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Figure 1: Surprising color changes may occur due to the path length travelled by light through some materials. This is shown in (a) with
the Usambara effect observed in tourmaline: the same gem appears green or red depending on path length, due to a specific transmission
spectrum (see inset). We introduce a method for finding such non-generic spectra. This requires to perform one-to-many spectral upsampling
(b), which generates multiple spectra with a unique controllable color at a given path length, but varying colors at further lengths. The
chromaticity of each spectrum as a function of path lengths is shown in (c).

Abstract
Spectral rendering is essential for the production of physically-plausible synthetic images, but requires to introduce several
changes in the content generation pipeline. In particular, the authoring of spectral material properties (e.g., albedo maps,
indices of refraction, transmittance coefficients) raises new problems. While a large panel of computer graphics methods exists
to upsample a RGB color to a spectrum, they all provide a one-to-one mapping. This limits the ability to control interesting
color changes such as the Usambara effect or metameric spectra. In this work, we introduce a one-to-many mapping in which
we show how we can explore the set of all spectra reproducing a given input color. We apply this method to different colour
changing effects such as vathochromism – the change of color with depth, and metamerism.

1. Introduction

Spectral rendering has been increasingly used in recent years,
due to raising expectations in photo-realism in cinematogra-
phy [FHL∗18], or to applications that require predictive results
such as in architecture. However, the generation of spectral material
properties presents a challenge for artists and designers [WLA∗22].
To ease the edition of reflectance and transmittance spectra, several
spectral upsampling methods have been introduced in computer

graphics [Pee93, Smi99, OYH18, MY19, JH19, GGDG22, Jen21].
They produce spectra from colors, ensuring that physical bounds
are achieved (e.g., reflectances must lie in the [0,1] range). All of
these methods are restricted to produce a one-to-one conversion:
one RGB triplet converts to a single spectrum.

This limitation restricts the possibilities that spectral rendering
offers. Indeed, unlike RGB materials, spectral materials offer the
possiblity to produce subtle color effects, such as metamerism –

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

e14886          pp. 1 - 11

DOI: 10.1111/cgf.14886

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14886


2 L. Belcour, P. Barla & G. Guennebaud / One-to-Many Spectral Upsampling of Reflectances and Transmittances

a change of color due to different illuminants [WFD∗21]. In the
optics community, Metameric blacks [Wys58, FM05] have been
introduced to explore the space of metamers. In this approach,
metameric spectra achieving a given desired color are sampled
from a null-space in the target color space. Unfortunately, this re-
quires to manipulate physical constraints in a high dimensional
null-space, which significantly complicates artistic control. Most
importantly, this null-space approach is not easily adapted to deal
with non-linear color changes, such as those observed in the Usam-
bara effect (see Figure 1 (a)) – a surprising change of color due to
the path length travelled by light in tourmaline gems.

In this paper, we introduce a novel one-to-many approach that
enables artists to design non-generic spectra with controlled color
effects. The key idea is to build reflectance or transmittance spec-
tra using a small set of basis functions forming a partition of unity
(PU), and to express them in chromaticity space. We primarily tar-
get non-linear effects: our representation allows us to find many
spectra that achieve a same target chromaticity at a unit optical
depth, while providing control over the chromaticities at further
depths. This is shown in Figure 1(b,c) for a pair of spectra.

A key observation on which we elaborate in Section 3 is that
a PU spectral representation is linked to generalized barycentric
coordinates in chromaticity space. As demonstrated in Section 4,
exploring all the possible barycentric coordinates reconstructing
the same target chromaticity point is equivalent to exploring the
space of all spectra producing the same chromaticity when inte-
grated with respect to color matching functions of the human vi-
sual system. We then use this geometric analogy for the design of
the PU basis in Section 5, where we show how to strike a balance
between spectral smoothness and color expressivity.

With our one-to-many spectral upsampling approach, we are
able to generalize the Usambara effect to any non-generic spec-
trum that exhibits changes of color with depth, which we suggest
to call vathochromism, derived from ancient Greek vathos (depth)
and chroma (colour).† We show in Section 6.1 how to build a para-
metric system in which a user can pick spectra with specific con-
straints (such as reproducing two given chroma for different op-
tical depths). The same representation also provides control over
metamerism, as shown in Section 6.2. We further discuss the dif-
ferences with Metameric Blacks in Section 7.

2. Previous Work

2.1. Color changes in Nature

Many different kinds of natural materials exhibit changes of color,
depending on the angle of view (goniochromism), on temperature
(thermochromism) or exposition to light (photochromism) for in-
stance. In all those cases, the reflected or transmitted spectrum is
itself changed either due to an alteration of the material itself, or to
viewing conditions. In this paper, we are instead interested in ma-
terials that exhibit color changes despite the fact that their spectral
reflectance or transmittance does not change.

† We reserve the usage of the term “Usambara effect” for the typical green-
to-red color shift observed in Tourmaline gemstones.

