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Figure 1: Left: Direct illumination from many small light sources rendered using our mixture model with 8spp (10.8ms at 1080p), without
explicit light source sampling. Right: a visualization of the mixture model in latitude/longitude projection. Red insets: At any time step, every
pixel holds only a single vMF lobe (red), aimed at one of the light sources (black), the overlap is shown in green. Through a Markov chain
process, lobes are adapted and exchanged locally. Blue inset: We can observe the mixture model as different slices of this construction:
spatially over an image region, as well as temporally over multiple time steps. For better visibility, we surround lobes with a dark red circle.

Abstract
We present a novel technique to efficiently render complex direct illumination in real-time. It is based on a spatio-temporal
randomized mixture model of von Mises-Fisher (vMF) distributions in screen space. For every pixel we determine the vMF dis-
tribution to sample from using a Markov chain process which is targeted to capture important features of the integrand. By this
we avoid the storage overhead of finite-component deterministic mixture models, for which, in addition, determining the optimal
component count is challenging. We use stochastic multiple importance sampling (SMIS) to be independent of the equilibrium
distribution of our Markov chain process, since it cancels out in the estimator. Further, we use the same sample to advance
the Markov chain and to construct the SMIS estimator and local Markov chain state permutations avoid the resulting bias
due to dependent sampling. As a consequence we require one ray per sample and pixel only. We evaluate our technique using
implementations in a research renderer as well as a classic game engine with highly dynamic content. Our results show that it
is efficient and quickly readapts to dynamic conditions. We compare to spatio-temporal resampling (ReSTIR), which can suffer
from correlation artifacts due to its non-adapting candidate distributions that can deviate strongly from the integrand.While we
focus on direct illumination, our approach is more widely applicable and we exemplarily show the rendering of caustics.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

The simulation of light transport in a scene is fundamental for pho-
torealistic rendering and most often done using Monte Carlo in-
tegration [PJH23]. It has found broad adoption in the visual ef-
fects industry [FHH*19] and due to the availability of fast ray trac-

ing cores [NVI18] and noise reduction filters [SKW*17] it is also
becoming increasingly relevant for real-time applications with dy-
namic environments such as video games. This is boosted by recent
improvements of direct illumination resampling [BWP*20].

Our work also primarily targets the sampling of direct illumina-
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tion. To arrive at a general technique that can, in the future, be ex-
tended more easily to indirect illumination, we do not perform next-
event estimation but use only hemispherical samples to discover
lights. In the spirit of recent path guiding approaches [VKŠ*14], we
use parametric mixture models to represent and sample a target dis-
tribution (e.g., the incident radiance field). In contrast to resampling
schemes, our approach creates new samples by drawing from a con-
tinuous distribution instead of selecting from a fixed, previously
discovered set of samples. However, to represent the target dis-
tribution sufficiently, the number of required mixture components
can be large, and since it is unknown a priori, additional statistics
need to be stored to refine or merge components [RHL20] adap-
tively. Due to this storage and evaluation overhead, realizing an ef-
ficient guiding solution using discrete mixture models is challeng-
ing, especially if we want to store one mixture model per pixel. Our
technique combines the simplicity and GPU-friendly fixed mem-
ory footprint of a single component per pixel [Der22] with the ex-
pressiveness of a mixture of components by replacing a determin-
istic mixture with the equilibrium distribution of a Markov chain
(fig. 1), whose state space defines the parameter-tuple of a compo-
nent. In detail, we use mixtures based on von Mises-Fisher (vMF)
lobes. The Markov chains transition by exchanging the vMF lobe
parameters between pixels, and adapting the mean and concentra-
tion parameters using a maximum likelihood estimate based on the
history of samples. Large steps are facilitated by injecting indepen-
dent hemisphere samples. Since each pixel hosts their own lobe, we
adapt this data model after every sample without synchronization
overhead.
Our contributions are:

• A theoretical foundation of a Markov chain-controlled ran-
domized vMF mixture model. We use this foundation to sample
the parameter space which defines vMF lobes approximating the
incident radiance times material evaluation.

• An efficient unbiased estimator based on stochastic multiple
importance sampling (SMIS). We are, thereby, leveraging the
fact that, when using stochastic MIS, the equilibrium distribu-
tion cancels out from the estimator, and thus it is not required
to know or compute the equilibrium distribution of the Markov
chain process. This leaves us ample freedom when designing ap-
propriate transition strategies to balance temporal adaptation in
dynamic scenes and accurate representation of the incident light
field.

• An efficient way of reusing ray traced samples between the
Markov chain and the estimator. This allows us to build a
light-weight, real-time path guiding technique for direct illumi-
nation, which is able to track dynamic lights, and an exemplary
extension to underwater caustics.

We analyze the behavior of our method in simple experiments and
demonstrate its performance in two open-source rendering systems,
Nvidia’s Falcor [KCK*22] and the Quakespasm engine to evalu-
ate highly dynamic environments. Since the Markov chain process
bears a resemblance to particle filters, it is well suited to track dy-
namic light sources moving at moderate speeds, which is also con-
firmed by our experiments.

2. Background

Monte Carlo Light Transport Simulating surface-based light
transport in a scene requires solving the rendering equa-
tion [Kaj86], e.g. via path tracing. A crucial component of the ren-
dering equation is the integral of the reflected radiance, which in
the case of direct illumination simplifies to

Lr(x0,x1) =
∫

Ω

fr(x0,x1,x2)Le(x2,−ω) cosθdω, (1)

where x0 is the point on the image plane, x1 is the point at the
primary ray intersection, and x2 is a point on a light source that is
hit by a ray traced from x1 in direction ω. The BSDF fr(x0,x1,x2)
relates the differential radiance scattered at x1 towards x0 to the
differential irradiance at x1 received from x2. For brevity, we will
use the shorthand notations Lr(x1), fr(x1), and Le(x2), which omit
dependencies on previous or following vertices.

