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Figure 1: Our model estimates the biophysical skin properties from a single RGB diffuse reflectance with baked occlusion, allowing de-
occlusion, and spectral upsampling in both the visible and near infrared (NIR) spectra. a) Input diffuse reflectance captured in Lightstage.
b-d) Reconstruction (absolute error as inset) in the visible (b) and near-infrared range (d), as the product of the reconstructed skin reflectance
(c) and recovered occlusion (c inset). These are computed from the estimated biophysical parameters, namely: e) melanin concentration, f)
hemoglobin (blood) concentration , g) blood oxygenation, h) eumelanin/pheomelanin ratio, and i) epidermal thickness (in µm).

Abstract
We present a method for estimating the main properties of human skin, leveraging a hyperspectral dataset of skin tones synthet-
ically generated through a biophysical layered skin model and Monte Carlo light transport simulations. Our approach learns
the mapping between the skin parameters and diffuse skin reflectance in such space through an encoder-decoder network. We
assess the performance of RGB and spectral reflectance up to 1 µm, allowing the model to retrieve visible and near-infrared.
Instead of restricting the parameters to values in the ranges reported in medical literature, we allow the model to exceed such
ranges to gain expressiveness to recover outliers like beard, eyebrows, rushes and other imperfections. The continuity of our
albedo space allows to recover smooth textures of skin properties, enabling reflectance manipulations by meaningful edits of
the skin properties. The space is robust under different illumination conditions, and presents high spectral similarity with the
current largest datasets of spectral measurements of real human skin while expanding its gamut.

CCS Concepts
• Computing methodologies → Reflectance modeling; Reconstruction;

1. Introduction

The appearance of skin is the result of the interaction of light with
the tissues forming the skin. Accurately modeling it requires ac-
counting for its different layers, as well as the absorbers and scat-
terers inside the tissue. It is the combination of these parameters
that gives skin its color.

Given the importance of virtual humans in computer graphics
and vision, several models have been proposed for modeling the
skin at various levels of realism. The most precise ones have been
derived from the biophysical composition of the skin [DJ06; KB04;
BK10; CBKM15; IAJG15], mapping between the biophysical pa-
rameters describing the composition and structure of the skin and
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optical parameters governing light transport inside the skin, which
is ultimately responsible of the diffuse reflectance of skin.

Unfortunately, authoring these biophysical models is challeng-
ing, and extracting them from non-invasive measurements is of
great interest beyond computer graphics for gaining a deeper
understanding on the structure and composition of skin sam-
ples. This has led to several inverse methods for reconstructing
such parameters from photographs, leveraging biophysical con-
straints. However, these models either require hyperspectral cap-
tures [GAS*19; ZDP*19; GGD*20; GGR*21], or impose severe
simplifications [AS17].

In this paper, we present a robust method for extracting the bio-
physical parameters describing the appearance of human skin from
RGB images of the diffuse reflectance. Our method builds upon
a hyperspectral space of human skin reflectance, obtained from
Monte Carlo simulations on a biophysically-based model of hu-
man skin. We extensively validate our biophysical space on existing
databases, presenting high spectral similarity with current existing
databases.

Based on our space of human skin reflectance, we develop
an inverse mapping between RGB measurements, the biophys-
ical parameters describing the skin, and a spectrally-upsampled
skin albedo. We derive this mapping using a supervised encoder-
decoder neural network, where the encoder moves from RGB skin
reflectance to biophysical parameters, and the decoder translates
the latter to spectral reflectance. Our method is robust, accounts for
the overdarkening due to occlusion which previous models infer as
higher concentration of melanin, and produces biophysical concen-
tration maps that roughly agree with medical literature.

We demonstrate our approach on a variety of skin tones recon-
structing the skin reflectance with minimal error. While our goal
is not to obtain in-vivo accurate measurements for medical imag-
ing, we still provide the most complete biophysical inversion model
up-to-date, which can be directly used for rendering photorealistic
virtual humans (see Figure 11 and Supplementary), and enabling
realistic biophysically-inspired editing of human skin such as tan-
ning and blushing. In addition, we are confident that our methodol-
ogy opens the door for future non-invasive, in-vivo measurements
of skin melanin concentration or hemoglobin oxygenation, from
low-cost off-the-shelf measurement devices.

In summary, our contributions are:

• An expressive space of spectral skin reflectance constrained by
biophysical parameters of skin, that agrees with measurements
reported in tissue optics and medical research.

• A learned inverse mapping from RGB skin reflectance to bio-
physical skin properties, that allows recovery of high-resolution
spatially-varying maps of skin properties, that allow expressive
biophysically-motivated edits on the skin reflectance.

• A learned forward mapping between biophysical skin parame-
ters and hyperspectral skin reflectance in both the visible and the
near-infrared (NIR) regimes. Together with the inverse RGB-to-
parameters mapping, this allow us to perform spectral upsam-

pling of the reflectance of the skin levaraging the gamut space of
human skin.

