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Figure 1: A high-resolution version of the Disney Moana island model, with nearly 600 million triangles before instancing, 31 million
instances, and 33 GB of textures, for a total of 84 GBs of model data excluding acceleration structures. At 2560× 1080 pixels and 8 paths
per pixel, our method runs this at 2.9 frames per second (FPS) on a DGX-2 (with 16 Volta class GPUs and NVLink and NVSwitch), at 2.9
FPS on an HGX (similar architecture, but with 8 A100 GPUs), and at 6.0 FPS, respectively, on an RTX Server with 8 Ampere class GPUs
with ray tracing cores on PCIe. An important feature of our method is that it is almost entirely oblivious to how geometry gets partitioned
across GPUs, and does not require any spatially or object-space coherent assignment whatsoever. Right: A false-color image where an
object’s color encodes which GPU it is on; showing a near-random assignment that works just fine in our method.

Abstract
We propose a novel approach to data-parallel path tracing on single-node/multi-GPU hardware that builds on ray forwarding,
but which aims—above all else—at generality and practicability. We do this by avoiding any attempts at reducing the number
of traces or forward operations performed, and instead focus on always using all GPUs’ aggregate compute and bandwidth to
effectively trace each ray on every GPU. We show that—counter-intuitively—this is both feasible and desirable; and that when
run on typical data-center/cloud hardware, the resulting framework not only achieves good performance and scalability, but
also comes with significantly fewer limitations, assumptions, or preprocessing requirements than existing techniques.

1. Introduction

Modern GPUs have become highly efficient at ray tracing, and what
can or cannot efficiently be ray traced today is almost entirely gov-
erned by what can or cannot be fit into GPU memory. For games,
this constraint is addressed by aggressively managing what is or
is not in GPU memory at any point in time—using techniques like
streaming, LOD, compression, etc. For more general rendering out-
side of gaming, however, such techniques seem to be less applica-
ble, and limited GPU memory is frequently a serious issue.

One solution to rendering models larger than GPU memory is
to adopt data-parallel rendering, where the model gets distributed
across the memories of multiple different GPUs and/or nodes that
then work together. This is not applicable to gaming where users
only have a single GPU; but for most professional uses of rendering
more than one GPU is either already the norm, or an easy-to-adopt

option. However, despite a rich history of data parallel rendering
research, in practice this technology seems to be entirely confined
to scientific visualization, and hardly used at all outside of that field.

Why this may be so is an interesting topic for debate; however,
we believe the three most important reasons are the following: first,
most existing approaches to data parallel rendering have focused
on multi-node cluster/MPI setups, but those are often constrained
in terms of bandwidth, and are too complicated to set up and use
for the average user. Second, existing approaches in sci-vis typi-
cally rely on sort-last image compositing, which does not work at
all for path tracing. Data parallel path tracing requires very differ-
ent communication patterns—either frequent forwarding of rays,
or fetching data on the fly—that are significantly more challeng-
ing to realize. Lastly, for existing techniques that do use fetching
or forwarding, it matters a lot how exactly the scene is partitioned
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across the different GPUs (see, e.g., the discussion in [ZMWP20]),
which in practice means that these techniques are inherently fragile
regarding which content they can or cannot handle well.

In this paper, we address these three issues by following the
mantra of make it simple, make it work. First, we exclusively focus
on single-node, multi-GPU hardware; this cannot scale to the kind
of “hero run” problems sometimes encountered in sci-vis, but for
most applications reduces the problem of what the user can render
to what machine he or she has access to. Machines such as NVIDIA
DGX-2 and A100/HGX (or similar hardware from other vendors)
today are widely available in many data centers, supercomputers,
and through virtually any cloud provider; and often have aggregate
GPU memory that is sufficient for even very large production mod-
els. Second, we consciously abandon the very idea of using some
clever partitioning to minimize the amount of work or bandwidth
generated—and instead focus on maximizing the throughput of the
aggregate system by fully utilizing every GPU’s compute and band-
width in every stage of our method. In particular, our method will
eventually trace every ray on every GPU. This sounds very ineffi-
cient, but as we will show it is not: doubling the number of GPUs
does indeed double the number of times any ray needs forward-
ing and tracing—but it also doubles the overall system’s aggregate
compute and memory capabilities available for doing that, and si-
multaneously also reduces how many rays each GPU has to trace;
so when properly utilizing all resources these effects cancel each
other out. Tracing each ray on every GPU means that it no longer
matters how the scene gets partitioned across different GPUs, al-
lowing our method to be applied to virtually any input, with scene
content assigned to GPUs on-the-fly, and with no constraints other
than that the model must fit into the aggregate memory of all GPUs.

2. Background and Related Work

We assume familiarity with the basics of modern ray and path trac-
ing; for reference, we point the reader to Alarcon’s explanation of
the RTX pipeline [Ala20], and Boksanksy and Marrs’ Reference
Path Tracer [BM21]. We also assume familiarity with the concept
of wavefront path tracing (see, e.g., [LKA13]).