Monte Carlo integration is used to estimate the solution of the
rendering equation due to its high dimensionality. The Monte Carlo
estimator for direct illumination, based on a set of N random direc-
tions {ω1, ...,ωN} with PDF p(ωn), is

⟨Lr(x1)⟩=
1
N

N

∑
n=1

fr(x1)Le(x2,n) cosθn

p(ωn)
. (2)

The variance of this estimator depends on the sampling strategy,
i.e. how close p(ω) is to the optimal PDF, which is proportional to
the integrand of eq. (1):

poptimal(ω)∼ fr(x1)Le(x2)cosθ. (3)

Parametric Mixture Models Parametric mixture models are
widely used in machine learning and computer graphics to approx-
imate complex distributions in a compact analytical form. Espe-
cially mixtures of von-Mises Fisher distributions (vMF) are useful
in rendering due to their natural definition in the spherical domain:

p(ω) =
K

∑
k=1

πk V (ω | tk), (4)

where πk ∈ [0,1] defines the weight of the k-th component and tk
its parameters, and ∑

K
k=1 πk = 1. A vMF distribution V defined by

t = (µ,κ) is an isotropic distribution from the exponential family
with concentration κ around mean direction µ (see [Jak12] for more
details). A sample of the mixture can be generated by selecting
a component proportional to its weight and then sampling the se-
lected component.

Markov chains and Markov chain Monte Carlo (MCMC)
Markov chains model stochastic processes as a series of states (dis-
crete or continuous), where the probability of going from one state
to the next only depends on the current state. In essence, a Markov
chain has no notion of history. For certain Markov chains, the dis-
tribution of possible states approaches a unique distribution, the
equilibrium distribution, as more transitions are applied from any
initial state.

The basic idea of Markov chain Monte Carlo algorithms is to
construct a Markov chain with an equilibrium distribution equal
(or proportional) to the integrand f . Satisfying the detailed-balance
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condition gives this guarantee:

∀x,y : f (x)P(x→ y) = f (y)P(y→ x), (5)

where x and y represent two states and P is the transition kernel.
Since f is fixed, P must be tailored such that this condition is met.

The Metropolis-Hastings algorithm splits P into a user-supplied
proposal distribution T and acceptance probability A. Since T is
fixed, A must be chosen such that detailed-balance is met:

A(x→ y) = min
(

1,
f (y)
f (x)

T (y→ x)
T (x→ y)

)
(6)

The algorithm iteratively produces a proposal state according to T
from the current state and actually transitions to it according to A.
Otherwise it stays in the current state. This construction allows for
expert knowledge to be supplied in the form of tailored T in order
to better explore important parts of the integrand.

3. Previous Work

Light source sampling The large body of work on sampling of
direct illumination in rendering can be roughly divided into tech-
niques which are either concerned with selecting important light
sources using a hierarchy [EK18; MPC19; Yuk19], or with sam-
pling points on a chosen light source, e.g. proportional to (pro-
jected) solid angle [Arv95; HPM*20; Pet21]. All of these rely on
the availability of explicit light source information, which is some-
times hard to obtain, e.g. with textured emission or procedurals,
and are lacking important information about occlusion. In contrast,
we only require initial hemisphere or BSDF samples, and steer our
mixture model towards highly-contributing directions.

Resampled importance sampling and ReSTIR Efficient resam-
pling schemes [BWP*20] have shown impressive performance for
sampling direct illumination of many light sources, and several
extensions to global illumination have been proposed [OLK*21;
LWY21; Boi21; BJW21]. However, since these works are based
on resampled importance sampling (RIS) [TCE05], they do have
conceptual limitations [LKB*22]: resampling cannot discover new
light sources, but only selects from a known set. That is, no new
information is gained by resampling, and other techniques such
as Markov chain transitions need to be mixed in to fulfill this
task [SLK*22]. Our work is also based on selection by resampling
and Markov chain transitions, but in a different order and different
state space.

Dependent Monte Carlo Sampling Our technique constructs an
unbiased Monte Carlo estimator on top of dependent samples from
a Markov chain. Previous approaches achieved this by determinis-
tic groups of samples [WND*14; HDF15] or by explicit estimation
of the reciprocal integral of the PDF [Boo07; ZGJ20]. We employ
continuous MIS [WGGH20] to achieve this.

Metropolis light transport Metropolis light transport [VG97]
simulates a certain target distribution by estimating a histogram of
the posterior of the Markov chain. The posterior is a unique equi-
librium distribution which does not depend on the initial state. To
utilize this to estimate integrals, the mean image brightness has
to be computed separately and the posterior of the Markov chain

has to be known and is explicitly controlled by using transition
densities to compute an acceptance probability after Metropolis-
Hastings. We do not require either: our algorithm still works if the
equilibrium distribution is not unique, and we can tune acceptance
probabilities to focus on fast adaptation to dynamic content without
evaluating transition densities or mean image brightness.

There exist other relevant extensions to MLT that share samples
in image space through replica exchange [GWH20] or ensembles of
light transport paths to guide future transition kernels [BSMD21].
Nevertheless, these works still rely on detailed balance conditions
in the same fashion as classic MLT.

Adaptive MCMC Adaptive MCMC [HST01] generally requires
to remove the adaptation of the transition densities in the limit.
While our requirements on the Markov chain are lighter, our adap-
tation will also vanish if the scene remains static.

Ensemble and Population Monte Carlo There exist many Monte
Carlo algorithms which utilize a population or ensembles of sam-
ples to improve an estimator [MP92; SW86]. Our algorithm is sim-
ilar to Population Monte Carlo (PMC) [CGMR04], which draws
samples from a population of lobes. After the sampling step, the
lobe means are selected from the sample locations via weighted re-
sampling. Variants such as Optimized-PMC [EC22] also estimate
the lobe covariances. In our work, the populations are tailored to
groups of pixels and threads. We explicitly have a population of
lobe means and concentrations, and the mean will be updated from
the samples via a maximum likelihood step.

PMC is known to reduce the diversity of the samples due to the
resampling step. Elvira et al. [EMLB17] survey different resam-
pling strategies (global, local, independent) and propose a reduced
degeneracy strategy. Our resampling strategy is similar to what they
call independent, but is designed to adapt quickly to dynamically
changing target functions and for simple thread synchronization.

There exist prior approaches which employ MCMC sampling
in combination with a Monte Carlo estimator [SK21; RS20]. This
is useful to draw more information from rejected samples. Our
Markov chain operates on a parameter space controlling the lobes
of the sampling PDF and is not directly used to estimate an integral.

Layered adaptive importance sampling [MELC15] is a very re-
lated technique which estimates lobe means via MCMC and sam-
ples from these in combination with multiple importance sampling
(MIS). Unlike our work, they use fixed lobe covariances and there
is no sample reuse between the MCMC and the MC step.

