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Abstract
Image stylization has seen significant advancement and widespread interest over the years, leading to the development of a
multitude of techniques. Extending these stylization techniques, such as Neural Style Transfer (NST), to videos is often achieved
by applying them on a per-frame basis. However, per-frame stylization usually lacks temporal consistency, expressed by un-
desirable flickering artifacts. Most of the existing approaches for enforcing temporal consistency suffer from one or more of
the following drawbacks: They (1) are only suitable for a limited range of techniques, (2) do not support online processing as
they require the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide in-
teractive consistency control. Domain-agnostic techniques for temporal consistency aim to eradicate flickering completely but
typically disregard aesthetic aspects. For stylization tasks, however, consistency control is an essential requirement as a certain
amount of flickering adds to the artistic look and feel. Moreover, making this control interactive is paramount from a usability
perspective. To achieve the above requirements, we propose an approach that stylizes video streams in real-time at full HD
resolutions while providing interactive consistency control. We develop a lite optical-flow network that operates at 80 Frames
per second (FPS) on desktop systems with sufficient accuracy. Further, we employ an adaptive combination of local and global
consistency features and enable interactive selection between them. Objective and subjective evaluations demonstrate that our
method is superior to state-of-the-art video consistency approaches. maxreimann.github.io/stream-consistency
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1. Introduction

For thousands of years, paintings have served as a tool for vi-
sual communication and expression. However, it was not until
the late 20th century that computers were used to simulate paint-
ings [Hae90]. In the course of following decades, the field of
artistic stylization [KCWI13] has significantly developed and ex-
tended by learning-based methods, such as Neural Style Trans-
fers (NSTs) [SID17, JYF∗20]. Even though a large number of im-
age stylization techniques exist, extending these to video remains
challenging. A major obstacle in this regard is the enforcement of
temporal coherence between stylized video frames. With the pro-
liferation of video streaming applications, stylizing video streams
has also become popular, however, the requirements of low-latency
processing add additional challenges. Most of the existing methods,
to address the above, can be classified into one of the following four
categories:

Style Specific. A common approach is to develop a specific
method for a particular artistic style and exploit its character-
istics for temporal coherency [BNTS07, NSC∗11]. Such meth-

ods work effectively for the specific target style, however, do not
generalize well. Many of these specialized approaches have been
discussed by Bénard et al. [BTC13].

Coherent Noise. Another class of techniques adopts and trans-
forms a generic, temporally-coherent noise function to yield a
visually plausible stylized output [BLV∗10,KP11]. Compared to
target-based coherence enforcement [BNTS07], these apply to a
wider range of techniques but are limited to scenarios with rapid
temporal changes.

Stylization by Example. More recently, authors have adopted a
stylization-by-example approach to support a wide range of styl-
ization techniques [BCK∗13, JST∗19, TFK∗20, FKL∗21]. How-
ever, this approach requires the paring of the complete video and
keyframe marking. Thus, by design, it does not apply to video
streams.

Consistent Video Filtering. One can also enable the stylization of
video streams using consistent video filtering techniques. Ex-
isting approaches are either not well-suited for Image-based
Artistic Rendering (IB-AR) [BTS∗15, YCC17] (Fig. 1) or do
not provide interactive consistency control [LHW∗18,TDKP21],
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Table 1: Comparing existing consistent video filtering methods with ours with regards to consistency control. Here, the color green denotes
the aspect which is favorable to interactive consistency-control while the color red denotes otherwise (“N/A” denotes Not-Applicable).

Aspects Bonneel et al. [BTS∗15] Yao et al. [YCC17] Lai et al. [LHW∗18] Shekhar et al. [SST∗19] Thiomonier et al. [TDKP21] Ours
Requires pre-processing? No Yes No Yes No No
Provides consistency control at inference time? Yes No No Yes No Yes
Provides interactive consistency control? No N/A N/A Yes N/A Yes

(a) Input (b) Processed (c) Ours (d) Lai et al. [LHW∗18] (e) Bonneel et al. [BTS∗15]

Figure 1: For the top-row: first two columns depict (a) input and (b) processed result for frame-24, columns three to five depict the cor-
responding consistent output using (c) Ours (d) Lai’s, and (e) Bonneel’s method. For the mid-row: depict the corresponding results for
frame-80. For the bottom row: we show the Temporal Slice Image (TSI) for the entire video sequence depicting long-term temporal similarity
with the per-frame processed output. Note, that our method is able to preserve the look and feel of the per-frame processed result in compar-
ison to the method of Lai et al. which suffers from color bleeding artifacts while the stylized textures are lost for the output of Bonneel et al..
Please see the supplementary material for video results.

which is an essential requirement for artistic rendering [FLJ∗14].
Currently, the only method that provides interactive consis-
tency control is limited to offline processing and requires pre-
processing [SST∗19].

We aim to develop a temporal consistency enforcement approach
for artistic stylization techniques that provides (1) interactive con-
sistency control and (2) online processing to facilitate the applica-
tion to video streams.

A determining factor towards the slow performance of ex-
isting online and interactive consistent video filtering tech-
nique [BTS∗15] is the costly step of the optical-flow computation.
Previous works using learning-based methods are able to achieve a
considerable accuracy for optical-flow estimation [TD20,JCL∗21].
However, we argue that such high accuracy is not particularly nec-
essary to enforce temporal consistency for artistic stylization tasks.
To validate our conjecture, we conduct a user study, wherein the
participants prefer the final consistent video output generated using
our flow network as compared to that being obtained using State-
of-the-art (SOTA) approaches.

In contrast to accuracy, less attention has been paid to improv-
ing the run-time performance of optical-flow estimation, which is
essential for online-interactive editing. To this end, we develop a
lite optical-flow neural network that runs at a high-speed (approx.
80 FPS on mid-tier desktop GPUs) while maintaining sufficient
accuracy. The compact network is also deployable on mobile de-
vices (iPhones and iPads) where it runs at interactive frame rates
(24 FPS on iPad Pro 2020). We use the optical-flow output from

the above network to warp neighboring processed frames (for lo-
cal consistency) and previous consistent output (for global consis-
tency), which allows for interactive global and local temporal con-
sistency control. Our approach is able to stabilize incoming video
streams in real-time with one frame latency on a consumer desktop
GPU at HD resolutions, and, using a fast preset, also in full HD.