2. Related Work

Accurately capturing and modeling the appearance of human skin
has been a very active area of research for decades. Here we focus
on appearance modeling and reconstruction, and refer to a num-
ber of extensive surveys for a broader perspective on human mod-
eling [INN07; NMM*19], face appearance capture [KRP*15], or
capture of translucent materials in general [FJM*20].

Biophysical skin models Beyond the typical approach in VFX of
using a diffuse albedo texture for modeling the skin reflectance,
a number of models have been proposed to relate the appear-
ance of human skin with its biophysical structure and composi-
tion. [THM99; TOS*03] proposed a simple model accounting for
the distribution of melanin and hemoglobin. Later, more advanced
models accounting for the multilayer nature of skin, as well as more
comprehensive list of chromophores have been proposed [DJ06;
CBKM15; IAJG15; KB04; BK10], as well as dynamic models that
model the temporal change of the skin coloration from in-vivo mea-
surements of melanin and hemoglobin concentrations [JSB*10].
Our work builds upon these models, and extend them to model a
wider range of skins, to create our space for skin reflectance.

Skin capture Since early efforts to acquire the skin
BRDF [MWL*99], several approaches have considered skin
appearance capture as a spatially-varying diffuse albedo and
specular reflectance reconstruction from carefully controlled
setups [MHP*07; GHP*08; GFT*11; GTB*13], including dy-
namic [GRB*18] and single-shot captures [RGB*20]. We leverage
the data from these works, and extract biophysical parameters
from the diffuse reflectance. With the same goal as our work,
several authors have focused on retrieving the biophysical structure
and components of the skin from measurements of the diffuse
reflectance of skin, either based on RGB [DWd*08] or hyper-
spectral images [GAS*19; GGR*21; ZDP*19]. Closest to our
solution, [GGD*20] reconstructs spectral skin properties based
on a simplified skin model [JSB*10; DJ06] through a novel mea-
surement system, benefiting from narrow-band LEDs. Our work
reconstructs the skin biophysical parameters from single-image
RGB measurements of the diffuse reflectance of the skin, based
on a carefully validated space generated from Monte Carlo simu-
lations. In addition, thanks to our encoder-decoder reconstruction
architecture, we are able to recover smooth spatially-varying maps
of the skin parameters, that qualitatively match the observations
from medical literature.

Spectral upsampling Since the development of the gamut of
valid reflectance [Mac35b], there has been a number of works
attempting to solve the ill-posed inverse problem of obtaining
spectral reflectance data from RGB measurements, using pre-
tabulated box-based values for obtaining a discrete approximation
of the reflectance spectrum [Mac35a; Smi99], optimizing contin-
uous parametric functions [MSHD15; JH19], using Fourier mo-
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ments [TWF21], or via clustered PCA [OYH18]. Our model up-
samples a continuous spectral reflectance function of the skin in
both the visible and near-infrared spectrum, by leveraging the re-
duced gamut of skin reflectances.

3. A Biophysically-Based Space for Skin Reflectance

In order to develop our inverse and forward mappings from skin re-
flectance to biophysical parameters, we first build a space for such
skin reflectance that is comprehensive enough to cover most skin
conditions. Unfortunately, capturing the wide variety of skin tones
is challenging given the large number of needed subjects, and, even
with a complete space, we would still lack the biophysical struc-
tural parameters of each skin type.

Instead, we build our space from synthetic data, by using Monte
Carlo simulations on a virtual replica of human skin, under a wide
variety of relevant biophysical parameters. In the following, we de-
scribe the skin model used for building our space, and detail our
simulations. Later in Section 4, we demonstrate that our space cor-
relates with existing measured spaces, and analyze its properties.

3.1. Human skin model

Human skin is a multilayered tissue of roughly parallel layers, each
of them with different concentrations of chromophores (absorbers
that give the skin its color) as well as slightly different indices or re-
fraction. Unfortunately, explicitly modeling such complexity, even
stochastically using radiative transfer theory, is not only too expen-
sive in terms of computation, but also results into an unmanageable
parameter space.

We decided to restrict our model to two layers; epidermis and
dermis, since a similar assumption has proven to be adequate in the
past [MM02] and since it fits our purpose. The epidermis is com-
posed of two parts: the stratum corneum and the living epidermis.
The former is the outermost layer, and has minimal effect on the
skin diffuse reflectance given its low absorption and thickness (5
and 20 µm depending on the body location [CSLM19]). Thus, we
focus only on the later layer, with parametrizable thickness t.

The dermis is composed by two sub-layers: the reticular der-
mis and the papillary dermis. Previous works [DWd*08] shown
that these can be safely simplified as a single layer, with aver-
age scattering and absorption parameters. We model it as a semi-
infinite medium, omitting sub-dermal tissues (fat, cartilague, mus-
cles), which are heavily dependent on the anatomical location of
the subject. Also, we empirically found that including the dermal
thickness has minimal effect on the diffuse reflectance.

