the center being 0,10,20,30, and 40cm and symmetric around the center.
In the first row, we observe that higher-order terms are only important when we are close to the normal direction (first column), and the
difference between the exact model and the first-order model becomes invisible as we move away from the normal direction. In the second
row, since it lacks the Fresnel factor, the bi-sphere model has large intensity differences with the other two models. Here we rescale it to
better match the other models’ intensities, but even so, there are still major differences in the scattering functions. From this comparison,
we conclude that the first-order model is very similar to the exact model except for near-normal directions (where our droplet iridescence is
harder to observe anyway), while the bi-sphere model has large errors at many angles.

scattering and it can be written as the sum of the scattering matrix
of each path type: S = SI + SII + SIII + SIV. Each component has
a Mie scattering contribution as the light is scattered by a sphere
once in each path type. We use SMie to denote the Mie scatter-
ing matrix of the particle alone. Calculation of SMie can be found
in Section 9.31 in [vdHul57]. Mie scattering can be conveniently
computed in the polarization coordinates where parallel polariza-
tion is within the scattering plane defined by the directions directly
incident and existent on the sphere. We use Rs to perform rotation
between different polarization coordinates. The four scattering ma-
trices corresponding the four path types can be written as

SI = Rout
I SMieRin

I , SII = βFsRout
II SMieRin

II

SIII = αRout
III SMieRin

IIIFi, SIV = αβFsRout
IV SMieRin

IVFi.
(5)

In the above equations, α = e2 jkh cos θi and β = e2 jkh cos θs are
the phase associated with the path-length difference where h is the
levitation height (distance from the surface to the center of the par-
ticle). Fi and Fs are the Fresnel reflection matrices corresponding
to the incident direction and scattering direction, and are diago-
nal matrices where the diagonal entries are the complex amplitude
reflection coefficients for parallel and perpendicular polarizations
respectively (Appendix A). The average of the square of these fac-

tors is the familiar Fresnel factor used in traditional rendering. Note
that this method can be applied to arbitrary particle shapes as long
as its scattering matrix is available. This model misses higher order
paths, but in our comparison test (Figure 6 top) the visual differ-
ences between the first-order model and the exact computation can
be neglected when the incident direction and outgoing direction are
not both very close to the normal direction of the surface. In order to
observe the iridescence on water surface we need to be sufficiently
far away from the normal direction. Moreover, the evaluation of the
first-order model is 50 to 100x faster than the exact model for the
particle configuration we are interested in. Therefore we adopt the
first-order model in practice.

4.1.3. Bi-sphere model

We can further approximate the model by using mirror-image sym-
metry and introducing a virtual sphere below the water surface.
This is known as the bi-sphere model, which was proposed by Suhr
et al. [SS09]. Figure 7 illustrates this idea, where the dashed-line
sphere represents the image of the real particle mirrored by the
surface. With this symmetry, we can easily compute interference
between paths of type II and type III (Figure 4). However, their
model is missing the interference between other path combinations,
the phase change at reflection, and the Fresnel factor at reflection.
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r

h

Figure 7: The bi-sphere model can be considered as introducing an
imaginary sphere with reflection symmetry to the original sphere
across the water surface (left figure). Adding Mie scattering from
the two spheres (middle figure) computes the interference between
path type II and type III in the first-order paths (right figure).

Based on our test (Figure 6 bottom), the interference pattern pro-
duced by the bisphere model can be substantially different from the
result generated by the first-order model. Therefore, we do not use
the bisphere model in our application.

4.2. Droplet configuration

To produce levitating drops, we must determine their levitation
height and droplet size. Previous studies of levitating droplets used
microscopes to directly measure droplet size and height [UONI15;
Fed04; Fed05]. We take a different approach and use thermal and
optical images to create an empirical model that relates water sur-
face temperature to droplet size and height.

