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Figure 1: Portrait reenactment and editing with our proposed method. Our method takes a monocular video and learns a personalized
video prior, which allows accurate reeanctment and editing through StyleGAN. In the first row, we show the selected pivots used to fine-tune
the StyleGAN generator. We show different editing results in the second row: original, eye glasses, small eyes, chubby, fringe hair. The
reenacted sequence is driven by the pose and expression of the third row.

Abstract
Portrait synthesis creates realistic digital avatars which enable users to interact with others in a compelling way. Recent ad-
vances in StyleGAN and its extensions have shown promising results in synthesizing photorealistic and accurate reconstruction
of human faces. However, previous methods often focus on frontal face synthesis and most methods are not able to handle large
head rotations due to the training data distribution of StyleGAN. In this work, our goal is to take as input a monocular video of a
face, and create an editable dynamic portrait able to handle extreme head poses. The user can create novel viewpoints, edit the
appearance, and animate the face. Our method utilizes pivotal tuning inversion (PTI) to learn a personalized video prior from
a monocular video sequence. Then we can input pose and expression coefficients to MLPs and manipulate the latent vectors to
synthesize different viewpoints and expressions of the subject. We also propose novel loss functions to further disentangle pose
and expression in the latent space. Our algorithm shows much better performance over previous approaches on monocular
video datasets, and it is also capable of running in real-time at 54 FPS on an RTX 3080.

CCS Concepts
• Computing methodologies → Image-based rendering;

1. Introduction

Digital avatars offer a compelling way to represent human appear-
ance and expression, enabling various applications, like telepres-
ence and virtual reality. Recent advances in StyleGAN [KLA19,
KLA∗20] and neural radiance fields (NeRFs) [MST∗20] have accel-

erated the development of digital avatars [HPX∗22,AXS∗22]. Radi-
ance fields have also spawned many extensions [HPX∗22,AXS∗22,
ZLW∗22,GZX∗22,XWZ∗22] which capture various characteristics
of human portraits, such as expression, appearance and identity.

However, the NeRF-based methods mostly focus on reconstruct-

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14890

e14890          pp. 1 - 13

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14890


Lin et al. / PVP: Personalized Video Prior for Editable Dynamic Portraits using StyleGAN

Table 1: Comparison of different methods. Our proposed method bridges the gap between 2D and 3D methods by enabling reconstruction
on extreme viewpoints through personalization. 2D methods allow for efficient image synthesis from single view inputs, but they often cannot
handle larger motions. Even if the input video contains large motion changes, 2D methods [WYBD22, YZC∗22] are not able to use the
information and reconstruct more difficult viewpoints. On the other hand, 3D methods [GPL∗22, GZX∗22] can handle difficult viewpoints
and NeRFBlendShape can achieve some form of personalization in expression. However, they do not allow full editability on appearance
like the 2D methods. Our method achieves editable head poses, appearance editing via StyleGAN, monocular input, riggability through
FLAME-like controls, and personalization with the help of a personalized video prior.

Category Methods Head pose editing Appearance editing Monocular input Riggable Personalization

NeRF HeadNeRF [HPX∗22] ✗ ✓ ✗ ✗ ✗

RigNeRF [AXS∗22] ✓ ✗ ✓ ✓ ✓

FDNeRF [ZLW∗22] ✓ ✗ ✓ ✓ ✗

cGOF [SWH∗22] ✗ ✓ ✓ ✓ ✗

NeRFBlendShape [GZX∗22] ✓ ✗ ✓ ✓ ✓

NeRFFaceEditing [JCL∗22] ✗ ✓ ✓ ✗ ✓

Parametric Model NHA [GPL∗22] ✓ ✗ ✓ ✓ ✓

ROME [KSLZ22] ✗ ✗ ✓ ✓ ✗

StyleGAN FreeStyleGAN [LD21] ✗ ✓ ✗ ✗ ✗

PIRenderer [RLC∗21] ✓ ✗ ✓ ✓ ✗

LIA [WYBD22] ✓ ✗ ✓ ✓ ✗

StyleHEAT [YZC∗22] ✓ ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓

ing the input sequence and do not provide a good way to edit or
manipulate various properties. Many of these approaches rely on
learning a 3D generative prior, thus requiring inversion into the la-
tent space, which requires generator finetuning and an inevitable
loss of 3D representation ability. These methods are also non-trivial
to extend to video sequences of a subject. We argue that editability
also plays an important part in making the digital avatars engag-
ing, and it offers the user more control over their desired looks (see
Fig. 1). A recent paper, FreeStyleGAN [LD21], enables editing on
static human portraits, but it requires multiple carefully-shot im-
ages with the subject holding still for several seconds. Concurrent
work [SLHG22,JCL∗22] provides an editing interface to allow user
inputs, but these methods are not animatable (e.g. enabling 3DMM-
like control [BV99]) and thus do not offer the same level of interac-
tivity. Lastly, while ClipFace [ATDN22] provides editability on 3D
morphable models (3DMM) and their texture, it does not handle
other facial features like hair.