To summarize we present the following contributions:

1. A novel approach for making per-frame stylized videos tempo-
rally consistent via an adaptive combination of local and global
consistency features which allows for interactive consistency
control.

2. A lite optical-flow network, to achieve interactive performance,
that runs at 80 FPS on a mid-tier desktop PC and at 24 FPS on a
mobile device while achieving reasonable accuracy.

Note, that we define artistic stylization as the adaptation of col-
ors, textures, and strokes. While our approach is effective for most
image-based stylization techniques (e.g., NSTs, algorithmic filter-
ing), it cannot handle significant shape or content inconsistencies
between frames introduced by semantically-driven image synthesis
(e.g., image-to-image diffusion-based models [RBL∗22]). Flow-
based warping is insufficient to enforce consistency in such cases.

2. Background & Related Work

Consistent Video Filtering. Lang et al. [LWA∗12] propose a
solution to enforce temporal consistency for a large class of
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Figure 2: Schematic overview of our approach: (1) We start by calculating the warping weights wp and wn by applying Eqn. 3 on the input
image sequence It−1, It , It+1. (2) The computed weights are used to linearly combine the per-frame processed sequence Pt−1, Pt , and Pt+1
to obtain the locally consistent image Lt , see Eqn. 2. (3) To obtain the globally consistent version Gt we warp the output at previous time
instance Ot−1 as depicted in Eqn. 4. (4) The local and global consistent images, Lt and Gt , are linearly combined to obtain a temporally
smooth version At , see Eqn. 5. (5) To include high-frequency details from the per-frame processed result, At and Pt are adaptively combined
via the optimization in Eqn. 1 using the weights wc (Eqn. 7) to obtain the final result Ot .

optimization-based problems via iterative filtering along the mo-
tion path. Dong et al. [DBZY15] address the problem of temporal
inconsistency for enhancement algorithms by dividing individual
video frames into multiple regions and performing a region-based
spatio-temporal optimization. Bonneel et al. [BTS∗15] was the
first to present a generalized approach for consistent video filtering
which is agnostic to the type of filtering applied on individual video
frames. The method combines gradient-based characteristics of the
per-frame processed result with the warped version of the previous-
frame output using a gradient-domain-based optimization scheme.
Yao et al. [YCC17] propose a similar approach however considers
multiple key-frames for warping-based consistency to avoid prob-
lems due to occlusion. Both of the approaches assume that the gra-
dient of the processed video is similar to that of the input video
and thus cannot handle artistic rendering tasks where new gradients
resembling brush strokes are generated as part of the stylization
process. Moreover, due to slow optical-flow computation, they are
non-interactive in nature. Shekhar et al. [SST∗19] employs a simi-
lar formulation as Bonneel et al., with the difference of using a tem-
porally denoised version of the current frame for consistency guid-
ance. However, the temporal denoising requires the complete video
as input making the method offline in nature. Lai et al. [LHW∗18]
propose the first learning-based technique in this context. The au-
thors employ perceptual loss to enforce similarity with the pro-
cessed frames and for consistency make use of short-term and
long-term temporal losses. Thimonier et al. [TDKP21] employs a
ping-pong loss and a corresponding training procedure for tempo-
ral consistency. Both learning-based techniques are faster than their
optimization-based counterpart since they do not perform optical-
flow computation at inference time. However, these learning-based
techniques do not allow to control of the degree of consistency
in the final output which is vital for the task of stylization. Thus,
the above-discussed methods are either non-interactive/offline or
do not provide any consistency control at inference time. Our ap-
proach addresses these limitations (Tab. 1).

Optical Flow for Consistent Filtering. Both Bonneel et al. and
Yao et al. use the PatchMatch algorithm [BSFG09] for flow-based

warping, however, the slow performance of PatchMatch makes
them non-interactive. Lai et al. use FlowNet 2.0 [IMS∗17] for
flow-based warping to design their short-term and long-term tem-
poral consistency losses. FlowNet 2.0 is on par with the qual-
ity of state-of-the-art classical methods, however, due to a large
number of parameters and operations, achieves only interactive
frame rates even on high-end desktop Graphical Processing Units
(GPUs). An improved compact optical-flow Convolutional Neural
Network (CNN) is proposed by Sun et al. [SYLK18] – PWC-Net.
It combines coarse-to-fine estimation with pyramidal image fea-
tures, correlation, warping, and CNN-based estimation. Further-
more, a refinement CNN is stacked at the end to improve the fi-
nal flow estimate. PWC-Net is orders of magnitude smaller than
FlowNet 2.0 and runs at real-time frame rates using desktop GPUs.
Liu et al. [LZH∗20] employ their approach to train a similar archi-
tecture in an unsupervised setting and achieve reasonable accuracy
– ARFlow. LiteFlowNet and its successor LiteFlowNet2, both pro-
posed by Hui et al. [HTL18, HTL20], have similar compact archi-
tectures. Further improvement in accuracy is achieved by models
using iterative refinements, such as RAFT [TD20] and transformer
modules such as GMA [JCL∗21], however, they heavily trade run-
time for accuracy. Based on a runtime-accuracy comparison (see
Sec. 3.2), we select PWC-Net as a base network to develop a "Lite"
flow network with improved performance for interactive consistent
filtering.