Metamerism. A common example of such materials are those that
change color with a change of illumination, called metamers. Two
metameric materials can look the same under one illuminant, but
will differ when lit by another illuminant. This is explained by the
fact that the human visual system integrates the product of light and
material on photo-receptors, which is a many-to-one mapping. An-
other related example of the impact of the illuminant on the appear-
ance of objects is the Alexandrite effect [GS82]. Alexandrite gems
are known to change from green when lit by sunlight to red when
lit by candle light. This particular effect has been used in computer
graphics by Bergner et al. [BDM09] for visualization purposes.

Usambara effect. The Usambara effect was first described for
a particular tourmaline found in the Umba valley in Tanza-
nia [LSH99]. It was described as a change of color (from green
to red) with an increase of the optical depth of the material. It was
later found that other materials (such as topaz and amber) depicted
such behaviour [BJIA12, LSW14]. In this work, we use the term
vathochromism for such changes of color with depth.

Fluorescence. Adding light energy content outside of the sen-
sitivity of human vision (either in the infra-red or ultra-violet
range) also permits the alteration of appearance. This is due to the
fact that many materials are in fact fluorescent: they can re-emit
light at different wavelengths. Compact representations for fluores-
cent spectra have been recently introduced in computer graphics
(e.g., [HFW21]). However, fluorescence is outside of the scope of
our work.

2.2. Computing Metamers in Optics

Metameric blacks One way to generate a pair of metameric spec-
tra is to add to a first spectrum a spectral curve that corresponds to
a black color (i.e., a zero triplet) in the target color space [Wys58].
From the point of view of linear algebra, a metamer is then a point
in the null-space of the color space matrix [TN72, CK82]. While
this formalism permits the generation of arbitrary metamers, it re-
quires to track hard constraints: a reflectance spectrum must take
its values in the [0,1] range. With finely-discretized spectra, those
constraints generate a convex hull of valid spectra in a high dimen-
sional space. Alternate methods can avoid this dimensionality issue
by using a blending of measured spectra [FM05, Sch76]. However,
this comes at a cost: each reconstructed spectrum is necessarily
within the convex hull of the measured spectra. In particular, one
can only reproduce luminance within this convex hull.

Applications Metameric Blacks have been successfully used for
camera calibration [AL07], reflectance acquisition [MF06, ZB07,
LF20], or printing [MMA11]. However, this approach is too limit-
ing for the artistic control of spectral assets, which is our main focus
in this work. Furthermore, working with discretized spectra has the
additional drawback that spectral maxima are limited to occur at
spectral bin locations, potentially preventing interesting effects.

2.3. Spectral Representations in Computer Graphics

Spectral upsampling. In computer graphics, the use of a spectral
renderer requires to convert between colors and spectra [FHL∗18,
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WLA∗22]. Usually, the aim is to convert RGB textures (such as
albedo maps, environment maps) to spectral textures with one
spectral curve per texel – a one-to-one mapping [Pee93, Smi99,
OYH18,MY19,JH19,GGDG22,Jen21,TWF22]. The difference be-
tween those approaches mostly resides in how spectra are built.
For instance, [Smi99] and [MSHD15] optimize smooth spectra,
[Pee93]and [OYH18] use a database to project colors, while [JH19]
build a parametric family of spectra. All these methods ensure that
the resulting upsampled spectra are physically-plausible: they re-
main in the [0,1] range along the spectral dimension.

Spectral Compression. The storage of spectral curves raises ad-
ditional difficulties. Parametric models (such as the one of [JH19])
limit storage requirements, even allowing for on-the-fly conversion
of RGB assets. However, they severely restrict the family of spec-
tra that can be represented. An alternative is to decompose spectra
using moments [PMHD19]. With this approach, it is possible to re-
construct a large family of spectra while keeping memory require-
ments in check. The storage of spectra is orthogonal to our work,
as we could choose to use any compression method to store the
spectra produced by our approach.

Fluorescence. Spectra defined in the visible range can be extended
to incorporate fluorescence effects [Gla95]. While it requires ded-
icated rendering algorithms [MFW18], it expands the range of
achievable appearances [JWH∗19]. We restrict our approach to
spectra in the visible range and put fluorescence aside.

2.4. Scope of this Work

Our goal is to extend the computer graphics toolbox with a one-to-
many spectral upsampling method tailored to reflectance and trans-
mittance. Contrary to previous work in optics, we do not rely on
convex combinations of measured spectra, since our focus is on the
artistic control of color-changing effects, for vathochromism and
metamerism alike. As described in the next section, we overcome
the difficulties raised by the null-space approach of Metameric
Blacks by relying on a spectral Partition of Unity.

3. Spectral Partition of Unity

In this section, we use a Partition of Unity to define a space of
smooth spectra and show how these spectra are related to general-
ized barycentric coordinates in chromaticity space.