Our proposed method offers a new way to tackle portrait synthe-
sis using personalized StyleGAN from monocular portrait videos.
First, we carefully sample several frames from the input videos to
use as pivots, and the pivots are used to perform PTI [RMBCO21]
and fine-tune the StyleGAN generator to produce a personalized
manifold, allowing for faithful reconstruction of the subject under
extreme poses and smooth transitions between different head poses.
Then, we employ lightweight pose and expression encoders to en-
able finer control over the representation. We can render novel head
poses and expressions in real-time (at 54 FPS) by feeding in the cor-
responding pitch, yaw angles and FLAME coefficients [LBB∗17].
We also propose a novel expression matching loss and pose consis-
tency loss to disentangle the editing directions in the latent space,
making it easier to change one attribute at a time. Additionally, ex-
ploiting various methods in StyleGAN editing [PWS∗21,SYTZ20],
our method can provide good editing capability. Project website

and code: https://cseweb.ucsd.edu/~viscomp/projects/
EGSR23PVP/

We summarize our contributions as follows:

1. a personalized video prior derived from monocular portrait video
of a given subject (Sec. 4.1);

2. a novel algorithm that enables control of a dynamic portrait
within the personalized manifold, allowing editing on pose, ex-
pression and appearance (Sec. 4.2, Fig. 2);

3. expression matching and pose consistency loss to better disen-
tangle the poses and expressions given only a short portrait video
of a subject (Sec. 4.3).

2. Related Work

Previous methods have shown promising results in reconstructing
photorealistic face renderings. In particular, there exist 4 promis-
ing directions: (a) StyleGAN models which can synthesize 2D face
renderings and allow for user control by traversing in their latent
space (Sec. 2.1); (b) neural radiance fields (NeRF) that handle the
dynamic facial expression and complex visual effects through vol-
umetric rendering (Sec. 2.2); (c) parametric models, like 3DMM
and FLAME, which provide explicit pose and expression control
through skinning (Sec. 2.3). (d) facial reenactment methods which
enable facial expressions to be transferred to different subjects
(Sec. 2.4). We give an overview of these methods in the follow-
ing subsections and a comparison of our method against previous
methods in Table 1.

2.1. Face Synthesis with StyleGAN

Generative models like StyleGAN2 [KLA∗20] have demon-
strated an impressive capability of synthesizing photorealistic por-
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traits while only trained on in-the-wild imagery. In order to re-
construct human faces, a common method is to invert the under-
lying latent code. GAN inversion methods, like e4e [TAN∗21] and
pSp [RAP∗21], have shown remarkable results in finding the most
representative latent code. With the latent codes, PTI [RMBCO21]
and MyStyle [NAH∗22] further optimize the StyleGAN generator
to learn a personalized latent space, enabling editing while staying
faithful to the same identity. In terms of controlling the pose and
expression of the StyleGAN renderings, StyleRig [TEB∗20] pre-
dicts modified latent codes directly from semantic control parame-
ters. StyleHEAT [YZC∗22] performs warping on the intermediate
features layers of the StyleGAN synthesis network. Although these
methods show promising results, there are some shortcomings. For
example, StyleRig could introduce a shift in identity after rotating
the head pose. The warping scheme used by StyleHEAT could not
handle large viewpoint changes well enough (see Fig. 5). The afore-
mentioned StyleGAN methods are mainly handling 2D images.

While 3D GAN-based methods [CMK∗21, CLC∗22, GLWT22,
OELS∗22, DYXT22] generate photorealistic 3D representations
from 2D images, the editability of such models requires fur-
ther research to reach its full potential. SofGAN [CLX∗22],
IDE-3D [SWS∗22], FENeRF [SWZ∗22] and CIPS-3D [ZXNT21]
demonstrated some level of editability on the appearance and ex-
pression of 3D GANs. Additionally, inverting a video into their la-
tent space is non-trivial as each frame is inverted independently,
and 3D GAN PTI often collapses to a 2D representation.

As a result, our paper looks at lifting 2D StyleGAN renderings
to a 3D representation that allows editing of both the facial appear-
ance and expression. One related work is FreeStyleGAN [LD21].
However, it requires the subject to be static and multi-view input
images. Our method seeks to handle dynamic portraits with only a
single-view input video. Please refer to Table 1 for a comparison of
different methods.

2.2. 3D Methods for Dynamic Portraits

NeRF [MST∗20] brought about exciting advancements in the
field of image-based rendering. Recently, a plethora of work tack-
ling portrait reconstruction [HPX∗22, AXS∗22, ZLW∗22, GZX∗22,
SLB∗21, ZAB∗22, PSB∗21, PSH∗21] has emerged. First, NeR-
Face [GTZN21] conditions the MLP with learnable codes and ex-
pression coefficients to represent dynamic facial motions. Head-
NeRF [HPX∗22] encodes identity, expression, albedo and illumi-
nation into latent codes and uses them to condition the NeRF MLP,
providing some level of user control. RigNeRF [AXS∗22] com-
bines the 3DMM deformation fields with NeRF to allow explicit
control of the expression and head poses. Nerfies [PSB∗21] and
HyperNeRF [PSH∗21] provide ways to encode deformable NeRFs,
enabling capture of 3D facial movements. Following the above
methods, FDNeRF [ZLW∗22] further extends to few-shot inputs
and NeRFBlendShape [GZX∗22] blends hashgrids with different
expression coefficients to allow for fast and expressive portrait
reconstruction. While the above approaches mostly focus on re-
enactment and pose manipulation, they do not provide comprehen-
sive appearance editing.

On the other hand, NeRFFaceEditing [JCL∗22] focuses on the
editability of different facial parts. SofGAN [CLX∗22] provides
finer control over different facial parts, including appearance, shape
and lighting effects. However, these methods do not offer explicit
facial pose control. Our work aims to achieve granular pose control
and appearance editing at the same time.

