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Figure 1: LoCoPalettes augments palette-based image editing with image-space constraints and semantic hierarchies. Left: The user places
a spatial constraint on the input image to make the leaves brown. LoCoPalettes optimizes for a palette with respect to users’ image-space
constraints, shown as small white circles (Sec. 4.2). Center: The optimization updates the global palette. Right: The user places a second
spatial constraint on the grass. If constraints cannot be satisfied with a single global palette, LoCoPalettes semantically segments the image
and activates a palette hierarchyH to achieve the color constraints using local palettes (Sec. 4.4). The grass constraint’s semantic segmen-
tation mask is shown in the lower-right.

Abstract
Palette-based image editing takes advantage of the fact that color palettes are intuitive abstractions of images. They allow
users to make global edits to an image by adjusting a small set of colors. Many algorithms have been proposed to compute
color palettes and corresponding mixing weights. However, in many cases, especially in complex scenes, a single global palette
may not adequately represent all potential objects of interest. Edits made using a single palette cannot be localized to specific
semantic regions. We introduce an adaptive solution to the usability problem based on optimizing RGB palette colors to achieve
arbitrary image-space constraints and automatically splitting the image into semantic sub-regions with more representative
local palettes when the constraints cannot be satisfied. Our algorithm automatically decomposes a given image into a semantic
hierarchy of soft segments. Difficult-to-achieve edits become straightforward with our method. Our results show the flexibility,
control, and generality of our method.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

In palette-based image editing approaches ( [CFL∗15] and follow-
up work), a representative palette is extracted from an image. Users
manipulate the colors of the palette to edit the image. This allows

users to perform fast and simple global edits. However, to recolor a
specific object of interest, users must often iteratively adjust multi-
ple palette colors, since the object itself may not be directly repre-
sented in the palette. In many scenarios, recoloring only a specific
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Figure 2: LoCoPalettes workflow. Similar to [CKT∗23], users perform direct palette manipulations and place image-space color constraints.
Our algorithm solves for sparse changes to the palette that satisfy the constraints. Region and palette splitting (Sec. 4.4) occurs when a single
palette is too limited. See Sec. 3 for a detailed explanation of this example. Photo courtesy of Oleksandr Pidvalnyi.

region with a palette-based editing approach is impossible, since
colors alone do not reflect semantic information (Figures 1–3).

In this paper, we focus on extending the usability of geo-
metric palettes (e.g., [TLG16]). Leveraging recent previous work
[CKT∗23], LoCoPalettes solves for an as-sparse-as-possible RGB
palette change that respects both image-space color constraints
and palette constraints in real-time. Our key contribution is that,
when the user’s constraints cannot be satisfied, LoCoPalettes au-
tomatically splits the image into semantic sub-regions with local
palettes (Fig. 1). Given an input image, LoCoPalettes automati-
cally computes a hierarchical semantic soft segmentation, extracts
local palettes and weights for each node, and computes optimal
palette transformations to propagate changes from parent to child
nodes. We demonstrate LoCoPalettes with a variety of examples
impossible to achieve with purely palette-based editing. Code for
this work can be found at https://github.com/tedchao/
LoCoPalettes.

2. Related Work

Image recoloring is a common task performed by digital artists.
There are many approaches to image recoloring, including methods
based on examples, scribbles, and palettes. Example-based recolor-
ing methods transfer style and color characteristics from one image
to another. The pioneering work of [RAGS01] performs statistical
analysis in LAB-space to transfer colors between images. [TJT05]
uses local color transfer between regions of pair of images by Gaus-
sian mixture models with augmented spatial smoothness and color
consistency. Recently, using semantic features from deep neural
networks [LYY∗17, HLC∗19] has also shown high-quality color
transfer. Unlike example-based recoloring, scribble-based recol-
oring [LLW04, AP08, LJH10] does not require a reference image;
rather, users edit the image directly by making rough color scrib-
bles, which define edits that are propagated to pixels with similar
intensities or colors.