Path tracing depends on the ability to efficiently trace lots of
rays. Our method’s core ideas are general, but for this paper, we
explicitly target modern GPUs. Leveraging such GPUs’ ray trac-
ing capabilities requires the use of APIs such as OptiX [PBD∗10],
DirectX, or Vulkan. In this paper, we build on top of NVIDIA
OptiX [PBD∗10], using the OWL library [WMH20], but the same
techinques should also map to other vendors’ APIs, or to vendor-
independent APIs such as DXR or Vulkan.

2.1. Data Parallel Rendering

When dealing with models larger than what fits into a single node
or GPU, one option is to use out of core, in which geometry
and/or rays are temporarily paged out to disk or host memory. This
was first proposed in Pharr’s seminal memory coherent ray trac-
ing [PKGH97]; a more recent example is Disney’s Hyperion ren-
derer [BAC∗18]. An alternative to out of core rendering is data
parallel rendering, where the model gets split across the memo-
ries of multiple different render nodes or GPUs. This was used as

early as the nineties to realize ray tracing on early parallel comput-
ers [SG89]. Today, data parallel rendering is almost entirely con-
strained to scientific visualization (sci-vis), typically via sort-last
image compositing [Mor11, Eil19].

For ray and path tracing, image compositing does not apply. In
this context, methods can be classified into those that fetch scene
data to the processors that need them; or those that send/forward
rays to whichever processor has the data that those rays need.

Data fetching. usually relies on caching to reduce band-
width [WSB01, DGP04, IBH11]; this works great most of the time,
but tends to catastrophic stalls whenever sudden changes in visi-
ble content invalidate the caches. Jaros et al. [JRSS21] described
a method that also uses fetch-and-cache, but leverages NVIDIA
GPUs’ managed memory to fetch data with driver- and hardware
support. To further reduce memory transfers they also pre-compute
which virtual memory pages will get the most accesses, and repli-
cate those to each GPU. The downside to their approach is that
this requires a-priori knowledge of what the user will render, and
that this is incompatible with vendor-optimized and/or hardware-
accelerated solutions where the acceleration structure cannot be
changed by the user, or even with hardware texture units that cannot
access memory on other GPUs.

Ray forwarding has been looked at by several different researchers
(e.g., [SG89, NCFL14, Nav10, Rei95]. Fouladi et al. [FSP∗22] pro-
posed this for low-cost (offline-)rendering in the cloud. Wald and
Parker [WP22] recently proposed the BriX framework that uses a
combination of object-space partitioning, partial replication, and
cleverly designed next-node kernels to reduce the number of times
rays need to be sent across the network. BriX did show that scene
partitioning does not have to be spatial—but itself also heavily re-
lies on a suitable (object-space) partitioning. In Kilauea, Kato et
al. [KS02] proposed an architecture where the scene could be ar-
bitrarily distributed across multiple nodes. A single rendering node
would broadcast every ray to every scene node, then select the clos-
est intersection returned by any such node.

Partitioning. Irrespective of underlying algorithm, data parallel
rendering requires some sort of partitioning of the model into
smaller pieces. This is typically done via spatial partitioning; how-
ever, this can be problematic for modern production content with
lots of instances, hard-to-split objects, or highly varying geometric
density [ZMWP20]. In a sci-vis context, the model partitioning can
also be pre-ordained by the application that produced the data.

2.2. (Multi-)GPU Technology

Throughout this paper it is important to understand how device
memory works, and how data can move from one GPU to another.
On the lowest level, each GPU talks to any other GPU—or main
memory—via PCIe, or via NVLink where available. Conceptually
both NVLink and PCIe behave the same way, except for NVLink
having higher bandwidth and lower latency (e.g., PCI 4.0 has a the-
oretical peak of 32 GB/s in each direction [Sol14], while fourth-
generation NVLink on a HGX-2 has up to 900 GB/s [Cor20]).

Both NVLink and PCIe allow for what is referred to as peer ac-
cess, where GPUs can directly read from, or write to, other GPUs’
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Figure 2: Illustration of our method. Given N GPUs (that each have their own queue rays, for one-N’th of all pixels) rays are traced through
N successive trace-and-cycle (T&C) stages. In each such T&Cstage (left) each GPU reads the rays from its right neighbor, traces these
against the data stored on that GPU, and then stores these rays in its own outgoing ray queue. After N such stages each ray has been traced
on each GPU, and is on the GPU that originally spawned. Right: the entire pipeline, with each rounded-edge trace box corresponding to the
N steps on the left. Each GPU traces one-N’th of all pixels; and has a local accumulation buffer for those pixels that its shade stages write
into. Once all paths have been traced these get tone mapped and merged into the final application frame buffer.

physical memories. Peer access only works for GPUs that are direct
peers, such as being on the same PCI root complex, or on the same
NVLink bridge or switch. Older hardware like DGX-1 allowed peer
access only between certain pairs of GPUs; newer hardware is fully
switched, meaning each GPU can peer access any other. Both PCIe
and NVLink are bidirectional (each GPU can both send and re-
ceive at the same time), and at least when fully switched will also
allow for multiple concurrent communications, meaning aggregate
bandwidth is much higher than for any individual GPU.