2.3. Parametric Model for Human Faces

There has been a lot of interest in using morphable face mod-
els to enable facial animation [TL18, GVR∗14, WBLP11]. The
FLAME model [LBB∗17] offers a good trade-off between con-
trollability and expressiveness. Derivatives like DECA [FFBB21]
can infer FLAME parameters given only a single image.
ROME [KSLZ22] further expands DECA to include displacements
for the head mesh and preserve more details in non-facial regions
(e.g. hair, neck and shoulders). A notable work in this category is
NHA [GPL∗22], which optimizes a head model given a single-view
video. NHA provides a good geometry estimate of the subject while
keeping explicit control over the FLAME parameters. Although
NHA supports editing the facial expression and head pose through
the FLAME parameters, it does not have an interface for appear-
ance editing. Our proposed method focuses on this aspect and seeks
to combine the editability of StyleGAN images with FLAME-like
control parameters.

2.4. Facial Reenactment Techniques

In addition to the above methods, there are some other tech-
niques that focus on the facial reenactment tasks. In other words,
these methods transfer the expressions from one subject to another.
Face2Face [TZS∗16] achieves real-time face capture and reenact-
ment by fitting a parametric 3D model to monocular RGB input
videos. Deep Video Portraits [KGT∗18] utilizes a translation net-
work to convert coarse facial renderings into photorealistic video
portraits. Different from these methods, our work enables reenact-
ment and editing simultaneously through the use of pose and ex-
pression encoder networks and the StyleGAN latent space.

3. Background

In this section, we give a brief overview on StyleGAN and its la-
tent space design. Then, as we seek to edit real portraits, we in-
troduce pivotal tuning inversion (PTI), which is the state-of-the-art
method to perform GAN inversion, while keeping good editabil-
ity. PTI serves as an important foundation for our method, since
we would like to explore the idea of a personalized video prior by
fine-tuning the StyleGAN generator on selected frames of a given
video (more in Sec. 4). Lastly, we briefly go through editing on the
StyleGAN.

StyleGAN [KLA∗20] demonstrates high-quality image synthe-
sis results, and it has a well-structured latent space, which allows
smooth transition between different latent codes through linear in-
terpolation. To be more specific, it takes a latent code z ∈ R512 as
input (often referred to as Z space) to a mapper network, which
maps the input to the intermediate latent code w ∈ W. The latent
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Figure 2: Overview of our proposed method. Our algorithm is divided into two stages. First, we use PTI to fine-tune the StyleGAN generator
with the selected frames from the input video (see Sec. 4.1). The fine-tuned StyleGAN now has a personalized manifold that reconstructs
the pivots faithfully, and we utilize its smoothness to interpolate between the pivots and represent different head poses. Then, we train the
pose MLP to output the blending weights of the personalized manifold to provide a latent code that represents the rotated head. We use the
expression MLP to calculate the W+ latent code residuals (see Sec. 4.2). Finally, the combined latent code is sent to the fine-tuned StyleGAN
to synthesize the final rendering, and we supervise it with reconstruction loss and other supervision (see Sec. 4.3).

code w is then affine transformed and fed to each convolutional
layer in the synthesis network via adaptive instance normalization
(AdaIN) [HB17]. The affine transformed latent code is often re-
ferred to as the W+ space. We can then write the StyleGAN im-
age synthesis as I′ =G(w+(z);θ), for a StyleGAN generator G with
weights θ.

A way to adapt StyleGAN to editing real images is through GAN
inversion. The idea is to freeze the StyleGAN weights and opti-
mize for the latent code in eitherW [KLA∗20], orW+ [AQW19].
However, there is a tradeoff between the two methods. W space
inversion offers better editability but poor reconstruction quality,
whereasW+ provides superior reconstruction, yet produces infe-
rior editing results. To address this tradeoff, the better way is to find
pivot latent codes in theW+ space via e4e [TAN∗21] and then fine-
tune the StyleGAN generator based on the pivots, namely pivotal
tuning inversion. With PTI, it is possible to extend StyleGAN to
handle samples which differ greatly from the training distribution,
for instance, persons with makeup and faces viewed at large angles
(≥ 60◦). To be more specific, we can define the pivots as

w+ = E(I), (1)

where E is the e4e encoder, I the input image, and w+ the inverted
latent code inW+ space. And we can synthesize the rendering with
the StyleGAN G by

I′ =G(w+;θ), (2)

where θ denotes the weights of a StyleGAN generator. Once we
acquire the pivots, we can then optimize the StyleGAN generator G
and obtain the fine-tuned weights θp with the following objective:

θp = argmin
θ
LLPIPS(I′, I)+λP

L2LL2(I′, I)+λP
RLR, (3)

whereLLPIPS is the perceptual loss [ZIE∗18],LL2 denotes the MSE
loss, λP

L2 denotes the weight for MSE the loss, LR is the locality
regularization loss [RMBCO21], and λP

R the weight for the regu-
larizer. The p superscript denotes personalization, since we use L2

loss later for training our mapping networks as well. Aside from
the LPIPS and MSE loss, the locality regularization is enforced
to make sure the PTI changes stay local without affecting other
parts in the latent space. Once, the network is fine-tuned, it can be
seen as a personalized generator which now incorporates a prior
based on the given subject, instead of the domain prior it originally
has [NAH∗22].

Finally, we can edit an inverted image by manipulating the latent
code, which can be described as:

I′edit =G(w+ +∆w+;θp), (4)

where ∆w+ could be any editing directions from Interface-
GAN [SYTZ20] or GANSpace [HHLP20].

In the next section, we discuss our proposed algorithm, starting
by sampling frames from the input video, performing PTI on the se-
lected frames to learn a personalized video prior, and then learning
pose and expression mapper networks to represent different head
pose and facial expressions on the personalized manifold.