Partition of Unity. A Partition of Unity (PU) is a set of K basis
functions Bk : U → R with k ∈ [0,K −1] such that:

∑
k

Bk(x) = 1,∀x ∈U. (1)

We can use a weighted sum of these basis functions to recon-
struct or approximate functions. A notable property of a PU is that
bounded weights yield bounded reconstructed functions. In partic-
ular:

∀k ∈ [0,K −1], wk ∈ [0,1]⇒ f (x) = ∑
k

wkBk(x) ∈ [0,1]. (2)
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Figure 2: Left: An example set of K = 5 PU basis functions of
degree 2. Right: CIE sensitivity functions x̄(λ), ȳ(λ) and z̄(λ) in
red, green and blue.

Reconstructing Transmission Spectra. We use a PU created
from non-uniform B-splines to produce reflectance or transmittance
spectra. The input domain is the set of visible wavelengths U =
[U0,U1] = [385nm,700nm]. The energy conservation constraint on
reflectance and transmitance spectra is readily met through Equa-
tion 2. We will discuss the choice of the number K of B-spline basis
functions, their degree and the positions of their knots later in Sec-
tion 5. In this section, for the purpose of illustration, we rely on
K = 5 bases of degree 2 and uniformly spaced knots with knots at
the boundaries of U having a multiplicity of 3, as shown in Fig-
ure 2(left). We also work with the sRGB color space.

Geometric interpretation When intergrated with respect to the
CIE sensitivity functions x̄(λ), ȳ(λ) and z̄(λ) shown in Fig-
ure 2(right), each basis function corresponds to a XYZ color:

Bk =

Bk,X
Bk,Y
Bk,Z

=
∫

Bk(λ)s(λ)dλ, (3)

with s(λ) = [x̄(λ), ȳ(λ), z̄(λ)]⊤. Due to the linearity of reconstruc-
tion, a weighted sum of PU basis functions yields a XYZ color that
is a weighted sum of basis XYZ colors:

F =

FX
FY
FZ

=
∫

f (λ)dλ = ∑
k

wkBk. (4)

F may then be converted to the xyY color space. Using Equa-
tion 4, we directly obtain its luminance FY = ∑k wkBk,Y . Its chro-
maticity c is slightly more complicated. If we write |F|=FX +FY +
FZ and similarly |Bk|= Bk,X +Bk,Y +Bk,Z , it is given by:

c = [FX ,FY ]
⊤

|F| =
∑k wk

[
Bk,X ,Bk,Y

]⊤
∑l wl |Bl |

.

which may be rewritten as:

c = ∑
k

akbk, (5)

ak =
wk|Bk|

∑l wl |Bl |
. (6)

where the bk =
[Bk,X ,Bk,Y ]

⊤

|Bk| denote basis chromaticities.

Our key observation is thus that the chromaticity c of a spec-
trum given by a vector w of basis coefficients is obtained as a linear
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a) Chromaticity space b) Reconstructed spectra from PU

Figure 3: In chromaticity space (left), a given choice of basis Bk(λ)
defines a gamut (orange polygon) where each vertex corresponds to
a basis chromaticity bk. Any chromaticity point outside that gamut
(e.g., the black cross) is thus not achievable with the chosen ba-
sis, even though it might be inside the sRGB gamut (blue triangle).
A spectrum defined by two non-null contiguous basis coefficients
(e.g., red curve at right, individual PU contributions shown with
dashed curves) yields a chromaticity on the basis gamut boundary
(red point). More general spectra (e.g., blue curve at right) yield a
chromaticity inside the basis gamut (blue point).

combination of basis chromaticities bk where the weights ak corre-
spond to homogeneous barycentric coordinates. This is illustrated
in Figure 3, where the basis chromaticities bk form a gamut of col-
ors achievable through a given choice of basis functions Bk(λ). De-
pending on that choice, the gamut may only partially overlap the
sRGB gamut: this means that there is no w that can achieve a chro-
maticity outside the basis gamut. A vector w with only two non-
zero contiguous coefficients yields a unique chromaticity point on
the gamut boundary, since then only a contiguous pair of barycen-
tric coordinates is non-zero. However, in all other cases, there will
be multiple coefficient vectors w that map to the same chromaticity
point c. This is because for K > 3, the set of ak describes general-
ized barycentric coordinates of c, and is thus not unique. In the next
section, we show how to invert this many-to-one mapping.

4. One-to-many mapping

Our goal in this section is to find the equivalence class of basis coef-
ficients w that yields a target chromaticity c and luminance FY . We
do this in two stages: we first find the set of generalized barycentric
coordinates that achieves the target chromaticity c; then we show
how this maps to an equivalence class of basis coefficients, a subset
of which achieves the target luminance FY .

4.1. Achieving chromaticity

A first condition is that c must lie inside the basis gamut or on its
boundary. The target chromaticity may then be expressed in terms
of generalized homogeneous barycentric coordinates, using: 1 1 · · · 1

b0,x b1,x · · · bK−1,x
b0,y b1,y · · · bK−1,y




a0
a1
· · ·

aK−1

=

 1
cx
cy

 , (7)

with bk = [bk,x,bk,y]
⊤ and c = [cx,cy]

⊤.