Palette-based recoloring was first introduced by [CFL∗15],
who suggested extracting palettes through color clustering on a
given image and performing recoloring using radial basis function-
weighted color transformations. One set of follow-up work focuses
on geometric palettes in RGB and LAB-space. [TLG16, TEG18a,
TEG18b,WLX19,CKT∗23] extract geometric palette in RGB- and
LAB-space via convex hull simplification. [TLG16] suggested de-
composing the image into layers for over compositing via non-

linear optimization. Other approaches [TEG18a,WLX19] target ad-
ditive mixing weights, which they compute in a spatially coherent
manner. [TEG18a] proposed an efficient and direct algorithm mak-
ing use of RGBXY-space. We adopt it in our weights computation.
[WLX19] proposed a post-process to make geometric palettes more
compact, representative, and less sensitive to outliers. We could
make use of their approach to improve our palettes. One recent ap-
proach suggested to extract palettes in a 2D color space (LAB’s AB
dimensions) [CKT∗23] and provide separate control over lightness.
Notably, they solve for palette colors that satisfy image-space color
constraints. We improve these approaches with sparser weights
(Sec. 4.1) in the more commonly used RGB-space, though our ap-
proach could be used with any technique for weight computation
from a geometric palette. We also adapt the palette optimization
from [CKT∗23], extending it to our hierarchical palettes in RGB-
space. [TDLG19] and [AMSL17] proposed to decompose RGB im-
ages using the Kubelka-Munk [BMI11] physical pigment mixing
model, which may be more intuitive for artists most familiar with
physical pigments, but adds significant overhead to the compositing
process. [GS20] divided RGB-space into multiple regions, employ-
ing various geometric techniques to separate pixel colors depending
on their position within the RGB-space. [ZNZ∗21] formulated an
optimization solving for palette colors and mixing weights simul-
taneously by considering color separation priors. [JYS19] create
palettes in a hierarchical, bottom-up manner. These are quite dif-
ferent from the image-space and palette-space hierarchies we use
to support local editing.

Approaches for unmixing colors, such as those proposed in
[AAPS16, AASP17], involve minimizing an energy to identify a
small number of sparse layers with nearly homogeneous colors.
More recently, [AZJA20,HAS∗22] solve the unmixing problem us-
ing neural networks to achieve fast performance. While the soft
color layers generated by unmixing approaches allow users to per-
form various fast global edits, such as compositing, recoloring is
more challenging without homogeneous layer colors. Unmixing
approaches are a form of color-based soft segmentation or image
matting [LLW07]. [AOP∗18] solves the soft matting problem by
optimizing an energy using high-level semantic features with color
and texture to decompose an image into semantically meaningful
segments. We evaluated these approaches, but found that adding
softness (Sec. 4.3.2) to a recent panoptic (hierarchical) segmenta-
tion algorithm [CMS∗20] was more robust.

Though palette-based recoloring methods are simple to use and
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fast to compute, they lack the ability to directly recolor specific
objects or areas of interest with a target color. Two approaches
[ZZL∗21, CZYL22] solve this problem with learning-based region
selection followed by a recoloring step to perform natural color ad-
justments. [CKT∗23] formulate a sparsity loss to solve for palette
changes and lightness curves that satisfy users’ constraints on pixel
colors. However, the approach does not allow recoloring a specific
semantic object of interest. A local recoloring algorithm [XPZ21]
based on a modified GrabCut algorithm also demonstrates the abil-
ity to improve local recoloring and color leakage. In addition,
approaches for constrained editing [MVH∗17, NPCB17] support
global palette adjustment. Our work extends palette-based recol-
oring to support direct and localized image-space edits.

3. Workflow

We describe LoCoPalettes’s workflow with the scenario illustrated
in Fig. 2. A user begins by loading an image of two women sitting
in a forest. The user wishes to edit the ground to appear less red.
The user first explores editing global palette colors, but finds that
the red in the palette is used for both the ground and skin. The user
finds a nice appearance for the ground, but the skin of the woman
on the right has changed undesirably (Fig. 2, second image). To
fix this, the user places an image-space constraint (Sec. 4.2) on the
woman’s forehead to keep her skin colors from changing and an-
other on the ground to directly change its color. LoCoPalettes first
tries to find a global palette that satisfies all of the user’s constraints
simultaneously. It then determines that this can’t be done, so it
splits the image into semantic sub-regions with independent local
palettes (Sec. 4.4). Constraints are elastic and order-independent.
Once the colors on the skin and ground are satisfactory, the user
“bakes” their changes. This updates the rest state of the palettes
and removes the current constraints (Sec. 4.2), creating a check-
point. The user turns their attention to the woman on the left’s shirt.
The user uses a new image-space constraint to change the turquoise
color to dark purple. However, the user notices that the forest has
also become purple, so they press “undo” to reverse the edit and
place another image-space constraint on the forest to keep it from
changing. These constraints can only be satisfied by splitting the
image again. In the final image, the two women and the ground
each have their own local palettes.