4. Proposed Method

Given a monocular video of a dynamic portrait, we seek to pro-
duce an editable representation with fine controls over the pose,
expression and appearance of the subject. To achieve this goal, we
develop an optimization pipeline with two stages: (a) learning the
personalized video prior in StyleGAN, and (b) training pose and
expression mapper networks. To start, we discuss the first stage in
Sec. 4.1. Then, we describe the second stage, namely, how we train
the pose and expression mappers, and how we use them to control
different head poses and expressions in Sec. 4.2. Last, we describe
our loss design for the mappers in Sec. 4.3. Please refer to Fig. 2
for an overview of our optimization pipeline.

4.1. Personalized Video Prior in StyleGAN

Our main goal is to generate an edited portrait video with Style-
GAN2 [KLA∗20]. A naive way to address this is to perform GAN
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Figure 3: Head pose distribution of vanilla StyleGAN2 and
personalized manifold. We randomly synthesize 10k facial sam-
ples with the truncation parameter set to 0.5. Then we use
DECA [FFBB21] to detect the yaw and pitch of the head. Most
head poses have yaw inside [−60,60] and pitch in [−20,30], mak-
ing it difficult to invert to head pose outside of this distribution. In
the right figure, we randomly sample a linear combination of the
pivots and synthesize novel views with StyleGAN. We highlight the
head poses from the input video in red and the samples from the
personalized manifold in black. The learned personalized manifold
can reconstruct extreme yaw poses (≥ 60◦) in the input video.

inversion on a frame-by-frame basis. However, previous methods
generally struggle with extreme viewing angles (∼ 90◦). This is be-
cause large head rotations (> 40◦ in yaw, > 25◦ in pitch) are less
represented in the StyleGAN latent space, as shown in the left di-
agram in Fig. 3. We notice that these out-of-domain (OOD) sam-
ples can be better represented with PTI [RMBCO21] as discussed
in Sec. 3. Another property we discovered is that interpolation be-
tween the pivots offers a smooth transition between different head
poses (see the right diagram of Fig. 3), and we can represent the
head motions as a linear combination of different pivot vectors,
similar to the notion of linear blending in animation. As a result,
our idea is to seek out these pivots in the given portrait video, and
construct a manifold to allow animating the portrait by user control.

As discussed, when presented an image sequence, our task is to
seek a personalized video prior p that forms a local manifold Wp
within the latent space of the fine-tuned StyleGAN G(·;θp). First,
we preprocess the images by aligning and cropping the face follow-
ing FFHQ [KLA19]. As the facial landmark detection could intro-
duce slight inconsistencies and cause the results to flicker, we em-
ploy Gaussian filters to smooth out the noise [FTET21, TMG∗22].
Since there are many frames in a video, we seek to select the most
useful frames as pivots to ensure efficient learning of the personal-
ized manifold. We design a sampling strategy to uniformly sample
different head poses and expressions throughout the video to en-
sure good coverage of all possible facial changes. To be more spe-
cific, we utilize an off-the-shelf face detector, DECA [FFBB21], to
estimate the yaw ψ, pitch ϕ, neck pose κ, jaw pose γ and expres-
sion parameters ξ of a given sequence. We then stack the ψ, ϕ and
ξ channel-wise and perform K-means clustering [Llo82] to select
the most prominent K clusters. While uniform sampling sometimes
yields similar results, our sampling strategy would avoid oversam-
pling cases where the pose or expression stay similar. We find that
this strategy provides good coverage of different expressions and
head poses in the input video. We define the K samples from the
video as I = {I1, I2, ..., IK }. Finally, we optimize the StyleGAN gen-

erator, similar to Eq. 3, with the following objective:

θp = argmin
θ

K∑
i=1

1
K

[
LLPIPS(I′i , Ii)+λP

L2LL2(I′i , Ii)
]
+λP

RLR. (5)

The main difference from Eq. 3 is that we are optimizing over
the K images instead of only one image. From this point for-
ward, we introduce a shorthand Gp = G(w+;θp). Once we acquire
the fine-tuned StyleGAN Gp, we can define the β-dilated convex
hull [NAH∗22] in theW+ space as the local manifold Wp:

Wp =

K∑
i=1

αiwi, s.t.
K∑

i=1

αi = 1, and αi ≥ −β, (6)

where αi is the blending weight for pivot wi. As discussed in Sec. 3,
interpolation between StyleGAN latent codes provides smooth
transitions between different pivots. We also notice that interpo-
lating between poses at 90◦ and −90◦ in Wp gives stable and high-
quality renderings of the poses in between, while maintaining the
same identity of the subject.

Discussion. Our proposed fine-tuning stage has two differences
from MyStyle [NAH∗22]. First, MyStyle uses 100 to 200 images of
the given subject under different settings, including lighting, ages,
expressions and hairstyles, whereas our method focuses on frames
from the same input video where the subject can have similar ap-
pearance. This difference make redundant samples and overfitting
more likely to happen due to less variety in the training samples.
However, our proposed sampling strategy ensures the samples are
different enough in poses or expressions by clustering and select-
ing the representative frames from the input video. This way, our
method can represent a wide variety of facial expressions and poses
given a short video of around 20 seconds. Another difference is
that fine-tuning the StyleGAN without any regularizer LR could
lead to degraded editability (see Fig. 9). We theorize that this is
because the fine-tuned StyleGAN overfits to the input video and
causes other parts in the latent space to lose the smoothness of the
original StyleGAN. To prevent this, it is important to apply the lo-
cality constraint in our setting to keep the structure in the Style-
GAN latent space relatively unchanged after the fine-tuning. It is
also beneficial to use StyleGAN’s expressive latent space to syn-
thesize expressions which are not observed in the input video. We
design a loss function that utilizes random expression objectives
to encourage the network to synthesize these unseen expressions.
More details are in Sec. 4.2 and Sec. 4.3.