Path guiding Data-driven adaptive sampling approaches such as
path guiding have proven to be valuable tools in offline pro-
duction rendering [VHH*19] to reduce variance when simulating
complex global light transport. These gather information about
light transport during rendering or in a pre-processing step to
propose samples proportional to a guiding target function, e.g.
incident radiance or its product with the BSDF. Various ap-
proaches have been presented, which differ in used spatial or direc-
tional data structures [Jen95; LW95; HP02; BDC12; MGN17], do-
mains [ZZ18; RHJD18], or target functions [RGH*20]. Closely re-
lated to this work are approaches based on parametric mixture mod-
els [VKŠ*14; HEV*16; HZE*19; RHL20; DPÖM21; SHJD22] of
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distributions from the exponential family, like Gaussian or von-
Mises Fisher (vMF). They are usually fitted using weighted ex-
pectation maximization (wEM) [VKŠ*14]. Ruppert et al. [RHL20]
present a variance-aware split and merge algorithm to increase the
robustness of wEM, while determining the optimal number of mix-
ture components.

Due to the strict constraints on compute time and memory band-
width, real-time guiding approaches [DHD20; Pan20; Der22] can-
not afford complex data structures or fitting methods. Inspired by
Derevyannykh [Der22], we store a single vMF component per
pixel. However, we additionally combine vMF lobes of neighbor-
ing pixels to build a randomized mixture model.

4. An Estimator using a Randomized Mixture Model

The core idea pursued in this work is to replace a mixture model
with a discrete and fixed number of components and their weights
(eq. (4)) by a continuous equivalent:

p(ω) =
∫

p(t)V (ω | t)dt, (7)

where t represents the component parameters and p(t) the compo-
nent weight.

While sampling such a mixture is typically trivial, estimating the
reciprocal PDF to construct an estimator is often expensive [Boo07;
ZGJ20]. We instead use the n-sample stochastic multiple impor-
tance sampling (SMIS) estimator proposed in continuous multiple
importance sampling [WGGH20, eq. (12)]:

⟨Lr(x1)⟩SMIS =
n

∑
i=1

fr(x1)Le(x2,i)cosθi

∑
n
j=1 p(ωi|t j)

. (8)

We essentially approximate the full PDF through a stochastic selec-
tion of lobes. Note that p(t) is not present in the expression, since
it canceled out: we do not need to explicitly compute or even know
about the specific distribution of p(t). We exploit this property in
the following.

We define p(t) through a Markov chain operating on a state space
which allows us to compute the lobe’s parameters t = (µ,κ). A one-
dimensional example is depicted in fig. 2, where the orange line
represents the integrand. As the Markov chain transitions (first four
plots), it deposits probability mass resulting in an (unknown) equi-
librium distribution p(t). The resulting sample distribution p(ω)
can be observed in the last plot. Contrary to Metropolis-Hastings,
which gives strong guarantees about the exact equilibrium distribu-
tion through detailed balance conditions, we do not depend on this
reasoning. As a consequence, there is a lot of freedom designing
transition steps in the Markov chain, to, for example, emphasize
temporal adaptation without causing bias.

For our use-case (direct illumination), we store one Markov
chain state per pixel in a simple screen space data structure (fig.
3). We make use of the flexibility in state transitions and perform
them in an iterative fashion per frame, incorporating neighbor states
to facilitate information sharing, as detailed in section 4.1.

West et al. [WGGH20] have made an additional assumption
when proving unbiasedness of the SMIS estimator: All the pairs
of lobes with their drawn samples need to be independent among

each other. In particular, this means that (1) samples must be inde-
pendent from each other and (2) techniques must be independent
from drawn samples and (3) also from other techniques. These re-
quirements are initially violated when using our inherently corre-
lated Markov chain process, resulting in a biased estimator. In sec-
tion 4.2, we show how the first two requirements can be upheld in
an efficient fashion, by shuffling states between neighboring pix-
els. In appendix A, we prove that the last requirement is actually
not needed at all, thus making our estimator unbiased even in the
case of correlation. This is important when reusing Markov chain
states from the framebuffer.

4.1. A Markov Chain Mixture Model

In this section, we detail the Markov chain process leading to a con-
tinuous mixture model of vMF lobes. This mechanism has two par-
tially opposing goals: (i) the equilibrium distribution should faith-
fully represent the actual target distribution, (ii) it should adapt fast
to dynamically changing content.

Extended State Space To address the first goal, we use a max-
imum a-posteriori (MAP) approach [BG88; BHO10] to compute
accurate distribution parameters t = (µ,κ). This is directly reflected
in our state space definition of the Markov chain (table 1): it does
not incorporate the parameter tuple, but rather sufficient statistics
of a maximum likelihood estimator, from which the parameters are
inferred (algorithm 2, with more details in about the MAP priors
in section 5). This way, previous samples can be incorporated as
well. Note that this makes the reduced state space over (µ,κ) non-
Markovian, since transitions are affected by past states (section 7).

We additionally store a scoring term f . It is used to compute
acceptance probabilities and is simply a one-sample estimate of the
direct-illumination integral (eq. (1)).

Table 1: Markov chain state S = (ȳ, r̄, w̄,N, f ). We access elements
of this tuple in the form of S.w̄.

Symbol Meaning
ȳ weighted mean of light source vertex positions
r̄ mean cosine of weighted directions
w̄ sum of weights (estimates of eq. (1))
N number of samples which went into this state so far
f score (estimate of eq. (1))

State Transitions The maximum a-posteriori approach is some-
times at odds with the second goal which requires that newly ap-
pearing lights should be picked up very quickly. To facilitate this,
we exchange Markov chain state between neighboring pixels. This
results in a collaborative algorithm where information about new
or undersampled features spreads quickly over the frame buffer.

Within one frame, each pixel will independently (and in paral-
lel) mutate their state in a loop with n iterations. Each iteration is
composed of three stages as illustrated in fig. 4 (we refer to table 2
for symbol meanings):

1. We look at the states S(i)q in other pixels q in a window around
our pixel p and potentially use their state to overwrite ours.