4. Method

The geometric palette-based editing formulation computes image
colors I by applying per-pixel mixing weights W to the palette P,
i.e., I = W ·P, where W ∈ R(N×M)×#p ⊆ [0,1] and P ∈ R#p×3 ⊆
gamut, and gamut is the unit cube in RGB-space where our al-
gorithm is implemented. Users simply change the colors in P
to globally recolor the image; the mixing weights remain fixed
[CFL∗15, TLG16, TEG18a, WLX19]. While this formulation pro-
vides fast and simple global recoloring, users may struggle to
achieve a desired color change in the resulting image. For exam-
ple, given a color c ∈ R3 with its corresponding mixing weights
w∈R#p, we can express c = w ·P. If users wish to change the orig-
inal color c into a different color c′, users need to anticipate the
effects of multiple changes to the palette P on changes in c′. This is

Input

Global Edits

Sparse Edits 

with Hierarchy

Figure 3: Recoloring an object of interest is difficult or even im-
possible with palette-based image editing. In this example, it is
impossible to only recolor the grass background behind the horse
since the horse and grass share the same palette colors. Global
edits affect the colors on the horse (see insets). Our light brown
image-space constraint keeps the color fixed at the horse’s fore-
head. LoCoPalettes allows edits to be applied locally by optimizing
local palettes with image-space constraints (white circles). Photo
courtesy of Bruno Thethe.

a difficult task even if users are given the exact weight values corre-
sponding to the palette colors. In addition, if multiple image-space
constraints are placed on an image, a single palette may not be able
to satisfy all of them (Fig. 3). We tackle these usability problems
and achieve users’ constraints with constrained optimization, auto-
matic hierarchical semantic segmentation, and local palettes.

4.1. Sparser Weights

Our goal is to support real-time optimization on color constraints.
Therefore, we adopt [TEG18a]’s linear palette-based formulation
for efficiency. The linear formulation allows for efficient opti-
mization when satisfying user constraints (Eq. 1) and propagating
palettes throughout the hierarchy (Eq. 4). Previous approaches such
as [CFL∗15] or [AASP17] do not satisfy the linearity requirement.
We follow [TEG18a]’s RGBXY approach for palette extraction and
weight computation. However, we propose a modification to the
weight computation to achieve sparser results. Given an arbitrary
image I with size N-by-M, we follow [TLG16] and decompose I
into a palette P with #p colors by simplifying the convex hull of
the image’s colors in RGB-space. For mixing weights, to ensure
spatial coherence, we follow [TEG18a]’s RGBXY approach and
compute the convex hull vertices in RGBXY-space for colors and
spatial locations in I:

VRGBXY = ConvexHull({(Ri,Gi,Bi,Xi,Yi)|i = 1,2, ...,NxM})

where VRGBXY are convex hull vertices in RGBXY-space and i
enumerates each pixel in I. Note that in [TEG18a], they com-
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Figure 4: Using K-means to find interior sparsifying points improves sparsity versus [TEG18a]. This example took 160 seconds to compute
with K-means, 14 seconds with our proposed PCA projection, and 7 seconds for the unmodified algorithm [TEG18a]. Based on [AASP17]’s
metric, our weights perform the best, with sparsity cost 1.224, versus K-means sparsity 1.28, and [TEG18a] sparsity 1.574. Weights computed
in pure RGB-space (bottom row) have maximum sparsity (1.117 in this example), but lack spatial coherence, which manifests as speckles.
Our approach exhibits a balanced outcome, delivering both efficiency and a satisfactory level of spatial coherence. Edited results under a
single global palette are shown in the rightmost column.

pute spatial weights WRGBXY with respect to VRGBXY for each
RGBXY point and project VRGBXY to RGB-space for computing
color mixing weights WRGB with respect to the RGB-space geo-
metric palette. Here, we introduce a simple and fast modification to
achieve sparser weights. Instead of computing spatial weights by
using VRGBXY , we compute our spatial weights W F

RGBXY by using
augmented internal vertices VA along with VRGBXY . The motiva-
tion is that internal vertices VA can be added properly such that
RGBXY points are closer to VA than to VRGBXY , and therefore,
W F

RGBXY can be sparser. Naively, one can compute spatial weights
with respect to all RGBXY points. This makes WRGBXY an identity
matrix, which is the sparsest set of weights. However, this naive
approach is equivalent to computing weights in only RGB-space,
which lacks spatial coherence.