Temporal Consistency for Video Stylization. Litwinow-
icz [Lit97] describes a technique to apply an impressionist effect
on images and videos. For enforcing temporal coherence, optical
flow was used to transform the brush strokes from one frame
to the next. Winnemöller et al. [WOG06] develop a real-time
video and image abstraction framework. The authors employ soft
quantization that spreads over a larger area, thus significantly
reducing temporal incoherence. Bousseau et al. [BNTS07] advects
texture in forward and backward directions using optical flow
for coherent water-colorization of videos. Noris et al. [NSC∗11]
preserve the geometric richness of the sketched style in each frame
while allowing to successful decrease the temporal noise to a
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desirable rate. Fišer et al. [FLJ∗14] propose similar temporal noise
control for hand-colored animations. Noris et al. and Fišer et al.
come close to our vision of providing control over the extent of
temporal noise. However, the method of Noris et al. can only
handle sketchy animations while Fišer et al. requires a clean
animation as input onto which temporal noise, extracted from
hand-colored examples, is added. In comparison, our approach
works on already stylized videos and can handle a broad range
of stylization techniques. Numerous such specialized video-based
approaches have been discussed by Bénard et al. [BTC13].
The above classical IB-AR techniques approximate rendering
primitives by modifying traditional image filters. Most often,
they use low-level image features for modeling and fail to model
structures resembling a particular style. Recently, deep CNNs
were successfully used to transfer high-level style attributes from
a painting onto a given image [GEB16]. Various methods have
been proposed to extend the above for videos [HWL∗17, CLY∗17,
GJAF17,RDB18,LLKY19,PP19,DTD∗21]. Ruder et al. [RDB18]
proposes a novel initialization technique and loss functions
for consistent stylized output even in cases with large motion
and strong occlusion. The methods of Gupta et al. [GJAF17],
Chen et al. [CLY∗17], and Huang et al. [HWL∗17] enforce
consistency via certain formulations of temporal loss and use
optical-flow based warping only during the training phase thus
achieving fast performance. Li et al. [LLKY19] proposes a method
for arbitrary style transfer and shows its applicability to real-time
video style transfer by applying style features to consecutive
frames using a shallow autoencoder. However, we show that our
approach, applied to their per-frame processed videos is able to
significantly reduce flickering and is more consistent than their
stabilized version (see supplementary). Puy and Pérez [PP19]
develop a flexible deep CNN for controllable artistic style transfer
that allows for the addition of a temporal regularizer at testing
time to remove the flickering artifacts. The above method comes
closest in terms of providing some consistency control at test
time for NST-based methods. However, they cannot handle
classical stylization techniques. Keyframe-based Stylization
(KBS) [BCK∗13, JST∗19, TFK∗20, FKL∗21] caters to both clas-
sical and neural paradigms via priors involving keyframe-based
warping. Nonetheless, it is usually applied as an offline process
involving pre-training on the input video. Moreover, we show
that our approach is able to interactively stabilize online KBS
approaches such as [TFK∗20]. We aim to propose a generic
solution that is agnostic to the type of stylization and provides
online performance and interactive consistency control.

3. Method

3.1. Temporal Consistency Enforcement

Given an input video stream . . . It−1, It , It+1, . . . and its per-frame
processed version . . .Pt−1, Pt , Pt+1, . . . , we seek to find a tempo-
rally consistent output . . .Ot−1, Ot , Ot+1 . . . . Our method is ag-
nostic to the stylization technique f applied to each frame, where
Pt = f (It). However, it is necessary for f to not introduce signifi-
cant shape or content inconsistencies between consecutive frames,
as the changes in the stylized frames should correspond to the op-
tical flow (calculated based on the content). We initialize the con-

Table 2: Constituent elements of smoothness term in Eqn. 1
for different methods. Here, ws and Td refers to saliency-based
weights and temporally-denoised image respectively, introduced by
Shekhar et al. [SST∗19]

Method Weight Consistent Image
Ours wc At
Bonneel et al. [BTS∗15] wp Γ(Ot−1)
Shekhar et al. [SST∗19] ws Td

sistent output for the first frame as its per-frame processed result
i.e., O1 = P1. To obtain the output for subsequent frames (Ot at any
given instance t) we require only a snippet of input (It−1, It , It+1)
and processed streams (Pt−1,Pt ,Pt+1), and the consistent output at
the previous instance Ot−1. For enforcing consistency, we solve the
following gradient-domain optimization scheme:

E(Ot) =
∫

Ω

(
||∇Ot −∇Pt ||2︸ ︷︷ ︸

data

+ wc||Ot −At ||2︸ ︷︷ ︸
smoothness

)
dΩ. (1)

where Ω represents the image domain. The data term in this opti-
mization enforces similarity with the per-frame processed result Pt
in the gradient domain. The gradient-based data term ensures that
we borrow only the necessary details from the per-frame pro-
cessed results (in the form of edges) while avoiding inconsistencies.
Thus, high-frequency details are taken from Pt and the smooth-
ness term enforces temporal consistency where low-frequency con-
tent is taken from the image At . The optimization formulation
in Eqn. 1 is commonly known as screened Poisson equation and
has been successfully employed for various image editing applica-
tions [BCCZ08, BZCC10]. In the context of consistent video fil-
tering, it was first used by Bonneel et al. [BTS∗15] followed by
Shekhar et al. [SST∗19] (Tab. 2). However, our novelty is the way
in which we construct our smoothness term that, unlike previous
approaches, considers both global and local consistency aspects.
Our novel smoothness term is able to better preserve the color and
textures in the stylized output while providing both short-term and
long-term temporal consistency.

Local Consistency. For enforcing temporal consistency at a local
level, we use optical flow to warp neighboring per-frame processed
results to the current time instance t. This is performed by comput-
ing an adaptive combination of (1) warped previous per-frame pro-
cessed image Γ(Pt−1), (2) warped next per-frame processed image
Γ(Pt+1), and (3) the current per-frame processed image Pt , where Γ

is the warping function. By including both backward and forward
warping in our formulation, we are able to significantly reduce ar-
tifacts due to occlusion and flow inaccuracies. The linear combi-
nation of (1), (2), and (3) gives us a locally consistent version Lt
where,

Lt = (1− (wp +wn)) ·Pt + wp ·Γ(Pt−1) + wn ·Γ(Pt+1). (2)

The weights wp and wn capture the inaccuracies in the warping of
previous and next frames respectively and are defined as follows:

wp = exp
(
−α||It −Γ(It−1)||2

)
and

wn = exp
(
−α||It −Γ(It+1)||2

)
.

(3)
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(a) Input (b) k1 = 0.3 (c) k1 = 0.5 (d) k1 = 0.7 (e) k1 = 0.9

(f) Processed (g) λ = 0.1 (h) λ = 1.0 (i) λ = 5.0 (j) λ = 7.06

Figure 3: The level of consistency in the final output can be controlled via parameters k1 and λ. Here we show how the final result varies
by increasing these, for lower values the consistency is negligible and the results (Fig. 3b and Fig. 3g) visually look similar to the per-frame
processed output (Fig. 3b). For higher values, we start observing artifacts due to ghosting and/or optimization (Fig. 3e and Fig. 3j).