Modern GPUs have unified virtual addressing, where the GPU
performs translation between virtual and physical addresses. When
using CUDA managed memory, this can be used to share allocated
memory across multiple GPUs, and/or host memory. Depending on
how the driver has mapped the pages, a given memory access can
either be resolved locally, or through peer access, or it can cause
a page fault that the driver then uses to either migrate or copy the
respective page. Using cudaMemAdvise the program can suggest
certain access patterns, but the actual mapping is up to the driver.

We observe that NVLink is a vendor specific technology, but that
PCIe, peer access, virtual addressing of GPU memory, etc., are not.

3. Method Overview

The fundamental insight that motivated our method is twofold:
First, that in most data parallel techniques “clever” scene parti-
tioning is the key to performance—but also the main source of
overhead and limitations regarding what content that technique can
or cannot handle. Second, that at least on single-node multi-GPU
hardware it is both feasible and desirable to not use a clever parti-
tioning, and instead, to trace each ray on every GPU. This is desir-
able because if we can do so we automatically solve the aforemen-
tioned source of limitations, getting an approach to data parallel
rendering that will be much more general in what kind of content it
can handle. Counter-intuitively, it is also feasible: tracing each ray

on every GPU does indeed consume a lot of compute and band-
width, and doubling the number of GPUs doubles that cost—but
that at least when the GPUs are connected in the right manner (us-
ing fully switched PCIe or NVLink) doubling the number of GPUs
will also double the aggregate compute and bandwidth available to
do this, and will have only half as many rays per GPU per step.

The key aim of our method thus is to trace every ray on ev-
ery GPU, and to leverage the aggregate bandwidth and compute
to achieve this. This means we avoid techniques that channel work
to specific GPUs, and instead use every GPU in every step. To do
this, we adopt a design where we view all N GPUs as forming a ring
in which each GPU has a clearly defined left and right neighbor it
communicates with; each GPU contains some of the scene geome-
try, with few constraints as to how this partitioning is attained.

When starting a new frame, each GPU will initially generate its
own wavefront of primary rays, for one N’th of the pixels (i.e.,
all GPUs together trace all pixels). All GPUs then trace their rays
against their own geometry, in parallel; i.e., each GPU traces a dif-
ferent one-N’th of all rays against a different one-N’th of the geom-
etry. Once all GPUs are done with this step we perform what we call
a ray queue cycling step, where all GPUs concurrently pass their
current set of partially traced rays to their respective right neigh-
bor, taking their left neighbor’s rays in turn. Each GPU then again
traces the rays it now has—at which point all rays have been traced
against two N’th of the geometry, etc. After N such trace-and-cycle
(T&C) steps, each group of rays arrives back on the GPU that they
were once spawned on—but every ray has now been traced on ev-
ery GPU, against every piece of scene content. The GPUs can now
perform shading of their rays, can each generate a new secondary
wavefront for their portion of the pixels, etc.

When considering this algorithm, intuition wrongly suggests this
to be a terrible idea, because doubling the number of GPUs obvi-
ously doubles the number of times each ray has to be forwarded
and traced—which seems very inefficient. However, it is not: if we
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double the number of GPUs we also have each GPU trace half as
many rays, and we have twice the aggregate number of cores and
bandwidth to do that. Since these effects do cancel each other out
we cannot necessarily expect a major speed-up from adding more
GPUs; but we absolutely can expect to be able to trace models
that are N times as large without getting slower. And once we have
enough GPUs we can also employ island parallelism (Section 4.11)
to gain both larger models and higher performance, too.

4. Implementation

Whereas the preceding section sketched some general concept, in
this section we describe a sample wavefront path tracer that is built
on this idea. For the sake of reproducibility we sketch all the dif-
ferent stages of this path tracer; however, we observe that with very
few exceptions—that we will explicitly point out—this path tracer
looks like any other GPU wave-front path tracer. In fact, the entire
renderer we are about to sketch was largely based on pieces that
existed before this core idea was even conceived. This is good, as
we believe this to be a strong indicator that these same ideas should
be easy to integrate into any other wave-front renderer.

4.1. Input Structure and Partitioning

Our method is not limited to a specific type of scene content; but
for this paper we focus on production style content that is orga-
nized similar to PBRT’s [PJH16]: A scene consists of one or more
instances of logical objects; each object consists of one or more
triangle meshes; and each triangle mesh has one Disney “Princi-
pled BRDF”-style material [Bur12], and possibly color and alpha
textures. As we trace each ray on each GPU, how we partition that
scene will not matter much. Consequently, our first implementation
simply assigned objects to GPUs in a round-robin manner.