We assume that both layers have an index of refraction (IOR)
of 1.4, resulting from the weighted sum of the correspond-
ing sub-layers. While this is not completely accurate, it allows
to remove the interface between the two layers, and the ef-
fect of accurately considering the exact IOR is known to be
marginal [LWC12]. Following previous well-established models
from tissue optics [Jac13], we use the classic radiative transfer

equation, and treat each layer as an homogeneous medium defined
by its spectral absorption (µa) and scattering (µs) coefficients. We
do not account for spatial [WVH17; JAG18] or angular correla-
tion [JAM*10] between scatterers, since there is no measured data
of non-stationary particles distributions in human tissue.

Absorption The absorption of each layer µai is the result of the
additive contribution of each chromophore absorption µac present
in each layer:

µai = ∑
c∈Ci

µac = ∑
c∈Ci

Vc pcεc

wc
(1)

where Ci is the set of chromophores contained in the layer i; Vc is
the volume fraction of the substance containing the chromophore
c; pc is the concentration in g/L; εc is the molar extinction of the
chromophore; and wc is its molar weight (Table 3 in Appendix A).

Similar to previous approaches [KB04; IAJG15; CBKM15;
DJ06], we include the effect of melanin, determined by the
melanosomes volume fraction Vm, containing the two types of
melanin (eumelanin µaeu and pheomelanin µaph ) in the epider-
mis, governed by the melanin type ratio ϕm, which greatly varies
through skin type. We also incorporate the hemoglobin present in
blood Vb in the dermis: oxygenated hemoglobin µahbO2 , responsible
for the saturated reddish tint, and deoxygenated hemoglobin µahb ,
responsible for a desaturated purple color; ϕh being the hemoglobin
type ratio. Other chromophores included by the model are the beta-
carotene µaβ−c in both epidermis and dermis, and bilirubin µabil

in the dermis, contained in blood. Additionally, we also include
a baseline of skin absorption µabase = 7.84x108

λ
−3.255 [Sai92] al-

ready employed in previous models.

As a result, the total spectral absorption for epidermis and dermis
are defined respectively as

µae =Vm
(
ϕmµaeu +(1−ϕm)µaph

)
+(1−Vm)

(
µaβ−c +µabase

)
,

µad =Vb
(
ϕhµahb +(1−ϕh)µahbO2 +µabil +µaβ−c

)
+(1−Vb)µabase .

Scattering For modeling the scattering in both the epidermis
and dermis, we use the reduced wavelength-dependent scatter-
ing coefficient µ′s computed according to the fit introduced by
Jacques [Jac13], which is generic for a wide range of human tis-
sues:

µ′s(λ) = a

(
fR

(
λ

λr

)−4

+(1− fR)
(

λ

λr

)−bM
)
, (2)

where the wavelength λ is normalized by a reference wavelength
λr = 500 nm, the scaling factor a = µ′s(λr), fR is the relative contri-
bution of Rayleigh scattering, and bM characterizes the wavelength
dependence of Mie scattering. We set a = 36.4, fR = 0.48, and bM =
0.22 following the coefficients reported in the optics literature for
human skin [BGT11], We model the scattering phase function us-
ing the standard Henyey-Greenstein phase function, parameterized
by a spectrally resolved anisotropy factor g(λ) as [VJSS89]

g(λ) = 0.62+λ 0.29 ·10−3. (3)

Both epidermis and dermis share the same anisotropy.
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Parameter Description Epidermis Dermis
Vm Melanin Volume Fraction [0.001, 1] -
Vb Blood Volume Fraction - [0.001, 1]
t Thickness [µm] [10, 350] 2100
ϕm Ratio of melanin types [0.001, 1] -
ϕh Ratio of hemoglobin types - [0.001, 1]

Table 1: Parameters of our five-dimensional space for skin re-
flectance, including their ranges. For the full list of biophysical
parameters and constants used in our model, we refer to Table 3
in the Appendix.

3.2. Parametrizing the space

We create our reflectance space by varying the skin properties in
the ranges listed in Table 1, leading to a five-dimensional space
defined by the four main chromophores in epidermis and dermis
(eu- and pheomelanin in the epidermis, and oxy- and deoxygenated
hemoglobin in the dermis), and the epidermal thickness, which
proved to be critical for parameter estimation [ZDP*19]. Other pa-
rameters like bilirubin and β-carotene concentrations remain fixed
to common values of human skin measurements found in literature
(see Table 3 in Appendix A).

Accounting for the epidermal thickness over the face, along with
varying values in melanin concentrations, help us achieve local
dark zones, such as moles, and generalize over any skin type. We
also allow melanin and hemoglobin to go beyond the usual values
for human adults measured in the literature [MM02], in order to
automatically handle outliers found in the face, such as the lips,
which exhibit very thin epidermis and higher blood concentration,
or other cases like underlying veins and capillary veins, or areas
with abnormal melanin concentration like freckles or spots. This
range expansion is also reasonable for the oxygenation level, since
it can vary a lot depending on the physical state of the person, and
for the melanin type ratio, where there is little agreement in the
available measured data.