In order to also incorporate contribution from Pt , we clamp the
weights wp and wn as follows: wp ∈ [0,k1] and wn ∈ [0,k2], where
k1 and k2 are two constants and their sum is less than one, i.e.,
0 < (k1 + k2)< 1. The locally consistent image sequence given by
Lt has improved temporal consistency over the per-frame processed
output, however, it still has visible flickering artifacts. Thus, the re-
duction in flickering due to the warping of only one temporal neigh-
bor is not sufficient. To further improve consistency, one can warp
more neighboring frames around the current time instance t. As we
increase the temporal window size for such an adaptive combina-
tion it has a denoising effect leading to further reduction in flicker-
ing. The temporal denoising performed by Shekhar et al. [SST∗19],
for enforcing consistency, can be considered as a specific example
of the above scenario. However, for interactive stylization, warp-
ing more frames to the current instance is not feasible due to time
constraints. Moreover, in the case of video streams, we do not have
frames to warp from the forward temporal direction.

Global Consistency. In order to overcome this limitation, existing
techniques [BTS∗15,LHW∗18] adopt a global approach. For global
consistency, one can consider the previous stabilized output Ot−1
and enforce similarity with its warped version Gt where,

Gt = Γ(Ot−1). (4)

To enforce only global temporal smoothness, we replace At with Gt
in Eqn. 1. Further, in order to compensate for optical-flow inaccu-
racies, the smoothness term is weighted using wp (i.e., wc = wp) in
Eqn. 1.

However, considering only global consistency for flicker reduc-
tion leads to a loss of stylization (in terms of colors and textures)
and local temporal variations in the final output. Moreover, in this
case, any warping error (due to flow inaccuracies) or noise (as
part of the stylization process) keeps getting propagated to future
frames. Due to the above factors, such an approach only gives plau-
sible results where the gradients of the original video are similar

to the gradients of the processed video. The above does not hold
for the task of stylization where stylistic elements such as brush
strokes, textures, or stroke textons [ZGWX05], in general, can vary
largely between frames even for small changes in input gradient.

Combining Local and Global Consistency. For preserving local
temporal variations (in terms of look and feel) while significantly
reducing flickering artifacts, we linearly combine globally and lo-
cally consistent images Gt and Lt respectively,

At = wp ·Gt + (1−wp) ·Lt . (5)

We use the adaptively combined image At as our reference for con-
sistency while enforcing temporal smoothness in Eqn. 1. The upper
limit of weight wp (i.e., k1) can be increased to increase the influ-
ence of global-temporal smoothness and vice versa. Further, the
influence of the smoothness term is controlled by per-pixel consis-
tency weights wc. We would like to invoke the smoothness term
only when the warping accuracy is sufficiently high. To this end,
we construct a warped version of the input image similar to Lt as,

AI
t = (1− (wp +wn)) · It + wp ·Γ(It−1) + wn ·Γ(It+1). (6)

Only when the input image It is similar to AI
t , the smoothness term

is invoked. To measure this similarity, we use the weight wc,

wc = λ · exp
(
−α||It −AI

t ||
2)

. (7)

The parameter λ is used to scale up or down the weight wc.

Consistency Control Modes. The above adaptive combination of
local and global consistency provides two different ways of con-
sistency control in the final output. By increasing the upper limit
of wp, i.e., k1 we can increase the proportion of global consistency
in the adaptively combined image At and vice versa. On the other
hand, the optimization parameter λ dictates how close the output Ot
will be to the adaptively combined image At . Thus, the level of con-
sistency in the final output can be controlled in two different ways:
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(1) by setting the upper limit of parameter wp, i.e., k1 or (2) by
scaling the weight parameter λ. For low values of k1 (Fig. 3b), the
consistency enforced is negligible and the final result resembles the
per-frame processed output (Fig. 3f). However, for higher values,
we start observing noisy ghosting artifacts (Fig. 3e). The higher val-
ues for k1 translate to using only global consistency which results
in the accumulation of flow inaccuracies visualized as ghosting ar-
tifacts. Similarly, for lower values of λ (Fig. 3g), the final result is
visually similar to the per-frame processed output (Fig. 3f). How-
ever, for higher values, the optimization becomes unstable resulting
in noisy optimization-based artifacts. (Fig. 3j).

Optimization Solver. The energy terms in Eqn. 1 are smooth and
convex in nature, which allows a straightforward energy minimiza-
tion with respect to Ot . To this end, we employ an iterative ap-
proach thus avoiding: (i) storage of a large matrix in memory and
(ii) further estimating its inverse. Moreover, an iterative approach
allows us to stop the solver once we have achieved visually plau-
sible results. An iterative update Ot

j+1 is obtained by employing
Stochastic Gradient Descent (SGD) with momentum [Qia99],

Ot
j+1 = Ot

j −η∇E(Ot
j)+κ(Ot

j −Ot
j−1). (8)

where η and κ are the step size parameters, ∇E is the energy gradi-
ent with respect to Ot , and j is the iteration count. For most of our
experiments, η = 0.15 and κ = 0.2 yield plausible results. We con-
sider the trade-off between performance vs. accuracy as stopping
criteria and do not compute energy residue for this purpose. To ob-
tain a consistent output while having interactive performance, we
empirically determine 150 iterations to be sufficient. The optimiza-
tion is stable for the given parameter settings and early stopping is
only employed for computational gain.

An integral aspect common to both our local and global consis-
tency is the warping function Γ. Apart from the number of solver it-
erations, for interactive performance the above warping should also
happen at a fast rate – which in turn necessitates fast optical-flow
estimation.

3.2. Lite Optical-Flow Network

We aim to obtain a flow network capable of running at high-speed
on consumer hardware with reasonable accuracy. To this end, we
start by selecting an existing CNN-based optical flow estimation
technique, based on accuracy vs. run-time analysis. After the se-
lection of a base network, we perform further optimization steps to
increase the performance as outlined in Fig. 4.