Given a set of RGBXY data IRGBXY , to compute VA ⊂ IRGBXY ,
our goal is to find some-but-not-too-many internal vertices that can

reasonably separate the given RGBXY data distribution into pieces
when tessellating VA∪VRGBXY . In other words, VA are reasonably
distant from each other under IRGBXY . Note that we do not want to
find as-many-as-possible internal vertices since they might penal-
ize spatial coherence. We considered K-means clustering. Although
we could obtain slightly improved sparsity with small K (Fig. 4),
the time complexity of K-means is dependent on the cluster count
K and is too slow for useful values of K.

Therefore, we introduce an approach to find VA ⊂ IRGBXY using
semantic feature vectors from [AOP∗18]’s feature extractor. We de-
note a feature vector at pixel location i as F i ∈R128. Then, we con-
catenate F i with RGBXY data Ii

RGBXY at each pixel i and we denote
the concatenated per-pixel vector as Ii

RGBFEAXY ∈R133. Since con-
vex hull vertices capture the geometric structure of data, we wish
to compute convex hull vertices:

V∗
RGBFEAXY = ConvexHull({Ii

RGBFEAXY |i = 1,2, ...,NxM})

© 2023 The Authors.
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Figure 5: Here we show additive mixing weights for palette colors
other than black and white. Our modified weights have better spar-
sity compared to [TEG18a]. In this example, our weights for dark
blue achieve significantly better sparsity. Other detailed differences
are circled with a dashed line and pointed with a red arrow. More
examples with numerical comparisons can be seen in Table 1 and
Fig. 12. Photo courtesy of Barbara Olsen.

However, this approach is intractably slow in 133-dimensional
space. Therefore, we compute a subset VRGBFEAXY of the convex
hull vertices instead. We do this by projecting Ii

RGBFEAXY to 5-
dimensional space using principal component analysis, and then
computing convex hull vertices in this lower dimensional space.
We extract VRGBFEAXY and project it to RGB-space, i.e., VA =
VRGBFEAXY |RGB. We denote Vdom =VA∪VRGBXY . Our weights are
then computed as generalized barycentric coordinates using Delau-
nay tessellation under Vdom:

IRGBXY =W F
RGBXYVdom

followed by color mixing weights using the star tessellation with
respect to P:

IRGB = (W F
RGBXYWRGB)P

This modification improves sparsity while maintaining spatial co-
herence (Fig. 5).

4.2. Sparse Editing

When the palette mixture at a given pixel is non-obvious, users
cannot easily or accurately change the pixel to a desired color by
manipulating the palette. We follow previous work [CKT∗23] al-
lowing users to place color constraints directly and interactively
in image space (see our Overview in Sec. 3). We consider two
kinds of constraints. The first is the aforementioned image-space
constraints. In order to keep our constraint solver from interfering
with palette-based edits a user may have made (by directly chang-
ing a palette color), we track such changes as palette constraints.
Keeping all constraints active in the solver allows the user’s edits to
commute, but it can also result in an overly constrained system. In
addition, the user can bake, or accept, the resulting palette, setting
the resulting palette to be the baseline used in future optimizations

and releasing all active constraints. The user can then continue edit-
ing the new baseline palette.