The final 5D parameter space is sampled as follows: melanin
and hemoglobin are selected cubicly ( 3

√
Vm) and quarticly ( 4

√
Vb) re-

spectively, to better adjust to their non-linear effect on reflectance,
while epidermal thickness, melanin type ratio and hemoglobin type
ratio all are uniformly sampled. Example slices of the resulting
space are shown in Figure 2.

3.3. Computing the diffuse reflectance

We compute the diffuse reflectance of a skin patch by using brute-
force Monte Carlo random walks inside the skin. We also consid-
ered using the Kubelka-Munk model [AS17], but found it inaccu-
rate (see Section 3 of the Supplemental). For each skin type, we
run a monochromatic simulations for wavelengths between 380 and
1000 nm, at steps of 2 nm, an increment we found sufficient for
avoiding spectral aliasing. We sample one million random walks
per wavelength and skin tone, with initial directions randomly cho-
sen from a cosine-weighted distribution centered at the inverse nor-
mal at the boundary of the skin, in agreement with what we later
use at rendering time (Section 6).

Figure 2: Matrices of resulting skin reflectance as a function of
melanin and blood volume fraction (x and y axis), with Vm ∈
[0.1,43]% and Vb ∈ [0.1,30]%, for different epidermal thickness,
melanin type ratio and blood oxygenation; note that these parame-
ters significantly affect the appearance of the skin.

4. Analysis of our Reflectance Space

To evaluate the spectral accuracy and colorimetric coverage of our
hyperspectral representations, we compare our reconstructed skin
reflectances against the Leeds skin spectral dataset [XYZ*17]. The
Leeds dataset is the most comprehensive skin data, which was
collected from over 1000 subjects across four different ethnicities
(Caucasian, Chinese, Kurdish, and Thai), and spectrophotometric
measurements were done on different body locations not including
faces (forehead, cheek, inner arm, and back of hand). Note that in
the Leeds dataset, the measurement device, spectrophotometer, was
used with the specular included mode, which may have small in-
consistencies with our diffuse reflectances. Also ideally, we would
like to compare our reconstructed skin textures against the hyper-
spectral captures of the same subjects using image color/spectral
difference [LU14], which we consider as future work.

4.1. Skin diffuse reflectance gamut

In terms of skin color gamut, Figure 3 shows the CIELAB (un-
der CIE D65 and 1931 2-degree standard observer) distributions
of our skin spectra versus the Leeds skin spectra. The bottom row
in Figure 3 shows the projection plane of a∗− b∗ representing the
chromaticity in CIELAB space, and the top row shows the plane
of L∗−b∗ including the lightness dimension. From the overlapped
contour comparisons in the right column, our spectra clearly have a
more comprehensive coverage in those dimensions, meaning our
hyperspectral manifold has a better diversity synthesizing more
skin conditions, which may be limited by the subject population
and the point-based measurements in the Leeds dataset.

4.2. Spectral similarity validation

Colorimetric comparisons ensure that our spectral manifold is rep-
resentative and diverse under the given viewing condition (D65 &
2-deg observer). Here we directly compare the spectral similarity
and the color mismatch when the spectra are viewed across dif-
ferent lighting conditions, i.e., illumination metamerism [Ber19].
Illumination metamerism refers to the phenomenon where one pair
of spectra match in color under a given illumination (e.g., D65)
but have color mismatches under another illumination (e.g., incan-
descent light). In Figure 4, the black lines in each subfigure corre-
spond to 16 representative skin spectra from the Leeds dataset, from
dark to light skin (left to right, up to down). For each Leeds skin

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4



C. Aliaga et al. / A Hyperspectral Space of Skin Tones for Inverse Rendering of Biophysical Skin Properties

Figure 3: CIELAB distributions of our skin spectra (middle) versus
the Leeds dataset [XYZ*17] spectra (left). The CIE D65 and 1931
2-degree standard observer were used for calculations. Bottom row
shows the projection plane of a∗− b∗ representing the chromatic-
ity, and top row shows the plane of L∗−b∗ including the lightness
dimension. Our spectra clearly have a more comprehensive cover-
age in those colorimetric dimensions from the contour comparison
in the right column.

Figure 4: Metamer spectra under CIE D65 and 2-degree standard
observer from ours (colored dash lines) versus the Leeds dataset
(black solid lines). The average RMSE over all the metamers is
included in each panel, which generally is less than 0.05.

spectrum, our spectral manifold is screened to find the metamers
(< 1∆E∗

ab in CIELAB) as matched color under D65. It can be ob-
served that those metameric spectra have reasonably high similarity
compared with the Leeds spectra, with an average root mean square
error less than 0.05 [IRB02]. In a few cases, there are more differ-
ences in the longer wavelength region, which is probably caused by
the specular component included in the reflectance measures in the
Leeds dataset.