Base Network Selection for Compression. In Fig. 5, we com-
pare several well-known optical methods to find a base network
candidate that best matches our runtime/accuracy requirements.
We employ the following models for this: FlowNet 2.0 [IMS∗17],
SpyNet [RB17], LiteFlowNet2 [HTL20], PWCNet [SYLK18],
ARFlow [LZH∗20], VCN [YR19], RAFT [TD20] and finally
GMA [JCL∗21] (state-of-the-art in terms of EPE-based accuracy).
Our experiments are carried out on an Nvidia RTX 2070 GPU,
which we deem to be a good representative of a current mid-to
higher-end consumer GPU. Under a constraint of interactive perfor-
mance on consumer hardware, LiteFlowNet2 [HTL20] and PWC-

43

                (a)                                            (b)                                           (c)   
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Figure 4: Modification of the PWC-Net [SYLK18] architecture for
real-time performance. We apply the following network compres-
sion steps: (a) Replace DenseNet connections with light ones, (b)
Reduce the number of flow estimators, and (c) Replace dense con-
nections in the refinement module with separable convolutions.
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Figure 5: Accuracy vs. run-time performance of existing meth-
ods measured on Sintel Final (Test set) [BWSB12]. The Endpoint
Error (EPE) metric measures Euclidean distance (in pixels) be-
tween ground truth and predicted optical flow vectors. Note how
our method achieves a high FPS while being accurate enough for
temporal consistency enforcement.

Net [SYLK18] offer the best trade-off between run-time perfor-
mance and accuracy (Fig. 5). LiteFlowNet2 [HTL20] is already an
optimized version of FlowNet 2.0 [IMS∗17], in comparison PWC-
Net [SYLK18] has more potential for optimization/compression.
Moreover, recently it has been shown that PWC-Net can achieve
similar accuracy to RAFT when trained on a large-scale synthetic
dataset [SVH∗21] and that PWC-Net achieves favorable trade-offs
vs. other state-of-the-art methods when selecting for runtime per-
formance or higher image resolutions [SHR∗22]. Hence, we select
PWC-Net for further compression.

Optimized Network Architecture. We start with the base archi-
tecture of PWC-Net. As the first compression step, we reduce the
computationally expensive DenseNet [HLvdMW17] connections
in the flow estimators to retain connections only in the last two
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Modifier Description Default
-Nlight N light [LZH∗20] flow esti-

mators.
5 dense [SYLK18]

-Msep last M flow estimators use
depthwise separable convo-
lutions [HZC∗17].
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tions [HZC∗17].

standard convs.

-cP use P% of channels. 100%

(b) Legend of our CNN variants.

Figure 6: Accuracy vs. run-time performance of our CNN variants on desktop, measured on Sintel Final (Train) [BWSB12]. Optimization
steps that lead to significant improvement in run-time are connected by a line. Our architectural modifications to PWC-Net [SYLK18] are
detailed on the right, e.g., our-4light-sepref denotes a 4 light flow estimators and refinement using depthwise separable convolutions. We
achieve a high accuracy on Sintel training data, however, for testing data the accuracy is low, see Fig. 5.

layers ("-light" in Fig. 6b). Similar to LiteFlowNet2 [HTL20], we
remove the fifth flow estimator – operating on the highest resolu-
tion – as it heavily trades off run-time for only a marginal increase
in accuracy (compare "4light" vs "5light" in Fig. 6b). We replace
the standard convolutions in the refinement by depthwise separable
convolutions [HZC∗17] ("-sepref" in Fig. 6b). Moreover, we also
explore reducing the number of channels [HZC∗17], but find that
reducing channels results in a worse trade-off as compared to other
optimizations.

Training. For training, we follow the original PWC-
Net [SYLK18] schedule. However, we find that weight-
ing the multi-scale losses equally, instead of exponen-
tially [SYLK18, HTL18, HTL20, YR19], improves accuracy. For
our experiments on the desktop system, we use PyTorch [P∗19]
and take inspiration from the implementation by Niklaus [Nik18].
Similar to PWC-Net [SYLK18], we train our mobile architecture
on the training dataset schedule FlyingChairs [FDI∗15] → Fly-
ingThings3D [MIH∗16]→ Sintel [BWSB12]. In the supplementary
material, we provide training settings for each stage in detail. We
employ a multi-scale loss [SYLK18] applied to each flow estimator
and optimize using the AdamW optimizer [LH19] with β1 = 0.09,
β2 = 0.99, and l2 weight regularization with trade-off γ = 0.0004.
Furthermore, extensive dataset augmentation is applied to prevent
model overfitting. We refer to the supplementary material for more
details.

Our Final Model. We analyze various optimization options and
chose “our-4light-sepref ” as our final model for desktop systems
as it provides the best trade-off between accuracy vs. run-time. As
depicted in Fig. 6a, our method improves the run-time performance
of PWC-Net from 30 FPS to 85 FPS – a speed-up of factor 2.8. For
Sintel training data, the accuracy drops by ≈ 0.5px in EPE terms,
however for test data the drop in accuracy is significant where the
final EPE is 7.43, see Fig. 5. Nevertheless, the accuracy is sufficient
enough for enforcing warping-based consistency. To validate our
design decisions, we conduct an extensive ablation study in which
we vary the architectural and training choices – please see the sup-

Table 3: Runtime performance in milliseconds per frame. We mea-
sure the total processing time (without disk IO) and the individual
stages on two GPU models (Nvidia GTX 1080Ti and RTX 3090).
†Fast preset. Downscales flow computation by 2× and only uses
50 iterations of stabilization instead of 150.

Task Optical flow Stabilization Total
↓ Res. / GPU 1080Ti 3090 1080Ti 3090 1080Ti 3090

1920×1080 px 66.8 40.0 184.1 42.7 250.8 82.7
1280×720 px 31.3 19.7 86.5 21.1 117.8 40.8

640×480 px 12.6 6.2 20.6 6.3 33.2 12.5
1920×1080 px† 26.2 13.0 71.1 16.5 97.3 29.5

plementary for details. Furthermore, we tune our architecture for
optical flow calculation on mobile devices using channel pruning
and quantization, which we also detail in the supplementary ma-
terial. Here, we improve run-time performance from 2.8 FPS to
24 FPS (iPad Pro 2020), and 1.5 FPS to 13 FPS (iPad Air) – an
improvement of factor 8. Next to showing the general applicabil-
ity of optical flow CNNs on mobile devices, this demonstrates that
real-time on-device stabilization of videos using our presented ap-
proach will become feasible with a further moderate increase in
mobile GPU computing power. A fast optical-flow-based warping
enables our framework to interactively control the degree of con-
sistency and generate visually plausible results.