Consider an image decomposed into a pre-computed global
palette P ∈ R#p×3 with global mixing weights W ∈ RN×#p, where
N is the number of pixels in the image and #p is the number of
palette colors. Given a constraint cx placed at image location x with
desired color c ∈R3, we define wx to be the pixel weights obtained
from W at x. In practice, because users can’t click at the precision of
an individual pixel and to avoid pixel-level noise or outliers, we use
the average weights in a small 3× 3 window around x for wx. Our
goal is to optimize for the minimum palette change ∆P such that
the new palette (P+∆P) satisfies the desired color constraint. To
avoid modifying the user’s direct palette edits, we define a palette
constraint as (P[ j],cP), meaning that user wants to change the jth

palette color of palette P to cP, i.e. P[ j] = cP. Considering both
image-space constraints and palette constraints together, we solve
for the new palette as

min
∆P

∥∆P∥2,1

subject to ||LAB(wx · (P+∆P))−LAB(cx)||2 ≤ JND

0≤ P+∆P≤ 1

and (P+∆P)[ j] = cP

(1)

where LAB is the operator that converts any color in RGB-space to
LAB-space and JND is the Just Noticeable Difference threshold in
LAB-space (2.3). The L2,1-norm we use has desirable properties.
Note that the L2,1-norm for a matrix X ∈ Rm×n can be written as:

X =
m

∑
i=1

√√√√ n

∑
j=1

X2
i j (2)

We want to change as few palette colors as possible, so the L2,0
norm comes to mind. However, for any edit, it may be possible
to achieve it by moving one vertex of the palette extremely far
away, which would produce an L2,0 norm of 1. This is not desir-
able, even though the gamut constraint will in general prevent that
solution. There are also infinitely many solutions involving two ver-
tices since the L2,0 norm will consider all such solutions equal with
value 2 without any way to distinguish them. Therefore, rather than
being computationally intractable, the L2,1 relaxation allows us to
change as few palette colors as possible while also considering the
total distance travelled by the palette colors. Since there are only
(3 · #p) degrees of freedom regardless of image size, Eq. 1 can be
solved in real-time. We use SciPy’s Sequential Least Squares Pro-
gramming (SLSQP) solver. Our formulation extends to constrain-
ing any number of palette colors and any k ∈ Z+ pixel constraints
by using wx ∈ Rk×#p and cx ∈ Rk×3. Our optimization is elastic,
meaning that adding or removing any constraint will trigger our
optimizer to find the best palette to satisfy the current constraints.

4.3. Palette and Weight Hierarchy

The limitation of just using a global palette in palette-based edit-
ing is that changes to the global palette affect all colors of the im-
age. Moreover, a palette for a subset of the image will necessarily
be more representative than the global palette. This motivates us to
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Figure 6: An example palette hierarchy H with per-node activa-
tions ai ∈ A and palettes Pi. LoCoPalettes uses DETR [CMS∗20]
to automatically create a semantic hierarchy organized as root→
classes → instances. We create soft region masks ri with image-
guided feathering via guided filtering [HS15].

propose an efficient data structure for hierarchical palettes that sup-
ports local edits when necessary or desired. Our hierarchy has the
desirable property that pixels belonging to a node are reconstructed
virtually and identically via that node’s palette or as the union of
its children’s reconstructions, provided that the children’s palettes
haven’t been independently edited. This guarantees that continuous
changes to local palettes produce continuous changes to the recon-
struction. In other words, no jarring or discontinuous change occurs
to the image when an infinitesimally small change is initially made
to a local palette.

4.3.1. Hierarchy Definition

We define a hierarchical segmentation treeH= (S,E), where S is a
set of nodes and E is a set of edges describing connectivity between
nodes in the tree. We denote si ∈ S as the ith node, with s0 as the root
node. Each node si in a given N-by-M image I has a correspond-
ing sub-region mask ri, which is an N×M matrix whose elements
lie within [0,1]. (In practice, the ri can be stored more efficiently,
since they are 0 outside of the region’s bounding box.) We use real-
valued masks instead of binary masks to maintain soft boundaries
when compositing locally-recolored sub-regions. We then define
the compositing operator ⊙ that performs element-wise multipli-
cation using ri over all three channels of the image I. We set r0 at
the root node s0 to be an all-ones matrix, which means that it covers
the entire image I with full pixel weight, i.e. I = r0⊙ I.