Since c is in the basis gamut, there is at least one triplet of
bases whose chromaticity coordinates define a triangle that con-
tains c. Let’s assume that these basis are the first three (one can
always re-order the bases to yield such a configuration). One so-
lution to Equation 7 is then [a0,a1,a2,0, · · · ,0]⊤ = [a⊤T ,0]⊤, with
aT the vector of triangular barycentric coordinates. Other solutions
may then be obtained by adding perturbations to that vector, which
may be written [a0 − ∆a0,a1 − ∆a1,a2 − ∆a2,a3, · · · ,aK−1]

⊤ =

[(aT − ∆a)⊤,a⊤F ]⊤, where aF is a (K-3)D vector of barycentric
coordinates that represent degrees of freedom to navigate the space
of solutions, and ∆a is a 3D offset vector used to preserve the ho-
mogeneous barycentric coordinate constraint.

Let us now rewrite Equation 7 with the following matrix form:
[T F ]a = [1,c⊤]⊤, where T (resp. F) is the matrix corresponding
to the first 3 (resp. last K −3) columns of the left hand side matrix,
and a is the vector of generalized barycentric coordinates. Since we
also have T aT = [1,c⊤]⊤, it follows that:

T ∆a = FaF . (8)

Now in order to navigate the space of solutions, we need bounds
on aF . Because all its coefficents are barycentric coordinates, we
already know that 0 ≤ aF ≤ 1, with the lower bound trivially corre-
sponding to a zero offset vector (see Equation 8). The upper bound
is not a sufficient condition since we must also make sure that
0≤ aT −∆a≤ 1, or in terms of the offset vector: aT −1≤∆a≤ aT .
Using Equation 8 yields the following vector inequality:

aT −1 ≤ MaF ≤ aT , (9)

where M = T−1F is a 3× (K − 4) matrix. Note that since M may
contain negative coefficients, the lower bound in Equation 9 may
end up being used to define the upper bound on aF .

We rely on an iterative approach to characterize the whole set of
solutions by considering each coefficient of aF in turn. Let us start
with a3, and assume that a4..K−1 = 0. Equation 9 now becomes
aT −1 ≤ m0a3 ≤ aT , with m0 = [m00,m10,m20]

⊤ the first column
of M. The constraints on offsets are then met by navigating a3 in
the [0,amax

3 ] interval, with the upper bound given by:

amax
3 = min

i∈{0,1,2}

ai +H(mi0)−1
mi0

. (10)

The Heaviside function H(m) is used to take the sign of each ma-
trix component into account: when m ≤ 0 (resp. m > 0), the lower
(resp. upper) bound is considered. Having chosen the n−1 first co-
efficients of aF , the upper bound for the nth coefficient – assuming
the remaining ones are zero – is obtained with a similar formula:

amax
3+n = min

i∈{0,1,2}

ai +H(min)−1−∑
n−1
l=0 mil a3+l

min
. (11)

In the general case, a valid solution ∀n ∈ [0..K−4] must ensure:

a3+n ≤ min
i∈{0,1,2}

ai +H(min)−1−∑l ̸=n mil a3+l

min
. (12)

For each vector aF , the offset vector is computed by ∆a = MaF ,
which yields a generalized homogeneous coordinates vector a that
achieves the target chromaticity c. Figure 4 illustrates that process.
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Figure 4: One-to-many mapping. The target color is given by its chromaticity c = [0.41,0.42]⊤ and luminance FY = 0.57. Left: a triangle
(in green) enclosing the target chromaticity c (black dot) is picked among the basis gamut (in orange). Middle: the remaining two basis
constitute degrees of freedom, which are randomly sampled using our iterative procedure based on barycentric coordinates. Observe the
presence of boundaries in this barycentric space, which are required to keep basis coefficients in the [0,1] range. Right: the equivalence class
of spectra achieving c are retrieved from the degrees of freedom (we use matching colors). Transparent barycentric samples (middle) and
spectra (right) indicate that the target luminance FY is not achieved. The solution of maximum luminance in the equivalence class is shown
with a green diamond in barycentric space (middle), and its spectrum is drawn in green (right).

A triangle that encloses c is first selected; then the space of degrees
of freedom aF is sampled randomly to yield a family of spectra.