Geometry Weight Estimate. The main issue we encountered with
this totally random assignment is that different GPUs can end up
with vastly different memory load—wasting resources. To address
this we implemented what we call a content weight estimate, which
can predict how much GPU memory a given object would require.
This is the sum of all vertices, indices, texture memory, etc., but
also needs to account for how much memory OptiX will spend on
acceleration structures. The former we can compute exactly; the lat-
ter we can only estimate. We measured OptiX’ BVH sizes for dif-
ferent triangle and instance counts, then hand-fitted two constants
(for triangles and instances, respectively) to approximate the ob-
served sizes. These constants depend on what type of GPU OptiX
is running on: for GPUs with hardware ray tracing cores, we use
50 and 400 bytes per triangle and instance, respectively; for those
without we use 100 and 400 bytes, respectively. Other geometry
types such as hair, fur, etc., would require some equivalent weight
estimates, but should then work in exactly the same way.

Weight-based Partitioning. Using this weight estimate we can
easily achieve a more equal memory load across our GPUs (or, con-
versely, use less GPUs per model): during loading we make a list
of all objects in the scene, and compute the weight of each such ob-
ject (including all the instances pointing to it). We then sort these

objects by their size, and, starting with the heaviest object, greed-
ily assign each to the then respectively least loaded GPU. This is
trivially cheap, and can be done on-the-fly.

Big-Object Splitting. Another problem we observed is that pro-
duction scenes often have one “ground object” that is much larger
than all the others (also see, e.g., [ZMWP20]). If we always assign
entire objects then the biggest such object would still dictate what
kind of models we could or could not scale to. To address this we
take objects that have more than a certain number of triangles, and
split those into multiple objects with fewer meshes. Since we only
split objects—not meshes—this can be done by simple operations
on the scene graph, at near zero cost.

4.2. Per-GPU Acceleration Structures

Once the scene has been partitioned into the desired number of
parts, each GPU picks one part, uploads its data, and builds its ac-
celeration structures. For ray tracing we build on OptiX [PBD∗10]:
OptiX can make use of ray tracing cores where available, but also
has a fast software fallback for GPUs that do not. We use OptiX
through the OWL library [WMH20]; OWL allows for low-level ac-
cess to performance-relevant features such as CUDA inter-op or
asynchronous launches, but significantly reduces the effort required
to build OptiX acceleration structures, shader binding tables, etc.

Building the OptiX acceleration structures is not conceptually
different from any other OptiX/OWL based path tracer, except that
each GPU will have different meshes and instances, and thus needs
its own acceleration structures and shader binding table. We create
N different OWL contexts—one per GPU—and treat these as inde-
pendent. Each context has its own CUDA stream for asynchronous
launches, which we later use to run these GPUs in parallel.

4.3. Rays and Ray Queues

Like any other wave-front path tracer we maintain queues of rays,
where each ray is not just a geometric ray, but actually describes the
end-point of a path that is being traced: Each ray stores information
about the pixel it belongs to, the ray type (shadow or not), the cur-
rent path length, state, and throughput, as well as information about
that ray’s intersection with the scene, etc. As in any other wavefront
path tracer we eventually have three kernels that operate on these
queues: a wave generation kernel that generates a new wavefront
of rays; a trace kernel that computes each ray’s intersection with
the scenes; and a shade/bounce kernel that processes a ray’s found
intersection, possibly generating one or more new outgoing rays.

Ray Queue Management. To avoid dynamic memory allocations
during rendering we allow the path tracer to only have at most two
rays active per pixel at any time (see Section 4.7 below), then pre-
allocate ray queues with twice as many slots as there are pixels
per GPU. We also use two such queues per GPU, to allow kernels
to have different input and output queues, where required. Both of
these measures are common practice for wave-front path tracers.

Embedded Full Hit Information. Our rays and ray queues as de-
scribed so far are not significantly different from common prac-
tice. One important difference, however, is in how a ray stores its
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intersection with the scene: Usually, each ray would store only
high-level information such as primitive, mesh, and instance IDs,
barycentrics, etc., and leaves the computation of the shading point,
normals, material data, etc., to the shade kernel.

In our case, however, rays may find an intersection on a GPU
other than the one that will eventually shade that ray, so any IDs
would not be valid. We solve this by having the ray store the full
geometry of the intersection (position, shading normal, and geo-
metric normal) as well as the full set of coefficients for a Disney
Principled-style BRDF [Bur12].