4. Experimental Results

4.1. Implementation Details

All our experiments were performed on a consumer PC with an
AMD Ryzen 1920X 12-Core CPU, 48 GB of RAM, and a Nvidia
GTX 1080Ti and RTX 3090 graphics cards with VRAMs of 11
GB and 24 GB respectively. We implement a real-time video-
consistency framework in C++, using ONNXRuntime for cross-
platform acceleration of our lite optical-flow network, and imple-
ment the stabilization code using Nvidia CUDA (v11). In Tab. 3, we
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(a) Frame Overlay (b) Ground-truth (c) RAFT [TD20] (d) PWC-Net [SYLK18] (e) Ours

Figure 7: Optical flow estimated using the synthetic Sintel dataset [BWSB12].

(a) Frame Overlay (b) RAFT [TD20] (c) PWC-Net [SYLK18] (d) Ours

Figure 8: Optical flow estimated for the real-world dataset DAVIS [PTPC∗17].

measure the runtime performance of our system. We find that an in-
coming stream of frames can be stabilized at real-time performance
for VGA resolution even on low- and mid-tier GPUs and higher-tier
GPUs (such as a RTX 3090) can stabilize HD at common video
frame rates (approx. 24 FPS) and full-HD resolutions at interactive
frame rates (> 10 FPS) (Tab. 3). We also test a fast preset that uses
less iterations and computes optical flow on half-sized inputs, and
find that a full-HD video stream can be processed in real-time at the
cost of minor additional flickering - see the supplementary video for
a comparison. We implement a graphical user interface that allows
for real-time decoding and stabilization of stylized video streams,
where the stabilization parameters can be interactively controlled,
see the supplementary video for a demonstration.

4.2. Parameter Settings

Initially, we tune the parameters of our consistency framework to-
wards achieving a low warping error (Tab. 5). We refer to this set-
ting as Ours-objective with the following parameter values k1 =
k2 = 0.3, α = 10× 103, and λ = 0.7. However, we observed that
even though the warping error indicated good temporal stability,
subjective flickering, and artifacts were noticeable. Unlike exist-
ing approaches, our framework allows for interactive parameter
adjustment. Thus, a parameter set that subjectively produces well-
stabilized results on a broad range of tasks and videos was obtained
experimentally. As our final version, we use the values of k1 = 0.3,
k2 = 0.5, α = 6.5× 103, and λ = 2.0 to generate all the images in
the paper and the videos provided in the supplementary. We fur-
ther compare Ours-objective settings with our final version as part
of our user study to validate our parameter choices. The consistent
outputs obtained using the above parameter settings are compared
against state-of-the-art approaches thereby showcasing its efficacy.

4.3. Optical Flow Results

We visualize optical flow on frames from the Sintel [BWSB12]
dataset in Fig. 7 and compare it to state-of-the-art methods. All
depicted methods have been fine-tuned on Sintel. We find that our
optimized method has more blurry motion boundaries and misses
estimating certain details accurately (e.g., the right hand, however,
PWCNet also fails at this), but still captures the overall motion di-
rection of objects correctly with a smooth flow field. Fig. 8 shows
results for real-world videos on the DAVIS dataset [PTPC∗17]
(no ground-truth flow available). We find that some real-world im-
age phenomena, such as complex/ambiguous occlusions (e.g., bus
behind the tree) are not well-handled by state-of-the-art methods
like RAFT [TD20] or PWC-Net [SYLK18], similarly, such results
are also degraded for our optimized method. Besides the stronger
blurred motion boundaries, we find that our network generally per-
forms well and is also robust for real-world videos.

4.4. Consistent Outputs

We use videos from DAVIS [PPTM∗16] dataset and other open-
source videos (taken from [Vid] and [Pex]) for comparison. For per-
frame stylization, we employ the following stylization techniques:
Fast NST [JAFF16], WCT [LFY∗17], and CycleGAN [ZPIE17].
The results for the method of Lai et al. and Bonneel et al. on videos
taken from DAVIS [PPTM∗16] and Videvo ( [Vid]) are borrowed
from the results-dataset provided by Lai et al.. For other videos,
we employ the source code provided by the authors to generate
the results. We compare our consistent outputs with that of Bon-
neel et al. [BTS∗15] and Lai et al. [LHW∗18] in Fig. 9. Among
the three competing methods Bonneel et al. is the least effective
in preserving the underlying style for the final output (compare the
second column with the fifth one in Fig. 9). Hyper-parameter tun-
ing in the above method (with only global consistency) can pro-
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(a) Input (b) Processed (c) Ours (d) Lai et al. [LHW∗18] (e) Bonneel et al. [BTS∗15]

Figure 9: Comparing our results with Lai et al. [LHW∗18] and Bonneel et al. [BTS∗15] for three different video sequences. Note how the
consistent output for Lai et al. and Bonneel et al. look different from the corresponding per-frame processed results.

vide a certain degree of consistency control. However, by employ-
ing both global and local consistency we achieve finer consistency
control while being similar to the per-frame-processed result. For
the method of Lai et al., we observe some color bleeding or dark-
ening in the output frames (compare the second column with the
fourth one in Fig. 9). In comparison, we are able to preserve the
style, color, and textures, while being consistent.

5. Evaluation

5.1. Quantitative Evaluation

Following Lai et al. [LHW∗18], we measure the similarity between
per-frame processed output and stabilized results, and the temporal
warping error between consecutive stabilized frames.

For the former, we report the similarity in the form of the
SSIM metric in Tab. 4. We achieve significantly higher similar-
ity scores than the methods of Bonneel et al. [BTS∗15] and Lai
et al. [LHW∗18]. Following [BTS∗15] and [LHW∗18], we also
measure the temporal warping error between a frame Vt and the
warped consecutive frame V̂t+1, defined as:

Ewarp (Vt ,Vt+1) =
1

∑
N
i=1 M(i)

t

N

∑
i=1

M(i)
t

∥∥∥V (i)
t − V̂ (i)

t+1

∥∥∥
1
, (9)

where Mt ∈ {0,1} is a non-occlusion mask [LHW∗18,RDB18], in-
dicating non-occluded regions. The warped frame V̂t+1 is obtained
by calculating the optical flow (using GMA [JCL∗21]) between
frames Vt ,Vt+1, and applying a backwards warping to frame Vt+1.
We compute Ewarp for every frame of a video and then averaged to
obtain the warping error of a video Ewarp(V ). In Tab. 5 we report the
average warping error per dataset (see the supplementary for a per-
task breakdown). We find that the warping error is slightly higher
than that of Bonneel et al. [BTS∗15] and Lai et al. [LHW∗18].
However, as Lai et al. [LHW∗18] notes, results with high temporal

stability (expressed by a low warping error) can also be achieved
via temporally smoothing the video, which can be seen in various
results of Bonneel et al. [BTS∗15]. Our qualitative results in the
form of a user study Sec. 5.2 further substantiate the divide between
warping error (as a stability metric) and perceived stability.