4.2. Achieving luminance

Given a vector of generalized barycentric coordinates a, we now
need to invert Equation 6 to retrieve basis coefficients w. Since any
pair of basis coordinates (ai,a j) is related by an equation of the
form aiw j|B j|= a jwi|Bi|, the corresponding basis coefficients span
a KD line. If we pick an arbitrary non-zero barycentric coordinate
– say a0 – then w may be expressed as a function of w0:

w(w0) =


1

a1|B0|
a0|B1|
· · ·

aK−1|B0|
a0|BK−1|

w0 = Lw0, w0 ∈
(
0,wmax

0
]
, (13)

where the upper bound wmax
0 = min

{
1, a0|B1|

a1|B0| , · · · ,
a0|BK−1|
aK−1|B0|

}
is set

to ensure that 0 ≤ w ≤ 1. The KD line of solutions may now be
restricted to a single solution by the target luminance constraint,
which we write w(w0)

⊤By = FY , with By = [B0,Y , · · · ,BK−1,Y ]
⊤

the vector of Y coefficients of basis colors. Using Equation 13, the
value of w0 that potentially achieves the target luminance FY is:

w⋆
0 =

FY

L⊤By
. (14)

FY is effectively achieved if and only if w⋆
0 ≤ wmax

0 . For that reason
only a (possibly empty) subset of barycentric coordinates a per-
mits to achieve the target luminance. This is shown in Figure 4:
only fully-opaque barycentric samples and their associated spectra
achieve FY in practice.

However, this subset may be enlarged. Indeed, relying on the
bounded property of PU (Equation 2) remains conservative: in

some instances, we may use basis coefficients greater than 1 and
still obtain energy-conserving spectra. This means that w may
be scaled in post process to increase the luminance of the re-
constructed spectrum. Assuming that FY is not achieved (i.e.,
w(wmax

0 )⊤BY < FY ), we may thus obtain a closer solution in terms
of luminance by using:

W(w) =
w(wmax

0 )

max
(

f max,
w(wmax

0 )⊤BY
FY

) , (15)

where f max = maxλ f (λ), and 1/ f max represents the margin by
which the spectrum f (λ) is allowed to be scaled.

Finally, it would be useful to know a priori whether there ex-
ists at least one vector w of basis coefficients that achieves both the
target chromaticity and luminance. A conservative solution is to
rely on the vector w that maximizes luminance under the constraint
given by Equation 7, then to check whether W(w)⊤By ≥ FY . The
vector w is found by solving the following linear programming
problem:

w = max
w

w⊤By, (16)

subject to 0 ≤ w ≤ 1 (17)

and A w = 0, (18)

where A is obtained by rewriting Equation 7 in terms of w:

A = [T F ] diag(|B|)⊤−|B|⊤
[

1
c

]
, (19)

where we have used a =
diag(|B|)⊤w

|B|⊤w and |B| =

[|B0|, · · · , |BK−1|]⊤. An exact solution could be obtained by
replacing w by W(w) in Equation 17, at the cost of a more
expensive computation time.
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Once we have found w (green spectrum in Figure 4), it is trivial
to retrieve the corresponding barycentric coordinates a and degrees
of freedom aF (green diamond in Figure 4). We use w by default
during editing (see the supplemental video).

5. Basis design

Until now, we have relied on a small number of basis functions
(K = 5) for illustration purposes. Increasing the number K of bases
has the effect of increasing the size of the equivalence class. As
shown in Figure 5, this is due to the basis gamut, which encom-
passes a larger area of the chromaticity diagrams when K is in-
creased. This has two effects on the expressivity of a given basis.
First, any chromaticity in a given RGB gamut (we consider sRGB
and Adobe Wide Gamut RGB in the following) can be achieved
when it is encompassed by the basis gamut. Increasing the number
of bases extends the latter as shown in Figure 5 (top row). Sec-
ond, chromaticities on the gamut boundary map to a single pair of
non-zero barycentric coordinates; hence a basis gamut larger than
the chosen RGB gamut ensures to avoid these singular equivalence
classes.

However, increasing the number K of bases cannot be done
without limits, since plausible reflectance and transmittance
spectra should be smooth. In addition, a smaller number of bases
might be desirable for memory considerations.

In this section, from the geometric interpretation of previous sec-
tions, we design a set of PU basis functions that finds a tradeoff be-
tween expressivity and smoothness constraints. We keep degree of
2 throughout as there is no need to ensure C2 (or higher) continuity,
and low degree splines prevent us from over-fitting issues.

Knots warping Besides increasing K, we may also control the po-
sition of basis knots. To this end, we use a two-parameter family of
warping functions to alter the uniform distribution of knots along
the U = [U0,U1] interval. We use a warping function Cs,p : [0,1]→
[0,1] introduced by [His20]:

Cs,p(x) =

{ xc

pc−1 if x ∈ [0, p],

1− (1−x)c

(1−p)c−1 otherwise,
(20)
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Figure 5: Basis gamut w.r.t. K. For the same chromaticity con-
straint (green dot, top row), we display randomly generated spectra
(bottom row) when increasing the numbers of basis functions (from
left to right K = {5,7,9,11}). We compare the basis gamut to both
sRGB (blue) and Adobe Wide Gamut RGB (light blue).
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Figure 6: Basis knots warping. Warping basis knots alters the ba-
sis gamut, here on a set of K = 7 basis functions. Each basis is
assigned a color to clearly locate it in chromaticity space. A strong
warping (second column) tends to widen the gamut considerably,
but results in one very narrow basis function. Adjusting the po-
sition parameter p (third column) achieves an even wider gamut
with a smaller strength parameter s, which results in less narrow
bases. Displacing the boundary knots outside of the spectral inter-
val U (last column) has a negligible effect on the basis gamut, even
though pairs of basis functions at boundaries are significantly mod-
ified.