4.2. Pose and Expression Mapping Networks

A key contribution of our proposed method is the ability to eas-
ily control the face with parameters like yaw, pitch and a 50-
dimensional expression vector from DECA [FFBB21]. To this end,
we implement the pose and expression mappers, which are MLPs
taking pose and expression coefficients as input and producing the
corresponding latent code (see Fig. 4 for examples).

First, in order to change the head pose of the rendering, we could
manipulate the latent code by moving in the personalized manifold
Wp. Specifically, we employ an MLP Frot to calculate the latent
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Figure 4: Examples of latent code shown in Sec. 4.2. (a) The per-
sonalized manifold Wp provides a good representation of the sub-
ject, and it allows us to further edit the pose and expression. (b)
The rotation code wrot enables free pose control of the synthesized
portraits. Here we show specific yaw (−60◦ to 60◦) and pitch (−15◦

to 15◦) controls. (c) The expression code wexpr allows finer control
over the facial expressions.

code wrot as a linear combination of the pivots {wi}
K
i=1 by

wrot =

K∑
i=1

αrot
i wi, and {αrot

i }
K
i=1 = Frot(ϕ,ψ;θr), (7)

where ϕ denotes the pitch, ψ the yaw of the head and θr represents
the weights ofFrot. We use the MLP to predict the blending weights
instead of the latent code in W space or W+ space, because the
blending weights effectively constrain the latent code to be inside
the manifold where all points are meaningful and would represent
the subject (see the video results in supplementary materials for an
example). On the other hand, it is possible for editing directions
inW andW+ space to go beyond the personalized manifold and
degrade the rendering significantly.

Lastly, we introduce expression control by learning a mapping
network that takes as input the jaw pose γ and the expression pa-
rameters ξ and outputs the difference of the latent code ∆wexpr in
W+ space. Specifically, we have

∆wexpr = Fexpr(γ,ξ;θe). (8)

We then add it to the latent code wrot:

wfinal = wrot +∆wexpr. (9)

In practice, we only predict the first 8 layers of the latent code in-
stead of the full 18 layers. This is because we would like to focus
on geometry changes instead of other appearance changes. We are
effectively predicting a local change in the latent space to represent
changes like lip motions during a talking sequence and facial ex-
pressions like raising of the eyebrows. The local neighborhood of
the latent space contains a rich and disentangled representation of
the subject’s possible facial expressions. Note that it is possible to
move the latent code slightly outside the convex hull. To regularize,
we only use the first 8 layers ofW+ to reduce degrees-of-freedom,
and we apply Llocal (see Sec. 4.3) to keep the changes small.

Finally, we can then render the novel view I′ with the fine-tuned
StyleGAN generator Gp:

I′ =Gp(wfinal). (10)

Note that once the mapping network is trained, it can be run in
real-time given the pose and expression parameters.

4.3. Loss Design for Mapping Networks

Next, we fix the StyleGAN generator weight θp, and train the map-
ping networks Frot and Fexpr with the loss design discussed in this
section, optimizing for their weights θr and θe. As we aim to recon-
struct an input video, we supervise the output with rendering losses
like LPIPS [ZIE∗18] and L2 loss, which are denoted by LLPIPS and
LL2, respectively. Additionally, to ensure the synthesized identities
are the same, we apply an identity lossLid [TAN∗21], which uses a
pretrained ArcFace [DGXZ19] network to obtain identity features.

Since the input video would often show one combination of
the head pose and expression, it is insufficient to train on the in-
put video alone. To avoid overfitting, we introduce regularization
by synthesizing images with a slightly perturbed expression input.
Precisely, for each target view I and its corresponding jaw pose γ
and expression ξ, we render an additional rendering Ie with Gp by
changing the input to the perturbed parameters γ′ = γ+ϵ, ξ′ = ξ+ϵ,
where we add a normal distribution ϵ ∼ N(0,σ). Then we feed the
new rendering Ie to the encoder of DECA [FFBB21] to predict yaw
ψe, pitch ϕe, jaw pose γe, expression ξe, and neck pose κe. and de-
fine the expression matching loss as:

Lexpr = ∥(γe, ξe)− (γ′, ξ′)∥22. (11)

We found this loss to improve the disentanglement of expression
and head pose, since the synthesized portrait has the same head
pose but a slightly different facial expression. This additional objec-
tive increases the diversity of facial expressions that the expression
mapper can generate. Visualization of the perturbed renderings is
shown in Appendix A. Furthermore, we enforce a pose consistency
loss and an RGB consistency loss to make sure Ie does not show
large head motions. We define the pose consistency loss as:

Lpose = ∥κ
e − κ∥22, (12)

Similarly, κ is the neck pose for the input frame, and κe denotes the
DECA-estimated neck pose of the perturbed rendering. Note that
we do not feed the neck pose κ as an input to the pose MLP. For
the RGB consistency loss, we calculate a mask m excluding the
eyes and mouth regions, and then minimize the loss between the
perturbed rendering Ie and the original rendering I′:

Lcons = ∥m⊙ (Ie − I′)∥22 (13)

To further encourage the expression network to explore local re-
gions in the manifold, we apply a regularization loss on the pre-
dicted latent ∆wexpr, namely,

Llocal = ∥∆wexpr∥
2
2. (14)

Lastly, our training objective is defined as follows:

(θr, θe) = argmin
θr,θe

λLPIPSLLPIPS +λL2LL2 +λidLid

+λconsLcons +λposeLpose +λexprLexpr +λlocalLlocal, (15)

where we update the pose network weights θr and the expression
network weights θe.