Using other Optical Flow Computations. We also tested other
optical flow methods within our pipeline which were either
faster [KTDVG16] or more accurate [TD20]. For the fast optical
method by Kroeger et al. [KTDVG16](DIS) the final output is less
consistent than ours in both objective and subjective metrics. Using
DIS for our stabilization, the average warp-error is higher (Tab. 5),
and perceptual-similarity with the per-frame processed result is
lower than ours (0.9 in SSIM over DAVIS and VIDEVO). Visually,
DIS-stabilized results show significantly more flickering, validat-
ing our design choice for the optical flow. A much more accurate
optical flow is given by the method of Teed et al. [TD20] (RAFT)
at the cost of slow computation. The stabilized results obtained us-
ing RAFT look visually indistinguishable from the one obtained
using our flow; the average warp-error is the same or marginally
lower (Tab. 5), while the perceptual-similarity is the same in terms
of SSIM as in Tab. 4. Due to visually unnoticeable and metric-wise
only minor differences for RAFT, we conjecture that there will not
be any significant improvement in output quality for even more ac-
curate flow methods.

5.2. Qualitative Evaluation

For qualitative evaluation, we perform a subjective user study
where we ask participants to compare the temporally-consistent re-
sult obtained using our method with that of Lai et al. [LHW∗18],
Bonneel et al. [BTS∗15], and Ours-objective – a different parame-
ter setting of ours. We use 9 different videos for this purpose: 3 from
DAVIS [PPTM∗16], 3 from Videvo [Vid], and 3 from Pexels [Pex]
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Table 4: Quantitative evaluation on perceptual distance using SSIM (higher = more similar to per-frame processed result).

DAVIS VIDEVO
Task [BTS∗15] [LHW∗18] Ours [BTS∗15] [LHW∗18] Ours
CycleGAN/photo2ukiyoe [ZPIE17] 0.693 0.781 0.978 0.626 0.743 0.980
CycleGAN/photo2vangogh [ZPIE17] 0.707 0.792 0.961 0.679 0.789 0.965
fast-neural-style/rain-princess [JAFF16] 0.553 0.799 0.921 0.491 0.796 0.920
fast-neural-style/udnie [JAFF16] 0.597 0.785 0.956 0.579 0.747 0.959
WCT/antimonocromatismo [LFY∗17] 0.389 0.811 0.915 0.388 0.761 0.914
WCT/asheville [LFY∗17] 0.329 0.801 0.904 0.348 0.771 0.901
WCT/candy [LFY∗17] 0.289 0.763 0.882 0.310 0.738 0.885
WCT/feathers [LFY∗17] 0.418 0.863 0.891 0.415 0.848 0.888
WCT/sketch [LFY∗17] 0.370 0.845 0.923 0.370 0.833 0.922
WCT/wave [LFY∗17] 0.358 0.700 0.902 0.352 0.637 0.899
Average 0.470 0.794 0.923 0.456 0.766 0.923

Table 5: Flow warping error average over tasks shown in Tab. 4. A per-task breakdown is shown in the supplementary. Note that the slightly
higher warping error (lower is better) of our method is subjectively not noticeable as we show in a user study.

Dataset Vp [BTS∗15] [LHW∗18] Ours Ours-RAFT Ours-DIS
DAVIS 0.056 0.034 0.040 0.046 0.045 0.050
VIDEVO 0.051 0.036 0.036 0.042 0.042 0.046
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Figure 10: Statistics of the user study results on removal of tem-
poral flickering from per-frame stylized videos. For 19 partici-
pants and 9 different videos we compare our method against Bon-
neel et al., Lai et al., and Ours-objective through a total of 171
randomized A/B tests.

datasets respectively. For each of the above videos we stylize them
using either the Fast NST [JAFF16] (in the styles of udnie, rain-
princess, and mosaic) or WCT [LFY∗17] (in the styles of wave
and antimono) or Cycle-GAN (in the styles of photo2vangogh and
photo2ukiyoe). For each sample, we show the input video and its
per-frame stylized version on the top row of the user-study inter-
face for inference. In the bottom row, we show two different ver-
sions of the temporally stabilized output where one of them is ours.
We ask the participants to select the output which best preserves:
(i) temporal consistency and (ii) similarity with the per-frame pro-
cessed video. For 9 videos and 3 other competing methods, each
user sees a total of 27 blind A/B tests which are shown in a ran-
domized order to each participant. In total, 19 persons (3 female

and 16 male) between the ages of 22 to 43 years participated in
the study. Fig. 10 shows that our method surpasses all others by
a large margin. It was interesting to observe that for certain cases
the method of Bonneel et al. which degrades the processed style
significantly was still preferred by users over others due to its high
consistency quality. We also show subjective user preference for
our method over the methods of Shekhar et al. [SST∗19] and Thi-
monier et al. [TDKP21] via another user study in the supplemen-
tary material. Shekhar et al. which is completely based on temporal
denoising is prone to introduce motion blur artifacts and is less effi-
cient in terms of enforcing global consistency. Similar to Lai et al.,
Thimonier et al. introduces artifacts in the form of color bleeding
and darkening, see the supplementary video.