with c = 2
1+s − 1. The two parameters (s, p) ∈ [0,1]2 control the

strength of warping and the position where most of the warping
occurs. A sequence of warped knots {κk} is then produced using
κk =U0+Cs,t(uk)(U1−U0), where the uk form a uniform sequence
of values in the [0,1] range. Even though a set of K B-spline basis
functions of order 2 requires K + 3 knots, we ignore the first and
last two since the boundary knots have a multiplicity of 3. Hence
we obtain K −1 knots, with κ0 =U0 and κK−1 =U1 as desired.

Figure 6 shows the effect of knots warping on K = 7 basis func-
tions and the corresponding basis gamut, demonstrating that knots
warping helps achieve a wider gamut without having to increase
the number K of basis functions. The figure also shows that mod-
ifying the first and last two knots to be outside of the U interval
has a negligible effect on the basis gamut, which is due to the
small values of color matching functions around these boundaries
(see Figure 2(left)). We choose to offset these boundary knots by
100nm outside of U , which produces more physically-plausible re-
sults when observed outside of the visible range since the recon-
structed spectra then gently fade to zero outside of U .

Expressivity-smoothness trade-offs We need to devise metrics to
quantify the degree of expressivity of a set of basis functions, as
well as the smoothess of the spectra it is able to produce, depending
on the positions of its knots and the number K of bases.

An expressive basis requires a wide gamut that encompasses the
chosen RGB gamut as much as possible. We thus rely on what we
call the excess area A, which is the signed area between the basis
and sRGB gamuts, normalized by the area between the horseshoe-
shaped chromaticity gamut and the RGB gamut. This area is com-
puted by tesselating the region between the RGB and basis gamuts
into quads (see Figure 7(left)).
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Figure 7: Warping optimisation. Top row: the excess area A is
computed by tesselating the region between the RGB and basis
gamuts into quads (left) and adding their signed areas (positive
in green, negative in red, mixed in gray). We computed A for sev-
eral values of the (s, p) warping parameters (middle) as well as
a smoothness criterion S (right). Bottom row: our (s(K), p(K))
trade-offs for various numbers K of basis functions, and two ex-
ample basis gamuts before (orange) and after (green) warping. We
plot (s(7), p(7)) = (0.66,0.39) with black crosses in criteria maps.

Basis smoothness is directly related to the smoothness of indi-
vidual basis functions, which depends on both the number K of
bases and their knots {κk}. We compute the smoothness of a basis
set as S = mink FWHMk, where FWHMk is the full width at half
maximum of the kth basis.

As shown in Figure 7, for K = 7 bases and a sRGB spectrum,
the excess area A and smoothness S criteria evolve differently as
a function of (s, p), the parameters of the knots warping function.
How this pair of criteria is balanced is arbitrary. In this paper, we
usually first pick a number K of basis functions, and then brute-
force find the warping parameters that maximize A under the con-
straint that S < 20nm. We indicate such a (s, p) pair for K = 7 in
Figure 7 by a black cross.

6. Applications

We now present application scenarios where we use our one-to-
many mapping to find spectra with interesting visual appearance.
Unless otherwise specified, we use warped basis functions with
(s, p) parameters determined as described in the previous section.

6.1. Reproducing Vathochromism

Figure 1 demonstrates a reproduction of the Usambara effect us-
ing our approach. We use K = 11 warped basis functions and
sample the equivalence class of spectra that achieves the target
chromaticity c = [0.38,0.45]⊤ and luminance Fy = 0.46. All such
spectra are considered as transmittance spectra at a unit optical
depth, which is related to the extinction coefficient σt of a medium
by T1(λ) = e−σt (λ). The Beer-Lambert-Bouguer law at increas-
ing depths d is then given by Td(λ) = T1(λ)

d . For each sample

of the equivalence class, we then integrate the corresponding Td
over color matching functions and plot the resulting transmittance
curve in the chromaticity diagram. A pair of examples is shown
in Figure 1(c), where we have picked two instances of the class
that reproduce the Usambara effect – here with an orange color
at large optical depths. For rendering, we need to specify σa and
σs, the absorption and scattering coefficients. In Figure 1(b), we
use σs(λ) = T1(λ) to achieve the target color on single scattering,
which yields σa(λ) =− logT1(λ)−T1(λ).