4.3. Illumination metamerism evaluation

The spectral difference between the Leeds data versus their
metamers, without considering the weights of illumination spec-
tra and human observers, may not necessarily translate to visible
differences under different illuminations. To simulate the poten-
tial color mismatches caused by the change of illumination, the
color differences between the 16 Leeds spectra and their metamers
from our spectral manifold were calculated under other illumina-
tions in addition to D65. Eight representative illuminations com-
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Figure 5: Illumination metamerism between 40 Leeds spectra in
Figure 4 versus their corresponding metamers from our spectral
manifold. The y-axis is the average color mismatch over all the
metamers for the eight representative illuminations, indexed on the
x-axis, color temperature from low (Horizon) to high (D75).

monly used in the color-critical applications are considered, in-
cluding different color temperatures and different spectral char-
acteristics, such as smooth incandescent light and CIE daylights,
as well as spiky fluorescent lights. Figure 5 shows the average
color difference across all metamers, and the maximum color dif-
ference across all the illuminations can be used as a common met-
ric for quantifying illumination metamerism [Ber19] (similarly for
observer/device metamerism [XFM20]). Note that under D65, the
maximum color difference came from the metamer selection crite-
rion, i.e., < 1∆E∗

ab in CIELAB. Compared with this baseline, the
average color differences are mostly less than 2 ∆E∗

ab in CIELAB.
There are higher color differences in low color temperatures, as
well as fluorescent lights, which differ most to the D65 used to cre-
ate the metamers. The maximum color difference we used outlines
the potential worst mismatches only under very different illumi-
nations. Usually 2 ∼ 3 ∆E∗

ab is acceptable for most colorimetric
reproduction applications [Ber19], for which our metamer spectra
have very promising accuracy, therefore are robust to illumination
changes.

From both colorimetric and spectral comparisons above, our hy-
perspectral manifold presents a more comprehensive and diverse
colorimetric coverage than the spectrophotometric measurements
in the Leeds dataset. The realistic spectral characteristics in ours
provide not only colorimetric accuracy, but also spectral accuracy
that leads to less color mismatches across different illumination
conditions, as well as potential across different observers/cameras.
More analysis can be found in Supplementary Section 2.

5. Mapping Reflectance to Skin Properties and Back

Our biophysical model defines the forward mapping from the skin
parameters to the skin reflectance, by means of a Monte Carlo sim-
ulation or alternative, a look-up table (LUT). For the inverse pro-
cess, we need to characterize the mapping from the skin reflectance
back to biophysical skin parameters. The non-bijective nature of
such mapping, where many combinations of skin properties can
lead to the same reflectance, makes this task challenging. A simple
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approach like a LUT would lead to quantized results and eventu-
ally non-smooth recovered parameters (see Supplemental Material,
Section 4). Instead, we opted to learning both the inverse and for-
ward mappings, moving from RGB skin reflectance ρRGB to our
5D biophysical parameter space γ, and from γ to a hyperspectral
skin reflectance ρ.

Overview To define both the inverse and forward mappings,
we train an encoder-decoder network in a fully-supervised fash-
ion. This network takes a single RGB value of human skin re-
flectance ρRGB, and returns both the biophysical parameters and
the spectrally-upsampled skin reflectance. In addition, it returns an
estimated occlusion value ε, which helps obtain more uniform dis-
tributions of melanin volume fraction, melanin ratio and epidermis
thickness.

In particular, our encoder fE maps from ρRGB ∈ R3 to both the
parameter set γ ∈ R5 and the occlusion value ε ∈ R, while the de-
coder fD takes γ and obtains the hyper-spectral reflectance (310
bands) ρ ∈ R310 , as

fE : R3 → R5 ×R
ρRGB 7→ (γ,ε)

and fD : R5 → R310

γ 7→ ρ
. (4)

Note that we can therefore obtain the initial RGB value ρRGB as
the product

ρRGB = toRGB(ε fD(γ)) . (5)

Network architecture Both the encoder and the decoder are mul-
tilayer perceptrons (MLPs) of four fully-connected layers, with two
hidden layers of 70 neurons for the encoder, and two hidden layers
of 512 neurons for the decoder. We use the tanh activation function
for all neurons in the hidden layers, and a sigmoid for the output of
both MLPs.

Dataset We generate a dataset of 600k pairs of 5D skin parame-
ter vector γ and the corresponding normalized spectral reflectances
ρ. Then, we augment the dataset with 14 scaling intensities ε per
parameter tuple, uniformly sampled from 0.01 to 1, leading to a
dataset of 8.4M RGB values computed using Equation (5), with
the classic RGB conversion using D65 as the illuminant CIE 1931;
we use ρRGB as input for the network. We split the dataset in 80%
and 20% for training and validation respectively. For validation,
we sample the skin parameters according to the uniform distribu-
tion. For training, we rely on Quasi-Monte Carlo for a better cover-
age of the skin parameters, using a low-discrepancy sequence (Hal-
ton [Hal64]). Both are subsequently non-linearly remapped follow-
ing the warping procedures described in Section 3.2.