5. Experiments

We demonstrate the efficacy of our proposed method against
SOTA 2D methods [RLC∗21, WYBD22, YZC∗22] and a 3D
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Figure 5: Visual results of different methods. We show reconstruction results on the held-out views. Our method can predict better geom-
etry and appearance of the subject. For example, in column (a), (b) and (c), we can see the ear reconstruction failed for NHA [GPL∗22].
For 2D methods, they mostly fail to reconstruct the correct details and expression. To be more specific, PIRenderer [RLC∗21] and Style-
HEAT [YZC∗22] both fail for large viewpoint changes, with StyleHEAT generating overly-smoothed results, as shown by the red arrow in
column (c). LIA [WYBD22] overall has a tone shift and fails to reconstruct the details correctly, like the earring shown in (d). Our method
offers faithful reconstruction of the head pose and expressions of the subject, as well as details, like the tint on the eyeglasses in (f).
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Table 2: Evaluation of ours and baseline methods. Our render-
ings offer the best visual quality across all metrics. 2D-based meth-
ods struggle to handle viewpoints at larger angles, resulting in
poor visual quality. While 3D-based methods like NHA can han-
dle larger head motions, they fail to reconstruct good 3D geometry
for in-the-wild videos, leading to inferior results across all metrics.

Methods PSNR↑ LPIPS↓ SSIM↑

PIRenderer 21.49 0.2431 0.7540
LIA 23.47 0.1796 0.8545
StyleHEAT 20.29 0.2494 0.7685
NHA 25.31 0.1538 0.8746
Ours 26.63 0.1119 0.8803

method [GPL∗22] in this section. We first describe implementation
details in Sec. 5.1. We show quantitative comparison in Sec. 5.2
and Table 2. Then we provide visual results in Sec. 5.3, Figs. 5
to 8. Finally, in Sec. 5.4, we discuss limitations and possible future
directions.

5.1. Implementation Details

We implement our algorithm using PyTorch [PGM∗19]. We first
run PTI [NAH∗22] with the LPIPS threshold set to 0.03, and max
PTI steps set to 350, on the samples from the input video to acquire
a personalized manifold. Then we train our pose and expression
mappers for 50k steps. We set our learning rate for the MLPs to
be 5×10−4. For the loss functions in Sec. 4.3, we use λLPIPS = 10,
λL2 = 10, λid = 0.5, λpose = 0.1, wexpr = 0.1, λcons = 1.0, and λlocal =

0.5. We setσ= 0.5 for the perturbed expression parameters. Further
details can be found in Appendix B.

For the dataset, we use the monocular video dataset from
NHA [GPL∗22] and NeRFBlendShape [GZX∗22]. For the NHA
dataset, we choose the first 750 frames as training data. Due to
the last few frames being corrupted in the original video data pro-
vided by the author, we choose frames 751 to 1450 as the evalua-
tion dataset instead of frames 751 to 1500. The NeRFBlendShape
dataset has videos with 3000 to 4000 frames, and we choose the last
500 frames as evaluation data. We briefly describe dataset compo-
sition in Appendix C. Source code can be found on our website: ht
tps://cseweb.ucsd.edu/~viscomp/projects/EGSR23PVP/.

5.2. Quantitative Results

To evaluate the visual quality, we used metrics like peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), and percep-
tual loss (LPIPS). We evaluate all methods on the held-out views
from the evaluation dataset discussed in Sec. 5.1. As for the base-
line methods, we evaluate the resolution at 512× 512 and remove
the background as a preprocessing stage to ensure fairness when
compared to methods like NHA [GPL∗22]. We also set the first
frame of the video as the source frame for 2D-based methods and
train NHA on the same training set as our method. We show the
quantitative results in Table 2. Our method offers the best perfor-
mance among all the methods across all metrics. Specifically, it
can handle difficult head poses like 90◦ to the left and to the right.

Figure 6: Visual results of our method with extreme head poses.
A key contribution of our method is to enable direct control over
head poses with StyleGAN renderings. Our method can synthesize
renderings with yaw from −90◦ to 90◦, which previous 2D-based
methods cannot achieve.

Moreover, the personalized manifold enhances the details in the re-
constructed images as the StyleGAN generator is fine-tuned to pro-
duce highly-similar images as the input video. Note that although
our method is a 2D-based method, it still can produce multi-view
consistent imagery. This is because the head rotations are mostly
represented by interior points of the personalized manifold. And
we observe that the interpolation between the pivots show good
consistency for the identity and the geometry. As a result, our
method can provide better visual quality than 3D methods, such as
NHA. Finally, our method supports real-time rendering thanks to its
lightweight mapping network. The inference time for our method
is 0.018s, which is about 54 FPS, on an RTX 3080 GPU.

Figure 7: Reenactment results of our method. We show reenacted
sequences in (a), (b) and (c), and the driving sequence in (d). Our
method is able to transfer the expressions across different subjects.
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Figure 8: Editing results of our method. We show a random frame from the input video sequence and the edited renderings with different
head pose and facial expressions. Below each inset, we show the StyleCLIP prompt to edit the latent code and produce different editing
results. Our method preserves the same identity and edits across different expression and pose changes. For example, in the "Kid" prompt,
we show various expressions of the subject as a younger avatar and keep similar identities. Also, note the tint in the "Chubby" prompt is
preserved and shows view-dependent changes across different viewpoints.