Parameterizing the equivalence class In the previous example,
randomly sampling the equivalence class and then picking spec-
tra that achieve the desired effects only provides indirect control
over achieved colors at a optical depths d > 1. For some appli-
cations, a more direct control might be desired. Unfortunately, de-
pending on the choice of basis, not all color appearance choices can
be achieved. We provide a more direct control by parametrizing
the equivalence class for the specific case of vathochromic trans-
mittance spectra, which we illustrate on a series of unit tests in
Figure 8. The main idea is to pick an a priori set of representa-
tive spectra from the equivalence class, order them in chromaticity
space, and interpolate them to navigate through a subset of relevant
spectra. We use spectra formed by all triangles that contain the tar-
get chromaticity c, which naturally tend to result in distinct color
appearance since they only rely on three basis functions. We then
sample their transmittance curves at an arbitrary optical depth, and
order the representative spectra in clockwise order around the equi-
luminant point E = ( 1

3 ,
1
3 ) according to chromaticity samples, as

illustrated in Figure 8(left). As demonstrated in the accompanying
video, when the user specifies a hue, we interpolate among the two
closest transmittance curves in the chromaticity diagram.

Unit tests The remainder of Figure 8 shows a test scene composed
of a slab of homogeneous transparent and scattering medium, lit by
two white point light sources: one behind and one in front‡. As in
Figure 1, the absorption and scattering coefficients are determined
from T1(λ) for each of the seven representative spectra of the equiv-
alence class to render test images. The optical depth of light paths
coming from behind is typically short, and exhibits the target chro-
maticity c for all tests as expected. Light paths that come from the
light in front instead need to be scattered to reemerge toward the
camera and exhibit target hues at greater optical depths.

Vathochromic reflectance Vathochromic effects may also occur
with reflectance spectra, due to inter-reflections on shiny (typically
metallic) materials. Figure 9 illustrates this effect on a crumpled
paper model. We use K = 9 warped basis functions. In this case,
the target chromaticity c = [0.4,0.43]⊤ and luminance Fy = 0.59
control the reflectance at normal incidence R0 after a single scatter-
ing event. We then use the parametrization shown in Figure 8(left)
to span the equivalence class of reflectance spectra, using Schlick’s
reflectance model [Sch94] to compute R0(λ)

d at normal incidence
and the corresponding reflectance curves at discrete orders d of

‡ Such scenes are typically long to converge in a spectral path tracer. We
will provide more converged results in a final version of the paper.
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inter-reflection. This allows us to quickly find three different spec-
tra that yield the same appearance in direct lighting, but exhibit the
desired targeted hues in inter-reflections.

6.2. Reproducing Metamerism

Our one-to-many sampler also permits the exploration of the space
of metameric spectra. Instead of directly using the PU to build a
basis gamut in chromaticity space, we premultiply each element of
the partition of unity with a target illuminant I(λ):

BI
k(λ) = Bk(λ)I(λ). (21)

This defines a different gamut in chromaticity space per illuminant:

bI
k =

[
BI

k,X ,B
I
k,Y

]⊤
|BI

k|
. (22)

Now, given a choice of illuminant – say D65, we sample the
equivalence class that achieves a target chromaticity cD65, yielding
a set of vectors {wD65} of basis coefficients. When these vectors
are used with the basis functions premultiplied by another illumi-
nant – say F2, they yield different chromaticities since bF2

k ̸= bD65
k .

Unit tests Metameric patches are shown in Figure 10, where a
same achromatic color in D65 is shown to correspond to a variety
of different chromaticities in F2, using K = 7 non-warped basis
functions. Each sample of the D65 equivalence class thus yields an
element of the palette achievable through metamerism. The green-
ish trend in the color palette is due to the choice of illuminant F2.

Hidden patterns and images If we assign two different spec-
tra from a metameric palette to two different regions of a sur-
face, we obtain the result shown in Figure 11, where the use c =
[0.32,0.25]⊤ and FY = 0.8. Here the spectrum controls the spectral
diffuse albedo of a Lambertian material. The pattern is thus hidden
under D65 illumination, but revealed under F2. Note that for ren-
dering, we use the original basis functions Bk(λ), not the premul-
tiplied ones. A similar effect can be obtained with hidden images,
as shown in Figure 12. Here we take a gray-level picture as input,
and blend 8 spectra of increasing luminance from the metameric
palette of Figure 10 to reproduce luminance gradients. Compared
to the tool of [BDM09], our approach has two advantages: 1) their
tool finds a single optimal metameric spectrum while we obtain a
whole metameric palette; 2) they do not impose smoothness con-
straints on reflectance spectra while ours are smooth by design.

6.3. Performance

As shown in the supplemental video, and although the prototype
is implemented as a mono-threaded Python script, our upsampling
method runs in real-time for artistic design. We measured timings
for an increasing number of basis elements K on an Intel i3-6100
CPU at 3.70GHz. We report that our method runs at 4.9ms for K =
5, 13.1ms for K = 7, 19.3ms for K = 9, and 27ms for K = 11.