5.3. Comparison to Other Methods

Keyframe-based Stylization (KBS). The goal of KBS is to prop-
agate the style from a few selected keyframes to the rest of the se-
quence, usually with per-sequence pretraining, running in an offline
scenario. Our focus on the other hand is blind video consistency,
i.e., we assume to have no control over the per-frame stylization
process and consider a video stream as our application scenario.
However, some KBS methods such as Texler et al. [TFK∗20] or
Futschik et al. [FKL∗21] are capable of running in online scenar-
ios, under the assumption that the video stream is similar enough to
the pre-trained frames (e.g., a webcam stream). The results however
often exhibit temporal flickering. To combat this, Texler et al. pro-
pose a method for temporal stabilization that involves pre-filtering
frames using a motion-compensated bilateral filter and encoding
location data using a mixture of Gaussians. In Fig. 11 and the
supplementary video, we compare their stabilization approach to
ours on KBS-stylized videos. For videos stylized using NST, visual
similarities are apparent between both stabilized versions, though
our method displays superior detail preservation. However, for
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(a) Bilat + gauss [TFK∗20] (b) Ours

Figure 11: Comparing temporal stabilization for keyframe-based
stylization (KBS) [TFK∗20]. We compare the stabilization ap-
proach proposed by Texler et al. [TFK∗20] to our method. To ob-
tain the unstabilized KBS video, we select three keyframes (1st,
middle, last) from a video from DAVIS, apply for style transfer, and
train a KBS model [TFK∗20] on them, which is then used to stylize
the remaining the frames.

(a) Video Style Transfer [LLKY19] (b) Per-Frame NST + Ours

Figure 12: Comparing to video style transfer [LLKY19]. We com-
pare the implicit stabilization of their video style transfer technique
to their per-frame NST stabilized with our approach.

complex-structured styles that introduce texture into homogeneous
regions, such as pencil drawings, their Gaussian-mixture-based sta-
bilization improves texture adherence. In contrast, our method may
lead to over-smoothing due to inaccurate flow computation in such
featureless regions (see supplementary video). This effect can be
mitigated to a certain degree by employing a lower temporal con-
sistency factor ( λ). Compared to Gaussian-mixture-based stabiliza-
tion our approach runs at least an order of magnitude faster, mak-
ing it better suited for interactive scenarios such as KBS-stylizing
and stabilizing an incoming video stream. Futschik et al. improves
on the temporal consistency of Texler et al. by considering addi-
tional frames from the video during training. However, this makes
it less applicable to out-of-domain videos (i.e., content not seen
during training) which is common in video streams. Our method
can also effectively stabilize such videos as shown in the supple-
mentary video.

Video Style Transfer. In Fig. 12, we compare our method to
the arbitrary style transfer for videos of Li et al. [LLKY19]. De-
spite their method having full control over the stylization process,
their results exhibit more temporal flickering and blurring, particu-
larly in smooth regions such as the sky. Their video style transfer
method also tends to under-stylize image features compared to their
per-frame style transfer. Please see the supplementary video for a
video-based comparison.

(a) Input frame (b) Per-frame I2I-SD (c) Stabilized (ours)

Figure 13: Results on per-frame img2img stable diffusion (I2I-SD)
[RBL∗22] applied with the prompt "a 1920s car in a roundabout".
Latent codes are interpolated with the previous frames to improve
consistency. We use CfG scale = 7.5 and a denoising factor of 0.4.

6. Discussion

Our approach takes a video pair as an input: (i) the original and
(ii) its per-frame stylized version. We assume that the stylization
is based on the input image gradients and appears as variations in
the form of colors and/or textures. Thereby, we employ the origi-
nal video as a guide for enforcing consistency. However, for text-
guided generative arts such as recent diffusion model-based ap-
proaches [RDN∗22, RBL∗22] the stylized frames are often only
weakly correlated with the original input, and we cannot handle
such cases. In Fig. 13 we provide an example of a per-frame styl-
ization using stable diffusion [RBL∗22], in which despite using a
latent pre-initialization from previous frames, new details are hal-
lucinated in every frame, which cannot be effectively removed by
our method, resulting in a blurry output video.

For the evaluation, we mainly use CNN-based stylization tech-
niques. However, our approach can also handle classical stylization
algorithms [KCWI13], we show a few such examples in the sup-
plementary. Our local consistency component comprising a convex
combination of temporal neighbors can be seen as a crude form of
local temporal denoising. Previously it has been shown that tem-
poral denoising is effective in enforcing consistency [SST∗19]. We
conjecture that efficient temporal denoising combined with flow-
based warping can further improve temporal stabilization not only
for stylization but also for other tasks. We show examples for such
non-stylization tasks, particularly for image enhancement (DBL
[GCB∗17]) and intrinsic decomposition, in the supplementary.

We start with the assumption that temporal flickering is not com-
pletely undesirable for the task of stylization and thus we pro-
vide interactive consistency control. However, during the subjec-
tive user study, we observed that participants had different toler-
ance levels for flickering in the foreground as compared to that in
the background. As part of future work, one can use depth-based
or saliency-based masks to vary the consistency control parameters
spatially for a more visually pleasing result.

Limitation. Our approach tends to have ghosting artifacts for
fast-moving objects where the object motion between consecutive
frames is large (Fig. 14). The above can be reduced by reducing the
upper limit of wp (i.e., k1), however, such a reduction also reduces
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consistency in the final output. We argue that since we provide in-
teractive control of parameters the above trade-off between artifacts
vs. consistency will not significantly hinder its usability.

(a) k1 = 0.5 (b) k1 = 0.1

Figure 14: The ghosting artifacts on the rear wheel of the scooter
are significant in the final output for k1 = 0.5, however, they are
significantly reduced for k1 = 0.1.

7. Conclusions

We propose an approach that makes per-frame stylized videos tem-
porally coherent irrespective of the underlying stylization applied
to individual frames. At this, we introduce a novel temporal con-
sistency term that combines local and global consistency aspects.
We maintain similarity with the per-frame processed result by min-
imizing the difference in the gradient domain. Unlike previous ap-
proaches, we provide interactive consistency control by computing
optical flow on the incoming video stream at high speed and with
sufficient accuracy for stabilization. The fast optical-flow inference
is achieved by developing a lightweight flow network architecture
based on PWC-Net. The entire optimization solving is GPU-based
and runs at real-time frame rates for HD resolution. We showcase
that our temporally consistent output is preferred over the output of
competing methods by conducting a user study. As part of future
work, we would like to employ learning-based temporal denois-
ing to further improve the quality of results. Moreover, we would
like to explore the usage of depth-based and saliency-based masks
to spatially vary consistency parameters according to perceptual
principles. We hope that our design paradigm of interactive con-
sistency control will potentially make per-frame video stylization
more user-friendly.
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