Our size and height data come from images of a hot water sur-
face, like the one shown in Figure 8 (a). In these images, we observe
a bright reflection of the light source surrounded by colorful rings
and stripes. We take these images out of focus, since the blur av-
erages over the particles and makes the color pattern more regular.
As we see in Figure 8, the size of the colorful rings depends on
the average droplet radius (r), and the width of the stripes depends
on the average droplet height (h). Therefore, by comparing the ren-
ders and the optical images, we can estimate these parameters. We
take synchronized thermal and optical images as the water cools,
using the thermal images to estimate the average surface tempera-
ture T . This produces a set of (T,r,h) triples from which we build
an empirical model using linear regression (see the supplementary
material for details):

r = 0.1613T −5.5078

h = 0.2679T −8.2595,
(6)

Where r denotes the radius in microns, h is the distance from the
water surface to the droplet center in microns, and T is the tem-
perature in degrees Celsius. Note that the pattern is concentrated in
Figure 8 a), while the patterns are consistent throughout the spatial
domain for the renders. This is because we use a Quetelet BRDF to
render b) - d), and we did not match the density of the particles for
this example.

4.3. Validation

It is difficult to conduct repeatable and controllable experiments for
levitating drops. Therefore, we used solid spheres on a mirrored

surface to create an optically similar setup for validation. We dis-
tributed monodisperse amorphous silica microspheres (Cospheric
SiO2MS-2.0, diameter 9.2µm ±5%, n ≈ 1.4) on an 18.5x4.8cm
rectangular back-surface mirror measuring 1.127mm in thickness.
We then photographed the surface from a distance of 159.5cm us-
ing a 100mm lens at f/20. Illumination was from a white LED
positioned 7.8cm above the camera and 7.5cm closer to the mirror.
The mirror was oriented to put the image of the source near the
center of the mirror.

This experiment differs from the water surface in that there is
a layer of glass between the particles and the main reflecting sur-
face, but Quetelet scattering can be easily generalized to multiple
specular surfaces beneath the particles (Appendix B). We made this
extension to our Quetelet BRDF (Section 6) for this validation and
configured it with two specular surfaces: one glass/air interface and
one aluminum surface beneath the spheres.

In Figure 9, we compare the photograph (a) to renderings with
the same lighting and viewing conditions. Since the particles are
uniform in size, the Mie scattering ring is clear, as shown in both the
capture and the renders. The size and color of the Mie rings agree
well. Quetelet scattering produces horizontal stripes in this viewing
configuration, and renders (b) and (c) show Quetelet stripes that
have a very similar width, orientation, and color to the photograph.

The color in rendering (b) is more saturated than in the photo,
possibly due to irregularity in particle height or to the partial coher-
ence of the light source. In (c) we introduced 0.01% randomness in
distance when computing the phase and this produces less saturated
colors and more similar appearance to (a). There is also a vertical
highlight in the photo, which we attribute to horizontal streaks on
the mirror caused while spreading the particles.

5. Iridescent Steam

The iridescence seen in steam (e.g. Figure 11 a) appears as tinges
of color that come and go in irregular shapes as the steam moves,
occurring within a few degrees of the location of the dominant
light source in the image. These features contrast with the rainbow,
which occurs when the light is on the same side as the viewer and
appears in concentric arcs that are fixed in image space. Besides
the difference in scattering angle, steam iridescence occurs only
for very small droplets on the order of microns in radius, whereas
the rainbow occurs only for large drops on the order of a millimeter
[SML*12]. These differences reveal that steam iridescence is a sep-
arate phenomenon; the colors are caused by wavelength-dependent
diffraction rather than by refraction and dispersion.

Because the droplet size is small in steam, we can safely assume
a spherical shape and apply Mie theory to compute light scattering
from the droplets. Figure 10 shows that both scattering angle and
droplet size affect the Mie color. Therefore, the color observed in
the steam varies with changes in both scattering angle and droplet
size. To reproduce the effects of size variation, we need to model
how droplets grow and shrink due to condensation and evaporation.
In this section, we will explain how we build on top of existing fluid
simulation in computer graphics to model the motion and changing
size of water droplets.
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a) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photo b) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µmb) r=4.8µm, h=7µm

c)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µmc)r=7µm, h=7µm d) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µmd) r=4.8µm, h=12µm

Figure 8: a) is an out-of-focus capture of the Quetelet stripes on
the surface of hot tea (67.7 ◦C). We observe the bright reflection of
the light source, color rings around the reflection, and horizontal
color stripes. The Quetelet scattering pattern is clearer in this set-
ting because the out-of-focus blur averages out local variations in
the size and height of drops. b) is produced using our model, and
its appearance is similar to a) with a radius of 4.8µm and a height
of 7µm. In c) and d), we increase the radius to 7µm and the height
to 12µm respectively, and observe that larger droplets result in nar-
rower rings, and higher drops produce narrower color stripes. Note
that effects like camera flare are not included in the render, and that
could result in the appearance difference of the bright light source
reflection.