Note that using the Metameric Blacks construction [Wys58] re-
quires to track a number of constraints equals to twice the number

of bins of a discretized spectra. In the literature, 31 bins are com-
monly used. We measured that generating the convex hull for a
binning of 21 bins already takes 6.3s on average per spectra when
using the scipy’s interface to the qhull library (with default param-
eters and double precision)§.

7. Discussion and future work

We have introduced a novel method to upsample a color to an
equivalence class of spectra through a well-defined one-to-many
mapping. It provides another reason to move to spectral rendering
besides the production of more photorealistic rendering results: the
exploration of new visual effects as well as the imitation of those
found in nature (gem stones, oils, etc). We have focused in par-
ticular on the generation of vathochromic effects, both in transmis-
sion and reflection, generalizing the intriguing Usambara effect. We
have also shown how our approach applies to metameric effects.
We now discuss its specificities.

Differences with Metameric Blacks The main difference with
previous work in optics resides in the way reflectance spectra are
represented. Methods that rely on discretized spectra (e.g., [Wys58,
CK82]) require a small number of spectral bins to be computation-
ally tractable, as discussed in Sections 2 and 6.3 and result in unre-
alistic spectra (Figure 14). Another difference lies in the ease with
which metameric sets may be explored. In our approach, an artist
can quickly pick an achievable chromaticity (in the basis gamut),
for which a maximum achievable luminance is readily provided
through w (Equation 16). In contrast, with the metameric blacks
approach, when a target color results in an empty metameric set,
users have to go through trial and error to find a color for which at
least one spectrum exists.

An alternative is to rely on measured spectra, such as in the work
of Finlayson and Morovic [FM05]. Similar to Schmitt [Sch76],
they reconstruct metamers using barycentric coordinates in the
space of spectra. That is, from a set of K measured spectra sk(λ)
they reconstruct r(λ) = ∑wksk(λ) where wk are positive weights
with ∑wk = 1 (Equation (27) in their paper). This imposes that r(λ)
is in the convex hull of the sk(λ). Our method only imposes valid-
ity constraints, wk ∈ [0,1]. Therefore, we can always reconstruct
perfect blacks (r(λ) = 0, ∀λ), perfect whites (r(λ) = 1, ∀λ), and
achieve any target luminance Y . On the other hand, their method
trivially yields physically-realistic spectra, whereas ours is more
adapted to artistic exploration.

Limitations An inherent limitation of spectral asset creation, al-
ready pointed out by MacAdam [Mac35b, Mac35a], is that one
needs to trade saturation for luminance. Indeed, saturated spectra
necessarily have narrow bands, and our approach is no different in
this respect. This limitation might explain the difficulty to create
visually-noticeable vathochromic effects in microfacet models to
control the color of the multiple scattering term (see Figure 13).

A direction of improvement for our method lies in the design of
techniques to navigate through equivalence classes. In particular, it

§ We do not count occurrences where the algorithm fails to find a solution.
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Figure 9: Vathochromic reflectance. Multiple scattering has the
same effect as a change in optical depth: it saturates the reflectance
spectrum with a power law. Only this time, the exponents are inte-
gers. We use our vathochromic spectra as the R0 component of a
Schlick Fresnel in a microfacet model. While single scattering pro-
duces the same appearance, multiple scattering depicts a change
in tint that we control (from green to yellow).

would be useful to give an analytical description of bounds imposed
by the target luminance FY (i.e., the boundary between opaque and
transparent points in Figure 4(middle)).

Last, even though the spectra generated by our approach are
physically-plausible, they are not physically-realistic by design.
Real spectra obey physical rules of their own. For instance, the real
and imaginary parts of refractive indices are bound by the Kramers-
Kronig relations. It would thus be interesting to establish connec-
tions with physical models of spectra. In this respect, having a large
equivalence class from which to pick spectra closest to physically-
realistic ones could be an advantage.

Future work Our method could be used to reproduce and study
a number of interesting optical phenomena. The Alexandrite ef-
fect, an instance of metamerism, is one famous example: with our
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gamut D65

gamut F2

Span of metamers chromaticity Color under D65 Color under F2

Figure 10: Metameric palette. We use our method to generate 32
spectra that produce the same achromatic color FY = 0.8 under a
D65 (black dot and middle column) but provide a variety of colors
under a F2 illuminant (blue dots and right column). We evaluate
the accessible variability of metameric spectra under such a D65
constraint by random sampling.

approach, we could investigate whether other spectra could po-
tentially create similar effects. Interesting applications could be
found in ecology, where the illuminant plays a crucial role in defin-
ing habitats. For instance, we could study how families of spec-
tra are affected by lighting at different depths under water or un-
der a dense foliage. We would also like to explore the extension
of vathochromism to take into account fluorescence effects, which
abound in nature. Finally, we have only considered normal human
color vision through the use of CIE sensitivity functions. A capti-
vating direction of future work would be to experiment with sen-
sitivity functions adapted to color blindness, or even to animal vi-
sion.
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