Training loss We train the encoder-decoder simultaneously in a
fully-supervised fashion, by minimizing the error of the biophysical
parameters, occlusion value and final reflectance, estimated by the
network (γ̂, ε̂ and ρ̂, respectively). This error is defined using the
following loss function:

L= LE +LD +LFull . (6)

Here LE explicitly minimizes the error of the encoder function,
following

LE = MSE(γ̂,γ)+MSE(ε̂,ε). (7)

The second summand LD attempts to minimize the error of the
decoder as

LD = SAM(ρ̂,ρ), (8)

where SAM models the spectral angle mapper function [KLB*93],
which measures the difference between two spectra by treating
them as n-dimensional normalized vectors and computing their an-
gle, following

SAM(ρ1,ρ2) = cos−1
(

ρ1
|ρ1|

· ρ2
|ρ2|

)
, (9)

with |.| the vector norm, and . · . the dot product operator.

Finally, LFull measures the error in the reconstruction as the dis-
tance in value and chromaticity, following

LFull = L1
(
Lum(toRGB(ρ̂′),Lum(ρRGB))

)
+SAM(ρ̂′,ρ) (10)

with ρ̂
′ = ε̂ ρ̂. The first term measures the distance in lumi-

nance, using the standard luminance in XYZ from D65 RGB i.e.,
Lum(R,G,B) = 0.2126R + 0.7152G + 0.0722B. The distance in
chromaticity for the estimated scaled spectral reflectance ρ̂

′ and the
ground truth spectral reflectance ρ is measured using SAM again.
Note that SAM is agnostic to the amplitude of the signal, so it is
suitable for comparing the ground truth, normalized spectral re-
flectances, against the estimated ones (scaled by the occlusion).

Implementation details We implemented our model in Pytorch,
using the Adam optimizer [KB14], with a learning rate of 10−4 and
a batch size of 256. A grid search was performed to find the optimal
hyper parameters listed, including the number of hidden neurons
that we set to 70 and 512 for encoder and decoder, respectively.

6. Results

We demonstrate our method on five subjects of different ethnici-
ties and genders captured using a Lightstage [DHT*00]. The dif-
fuse RGB reflectance is extracted using the standard Lightstage
pipeline, including high-quality diffuse-specular separation, as a
4K HDR texture. Our network takes less than 2 seconds to proceed
each 2kx2k map on a Nvidia RTX A6000.

For rendering, we implement a custom skin model in Blender
Cycles, using a double GGX specular lobe and a diffuse compo-
nent computed using Monte Carlo random walks on a homoge-
neous medium. The medium parameters are obtained using numer-
ical albedo inversion [WVH17] from the reconstructed RGB dif-
fuse reflectance of the skin, as well as its mean free path and its
anisotropy parameter. Note that using the spectral reflectance in a
renderer with spectral support should be possible, by using our de-
coder in render time, but it is left as future work. Details and more
rendering results can be found in Supplemental Sections 5 and 6.

Figure 6 shows the reconstruction results in RGB for subjects A-
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Figure 6: Estimated maps for five subjects of different skin types. Reconstruction mean squared error for the visible range (second row):
7.37·10−5, 5.39·10−5, 3.057·10−5, 4.5·10−5 and 7.61·10−4. The recovered reflectance maps in near infrared (NIR) are computed as the
integral of the spectral reflectance from 780 nm up to 1 micron. They look similar for different skin types, since light travels deeper in
that region of the spectra where the absorption by the chromophores diminishes drastically. The last row shows the estimated normalized
reflectance maps, with the predicted occlusion maps as insets: The model removes baked shadows and ambient occlusion, preventing the
network to interpret darker areas by means of higher concentration of chromophores.

E, including the scaled reflectance (reflectance times the occlusion
ε) in both the visible (toRGB(ρε)) and near infrared (NIR) ranges,
as well as the reflectance toRGB(ρ) (the occlusion is shown in the
insets). Our results show minimal error in the reconstruction.

Ablation study We evaluate the importance of our design choices
by means of an ablation study, where we compare the perfor-
mance of an RGB-to-RGB network (RGB), an RGB-to-Spectral
network (SPECTRAL), and an RGB-to-Spectral network account-
ing for the de-occlusion parameter when estimating the reflectance
(SPECTRAL+). Figure 7 shows that spectral upsampling produces
less error in the reconstruction, while allowing to obtain NIR spec-
tral values or using our model for spectral rendering. The addition
of the occlusion in our network (SPECTRAL+) does not produce
significant changes in the reconstruction, but is important when

generating the biophysical parameter maps, as shown in Figure 12:
there, we can see more uniform distributions of the melanin ra-
tio and thickness, with variations only around the eyes and lips, as
described in the medical literature. Thus, while the reconstructed
spectral diffuse albedo is not significantly affected, the biophysical
parameters obtained with our final network are better aligned with
real parameters, which might be relevant for e.g. editing tasks.