5.1. Steam simulation

For computer graphics, steam is usually modeled in the same way
as smoke, as shown in research publications [FSJ01; ZBG15] and
visual effects tutorials [Bay19]. Flow simulations are driven by
a temperature-dependent buoyancy force. Both temperature and a
particle concentration field are advected with the flow, and volu-
metric scattering is used to render steam as a continuous volume.
However, from the captured video, we can tell that steam usu-
ally forms in sheet-like patterns and disappears through evapora-
tion rather than only by dissipating into the environment. These
characteristics cannot be reproduced very well in traditional smoke
simulation. In addition, when looking closely at the steam above a
teacup, it is easy to see the discrete water droplets, and their inten-
sity and color depend on their size. Therefore, it is useful to render
steam as a discrete medium.

Our goal is to create a visually believable distribution of steam
droplets for our rendering system. We achieve this by building on
existing fluid simulators used for computer graphics, using a one-
way coupling between the fluid simulation and the steam. It is im-
portant to note that this is not an accurate physical model for this
multi-phase fluid flow, even if the momentum of droplets can be ne-
glected. This is because the simulation does not model the effects
of condensation and evaporation on the temperature and pressure of
the air. Rather, the simulator is intended to generate visually plau-
sible flows with a reasonable indication of temperature and water
content. These can be used with a simple model for droplet for-
mation to generate particle distributions with the right qualitative
properties to match the appearance of the real system. In particular,

a) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photo

b) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Renderb) Render

c) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomnessc) Render, with randomness

Figure 9: We validate our Quetelet scattering model using a thin
back-surface mirror covered by SiO2 spheres of uniform size (9.2
µm in diameter). In the photo and the renderings, we can see col-
orful Mie rings and Quetelet stripes with matching size and orien-
tation, and very similar colors. See Section 4.3 for details.
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Figure 10: This figure shows how Mie scattering color varies
across wavelengths and scattering angles. The image on the right
is a lower-exposure version of the left one to better show the color
for small scattering angles (close to forward scattering). This chart
illustrates that changes in either particle size or scattering angles
give rise to color changes; the larger the particle, the faster the
color changes across scattering angles.

we use the Pyro solver in Houdini 18.5 to simulate the movement
of air and water vapor. The simulation outputs velocity, tempera-
ture, and concentration fields on voxel grids, which we use to drive
the droplet growth computation.
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a) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photo b) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Oursb) Ours

c) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µmc) 5µm d) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µmd) 10µm

e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm)e) radius (µm) f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)f) growth rate (µm/s)

condensing

evaporating

Figure 11: This figure presents iridescent steam. a) is one frame of our captured steam video. b) is one frame of our steam animation. Similar
to the capture, our model is able to reproduce steam that is mostly gray plus some color patterns correlated with the steam flow. We compare
to Mie scattering with a uniform particle size in the middle row. In c) and d) all drops are 5µm and 10µm radius respectively. Without size
variation we can only produce concentric color arcs around the light source. We refer the reader to our video that shows both the appearance
and the dynamics of the steam. The rendered steam in b) is most colorful when the radii e) are small and there is correlation between the size
of the drops and the steam flow. In figure f) we color the drops by their growth rate, with a positive value meaning condensing and a negative
value corresponding to evaporating. The condensing and evaporating behavior also correlate with the steam flow.

5.2. Droplet evaporation and condensation

Steam is a multi-phase phenomenon in which water transforms be-
tween gaseous and liquid states via evaporation and condensation.
Our droplet growth model is based on comparing the current va-
por pressure of water to the saturation vapor pressure to determine
when condensation and evaporation occur. Saturation vapor pres-
sure is the pressure at which water vapor is in thermodynamic equi-
librium with its condensed state. Assuming that the proper conden-
sation nuclei are present, when the local vapor pressure P is higher

than saturation pressure, water condenses and droplets grow, and
when the pressure is lower, they evaporate and shrink. From the
main fluid simulation we can obtain fluid concentration, and we can
convert concentration to vapor pressure P by enforcing saturation
water pressure at the water surface. We apply the Tetens equation
to describe the relationship between saturation vapor pressure and
temperature [Leg90].