5.3. Qualitative Results

Figure 5 demonstrates the visual results of our method against other
baseline methods. Our algorithm is able to reconstruct face poses at
extreme viewpoints, while previous methods like StyleHEAT and
PIRender fail to generate reasonable results. We can observe dis-
torted face cheeks in (a) for both methods and even some repeating
patterns near the back of the head. Moreover, StyleHEAT often pro-
duces changes in the subject’s eyes, as can be seen in (b) and (c).
The StyleHEAT results are overly smoothed, leading to missing
details like wrinkles seen in (d) and (e). On the other hand, PiRen-
derer, while keeping some details, misses the mouth texture, such
as missing teeth shown in (d) and (f). As for LIA, it produces tone
shifts in all the results, as well as missing details, for example the
earrings in (d) and the tint on the eyeglasses in (f). LIA also fails
to reconstruct the expression correctly, and it can be observed in
(b), where the subject’s eyes are fully open instead of half open as
shown in the GT. NHA has a hard time reconstructing faces cap-
tured with fewer head poses. As shown in (a), (b) and (c), we can
observe that the ears are heavily distorted due to NHA’s optimiza-
tion process. Moreover, it fails to reconstruct the teeth region in
(f) and it does not match the expression in (d) and (e). We show
additional comparison with NeRFBlendShape in Appendix D.

In Figs. 4 and 6, we demonstrate how our method can be used to
generate rotated views of the subject, while fixing the expression.

Previous methods [YZC∗22] often have a difficult time handling
extreme viewpoints as these viewpoints are out of the distribution
of the pretrained StyleGAN generator. Since we construct a per-
sonalized manifold, our method can represent extreme head poses
well, as long as they are presented in the input views. Note that
we choose to learn the blending weights in the manifold, instead
of an editing direction which controls the head motion. This design
choice is because we found that while the linear interpolation can
be smoothly changing between pivots, it does not fully represent
the desired head motion. In other words, the personalized manifold
might still contain some nonlinearity which causes the actual ro-
tation to follow along a curved path, instead of a linear path. The
learned MLP ensures that we can follow a correct trajectory to rep-
resent different head poses in a high-dimensional latent space.

Moreover, we show reenactment results in Fig. 7. Our method
can be used to reenact different subjects with the provided expres-
sion parameters. We extract the FLAME parameters ψ, ϕ, γ and ξ
from the driving sequence in (d) and feed it to the learned mapping
networks for each identity in (a), (b) and (c). Then, we can produce
reenactment results with good accuracy. For instance, in the right-
most column, we show reenactment results of all avatars with the
mouth open expression. Each avatar can do this expression properly
with their unique and accurate teeth texture, which is often difficult
to recover in previous methods. We notice that since the FLAME
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Figure 9: Effects of the regularizer on the editing results. We observe that using selected frames from the input video could make it easier
to overfit. Consequently, different from MyStyle [NAH∗22], we apply a regularizer during the fine-tuning stage to maintain the editing ability
of StyleGAN.

parameters might have different distributions for each individual,
it is better to renormalize the input parameters with the mean and
standard deviation of the source and target.

Finally, we show editing results in Fig. 8. In the figure, we
demonstrate various editing tasks using StyleCLIP [PWS∗21]. Our
method can be adapted to use other editing methods like Interface-
GAN [SYTZ20] and GANSpace [HHLP20]. Note that our method
provides consistent renderings and maintains the edits even after
the head is rotated. Furthermore, we show that the edited avatar
can still produce various expressions, as shown in the “Kid” in-
set. The edited latent code also shows good multi-view consistency.
Most notably, the “Eyeglasses” inset shows rotated versions of the
subject with the eyewear with good geometry across different head
poses. Some view-dependent effects are retained, for instance, the
tint on the eyeglasses in the “Chubby” inset.

It is worth noting that while we fine-tune the StyleGAN genera-
tor on selected video frames, the editing capability is not impacted
thanks to the regularizer LR. Comparison of the regularizer can be
found in Fig. 9. Since we only have a handful of views of the given
subject, it is highly likely for the fine-tuning stage to overfit to the
distribution of these views. Therefore, it is critical to enforce the
regularizer to avoid degraded results in editing. For instance, with-
out the regularizer, the edited images often show color shift arti-
facts as shown in “Eyeglasses” and “Long Hair”. Additionally, the
details and expressions are not retained after the edits, as shown in
the “Chubby” and “Man” insets.

5.4. Limitations and Future Work

While our proposed method shows promising results in enabling
editing of pose, expression, and appearance of digital avatars, there
are several limitations that we would like to address in future work.

First, our method only handles the regions within the face align-
ment bounding box, excluding the back of the head and upper body.
Future work could focus on improving the StyleGAN generator or
cropping to incorporate these regions, allowing for a more compre-
hensive representation of the subject.

In addition, our approach requires learning a personalized man-
ifold for each subject, which can take some time for optimization.
To be more specific, learning the manifold takes around 3 hours for
200 pivot images on an RTX 3080 and training the mapping net-
works takes around 4 hours on an NVIDIA A10 24 GB GPU. Note
that after the optimization stage, our pipeline runs in real-time at
54 FPS on an RTX 3080. It could be interesting to explore meta-
learning and have a network that outputs a personalized manifold
directly by looking at images. Also, the mapping network could be
pretrained on a large-scale dataset and apply to each avatar directly
or with a fast fine-tuning stage. This could potentially remove the
optimization overhead and enable faster adaptation to new subjects.

We also note that sometimes the gaze or eye regions are not per-
fect. However, this is not bound by our network design, but rather
the performance of the DECA algorithm. For future work, it is pos-
sible to swap out DECA for better facial expression detectors like
EMOCA [DBB22] and add some gaze regularization.
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Finally, our method works best for interpolation, but may not
perform well when extrapolating beyond the training data. Future
work could explore additional regularization methods or data aug-
mentation techniques to enable extrapolation and improve the over-
all generalization of the model.