4.3.2. Hierarchical Semantic Soft Segmentation

We build our hierarchy automatically using DETR [CMS∗20]
for panoptic semantic image segmentation. DETR outputs labels
for a hierarchical segmentation with 3 levels: root → classes →
instances. However, DETR’s output has hard edges not always
aligned well with the image contents. To create soft edges guided
by the image contents, we first dilate each class/instance segment
(with a 5×5 kernel)—to guarantee that the entire image is covered
by the union of segments—and then perform a guided filter [HS15]

Input
30.37 
secs

38.27 
secs

32.67 
secs

32.56 
secs

Figure 7: Applying KNN Matting [CLT13] to each of our regions.
Top row: Our regions are computed from DETR [CMS∗20] fol-
lowed by a guided filter [HS15]. The trimap inputs to KNN Matting
(inset) were obtained automatically by dilation and erosion. Bottom
row: KNN Matting outputs are slightly improved, but at very high
computational cost. Photo courtesy of David Dibert.

using the original image data with a radius of 5 pixels. See Fig. 6
for a diagram illustrating our hierarchy data structure.

We also experimented with creating a trimap by dilating and
eroding the output of DETR and inputting that to the KNN matting
algorithm [CLT13] (Fig. 7). The resulting mattes have slightly bet-
ter boundaries than our guided-filter approach, but it is very expen-
sive to compute (∼30 seconds per segment). Therefore, we trade
off the higher-quality but expensive feathering of KNN matting for
real-time, reasonable-quality soft boundaries using a guided filter.
We evaluate the effectiveness of both methods, as well as a com-
parison to a superpixel-based approach (Fig. 9).

4.3.3. Palettes and Weights

For each node si in a given hierarchyH, we compute its geometric
palette Pi using [TEG18a]’s convex hull simplification with a fixed
number of palette colors #p using the pixel colors in the node’s
sub-region ri. We also compute corresponding weights Wi using
our modified approach described in Sec. 4.1 with respect to Pi.

4.3.4. Reconstruction

We reconstruct the edited image from the leaf nodes of H. Stated
formally, the reconstruction process is as follows. Given a set of n
leaf nodes s = {s1,s2, ...,sn} with corresponding weights Wi and
palettes Pi for i = 1, . . .n, we compute:

I← (1− ri)⊙ I + ri⊙ f (Wi ·Pi) (3)

where f is the reshaping operator. Since our reconstruction occurs
via leaf nodes, any child palette Pc needs to reflect changes to its
parent palette Pp. For example, if a givenH only has two levels, any
leaf node si needs to reconstruct the same colors as the root node
does in sub-region ri, even when the root node’s palette P0 has been
edited. To do this, we perform palette propagation. We propagate a
modified parent palette P′

p to a child palette P′
c by minimizing the

color differences restricted to the child’s sub-region rc:

min
P′

c

∥Wc ·P′
c−Wp|rc ·P

′
p∥2

2

subject to 0≤ P′
c ≤ 1

(4)

where P′
c,P

′
p ∈ R#p×3 and Wc,Wp|rc ∈ RK×#p with K the number

of pixels in sub-region rc. This can be expressed as a small, #p×
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#p quadratic programming problem. We solve it in real-time using
CVXPY [DB16].† To avoid interfering with user’s edits in local
regions, we store boolean values ai for each tree node to keep track
of the activation of sub-regions. We call the tree of ai values the
activation tree A (Fig. 6). Initially, only the root node’s a0 is set to
True. We only perform palette propagation from active parents to
inactive descendants.

4.4. Sparse Editing with Hierarchy

Since a single palette may fail to satisfy all constraints, we use
palette splitting rules with optimization under hierarchy to ad-
dress this issue. Given a hierarchy H with n nodes and an acti-
vation tree A. Users add constraints by clicking on image points
or palettes colors (Figs. 1–3). Every time a constraint is added,
modified, or removed, LoCoPalettes re-runs the optimizer from
scratch to satisfy all existing constraints. Consider k image-space
constraints K = {c1

x ,c
2
x , . . . ,c

k
x} and l palette constraints L =

{(P1
i [ j],c

1
Pi
),(P2

i [ j],c
2
Pi
), . . . ,(Pl

i [ j],c
l
Pi
)}, where (Pi[ j],cPi) con-

strains the j-th color of node si’s palette Pi to the color cPsi
.