Storing all this in a ray sounds prohibitive, but it is not: partly
this is because we no longer have to store the IDs and barycentrics;
partly it is because for normals and BRDF coefficients we can use
half precision without fear of artifacts (we could likely use even
less). Intersection point and distance require full single-precision.
Our ray struct currently uses 88 bytes per ray; this is about twice as
much as what is used by BriX, but for the hardware we are targeting
(with order 10s to several 100s of GB/s of available bandwidth per
GPU) this is quite manageable—and a price worth paying for the
ability to equally distribute all rays across all GPUs.

4.4. CUDA Wave-front Generation Kernel

Our wave-front generation kernel is realized in CUDA. Unlike, for
example, the BriX system we chose to explicitly not try to generate
rays only where some heuristic might indicate so, and instead aim
for distributing the load of rays as equally as possible. We currently
simply have each GPU trace every N’th row of pixels, meaning that
all N GPUs together spawn exactly one path per each pixel, with
each GPU having one N’th of those. The kernel generates a new
path for each assigned pixel, and atomically appends this to the
outgoing ray queue. All GPUs’ generation kernels are launched in
parallel, each into its own GPU’s CUDA stream.

4.5. (Per-GPU) Trace Kernel

The tracing kernel is realized in OptiX, using a ray-gen (RG) pro-
gram to launch the rays, and a combination of any-hit (AH) and
closest-hit (CH) programs to process intersections.

Ray-Gen (RG) Program. Despite the name the RG program does
not generate rays—it is merely OptiX’ way of naming this pro-
gram, and in our case is the program we use to trace a given ray
queue’s worth of rays into the OptiX acceleration structures. The
RG program gets launched with one GPU thread per ray in the in-
put ray queue; its launch parameters include a device pointer to the
ray queue to be traced. Each thread first reads the corresponding
ray from the ray queue, then checks if that is a shadow ray that was
already terminated on a previous GPU. If so, the respective thread
simply terminates; otherwise, it stores a pointer to that ray’s data in
the OptiX per-ray-data (PRD) and asks OptiX to trace that ray.

Any-Hit (AH) Program. The AH program gets called by OptiX on
any potential intersection. It first looks up the current intersection’s
material, and checks if the hit is fully transparent. This includes
both material information and, where required, alpha texturing. If
this indicates a fully-transparent hit the intersection gets discarded;

otherwise, the program checks if the ray is a fully occluded shadow
ray, and if so, marks it as occluded and terminates traversal.

Closest-Hit (CH) Program. The CH program takes the closest
found intersection—if it exists—and stores that in the ray (using
the pointer from the PRD). It first computes shading and geometry
normal, transforms those to world space, and stores that using half
precision. It then computes the BRDF coefficients and stores these
in half precision as well; any textures get evaluated and baked into
the BRDF coefficients. For the 3D intersection coordinates we ex-
perimented with only storing the distance to the hit point, but for
the kind of models we use this resulted in objectionable surface
acne. Instead we now use Wächter’s method [WB19] to compute a
stable intersection position and store that in single precision.

4.6. Ray Queue Cycling

The core idea of our method is to not just trace each ray once, but
to cycle each ray through every GPU, and trace it on each. We do
this by simply calling the above trace kernel N times, and cycle all
GPUs’ ray queues once between each step (cf. Figure 2). In each
such cycle, every GPU passes its current ray queue to its respective
right neighbor, and receives its left neighbor’s queue in turn.

One way of doing this—we call this an implicit copy—is for the
RG program to have two ray queue pointers: one that points to its
right neighbor’s input queue, and one to its own output queue. The
program then reads from one and writes the traced rays back to the
other, which means that rays get copied while they are being traced.
In what we call an explicit copy we instead have the trace kernel
operate on only its own local input queue, and have it write the rays
back to that queue where required. Following this we then launch,
on each GPU, a dedicated cudaMemcpyPeerAsync that copies this
queue to its neighbor GPU’s output queue. These N copies can get
launched into the same streams as the trace, in which case they will
automatically wait for their respective trace to finish, yet still run
in parallel to each other. We finally wait for those N parallel copies
to finish, then simply swap each GPU’s input and output queue
pointers; then iterate. We currently first trace then copy; changing
this order should not matter.

In theory, the implicit version should be faster, because copying
and tracing are interleaved. We do see a slight benefit on NVLink;
however, for PCIe-based hardware the explicit version was faster,
likely due to PCI struggling with the less temporally ordered na-
ture of the implicit variant. Since the communication is more bot-
tlenecked on PCI we decided to make the latter the default.

We now take these two kernel—trace and cycle—and call
them N times. At this time, each ray is back on the GPU that origi-
nally spawned it, having been traced on each GPU (Figure 2).