Ps = 0.61078exp
(

17.27T
T +237.3

)
, (7)
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a) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photoa) Photo b) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Queteletb) Quetelet c) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Miec) Mie

Figure 12: We render droplets on the water surface using (b) a Quetelet scattering model and (c) Mie scattering. We compare with a
photograph (a) and show that the Quetelet scattering model is needed to produce color patterns on the levitating drops. The Mie render is
colorless because we are away from the forward scattering direction. Figure 10 shows how Mie color varies with the size of the droplet and
the scattering angle. Image (b) is one frame of a Quetelet scattering animation that shows how the color changes over a short period of time.
The accompanying video includes a captured video of iridescent levitating drops.

where temperature T is in degrees Celsius (°C) and saturation vapor
pressure Ps is in kilopascals (kPa).

To model the rate of growth as a function of the vapor pres-
sure differential, we turn to a diffusive growth model described by
[PK10]. This model considers a radially symmetric diffusion from
a motionless drop. As a droplet grows, water vapor flows inward to-
wards the surface while the heat produced by condensation diffuses
outward (and vice versa during evaporation). Since irregularities in
the flow will balance out rapidly, they assume a steady flow satis-
fying time-independent diffusion equations. By relating the fluxes
of vapor and heat, we arrive at a model for the droplet growth rate:

r
dr
dt

=
D(ρ/ρw)(rsH− rs)

1+ rs(D/κ)
[
L2

l /
(
CsRvT 2

)] (8)

In the above equation, r represents the radius, T represents temper-
ature, and H represents the ratio between the water vapor pressure
(P) and the saturation vapor pressure (Ps). WhenH> 1, the droplet
condenses and grows, and whenH < 1, the droplet evaporates and
shrinks. ρ represents air density, and ρw represents water density.
Ll represents the latent heat of condensation, and Cs represents the
specific heat of dry air at constant pressure. The saturation mixing
ratio rs = Ps/(RvT ρ), where Rv is the gas constant for water vapor.
D represents the diffusivity of water vapor, which is a function of
temperature:

D = 2.14×10−5(T/Tf )
1.94, (9)

where Tf = 273.15K and assuming the ambient pressure is one at-
mosphere. The ratio of the diffusivity of water vapor and heat is
approximately D/κ = 1.15.

Details aside, (8) provides a time derivative of droplet radius that
can be computed from the local conditions of temperature and hu-
midity that are output by the simulation.

We simulate droplet evolution as a post-processing step after the
main fluid simulation. We first initialize random condensation nu-
clei uniformly in space with a radius of 0.2µm. At each frame, for
each particle, we use the local conditions to compute the right-hand
side of (8). Note that in order to account for the conservation of wa-
ter, we subtract the already condensed water from the available wa-
ter vapor provided by the main simulation output. We estimate the

already condensed water by reading the water content at the current
particle and multiplying it by the volume density of condensation
nuclei. This assumes that the nearby particles are the same size as
the current particle. Then, assuming that the right-hand side of (8)
is constant between two frames, we can analytically compute the
new radius.

rn+1 =

√
2(r2

n/2+C∆t) (10)

where rn is the radius of the droplet at frame n, C denotes the value
of the right-hand side of (8), and ∆t is the time between two frames.
In our simulation, ∆t = 1/60 s, and the constant right-hand side is
a good assumption when the simulation frame rate is 60 fps.

6. Rendering Iridescent Droplets

We implement Mie scattering and Quetelet scattering as two differ-
ent materials in PBRT-v3 [PJH16] and perform spectral rendering
with 50 wavelengths. For shading, we evaluate the Mie scattering
and Quetelet scattering distributions on the fly. To render discrete
particles, we attach the Mie scattering material and Quetelet scatter-
ing material to sphere primitives. We render single scattering only,
as the particles are normally well separated, and we use a custom
ray tracing primitive for motion blur (Section 6.2).