4.4.1. Palette Splitting Rules

For each constraint c j
x in K for j = 1, ...,k, we push it to the deep-

est activated node sλ that contains c j
x, where containment is based

on the sub-region mask rλ. We optimize the corresponding palette
Pλ at sλ to satisfy both c j

x and any palette constraints (Pλ[ j],cPj ) at
node sλ. We don’t push it deeper (i.e., to a descendant of sλ) unless
optimization fails. We don’t push it shallower since sλ is already ac-
tivated and would occlude the effect of the image-space constraint.
When optimization fails, we push the most recently edited image-
space constraint—the one that triggered the failure—to the shal-
lowest inactive node that contains it (equivalently, to the child of
the deepest activated node that contains it). This creates a palette
split. Note that the split only occurs when Eq. 1 is over-constrained
(Alg. 1, line 9). Users are allowed to bake in changes, i.e., the opti-
mized palettes replace the unoptimized ones inH and the activation
status is updated in A.‡

4.4.2. Optimization under Hierarchy

LoCoPalettes optimizes the entire H by optimizing palettes to sat-
isfy constraints using Eq. 1 along with palette propagation (Eq. 4)
every time the constraints change. We also allow users to localize
an image-space constraint, which directly associates the constraint
with the deepest node that contains it, active or inactive. That is,
users are able to directly edit colors in the level of object instances
in our semantic hierarchy. To keep track of which local palettes
should be used to optimize which constraints, each node inH stores

† Were it not for the gamut constraint, we could pre-compute a constant
parent-to-child transformation matrix that is optimal regardless of the par-
ent palette modification. Although the gamut constraint is rarely necessary
and simple clipping may suffice, in practice, the quadratic program is small
and easily solved in real-time.
‡ Baking image edits is not equivalent to restarting the algorithm with the
current image as input. We do not re-choose the palette (throughout the
hierarchy) or re-segment.

the list of constraints to be used for optimizing its palette. Pseu-
docode can be seen in Algorithm 1.

Algorithm 1: Optimization under Hierarchy
Input:H and A with k pixel constraints K and l palette

constraints L (Ki implies ith constraint in K)
Output: Edited image using newH and A

1 for i← 1 to k do
2 s← FindMatchedNode(Ki) ; /* Splitting

rule in Section 4.4 */
3 Add Ki to node s inH;
4 while True do
5 OptimizeHierarchy (H, A) ; /* Solve

Eq. 1 */
6 if each node inH has no errors then
7 PaletteProp (H, A, s) ; /* Solve

Eq. 4 */
8 break;
9 else

10 ModifyHierarchy (H, A) ; /* Change
node location for Ki */

11 end
12 end
13 end
14 return ReconstructImage (H) ; /* Compute

Eq. 3 */

5. Results and Evaluation

We show a variety of edited images made using LoCoPalettes in
Figures 1–3 and a gallery (Fig. 11). These examples show how
LoCoPalettes overcomes the limits of global palette-based editing.
We show comparisons to [TEG18a]’s global, purely palette-based
approach in Fig. 3 and 11. Fig. 11 also compares to a version of
our approach with the hierarchy disabled. Without a hierarchy, it is
impossible to avoid undesirable changes to local regions. Without
image-space constraints, [TEG18a] is only able to approximate the
editing intent with a large number of palette manipulations. This
is because the mixture of palette colors on objects is not always
obvious. Users must, in effect, manually iterate the steps of LoCo-
Palettes’s optimization.

The supplemental video shows a complete editing session. Hier-
archical segmentations for our examples can be found in the sup-
plemental materials.

5.1. Region Boundaries

Fig. 8 shows the benefit of applying a guided filter [HS15] to
feather region boundaries. Without the guided filter, colors leak
across the boundary when edited. KNN Matting (Fig. 7) further
improves the quality of our region boundaries, but at great compu-
tational cost.

© 2023 The Authors.
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Input

Detectron with 
Guided Filter

Detectron output

Edits using only 

Detectron output

Edits using 
Detectron + 

Guided Filter

Figure 8: Directly using outputs from DETR [CMS∗20] causes
color leakage between segment boundaries when reconstructing
the edited image (red arrows). LoCoPalettes applies a guided fil-
ter [HS15] to feather abrupt color changes across boundaries.
Photo courtesy of Ferdinand Studio.