© 2023 The Authors.
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State i State i + 10 State i + 20 State i + 30 Sample histogram

Integrand
Figure 2: 1D visualization of our Markov chain process. The first four plots exemplarily show the evolution of the Markov chain over the
iterations. The last plot shows the target integrand and resulting sample distribution after 800000 iterations.

(µ,κ)

Figure 3: The state space of our Markov chains defines the param-
eters of a single von-Mises-Fisher (vMF) lobe (µ,κ), and we run
one Markov chain per pixel p. A random instance of the full mixture
model for any pixel can be generated by collecting vMF lobes over
the time progression of the Markov chain, or in a window around
the query position (shown in light blue).

2. We create a new path vertex x2 by drawing either an independent
hemispherical sample or by using the current vMF lobe of this
pixel S.

3. Through a mutation/acceptance step, we keep a current state Sc

over all iterations which will eventually be written out as S(i+1)
p .

In the following paragraphs we detail the three stages of the Markov
chain transition steps.

Stage 1:
update state
S← Sq

Sc = 0
S = 0

Stage 2:
sample
x2 ∼ (µ,κ) or fr

repeat?

Stage 3:
MCMC accept Sc
ML estimate S

write Sc

yes

no

Figure 4: Overview of the Markov chain transitions in a single
pixel. An internal sampling state S is updated from neighboring
pixels q. Then a new path vertex is drawn from the vMF lobe or
a hemispherical PDF. In a third step, a current state Sc is stashed
away if the state S passes a MCMC acceptance test. Sc will be
written out to be shared with the other pixels in the next frame.

Table 2: Glossary of symbols used in the following stages.

Symbol Meaning
Sp,Sq Markov chain states for pixels p and q, respectively

S Tentative state used for sampling
Sc Current state to be written after rendering the frame

Stage 1: collaborative discovery/inter-pixel update Algorithm 1
details this stage: as mentioned, we potentially replace the pixel
state S by those found in a framebuffer storing the states of the
neighbor pixels written out in the last frame S(i)q . That means they
have one frame lag and need to be accessed after correcting the
pixel position q with estimated motion vectors to account for dy-
namic changes (e.g. camera or object motion) between frames. We
randomly select a pixel q in a configurable window around p by
sampling a B-spline kernel of degree 5. The offset is the sum of
four random numbers [SSA05].

The state found, Sq, provides a light position y but no informa-
tion about the shading point that lead to the score f which is also
provided in the buffer. This means that we have to assume some
smoothness over both space and time such that this mutation type
makes sense. This has been successfully exploited by similar ap-
proaches in the past [BWP*20; VG97].

In practice, we use a window size of 91×91 at a resolution
of 1920× 1080. While it appears large, it is a trade off between
“spreading the news” quickly over the image, and the potential mis-
match in score function between pixels due to occlusion. Cheap re-
jection heuristics (e.g. based on the shading point x) are possible to
use here without causing bias, but we simply use score(S) = S. f .

Like population Monte Carlo methods, we perform weighted re-
sampling of the neighbor states: we use the score function as weight
and use reservoir-style sampling in a linear scan to randomly select
a neighbor state proportional to this weight [CHA82].

In the algorithm listings, a state S is considered valid, if it ac-
cumulated non-zero weight, i.e. w̄ > 0. Also note that in line 1 an
additional shuffling step is performed. It is included here already to
provide a coherent view of the program flow but the necessity will
later be explained in section 4.2.

© 2023 The Authors.
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Algorithm 1 Collaborative discovery/inter pixel update
1: S← shuffleUp subgroups ▷ see section 4.2
2: sum← score(S)
3: for some random neighbor pixels q, until score(S)> 0 do
4: Sq← load state S(i)q at motion corrected q
5: sq← score(Sq)
6: ξ← uniform random in [0,1)
7: if not valid(S) or ξ < sq/(sq+sum) then
8: S← Sq
9: end if

10: sum← sum +sq
11: end for

Stage 2: sampling, ray casting To generate initial samples as well
as large steps in the Markov chain we use hemispherical sampling.
This can be achieved by sampling from the BSDF or simply by
using a cosine distribution. We use either in our two separate im-
plementations. This is performed if the state S holds no valid vMF
lobe as well as at random. We use a fixed probability of 0.2. This
also makes our sampling defensive, since the estimator now always
contains BSDF or cosine sampling as a backup-strategy (see ap-
pendix A). In case the sample is drawn from the vMF, µ and κ are
first reconstructed from the internal state representation (see algo-
rithm 2).

Algorithm 2 Sampling and ray casting
1: ξ← uniform random in [0,1)
2: if not valid(S) or ξ < 0.2 then
3: p(ω)← cos θ

π
or fr(x1) ▷ cosine or BSDF sampling

4: else
5: µ← (S.ȳ−x1)/∥S.ȳ−x1∥ ▷ convert to direction
6: r← (N2 ·S.r̄+Np · rp)/(N2 +Np) ▷ apply prior
7: κ← (3r− r3)/(1− r2) ▷ approx. lobe width
8: p(ω)←V (ω|µ,κ) ▷ vMF distribution
9: end if

10: sample ω∼ p(ω)
11: shoot ray to find x2

Stage 3: internal pixel state update After tracing the new direc-
tion and finding a path vertex x2, we compute the score f of this
connection. Then, we use a Metropolis acceptance step to decide
whether to advance the current state Sc. After the MCMC step the
maximum a-posteriori adaptation of the lobe is performed. Note
that this includes zero-contribution samples which will make the
lobe a bit narrower. Algorithm 3 shows this procedure.

The score function f is evaluated as the luminance of the emis-
sion Le times BSDF f = lum(Le(x2) · fr(x1))/p(ω). We divide out
the solid angle PDF to make f a coarse estimator for the pixel con-
tribution. That is we include the BSDF which technically also de-
pends on the incident direction. Since this varies slowly over the
image it improves sampling of glossy objects considerably.