6.1. Material model implementation

In the material model evaluation, the droplet is considered as a
point consistent with the far-field scattering models. In our im-
plementation, light is assumed to be unpolarized on the path trac-
ing level. This assumption is required to integrate with PBRT-v3,
which does not model polarization. For our formulation in terms of
linearly polarized electric fields, the Jones calculus is simpler and
sufficient. The Jones matrices can be converted to Mueller matrices
[Sav09] (Appendix C) if the model is to be used in a polarization
renderer that works with Stokes vectors. When evaluating the scat-
tering models themselves, we do consider polarization and average
the two polarizations to simulate unpolarized light. From the scat-
tering matrix S we can compute the scattering distribution:

f =
1

k2a2π

(
|Spp|2 + |Sps|2 + |Ssp|2 + |Sss|2

)
(11)
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a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 13: The figure contains two frames of our animation showcasing iridescent levitating drops (Figure a) and iridescent steam (Figure
b). This scene includes an environmental light and a directional light. The animation features changes in lighting and viewing directions. We
observe Quetelet scattering patterns on the water surface in the bowl, and the iridescent pattern changes as the angle changes. In the second
part of the animation, we see color patterns in the steam that correlate with the steam flow. In Figure b), we see colors in the steam both
above the bowl and the pitcher.

Here k is the wave number and a is the radius used in the scene.
In our application, the droplets are always subpixel in size, and we
represent them in our scene geometry using individual particles’
extinction cross-sections averaged over wavelength. The extinction
cross-section of the particles in the wave context is generally larger
than the geometric cross-section and is wavelength dependent [vd-
Hul57]. When we evaluate their scattering functions, we normalize
based on their extinction cross-section, ensuring energy balance.

We also define a Quetelet BRDF based on the scattering matrix
and use it to render surfaces where granularity is not visible. As-
suming particles’ area density is ρa (number of particles per unit
area), the Quetelet BRDF is

f =
ρa

k2a2πcosθi

(
|Spp|2 + |Sps|2 + |Ssp|2 + |Sss|2

)
. (12)

For importance sampling the scattering function, we tabulate a
Mie scattering table with 50 radius-to-wavelength ratios and 180
scattering angles using an analytic integration method that can in-
tegrate Mie scattering over an arbitrary scattering angle range. The
Mie scattering table is also used to sample Quetelet scattering.

6.2. Motion blur

It is expensive to render a massive amount of particles with motion
blur. The particles can travel far compared to their sizes. As a re-
sult, the brute force motion blur, where each ray samples a time and
Monte Carlo integration handles time integration, can take a long
time to converge because the probability of hitting the particles is
low. We accelerate this process by representing the linear trajec-
tory of the particle during the time of one frame as a cylinder with
hemispherical end caps and we call it a capsule primitive. We out-
perform the brute force motion blur by 10x (Figure 14). The prob-
ability of hitting the capsule primitive is much higher, leading to
faster convergence. This is a technique used in motion blur render-
ing [NSG11]. Note that since the spheres are very small compared
to the distance the ray travels, one needs to be careful with the in-
tersection tests to avoid issues with numerical precision [HGA19].

To properly compute the contribution, we implement a new
PBRT integrator that continues a ray after hitting a capsule prim-
itive. It blends the radiance along a ray until it no longer hits a
particle (no intersection or intersection with something else). The
probability that a ray intersects with the particle given that the ray
hits the capsule is computed as the ratio of the particle cross-section
over the projected area of the capsule seen by the ray. Algorithm 1
describes the new method. We essentially replace the Monte Carlo
time integration with an approximation of the mean value, discard-
ing temporal correlation. A similar approximation is used when
computing shadow ray occlusion.

The intersection of the capsule primitive is cheap to compute:
We first compute the closest point on the ray to the line connecting
the start point and the end point of the particle, which is also the
capsule axis. If the closest point lies within the capsule then the
intersection is found; If the closest point lies outside the length of
the capsule then we compute the distance of the start point and end
point of the particle to the ray to check for intersection.

7. Results

In Figure 1, we present a comparison between a real-life capture by
Vivien Parmentier and our render of a cup of hot tea. Both images
show droplets levitating on the water surface and steam droplets up
in the air. Under these specific lighting and viewing conditions, we
can observe the Quetelet scattering color on the water surface but
no color in the steam. To produce this capture, we use an image
texture from another photo to generate droplet density. We predict
the height and size of the droplets based on an infrared image we
captured. The prediction is done using our empirical model (6).
We render the appearance using our Quetelet scattering model and
produce an iridescence pattern with similar hues as in the captured
image. Note that the water droplets are often well separated from
each other, and they can form a granular appearance, not to be con-
fused with Monte Carlo noise, although they may appear similar at
times.