Table 1: A numerical comparison of our weights’ sparsity versus
[TEG18a]. We measure sparsity using two different metrics: Eq. 8
in [TLG16] (offset by 1 to a positive range) and the second term
of Eq. 4 in [AASP17]. Images are from Figure 12. Our modified
weights perform better (smaller cost) under both metrics.

Sparsity Estimate: Tan et al. [2016] Aksoy et al. [2017]

Weights: Tan et al. [2018] Ours Tan et al. [2018] Ours

Mountain 0.2630 0.2586 1.3679 1.2285
Birds 0.2670 0.2614 1.5114 1.3168

Colorful 0.2549 0.2511 1.1242 1.0245
Boy 0.2676 0.2638 1.5325 1.3966

5.2. Sparser Weights

Examples comparing our sparser weights (Sec. 4.1) to the unmod-
ified algorithm from [TEG18a] can be seen in Fig. 4 and Fig. 5, as
well as Fig. 12. A numerical comparison for these examples can
also be seen in Table 1. Our weights are sparser under two met-
rics from the literature [TLG16, AASP17]. We also experimented
with K-means as an alternative to our PCA-based sparsity approach
(Fig. 4). The K-means approach was less sparse and took an order
of magnitude longer to compute.

5.3. Segmentation

Apart from using DETR, we also experimented with superpixel
(SLIC [ASS∗12]) merging to create segments on-the-fly from the
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Figure 9: A comparison of DETR [CMS∗20] regions to regions
obtained by merging superpixels subject to image-space anchors
(diamond indicators). See text for details. Photo courtesy of Tobi.

user’s image-space constraints (Fig. 9). We create a matrix stor-
ing pairwise superpixel distances using a combination of color in-
formation and [AOP∗18]’s per-pixel feature vectors. We interpret
this matrix as a graph and use a binary search to find the largest
threshold value which still separates the first two constraints after
merging superpixels within each component of the cut graph. After
merging, we assign all unassigned regions to the more general of
the two constraints, and then repeat this process for each additional
constraint ci, which is compared against the constraint currently
governing the part of the image containing ci’s pixel location.

5.4. Implementation

We implemented LoCoPalettes in Python using SciPy’s SLSQP
solver and CVXPY for constrained optimization. All algorithms
were run on a 2020 13” MacBook Pro with M1 CPU and 16 GB
of RAM. LoCoPalettes updates in real-time, because palette-based
editing is fast and the degrees of freedom in our optimization are
based on palettes, which are small and independent of the image
size. Our constraint set is based on palette colors and image-space
constraints, of which there are few. The storage requirements for
our hierarchy is 3× the storage for global editing, since our hierar-
chy is built upon 3 levels and nodes are approximately disjoint at
each level.

6. Conclusion

LoCoPalettes addresses the primary shortcoming of existing
palette-based editing frameworks. It allows for local, semantic
changes when user edits cannot be achieved with a single global
palette. We do this by integrating recent work [CKT∗23] into a
palette hierarchy to provide a low-overhead, real-time optimization
that achieves user constraints with sparse changes to the palette and
hierarchy. We also proposed a new method for computing spatially
smooth weights that improves sparsity over the state of the art.

© 2023 The Authors.
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Input Edited

Figure 10: LoCoPalettes fails to recolor a specific semantic object
in cases where the semantic regions are not accurately captured
by DETR. A illustration shows an example where DETR fails to
segment the violin and lady separately. As a result, an image-space
constraint placed on the violin also changes the skin tone. Photo
courtesy of Luwadlin Bosman.

6.1. Limitations and Future Work

Although we have proposed a fast, automatic algorithm for creating
a soft semantic hierarchical segmentation, we are limited by the
quality of the underlying hierarchical segmentation mode (Fig. 10).
The limitations of the model we use, DETR [CMS∗20], are not
always predictable, although we have found it to be more robust
than [AOP∗18], which used an older network. We would also like
to explore creating dynamic editing-aware segmentations on-the-
fly based on user’s image-space constraints, as in our superpixel
segmentation experiment.

Inspired by [KOWD21], we would like to extend LoCoPalettes
to video editing. Instead of storing soft masks at each node, we plan
to explore storing spatial-temporal segmentation along with geo-
metric palettes computed from [DLX∗21]. In addition, we would
also like to explore speeding up the computation of local palettes
by using [WLX19] or variational approaches [LLTY21].
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