Robustness under different illuminants We evaluate our model
trained for D65 illuminant over a set of skin tones lit by illumi-
nants ranging from very warm to very cool color temperatures:
2500 to 10000 K, applying the von Kries chromatic adaptation
model [vKri05] and the CAT02 transform matrix [Fai13]. A subset
of 484 skin tones was created by following the sampling scheme in
Section 3.2 and limiting the ranges to plausible values for melanin

© 2023 The Authors.
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Figure 7: Ablation study: reconstruction error. While the three versions of the model recover the original reflectance maps with minimal error,
enhancing the decoder with dense spectral reflectance data (SPECTRAL) improves overall the RGB approach. The SPECTRAL model even
outperforms the final version SPECTRAL+, at the cost of much higher sensitivity to occlusions, which translates into lower quality in the
reconstructed maps, as can be seen in Figures 12 for subjects A and C. Such effect is found more pronounced in the RGB approach.

2500 K 4500 K 8500 K 1000 K
Rec 2.57 ·10−2 3.78 ·10−2 5.81 ·10−2 6.21 ·10−2

Vm 8.5 ·10−3 3.06 ·10−2 1.54 ·10−3 2.2 ·10−3

Vb 4.7 ·10−2 1.64 ·10−2 7.7 ·10−3 1.07 ·10−2

t 3.6 ·10−3 1.2 ·10−3 5.4 ·10−4 7.7 ·10−4

ϕm 4.8 ·10−2 2.01 ·10−2 1.16 ·10−2 1.16 ·10−2

ϕh 1.57 ·10−1 4.5 ·10−2 1.8 ·10−2 2.4 ·10−2

Table 2: For the same subset of skin tones lit by 2500 K to 10000 K
illuminants: RGB reconstruction error (MAE) in the visible spec-
trum of our model trained for D65 illuminant, and mean absolute
differences between each of the corresponding estimated biophysi-
cal parameters and their D65 counterparts.

Vm ∈ [0.001,0.43] and hemoglobin Vb ∈ [0.001,0.2]. Results are
shown in Figure 8. The reconstruction error remains low for all
the illuminants including the coolest and warmest color tempera-
tures, which significantly differ from D65. The differences in the
estimated properties between D65 and the rest of the illuminants in
MAE are shown in Table 2. In terms of parameters, the distribu-
tions of the biophysical properties exhibit a high degree of similar-
ity, with only subtle variations at the most extreme color tempera-
tures: mainly a decrease in thickness and an increase in oxygena-
tion level to accommodate warmer illuminants, or the opposite for
cooler color temperatures. To show the effect over faces, we con-
ducted a similar assessment in Figure 9, using the captures from

Figure 1. The reconstruction error remains minimal. However, it is
worth noting that the model demonstrates greater accuracy in repro-
ducing warmer tones by leveraging certain biophysical skin proper-
ties (e.g. hemoglobin and blood oxygenation), whereas reproducing
extreme cool color temperatures proves to be a bit more challeng-
ing for the model. These results show that our model, even when
trained for a particular illuminant, is still robust and consistent in
other illumination conditions. Nevertheless, the network should be
retrained for illuminants with emission spectra significantly differ-
ent to the one used for training.

Comparisons to previous work We conduct a series of compar-
isons with the related and recent work [GGD*20]. Not having ac-
cess to the training data, we decided to reproduce the authors’ re-
sults from the examples in the paper with our approach. Figure 10
is a comparison on more true albedos from [GGD*20], which were
obtained via the Antera device (under D65 illuminant). The gen-
eral observation is that our reconstruction error is much lower, and
we tested the model across more skin types. See the Supplemental
Section 1 for additional tests.

Editing We show how we can manipulate directly in this space
of inferred skin properties, scaling some of them up or down, in
an intuitive and predictable manner. We run the neural decoder on
these modified quantities to reconstruct biophysical albedos, and
finally render them on 3D faces. Figure 11 shows edits over the
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Figure 8: Robustness analysis under different color temperatures. We tested a subset of skin tones for a range of color temperatures from
warmest to coolest (2500 to 10000 K), chromatically adapted. The mean absolute error (MAE) of the RGB reconstruction in the visible
range remains low, as shown in the third row. The histograms of the estimated skin properties (bottom) for the range of color temperatures
illustrate how melanin remains very similar for all illuminants. The remaining properties exhibit only small variations. From coolest to
warmest, a) there is a progressive increase in the reconstructed hemoglobin concentration, oxygenation level, and pheomelanin ratio, the
three chromophores mostly responsible for redder skin tones; and b) the reconstructed epidermis is thinner for warmer illuminants, which
reduces the masking effect of melanin concentration and enhances the effect of the aforementioned chromophores.

rest of the parameters of the model. The level of blood oxygena-
tion generates paler or more saturated skin colors. The thinning of
the epidermis, which typically occurs with aging, translates into a
more translucent look, revealing the heterogeneities of the under-
lying layers (e.g. capillary and veins), while a thicker epidermis
results in a more opaque and rough appearance. Last, we vary sev-
eral components to simulate tanning and flushing. While it is hard
to fully validate the correctness of the recovered skin properties, we
find the parametrization adequate to produce plausible human skin
albedos.