In Figure 11, we compare one frame of our capture a) with
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Algorithm 1: Render particles with motion blur with single
scattering using capsule primitives.

Given ray with start and end;
L← Spectrum(0); α← 1; count← 0;
Russian Roulette termination probability pRR;
while true do

t, object = intersect(ray)
if object is a new particle trace then

Let p be Pr{ hit particle | hit particle trace }
Let Lpart be the particle’s scattered radiance
L = L+αpLpart
α = α(1− p)

end
if object is a surface or the background then

Let Lbg be the reflected or background radiance
L = L+αLbg
break

end
ray.start = t + small offset
count = count + 1
if count >=10 then

if random number x < pRR then
break

else
α = α/(1− pRR)

end
end

end
return L

the renders. To produce image b), we post-process the tempera-
ture, concentration, and velocity fields output from an existing fluid
simulation. We use our droplet growth model to drive droplet size
changes and render the appearance using Mie scattering. Similar
to the capture, the render contains colors near the bottom of the
frame while the rest of the steam is almost colorless. In images c)
and d) we render the steam using Mie scattering with uniform-size
spheres. Comparing images a)-d), we observe that size variation is
essential to produce steam iridescence that is more similar to the
capture, where the color pattern is more correlated with the steam
flow. With uniform particle size, we can only produce a fixed con-
centric arc shape. In Figure e) we color the particles by their sizes
and limit the colored range to radius 1-8µm. The steam appearance
in b) is most colorful when the radii are small and there is a corre-
lation between the size of the drops and the steam flow. In Figure
f) we color the water droplets by their growth rate, with a posi-
tive value meaning condensing and a negative value corresponding
to evaporating. We limit the colored range to -10 to 10 µm/s. The
condensing and evaporating behavior also correlates with the steam
flow. This result demonstrates that size variation is critical to repro-
duce the distinct color pattern in real steam.

In Figure 12, we show levitating droplets on a water surface us-
ing only Mie scattering and a Quetelet scattering model, and com-
pare it to a photograph. Since we are not close enough to the for-
ward scattering direction, Mie scattering produces a colorless ap-
pearance. The Quetelet scattering model accounts for interference

between different light paths and produces color. The droplet’s po-
sition, size, and height are predicted using a temperature texture
captured by our infrared camera. We also include a short animation
showing how the iridescent pattern on the water surface evolves
over time.

In Figure 13, we present two frames of an animation that contain
both effects. In Figure 13 a), we observe iridescent patterns on the
levitating drops above the water surface. In image b), we see col-
ors in the steam both above the bowl and the pitcher. In this scene,
there is an environmental light and a directional light. The viewing
and lighting directions are opposite and approximately symmetric
around the normal of the water surface. In the animation, we start
with a fixed camera pose and light direction and show the steam
motion. Then, we gradually change the lighting and viewing direc-
tions so we shift from view a) to b). In the first part of the animation,
we see Quetetlet scattering patterns on the water surface, and they
change colors as the angle changes. In the second part of the an-
imation, we see color patterns in the steam that correlate with the
steam flow.

We evaluate the performance of rendering sparse particles with
motion blur in Figure 14. The acceleration method achieves a 3x
and 3.16x reduction in RMSE for an equal time comparison (14
min) with shadowing on and off. When the shadowing is off, the
intersected particles are always lit. This corresponds to a 9x and
10x improvement in running time. The three results take 32 spp, 6
spp, and 7 spp, respectively.

Besides the animations of iridescent levitating drops, colorful
steam, and the combined scene, we also provide captured videos
that record the iridescent appearance along with droplet dynamics.