Algorithm 3 Pixel state update, given a complete path x0,x1,x2

1: f ← lum(Le(x2) · fr(x1))/p(ω)
2: a←min{1, f/Sc. f}
3: ξ← uniform random in [0,1)
4: if f > 0 and (not valid(Sc) or ξ < a) then ▷ MCMC transition
5: if hemisphere sample then
6: S←{0} ▷ reset lobe if x2 is not from vMF
7: end if
8: S. f ← f
9: Sc← S

10: end if
11: S.N←min{S.N+1,1024} ▷ maximum likelihood update of S
12: α←max{1.0/S.N,0.1}
13: w̄←mix(S.w̄, f ,α)
14: S.ȳ←mix(S.w̄ ·S.ȳ, f ·x2,α)/w̄ ▷ comp. µ as in algorithm 2:
15: ω←mix(S.w̄ ·S.l̄ ·µ, f · (x2−x1)/∥x2−x1∥,α)/w̄
16: S.l̄←∥ω∥
17: S.w̄← w̄

4.2. Sample decorrelation

Using a sample both to advance the Markov chain and construct the
SMIS estimator leads to dependencies between a sample and sub-
sequent techniques and samples (since the drawn sample influences
the next lobe), resulting in a biased SMIS estimator. A naïve solu-
tion is to draw a separate sample each for both tasks. While this
removes these dependencies, drawing a sample in our context is
generally an expensive operation, since it requires to evaluate com-
plex shading models and to trace a ray. Thus, reusing all samples
for the SMIS estimator is paramount.

In the following, we leverage that we are running multiple
Markov chains in parallel - one for each pixel. By permuting
Markov chain states between pixels after each step, we break any
sample dependencies in the SMIS estimator. We discuss temporal
and spatial schemes as depicted in fig. 5 that differ in where tech-
niques constituting the SMIS estimator are sourced from.

Temporal SMIS (TSMIS) The mutation/acceptance loop that is
executed n times in each pixel leaves a history of n vMF lobes that
together form a mixture. A sample is drawn from each lobe and the
SMIS estimator is evaluated accordingly. In practice, this requires
us to store an array of n sample contributions, locations, and vMF
parameters used to sample these. Computing the value of the esti-
mator is then quadratic in n (eq. (8)). For moderate values of n we
found this to be a negligible cost as compared to the ray tracing.

As mentioned, we cannot easily reuse the sample used to ad-
vance the Markov chain for the pixel estimate due to sample de-
pendence. To decorrelate the two processes, we leverage the fact
that we are running a whole population of Markov chains, with one
state per pixel. We completely reuse all the MCMC samples, the
large as well as the small step mutations, in the SMIS estimator. To
make sure MCMC and SMIS are completely independent in one
pixel, it is enough to simply shuffle up the MCMC state after mu-
tation and before evaluating the SMIS estimator (fig. 5, left): we
divide the frame into tiles and cyclically shift states between pixels
in a tile, rotating the last one back to the first. As long as the tile

© 2023 The Authors.
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Figure 5: Construction of our two unbiased estimators. After
each step (sampling and state update, black arrows), we exchange
Markov chain states between pixels (red arrows) to allow for un-
biased SMIS. Temporal SMIS (left) decorrelates states by cyclic
shifts between pixels and constructs a 4-SMIS estimator over the
independent states of all 4 steps. Spatial SMIS (right) constructs a
1-SMIS estimator over the random set of states in the tile at a sin-
gle step. It selects a state for each pixel to sample from by random
permutation. In both cases, we can see for a given reference sample
(marked blue) that its dependencies (green) do not overlap with the
techniques in the SMIS estimator (blue box).

size is larger than the SMIS sample set size n, the estimator for each
pixel will be constructed from completely independent samples.

We choose tile sizes below or equal to 32 pixels (e.g. 8×4). On
contemporary GPUs, the threads processing the individual pixels
execute in groups of usually 32 (referred to as subgroups) and state
can be exchanged very efficiently between them. We use this to
exchange Markov chain states instead of slow video memory.

Spatial SMIS (SSMIS) For larger n the required storage and
quadratic cost in n of temporal SMIS can be limiting factors. An
alternate construction scheme can be derived by constructing an
estimator over the set of vMF lobes at a given step in the pixel tile.

The resulting estimator is no longer a true n-sample SMIS es-
timator, but multiple realizations of a one-sample SMIS estimator
over n techniques. Essentially, we perform a stratified selection of
one technique using uniform probabilities, resulting in:

⟨Lr(x1)⟩1SMIS =
fr(x1)Le(x2)cosθ

1
n ∑

n
j=1 p(ω|t j)

. (9)

The estimator can be directly evaluated after a new sample is gen-
erated in each mutation/acceptance step. Additionally, the storage
for all vMF lobes is distributed among the threads processing the
individual pixels in the tile. As a result, the storage requirements
are constant per thread. n is now also independent on the number
of steps, which allows one to use fewer steps and still have a large
SMIS set to reduce variance.

The selection is implemented as a permutation on the entire
Markov chain state to allow using the generated sample to ad-
vance the Markov chain. Permutations are particularly important in

this instance to avoid loosing states through duplicate selections. In
practice, we implement the permutation by xoring a random mask
on the subgroup invocation id.

5. Implementation details

We implemented our approach in two open-source rendering
systems: The NVIDIA Falcor research renderer [KCK*22] and
the classic Quakespasm engine. While Falcor allows us to
evaluate with reference implementations of various algorithms,
Quakespasm features scenes with highly dynamic content. Ini-
tial samples are generated using BSDF (Falcor) and cosine
(Quakespasm) sampling. We use classic geometric motion vectors
(Falcor) and optical flow [HTD21] (Quakespasm) to gather Markov
chain states from the previous frame. The Quakespasm framework
does not provide light lists to be sampled. Lights are merely rep-
resented as (animated) fullbright textures, and we did not attempt
to implement next event estimation (NEE) on top of this. While
Falcor does contain explicit representations for emitters for NEE,
we do not use them to demonstrate the technique’s independence
of such representations. We will release both implementations with
the final version of the paper under a permissive license.

Sufficient statistics To account for parallax between different pix-
els towards a light, the sufficient statistics (table 1) incorporate
a weighted mean of light source vertex positions ȳ. The mean
of the vMF µ can be recovered for a given position x as µ =
(ȳ−x)/∥ȳ−x∥. This representation has the advantage that it does
not depend on a common pivot point compared to using a direction
and distance [RHL20]. Therefore the statistics can be exchanged
directly between neighbors.

N is employed to compute a more accurate arithmetic average
for the first few samples before switching over to an exponential
average to better adapt to dynamic changes. It is also used to sup-
port custom priors which vanish over time. Such a prior is defined
as Np, the virtual number of samples it accounts for, as well as rp,
the mean cosine corresponding to the prior lobe width.