4.7. CUDA Shade/Bounce kernel

The bounce kernel reads rays from the input queue, shades these
rays, and appends any generated shadow or secondary rays to the
output queue. This kernel first checks if the ray to be shaded is a
shadow ray, and if so, whether it had any intersection. If so it gets
discarded; otherwise, we take its throughput value (which states
how much light it carries), and add this to the pixel it belongs to.
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num GPUs GPU memory fabric bidir P2P BW† #CUDA cores Arch RT Cores location
DGX-2 16 16×32 GB=512 GB 2nd-gen NVLink+NVSwitch 270 GB/s 16×5,120 Volta no IT4Innovations
HGX/A100 8 8×40 GB=320 GB 3rd-gen NVLink+NVSwitch 475 GB/s 8×6,912 Ampere no IT4Innovations
RTX-server 8×A40 8×48=384 GB PCIe 4.0, fully switched 36.7–51.9 GB/s‡ 8×10,752 Ampere yes NVIDIA GPU Cloud

Table 1: Hardware specifications for the machines used for our performance evaluations. †measured using the CUDA Toolkit’s
p2pBandwidth tool. ‡Bandwidth on this platform varies across different GPU pairs, likely due to varying number of available PCIe lanes.

For non-shadow rays we first check if the ray did hit any ge-
ometry; if not, it gets shaded with environment illumination, and
the result gets atomically added to the pixel that this ray belongs
to. Otherwise, we first handle any potential emission of the hit sur-
face, then compute a new outgoing ray based on BRDF, hit point,
and current state of the ray. We first check if that ray exceeds a
predetermined maximum number of specular or diffuse bounces,
respectively, and if so, terminate that path. Otherwise, we update
the ray’s throughput value, origin, direction, etc. To avoid tracing
lots of low-throughput rays we perform Russian-Roulette termina-
tion based on the throughput value. If the ray was not discarded we
atomically append it to that GPU’s output queue. The same atomic
counter used to specify the next free output queue position can later
also be used to determine how many rays are in each queue.

If the ray undergoes a diffuse bounce we also generate a single
shadow ray. We do this by performing repeated reservoir sampling,
first choosing one from possibly multiple different area light sam-
ples, then one from possibly multiple point lights, etc., then choos-
ing one of those to trace a shadow ray to. Each of these different
sampling stages use importance sampling based on how much light
the shadow ray would ultimately carries. Once a shadow ray has
been generated, we store this carried light (divided by the light sam-
ple’s PDF) in that ray’s throughput field, mark it as a shadow ray,
and append it to the queue. Once all GPUs have finished shading
we are back to having an input queue of rays to be traced on each
GPU, and simply iterate back to the next set of T&C cycles.

4.8. Image Contributions and Local Frame Buffer Merging

The bounce kernel can generate image contributions that need to
get added to the frame buffer. In a single GPU this would be done
using a single device buffer, but in our method this can happen on
N different GPUs in parallel. Unlike in BriX we do not have to
deal with adding different GPUs’ contributions to the same pix-
els, because image contributions happen only during shading, on
the GPU that actually spawned the original path. However, we still
have pixels interleaved between different GPUs, and these need to
be merged into a single contiguous buffer.

One way of doing this is to have a single accumulation buffer
on GPU 0, then all GPUs atomically add into this using peer ac-
cess. On NVLink this actually works quite well; however, on PCIe
the resulting atomics are really slow. Instead, we have each GPU
maintain its own local accumulation buffer for only its one-N’th
of the pixels. After all paths have been traced each GPU first per-
forms simple Firefly-clamping, Gamma-correction, and RGBA8 con-
version on its own pixels (in parallel), then the resulting N small
frame buffers are copied to GPU 0, which then re-arranges those
into the proper order in a CUDA kernel. More complex tone map-
ping or denoising would require to merge pixels in float precision;
but this is orthogonal to our method.

4.9. Taking it all Together

Using these four kernels the main components of our method are
now complete, and rendering an entire frame is simply a matter of
launching these kernels in the right order.

Wave Generation. First each GPU launches its generation kernel,
in parallel. At that time, each GPU has one-N’th of all rays.

Distributed Trace. We then trace all rays through all GPUs
by doing N trace-and-cycle iterations. In each iteration we first
launch one trace kernel on each GPU (using OptiX’ asynchronous
launches to make those run in parallel), then launch the correspond-
ing copy into that same stream. We then wait for these traces and
copies to finish by synchronizing those per-GPU streams, then sim-
ply swap all GPUs’ input and output queue pointers, and set each
GPU’s ray count to that of its right neighbor. This marks the end
of the first trace-and-cycle iteration, and each GPU now has one
N’th of the rays, each of which has been traced on one N’th of all
GPUs, against its respective GPU’s part of the data. We repeat this
N times, at which point each ray is back to the GPU that spawned
it, having been traced on every GPU, against all data.

Wave-front Path Tracing. After the distributed trace is complete
we launch each GPU’s bounce kernel, again in parallel using our N
streams. We then wait for these to complete, and read each GPU’s
atomic ray queue size counter. If this is zero for every GPU we are
done; otherwise we have another generation of rays to trace, and
go back to the distributed trace as described above. Once a wave
is traced through all its generations we can either stop tracing and
proceed to merging the local frame buffers, or can call another wave
generation kernel with an additional path per pixel, if so desired.