7. Discussion and Future Work

We have presented a method for inverse estimation of skin’s bio-
physical parameters, from RGB images of the diffuse reflectance.
Our method is based on a carefully designed and validated space
for skin reflectance, parametrized by the main biophysical param-
eters of human skin. As a side effect, our method allows to do a
well-principled spectral upsampling of skin reflectances.

While our approach outperforms previous research and works
well on a variety of skin tones, it is still not free from limitations.
First of all, although we consider all the chromophores in our cur-
rent model, we aim to widen the albedo space to handle uncommon
skin shades resulting from rare chromophore concentrations, such
as the excess of bilirubin, beta-carotene, or pathologies related to
methemoglobin. Incorporating the effect of hair roots on the light

transport inside the skin would be interesting to better handle short
beards or shaved skulls.

Currently we infer the biophysical properties locally, already ob-
taining coherent spatially-varying parameters. Nonetheless, incor-
porating the spatial domain in the inference, by introducing spa-
tial priors and correlation between the different parameters of our
model, could potentially improve results.

Additionally, our method is robust to different illumination con-
ditions, specially if images are white-balanced. However, for illu-
minants with very different spectral signature, our neural network
trained for D65 illuminants might result in errors. In these cases,
re-training the model for new illuminants might be a better choice.
Inferring the illuminant at the same time as the skin parameters and
occlusion would make our method even more robust, but likely will
require some extra information for inference due to metamerism.

Finally, we have not validated our recovered biophysical param-
eters against measurements in skin samples. Thus, while our re-
covered parameters roughly agree with measurements we do not
claim that we recover them such that they can be used in med-
ical inspection of skin. However, non-invasive in-vivo recovery
of these parameters is an important research field, and current
solutions present many limitations even in commercial products
used in medical applications. For instance, although often relying
on large spectral bands where oxy- and deoxyhemoglobin spec-
tra mostly differ (660 and 940 nm) and often installed in regions
less likely to be masked by melanin (inside surface of finger tips),
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Figure 9: Faces under different color temperatures. For two faces of different skin type and four color temperatures (first row), our model
trained for D65 is able to reconstruct the skin reflectance in the visible range (second row) with low error (MAE, shown as inset). The
model adapts to warmer and cooler illuminants by slightly adjusting some of the estimated properties. Melanin and hemoglobin shown here,
please see Supplemental Figure 6 for the remaining properties. Similarly, the behavior of oxygen saturation aligns with that of hemoglobin
concentration. Conversely, epidermal thickness and eumelanin ratio, much like melanin concentration, exhibit minimal variation and remain
relatively constant.

pulse oxymeters have shown inaccuracies for different pigmen-
tation levels [SGD*22; FWW*22]. Validating and correcting our
model against measurements, potentially incorporating spatial pri-
ors as mentioned above, is an exciting avenue of future work, with
numerous applications beyond graphics.
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Appendix A: Specifications of Skin Chromophores

Parameter Description Value
µahbO2 Oxy-Hemoglobin absorption 2.303 phbεhbO2

whb
µahb Deoxy-Hemoglobin absorption 2.303 phbεhb

whb
εhbO2 Oxy-Hemoglobin Extinction [Jac13]
εhb Deoxy-Hemoglobin Extinction [Jac13]
phb Hemoglobin Concentration 150
whb Molar weight of Hemoglobin 64500
µaeu Eumelanin absorption 6.6x1011 λ−3.33

µapheo Pheomelanin absorption 2.9x1015 λ−4.75

pbil Bilirubin Concentration 0.05
wbil Molar weight of bilirubin 584.66
pβ−ce β-carotene Concentration (Epidermis) 2.1x10−4

pβ−cd
β-carotene Concentration (Dermis) 7x10−5

wβ−c Molar weight of β-carotene 536.8726

Table 3: Chromophore specifications. The absorption coefficient
is defined in cm−1; the extinction coefficient εc in cm−1

moles/liter ; the
concentration of the chromophore pc in g/L; and the molar weight
wc in g/mol. The absorption of melanins µaeu and µapheo is de-
fined through a fit from [DJ06] to the measurements from [JM91]
and [SS06] respectively. The 2.303 coefficient in µahb comes from
deriving a factor of ln(0), since ε has been historically recorded
in such base 10 nomenclature from measurements of old spectrom-
eters in literature. Finally, oxy- and deoxy-hemoglobin extinction
can be found tabulated in [PJ].
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Figure 12: Ablation study: parameter maps for Subjects A and C. The SPECTRAL+ model retrieves more even skin properties. The
hemoglobin concentration and oxygenation maps better match the reddish areas of the face, whereas RGB and SPECTRAL wrongly in-
terpret the shadows around the jaw as higher concentration of blood. The epidermal thickness and eumelanin ratio are also more uniform in
the SPECTRAL+ approach, while keeping low values in the right areas, like the lips.
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