Uninformed vs. informed priors We use maximum a-posteriori
parameter estimation with priors to stabilize lobe width estimation
with very few samples. This is common due to the reset of lobe
statistics when switching to different or new features. To get accu-
rate fits quickly, we try to use all available prior knowledge about
the scene’s light sources. In the Falcor scenes, the size of lights
is unrestricted and we thus resort to an uninformed (uniform) prior
with a mean cosine of zero. For Quakespasm, we leverage the quan-
tization of meshes to a size of 1.0 in world-space. There, we use an
informed prior that fits the mean cosine to this size based on dis-
tance, resulting in a more uniform or peaky lobe for close or distant
lights, respectively (see fig. 6). Tracking of emitting particles ben-
efits most from this, since particles are sized exactly according to
this quantization. In both implementations, the prior vanishes in a
squared relationship to the number of samples. This is crucial for
adaptation under dynamic conditions and also because fits are lost
regularly due to initial samples, thus mandating fast recovery to-
wards a feature.

© 2023 The Authors.
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Np = 0.2, rp = 0Np = 0.2, rp = 0 delay 1delay 1 Np = 0.2, rp = 0.99Np = 0.2, rp = 0.99 delay 1delay 1 Np = 2, rp mixNp = 2, rp mix delay 1delay 1 Np = 0.2, rp mixNp = 0.2, rp mix delay 1delay 1

Np = 0.2, rp = 0Np = 0.2, rp = 0 delay 100delay 100 Np = 0.2, rp = 0.99Np = 0.2, rp = 0.99 delay 100delay 100 Np = 2, rp mixNp = 2, rp mix delay 100delay 100 Np = 0.2, rp mixNp = 0.2, rp mix delay 100delay 100

Figure 6: The effect of different priors with mean cosines rp and weight Np. After a one frame they differ significantly (top row) but begin
to look similar after 100 frames delay (bottom row). Here the lights are very small, so an informed prior with a focused mean cosine of
rp = 0.99 generally performs better than rp = 0. The label “rp mix” signifies a heuristic prior which becomes more diffuse (rp = 0) as the
initially discovered light comes closer to the shading point. Frame time was 20ms on an Nvidia RTX 2080 Ti and 10ms on the RTX 3080 Ti.

Apparent targets For caustics rendering, retargeting a vMF lobe
to the interface (the first intersection from the originating surface)
produces suboptimal results. We use the concept of apparent dis-
tance to the emitter [RHL20]. Since our vMF lobes are represented
with respect to the target and not direction, we use an apparent tar-
get instead. Intuitively, we prolong the point at the interface in the
originating direction using the distance from interface to emitter,
scaled by a correction factor [RHL20, eq. (35)].

6. Evaluation

The Falcor implementation is evaluated on an Nvidia RTX
3080 using openly available [Lum17] and custom test scenes.
The Quakespasm implementation is evaluated on an Nvidia
RTX 2080 Ti and 3080 Ti and uses scenes from the Ar-
cane Dimensions mod (https://www.moddb.com/mods/
arcane-dimensions), which introduces much higher geomet-
ric complexity as compared to the original game. Since we mostly
present rendering of direct illumination, we focus our comparisons
to ReSTIR, which represents the state of the art in this area, using
the publicly available RTXDI implementation in Falcor. In partic-
ular, we do not compare against works that cannot represent high-
frequency direct illumination adequately [DHD20; Der22].

We report rendering times at display resolutions of 1920×1080.
In Falcor, we only include the techniques themselves, not includ-
ing rasterization of the G-Buffer or post-processing passes such as
denoising. The Quakespasm render times include a ray traced G-
Buffer and temporal anti-aliasing (TAA).

We refer to temporal and spatial SMIS as A-TSMIS or A-SSMIS,
respectively. A is the tile size (e.g. 8-TSMIS operates on a 4×2 tile).

We also denote the effective ray-traced samples per pixel (spp) for
each image. For TSMIS, the spp are always a multiple of A.

Comparison to ReSTIR We compare our approach to ReSTIR
[BWP*20] using the RTXDI production implementation in fig-
ure 7. RTXDI offers different candidate generation methods and
also biased and unbiased variants. We show comparisons against
RTXDI using just one BSDF as well as additionally 24 next event
estimation (NEE) candidates. While the latter gives drastic quality
improvements to ReSTIR, the former is more directly comparable
to our approach, given that we rely purely on BSDF samples to
find new features. We observe that our approach is competitive to
ReSTIR in certain areas that are illuminated by few light sources
(blue inset), while regions more evenly lit by many light sources are
much darker in comparison. The unbiased variant of ReSTIR using
a single BSDF candidate exhibits more darkening due to stronger
noise. We also apply SVGF to all approaches. While the results are
comparable, our approach tends to produce more splotches, likely
induced by outlier samples. Execution times are generally similar,
where our parameterization is slightly faster than the single BSDF
variant. The other variants of ReSTIR are more expensive due to
additional processing.

Glossy Surfaces Figure 8 shows how the algorithm adapts to prod-
uct sampling situations with a glossy BSDF even when the initial
samples are cosine distributed.

Caustics Our independent sampling scheme allows the application
to rendering of caustics. This is shown with both our Quakespasm
(fig. 9) and Falcor (fig. 10) implementations. The dynamic adapta-

© 2023 The Authors.
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5.0ms5.0ms FLIP 0.467FLIP 0.467

8-SSMIS, 4spp (ours)8-SSMIS, 4spp (ours)

FLIP 0.3FLIP 0.3

+ SVGF+ SVGF

7.3ms7.3ms FLIP 0.576FLIP 0.576

RTXDI 1×BSDF Unbiased, 1sppRTXDI 1×BSDF Unbiased, 1spp

FLIP 0.328FLIP 0.328

+ SVGF+ SVGF

5.9ms5.9ms FLIP 0.353FLIP 0.353

RTXDI 1×BSDF, 1sppRTXDI 1×BSDF, 1spp

FLIP 0.294FLIP 0.294

+ SVGF+ SVGF

9.3ms9.3ms FLIP 0.289FLIP 0.289

RTXDI 1×BSDF + 24×NEE, 1sppRTXDI 1×BSDF + 24×NEE, 1spp

FLIP 0.281FLIP 0.281

+ SVGF+ SVGF

Figure 7: Comparison of spatial SMIS against variants of RTXDI, a production implementation of ReSTIR [BWP*20] with and without
application of a denoiser (SVGF [SKW*17]). Our approach is competitive in areas illuminated primarily by few light sources. Biased
variants of ReSTIR retain image brightness better in complex regions.