Final Frame Buffer Merge. After all paths of all waves have been
traced we execute the final accumulation buffer to RGBA8 conver-
sion, and merge the resulting pixels on GPU 0 for saving or display.

4.10. Wave-front Merging

One issue we observed is that very often some pixels require many
more bounces than the average pixel. This “long tail” problem is
a known issue for any path tracer, in particular for GPUs: lots of
small waves mean a lot of call overhead, and low GPU utilization.

To address this we added what we call wave front merging: In-
stead of sizing all ray queues to have only two ray slots per pixel we
instead make these ray queues somewhat larger, for example, with 3
instead of 2 ray slots per pixel on that GPU. After each shade step
we look at how many rays are still in the ray queue at this time,
and check if there are now enough free ray slots to hold both these
existing rays and a new primary wave-front. If not, we simply pro-
ceed as before; otherwise we call the wave generation kernel and
have it put the new rays right behind the still active rays—and then
proceed with tracing. This effectively merges all but the last wave’s
short queues into larger ones, leading to speedups of order 10%.
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landscape (1.6 GB on disk) island (18.8 GB on disk) island-XL (84.1 GB on disk) museum (113.7 GB on disk)
30.0K insts, 370 meshes, 27.8M tris 39.3M insts, 7.1M meshes, 285.5M tris 31.2M insts, 18.9K meshes, 592.4M tris 3.1K insts, 397 meshes, 647.7M tris

1.4 GB textures 4.1 GB textures 33.2 GB textures 44.9 GB textures
Figure 3: The models we use for our evaluation. For the island model we include both the triangles-only PBRT version used in [WP22], as
well as a much larger one created by having Blender perform subdivision surface tesselation.

4.11. Combination with Island Parallelism

Another issue we encountered is that for any data-parallel ray tracer
there is a quickly diminishing return for adding more GPUs than
are strictly required for a model: adding more GPUs reduces how
much geometry each GPU will end up having—but ray tracing is
logarithmic in geometric complexity, so reducing the geometry per
GPU will not result in much speedup. This is still OK from the
perspective that without data-parallelism the model would not have
rendered at all; however, it is still a waste of potential if the under-
lying machine has significantly more GPUs than required.

To recoup this potential we integrated island parallelism as de-
scribed by Zellmann et al. [ZWB∗22]. The idea of island paral-
lelism is to take a configuration of N GPUs, and split these into
M so-called islands of K GPUs each—with data-parallel render-
ing performed within each K-sized island, and data-replicated ren-
dering performed across the M different islands. For our method,
applying this is trivially simple (see Figure 4): During startup we
partition the scene into K (not N) parts, and have each GPU i < N
pick part i (mod K). For each GPU i we then set its right neigh-
bor as GPU (i+1) (mod K), at which point our N GPUs form M
cycles of K GPUs each. Once this is done all we need to do is re-
duce the number of trace-and-cycle iterations from N to K, which
is what actually gives us the desired speedup. Nothing else needs
to be changed at all: Each GPU still spawns the same one-N’th of
all pixels’ rays; and the trace, bounce, cycle, or frame buffer merge
kernels do not even have to know that this technique is being used.

Island parallelism is not only trivial to add to our method, we can
even make it work fully automatically: Using the weight estimate
from Section 4.1 we simply compute how many GPUs are needed
to hold the model once. Then any multiple of this minimum number
of GPUs is used to create more islands.

4 GPUs

GEN GEN GEN GEN

SHADE

ADD AND TONEMAP

FB1 FB2 FB4FB3

GEN GENGEN GEN

SHADE

ADD AND TONEMAP

FB1 FB2 FB4FB3

2 Islands, 2 GPUs each

4 GPUs

GEN GEN GEN GEN

SHADE

ADD AND TONEMAP

FB1 FB2 FB4FB3

GEN GENGEN GEN

SHADE

ADD AND TONEMAP

FB1 FB2 FB4FB3

2 Islands, 2 GPUs each

Figure 4: Illustration of island parallelism [ZWB∗22] within our
method, here for 4 GPUs. Left, without islands each GPU holds one
fourth of the model, but also requires four trace-and-cycle stages.
Right: the same four GPUs, using a configuration of two islands of
two GPUs each—requiring only two cycle stages.