8. Discussion and Conclusion

In this paper, we reproduce iridescent levitating droplets and col-
orful steam from a cup of hot tea, and extend the range of particle
scattering that one can render. The color patterns on the water sur-
face are a Quetelet scattering phenomenon, where light scattered
by the droplets and reflected by the water surface interfere with
each other. We examine three different models to perform optical
simulation of Quetelet scattering and apply the first-order model
that can faithfully produce the effect efficiently. To acquire input
for this model, we build a model that relates temperature, droplet
height, and size by aligning optical images, infrared images, and
renders. To produce colorful steam, we combine size variation with
Mie scattering and show that in this way, the steam appearance
looks more similar to the captured image than using Mie scattering
on uniform-size droplets. We post-process existing steam simula-
tion and combine a diffusion growth model to drive droplet growth.
We efficiently render sparse tiny particles with motion blur under
a single scattering assumption. Instead of sampling time and using
Monte Carlo to handle time integration, we trace particle trajecto-
ries and blend the contribution along rays properly, which signifi-
cantly speeds up the brute force motion blur.

There are some limitations on the simulation side. For levitating
droplets, we observe that there is more dynamics in the captured
video besides droplet height variation. For example, cracks form on
the water surface, and drops disappear individually or as a group.
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Figure 14: We compare the performance of the brute force motion blur method with the accelerated method. Although the computation
for each ray is more expensive because we need to continue the ray and blend all the contributions along the ray, the overall performance
gain is significant. For an equal time comparison, we achieve a 3x and 3.16x reduction in RMSE with shadowing on and off respectively,
corresponding to a 9x and 10x speed up in running time.

To better reproduce this phenomenon, we need to more accurately
simulate the convection cells on the water surface and droplet dy-
namics. For steam drops in the air, the simulation could be im-
proved by accounting for the effects of condensation and evapo-
ration on the temperature and pressure of the air. Also, in future
work, the motion of the droplet could be taken into account when
simulating droplet growth, and other growth mechanisms such as
coalescence might also be relevant.

Our model is not limited to producing a cup of hot tea. We have
shown that the Quetelet scattering model can also be applied to ren-
der color patterns caused by fine particles on solid surfaces, such
as a dusty window or mirror. The model can be extended to handle
more diverse effects by using more arbitrarily shaped particles. Our
steam model can be adopted to generate color patterns produced by
small droplets that undergo phase changes and result in size varia-
tion. Examples of such phenomena include sun-lit ice [Gil09] and
sun-lit damped wood [Pod07]. Another interesting direction would
be to transfer our steam model and develop new volume scattering
models for rendering effects such as iridescent cloud, which con-
tains particles with size variation but on a much larger scale.
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Appendix A: Fresnel reflection and transmission matrices

The reflection and transmission matrices are

F =

(
rp 0
0 rs

)
,T =

(
tp 0
0 ts

)
. (13)

where rp,rs, tp, ts are the complex amplitude reflection and trans-
mission coefficients for parallel (p) and perpendicular (s) polariza-
tion.

rp =
n2 cosθi−n1 cosθt

n2 cosθi +n1 cosθt

rs =
n1 cosθi−n2 cosθt

n1 cosθi +n2 cosθt

tp =
2n1 cosθi

n2 cosθi +n1 cosθt

ts =
2n1 cosθi

n1 cosθi +n2 cosθt

(14)
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In the above equations n1 and n2 are refractive indices of the two
media; θi and θt are the incident and transmitted angles.

Appendix B: Quetelet scattering on two specular surfaces

We can generalize Quetetlet scattering to more than one specular
surface beneath a sphere. For the validation test (Figure 9), we have
two specular surfaces beneath a sphere. In addition to the four com-
ponents used in the one specular surface case (Equation 5), another
two components contribute significantly:

SV = α2Rout
II SMieRin

IITi21Fi2Ti12,

SVI = β2Ts21Fs2Ts12Rout
III SMieRin

III.
(15)

where α2 = e2 jηkh cos θit and β2 = e2 jηkh cos θst are the phase associ-
ated with the path-length difference between the first and the sec-
ond specular surface; η is the index of refraction of the material
(glass in the validation) and h2 is the height between the two sur-
faces. F’s are diagonal matrices where the diagonal entries are com-
plex amplitude reflection coefficients corresponding to the bottom
surface. T’s are diagonal matrices where the diagonal entries are
complex amplitude transmission coefficients corresponding to the
first surface. The calculation of F and T matrices is specified in
Appendix A. R and SMie are the same as they are in Equation 5.

Appendix C: Mueller and Jones matrix

A Jones matrix J can be transformed into the corresponding
Mueller matrix M via

M = A(J⊗J∗)A−1 (16)

where ⊗ denotes the tensor product and

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (17)
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