ourour 8-TSMIS, 8spp8-TSMIS, 8spp ourour 8-TSMIS, 16k spp8-TSMIS, 16k spp ourour 8-TSMIS, 8spp8-TSMIS, 8spp ourour 8-TSMIS, 16k spp8-TSMIS, 16k spp

coscos 8-TSMIS, 8spp8-TSMIS, 8spp coscos 8-TSMIS, 16k spp8-TSMIS, 16k spp coscos 8-TSMIS, 8spp8-TSMIS, 8spp coscos 8-TSMIS, 16k spp8-TSMIS, 16k spp

Figure 8: Glossy materials rendered with vMF lobe or cosine-hemisphere sampling only, none of the approaches use BSDF importance
sampling. Using the BSDF in the score function results in effective product sampling. Frame times on an Nvidia RTX 3080 Ti were 15ms and
9ms. Unlike fig. 11, these images are acquired after a few frames of adaptation, so the remaining image errors are due to SMIS estimating
the PDF from a small subset of lobes. TAA is used to improve edge rendition.

© 2023 The Authors.
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our 8-TSMIS, 8sppour 8-TSMIS, 8spp flatflat our 8-TSMIS, 8sppour 8-TSMIS, 8spp wavywavy

cos, 16ksppcos, 16kspp flatflat cos, 16ksppcos, 16kspp wavywavy

Figure 9: Underwater renders showing caustics cast from the torch
light at the back wall to the underwater wall on the left. The wavy
water surface consists of procedurally animated noise with 15 oc-
taves, the torch emits animated particles. Frame time was 71ms on
an Nvidia RTX 2080 Ti and 29ms on 3080 Ti.

tion is fast enough to track moving caustics due to moving emitter
(Quakespasm, Falcor) and animated water surface (Quakespasm).

Temporal behavior in dynamic scenes We have tailored the
method to quickly react to dynamic changes. We demonstrate this
with our Quakespasm implementation in fig. 11. Over the span of
48 frames, a rocket is launched (frame 12), leaving a trail of emit-
ting particles. Just before the rocket impacts the wall (frame 60),
the walls already receive stronger illumination compared to cosine
sampling. However, the sampling distribution is still not optimal,
given that the accumulated image is much brighter in comparison.

Mixing behavior We observe that the Markov chain process ex-
hibits a stronger preference for the light source with the most con-
tribution as can be seen in fig. 12. The light sources are colored to
make correspondence of samples more obvious. We can clearly see
that the color does not follow a smooth transition when moving be-
tween light sources, but rather a defined barrier, which is blurred to
some degree through neighborhood resampling. This is a limitation
of our current approach and leads to increased variance, especially
where many light sources contribute similarly to a surface region.

Effect of SMIS set size in many-lights scenarios A core issue
with SMIS is that every feature needs to be adequately repre-
sented in order to not produce outlier (firefly) samples. In a mix-
ture model, this boils down to one component for every prominent
feature. While our spatio-temporal mixture has a very large num-
ber of components, the use of SMIS effectively reduces this set to
a small fixed-size stochastic selection during evaluation. This is-
sue becomes apparent when surface regions are evenly lit by many
light sources, as depicted in the blue insets of fig. 13 or the left

part of fig. 14. The result is a general darkening of the image with
an increase in outlier samples. Note that the technique is unbiased,
thus more energy is focused in the outlier samples. Increasing the
SMIS sample set size reduces this issue, such that the image ap-
proaches the brightness of the reference. Intuitively, the likelihood
of a sample being represented by a vMF lobe increases when the
set size is increased, thus leading to fewer outliers and an increase
in brightness. When a surface is primarily illuminated by a single
light source (orange inset), small SMIS sample set sizes suffice.

Proximity bias when sharing lobes between pixels Figure 15 il-
lustrates a situation where bright lights are propagated between pix-
els but are occluded in some of them. In this case re-using the esti-
mate from the neighboring pixels is sub-optimal because sampling
efforts will be spent on invisible lights. This degrades the quality
of the estimator but does not cause bias: this can be observed by
looking at the orange inset, where SVGF successfully averages the
noisy fringe around the edge closely to the correct value. It fails to
do the same for shadow edges since there is no auxiliary buffer to
support this edge (blue insets).

Unbiasedness We prove unbiasedness of our technique in ap-
pendix A. In fig. 16 we accompany this proof with a log-log conver-
gence plot when rendering the Cornell box scene. Note that local
permutations of Markov chain states are needed to attain an unbi-
ased estimator as discussed in section 4.2.

7. Discussion, Limitations and Future Work

In the following section we summarize our key findings and lay out
the limitations of our approach and possible future work.

Optimality of importance sampling Since we do not apply
Metropolis-Hastings, we do not know the actual distribution of the
lobes p(t). While it is great to enjoy the freedom to tweak the tran-
sition process to ones individual needs (prefer fast, reactive adap-
tation for dynamic environments) it would certainly be interesting
to devise a Markov transition that obeys detailed balance and steers
the equilibrium exactly towards optimal importance sampling. We
expect this to perform worse in dynamic environments but better
on static scenes in the long run.

Markov chain property Since we employ a maximum likelihood
step which is storing intermediate values which are fed by multiple
previous samples, the sampling is non-Markovian in path space (it
is Markovian in a state space that includes the intermediates). As
adaptive MCMC [HST01] we can see that the chain is still ergodic
and converges to a unique equilibrium if the adaptation vanishes
with increasing mutation count, i.e. the maximum likelihood esti-
mate converges.