5.5. Ethical considerations

The success of recent approaches in synthesizing photorealistic ed-
itable representations of a given subject, as achieved in this paper,
has necessitated the introduction of various methods to detect if an
image is fake [MNM∗22]. However, the best methods can often be
used as critics in the training paradigm of the state-of-the-art gener-
ative or editing models, in order to avoid detection. Additionally, as
models become better, existing detection methods may be unable to
scale. To prevent the misuse of editing methods, the development
of more robust detection and verification techniques is paramount.

6. Conclusions

We propose a novel algorithm that encodes a monocular portrait
video into a personalized manifold to enable editing on pose, ex-
pression, and appearance. Our approach selects useful pivots from
the video sequence, allowing for efficient learning of the personal-
ized manifold. We also design loss functions to learn pose and ex-
pression mapping networks, enabling granular control of the ren-
dering given only a single video. Moreover, our method provides
good editing capability through various StyleGAN editing meth-
ods. Overall, our work significantly contributes to the development
of digital avatars by making them more interactive, engaging, and
personalized.
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Appendix

Appendix A: Perturbed Renderings for Lexpr

We show the renderings from the perturbed parameters γ′i in
Fig. 10. The expression matching lossLexpr helps the network learn
unseen expressions through perturbing the parameters and match-
ing the predictions from DECA.

Figure 10: Renderings from the perturbed parameters γ′i .

Figure 11: Illustration of our supervision.

Appendix B: Implementation Details

We discuss the implementation details of our algorithm in this sec-
tion. Frot is a 2-layer MLP with leaky ReLU as the nonlinear acti-
vation layer in the middle and Tanh as the output layer. There are
128 channels for the hidden layer. Instead of outputting the blend-
ing weights directly, the network predicts the residual weights from
the centroid, which has equal weights from all pivots, to ensure the
initialization is around the centroid (since network output is small
initially). Then it linearly combines the blending weights into a la-
tent code in theW+ space. Additionally, to prevent the MLP from
generating values lower than negative beta, we shift the output val-
ues by beta and apply a SoftPlus function. This would effectively
bound the values. Fexpr is composed of the same 2-layer MLPs, ex-
cept that there are 8 of them to control the first 8 layers of the latent
code in theW+ space. The predicted values are added to the latent
code output from Frot.

Another implementation detail is that we perform a normaliza-
tion stage for reenactment. The idea is that the distributions of ex-
pressions are different for each video. Since we only train on a sin-
gle input video, it is possible to overfit to the given sequence. As
a result, we normalize the driving features with standard deviation
and mean of the expressions from the source and driving video be-
fore input it to the Fexpr for reenactment.

For the clustering stage discussed in Sec. 4.1, we use K=200 in
our experiments. It is important when the expression distribution
in the data is uneven (e.g. same expressions for a long time) as the
clustering can select more representative frames.

In terms of rendering resolution, we downsample our results
from 1024×1024 to 512×512 for fair comparison with other base-
line methods. However, our method can run in 1024× 1024 reso-
lution with similar efficiency (removing the downsampling stage),
given input videos with 1024×1024 resolution.

Appendix C: Dataset Composition

We show the range of head poses in Table 3. Dataset names starting
with “id” denote the subjects from the NeRFBlendShape dataset,
whereas names starting with “person” denote subjects from the
NHA dataset. It is difficult to determine the number of expres-
sions as they are often transitioning from one to another (e.g. from
smiling to grinning). However, in the NHA and NeRFBlendShape
dataset, there are different expressions like smiling, winking and
puffing.

Table 3: Composition of our dataset. We show the range of head
poses (in degrees) of each video sequence. Our evaluation dataset
contains a wide range of head poses.

Dataset Min Yaw Max Yaw Min Pitch Max Pitch

id1 -45.36 32.29 -23.25 17.06
id2 -57.74 35.85 -39.35 15.70
id3 -13.43 14.38 -20.60 12.44
id4 -29.09 12.39 -14.98 14.95
id5 -17.22 12.27 -5.42 11.41
id6 -9.62 2.31 -9.67 -1.38
id7 -39.96 36.23 -22.38 13.24
id8 -4.98 10.09 -20.16 -4.51
person0000 -75.56 75.92 -35.00 10.49
person0004 -70.62 72.65 -37.2 17.85

Appendix D: Additional Comparison with NeRFBlendShape

We show additional experiments with NeRFBlendShape [GZX∗22]
in Table 4 and Fig. 12. In Table 4, we provide two different num-
bers: original and masked. The original set is the same as Table 2,
where we evaluate the whole image. The masked set uses the alpha
values from NeRFBlendShape as the mask and only evaluate the
face regions. While our method is purely 2D, it shows comparable
performance to SOTA 3D methods. In Fig. 12, we demonstrate that
our method produces sharper details, whereas NeRFBlendShape
could produce ghosting artifacts.

Table 4: Evaluation of ours and NeRFBlendShape. We show
quantitative results from the NeRFBlendShape data. Our method
demonstrates comparable performance. Moreover, our method of-
fers better and sharper image in terms of the LPIPS.

Methods Masked LPIPS↓ PSNR↑ SSIM↑

NeRFBlendShape ✗ 0.1645 20.20 0.8689
Ours ✗ 0.1119 26.63 0.8803

NeRFBlendShape ✓ 0.0981 32.05 0.9323
Ours ✓ 0.0856 31.76 0.9256

Figure 12: Qualitative comparison with NeRFBlendShape
Our method provides sharper details compared to NeRFBlend-
Shape [GZX∗22]. While NeRFBlendShape shows more accurate
geometry, it produces artifacts when transitioning between differ-
ent expressions, as highlighted above. Please zoom in to better see
the details.
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