Many lights sampling While the use of SMIS is a crucial aspect in
the evaluability of the model, any features not present in the set dur-
ing evaluation can and do easily lead to outlier samples. This makes
our approach less practical for scenes with millions of disjoint light
sources. While an increase in the SMIS set size offsets this issue to
some degree, it becomes increasingly expensive to evaluate, which
results in a practical limit. With SSMIS, a set size of 32 posed a

© 2023 The Authors.
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Reference Static α = 1/2 α = 1/8 α = 1/16 8×BSDF

Figure 10: Caustics induced by a small area light over a water surface. When the light is static, our technique (8-SMSIS) can resolve the
caustics robustly. When the light is moving, adaptation depends on how long sample history is kept. Higher α-values (shorter history) allow
the technique to readapt quicker.

our frame 12our frame 12 8-TSMIS, 8spp8-TSMIS, 8spp our frame 12our frame 12 8-TSMIS, 16k spp8-TSMIS, 16k spp our frame 60our frame 60 8-TSMIS, 8spp8-TSMIS, 8spp our frame 60our frame 60 8-TSMIS, 16k spp8-TSMIS, 16k spp

cos frame 12cos frame 12 8-TSMIS, 8spp8-TSMIS, 8spp cos frame 12cos frame 12 8-TSMIS, 16k spp8-TSMIS, 16k spp cos frame 60cos frame 60 8-TSMIS, 8spp8-TSMIS, 8spp cos frame 60cos frame 60 8-TSMIS, 16k spp8-TSMIS, 16k spp

Figure 11: Testing temporal adaptation: this figure shows the same scene at different points in time: frame 12 and frame 60. In frame 12 the
rocket has not yet been fired, to illustrate the darkness of the environment. In frame 60, the rocket has not yet impacted in the back wall, so
the emitting particles of the trail are a dynamic change. Our algorithm picked up the light sources already, but has not yet converged to a
good sampling distribution: this can be observed by looking at the accumulated 2k frames versions which are notably brighter. Frame times
were 15–16ms on an Nvidia RTX 2080 Ti and 8–9ms on 3080 Ti.

negligible overhead, so it can likely be increased a bit further with-
out too much cost.

Next Event Estimation (NEE) Practical renderers usually incor-
porate some form of direct light sampling (NEE) for increased ro-
bustness. While we do not make use of NEE to stress test our algo-
rithm, NEE can be combined in the same fashion as BSDF or cosine
sampling. While the usage of SMIS increases variance compared to
evaluating the full mixture (which is intractable in our case), cases
that are reliably sampled by NEE (e.g. small, distant light sources)
will still see large variance reductions. Furthermore, if NEE can re-
liably sample most relevant light sources, our technique could focus
the mixture on the harder cases [KŠV*19].

Indirect illumination In principle, our approach is not limited to
guiding of direct illumination for primary surfaces. This is only due
to our choice of a screen space data structure for simplicity. Guid-
ing of direct illumination for deeper path vertices can be achieved
by moving towards a world-space data structure in a similar fash-
ion [Boi21]. Guiding of indirect illumination additionally requires
changes in data gathering (backtracking of paths to compute con-
tribution for all path vertices). Furthermore, incoming radiance be-
comes a stochastic quantity which likely has side-effects on the
fitting process.

8. Conclusions

We have presented a lightweight guiding algorithm for sampling
direct illumination based on a spatio-temporal randomized Markov
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Figure 12: Mixing behavior of three colored light sources. The
Markov chain process has a stronger preference for the biggest
contributor. This is hidden to some degree through neighborhood
resampling as can be seen in the band that forms between the in-
fluence regions of the lights. Note that the asymmetry stems from
using luminance in the scoring term.

chain mixture model. We laid the theoretical foundation to give the
Markov chain process full flexibility in its state transitions if de-
sired. We demonstrated this by steering it towards tracking of dy-
namic lights, at the cost of non-optimal variance reduction which
manifests itself in this setting as a tendency of overrepresenting
of important light sources. We hope to inspire future work where
Markov chain transitions are tailored for other use-cases such as
offline rendering. While we exemplarily demonstrate simple ani-
mated caustics using our algorithm, we believe that our randomized
mixture model is also applicable to, and beneficial for sampling
other lighting effects.
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Appendix A: Unbiasedness of the SMIS Estimator

Our derivation for unbiasedness closely relates to the proof found in
the SMIS paper [WGGH20, Appendix B]. The sampling technique
controlled by the Markov chain process is denoted ti and xi are the
samples generated by this technique. In SMIS, the derivations start:

E[⟨I⟩SMIS] = E[⟨I⟩SMIS](t1,x1),...,(tn,xn) (10)

= E[E[⟨I⟩SMIS] x1 ,...,xn
] t1 ,..., tn

(11)

which is valid in our case because, as indicated by the arrows, the xi
depend on their respective ti, but not the other way around: the ti do
not depend on any x. They are instead advanced by their respective
Markov chain process, i.e. there is a dependency of ti+1 on ti. The
independence of the ti among each other is not required to perform
the step between eq. (10) and eq. (11), as long as the xi are inde-
pendent between one another. This is also employed by previous
work [MELC15, Sec. 5.1], which explicitly states the importance
of the independence of the mixture parameters t of the samples x.
They also note two requirements for a consistent estimator. The
first one is that the proposal densities p(x|t) (in our notation) are
all heavier-tailed than the target distribution. This is a simple way
of expressing the need to cover the whole domain where the target
is non-zero. In our case, every stochastic mixture always includes
a defensive sampling lobe (BSDF or cosine hemisphere) [Hes95].
Their second requirement is fulfilled by using MIS with the balance
heuristic (deterministic mixture MIS in their terms).

We want to point out that the dependency of ti on t j, j < i inside
one pixel is weak in our case. The subgroup shuffle will eliminate
any dependency completely. A small amount is reintroduced by the
reuse of a neighborhood of states in a 91× 91 window around a
pixel. In the case of 8-TSMIS this means we will randomly select 8
out of a set of 8281 candidates, keeping the probability of collisions
very low.

eq. (11) = E

E

[
n

∑
i=1

w(xi, ti)
f (xi)

p(xi|ti)

]
x1,...,xn


t1,...,tn

(12)

= E


n

∑
i=1

∫
X

w(x, ti)
f (x)

���p(x|ti)
���p(x|ti) dx︸ ︷︷ ︸

=I, discrete MIS


t1,...,tn

= I. (13)

This last step reduces the problem to discrete MIS using the
stochastically chosen techniques ti. Note that it also shows that
already the inner expression is the sought-for integral, taking the
expectation around it does not change the value, i.e. there is no
interplay between different sets of ti to correct the outcome, in par-
ticular independence of ti is not required. The one requirement it
imposes is that every stochastic mixture (set of ti) covers the full
domain where f (x)> 0, which we achieve by defensive sampling.

×
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