5. Results and Evaluation

We evaluate our framework on different scenes and hardware plat-
forms. In practice we also use our method on consumer hard-
ware with only one or two GPUs (when run on a single GPU, our
method automatically behaves just like any other path tracer), and
with or without NVLink bridges—but for this evaluation we fo-
cus on professional multi-GPU hardware. For the type of hardware
most likely to be found in a cloud or data center we include both
DGX-2’s and HGX/A100 machines; these machines have fully
switched NVLink interconnect, but no hardware ray tracing cores.
For more rendering oriented hardware we also include an 8-GPU
RTX Server, which has hardware ray tracing cores, but no NVLink.
This machine has fully switched PCIe with still 30 to 50 GB/s of
bidirectional bandwidth per GPU, but this is about an order of mag-
nitude less than NVLink, while simultaneously having about an or-
der of magnitude higher trace potential due to its hardware cores.
Detailed specifications for these three machine types are given in
Table 1. We observe that these machines (intentionally) cover op-
posite ends of the compute-to-bandwidth spectrum.

The models we use for evaluating are depicted in Figure 3. To en-
able a close comparison to BriX we include the same landscape and
island models used in that paper. We also include two much larger
models—island-XL and museum—as well as some up-sampled ver-
sions of landscape for reference. We observe that island and island-
XL are conceptually the same model, but at very different scales: the
former is from an export to PBRT (without subdivision surfaces),
the latter is exported from Blender [Ble], with Blender doing sub-
division surface tessellation. Both museum and island-XL also use
significantly higher-resolution textures.

5.1. Fixed Model Size, Scaling Number of GPUs

The most obvious question for our method is how, for a given
model, it will perform for different numbers of GPUs. We ran our
framework on our different hardware platforms, and made it use
only a user-specified number of GPUs. We also ran this experiment
once with and once without islands; if islands are enabled the island
is computed automatically as described in Section 4.1.

The result of these experiments is shown in Figure 5: Without is-
land parallelism (upper half) we see a mostly binary outcome: until
we get enough GPUs the model will not render at all; once we do
get enough it will (which is the point), but adding more will not help
much. Once we enable island parallelism (lower half), adding more
GPUs also translates to higher performance. This can still result in
some unused GPUs because we can only add GPUs in multiples of
island size, but generally speaking leads to useful gains.
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Figure 5: Performance of our method over different hardware and
models, using different numbers of GPUs; once without (top) and
one with (bottom) island parallelism. Solid circles indicate that the
method switched to a different island configuration.

5.2. Scalability in Model Size

We also implemented a method that lets us artificially grow a given
scene by any user-defined factor: E.g., for a factor of 12 we would
get a model that has an expected ∼ 12× the number of triangles in
each mesh, plus 12 copies of all the model’s instances on a 4× 3
grid; for a total of 144× the number of instantiated triangles.

Figure 6 shows the render time for different growth scales of the
landscape model—starting at 1× (the original model) up to 120×
the number of triangles and instances (i.e., 14,400× the number
of instanced triangles). Automatic island parallelism was enabled;
the ticks on the x axis also show when our method switched to
different island sizes. Actual data parallel rendering does not even
kick in until 16×, where our method first uses more than one GPU
per island. Overall, we see render time increase from 44 ms/frame
to 1 s/frame (i.e., by 25×), for a range of 120× in model size and
14,400× in instanced model size, and from data-parallelism going
from fully data replicated (IS=1) to all data parallel (IS=8).

10ms

0.1s

1s

1x (IS=1) 16x (IS=2) 32.5x (IS=3) 50x (IS=4) 70x (5) 80x (6) 100x (7)110x (8) 120x

landscape model, subdivided by growth factor

Figure 6: Time per frame (using an RTX Server) over a scale of
artificially up-sampled variants of the landscape model; from 1×
(the original model) up to one that is roughly 120× as big in num-
ber of triangles, instances, and overall memory consumption.

5.3. Timing Profile

To illustrate how our framework behaves over time we also ac-
quired a timing profile for one frame of the museum model (see Fig-

ure 7). To reduce measurement noise and improve readability we
used a high resolution of 8k×8k pixels and 8 paths/pixel (smaller
resolutions would affect all kernels equally, and show overall sim-
ilar behavior). In this graph, light green boxes include trace and
transfer time, dark green are shading, and background means idle.

The most important observation to make in this graph is that gen-
erally speaking, all GPUs are busy almost all the time: GPUs 1, 3,
and 4 have less work than the others, likely because they received
geometry that is mostly off-screen and/or easier to trace against—
but overall there is no single hot-spot where everything bottlenecks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

GPU0
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7

Figure 7: Timing profile for one frame of the museum model, us-
ing 8k×8k pixels and 8 paths/pixel, wave-front merging is enabled.
Dark green indicates shading, light green indicates trace and cycle.

5.4. Qualitative Factors: Generality and Ease of Use

So far, our evaluation has concentrated on the obvious “hard” cri-
teria for evaluating a parallel system—like performance and scal-
ability. However, the main goal of our method was not to always
be faster than any competing technique, but instead to be, above
all else, practical in the sense that it has fewer restrictions—and
is as easy to use, employ, and extend as any other non-data paral-
lel technique. This is not something that can easily be proven, and
where every case in point will necessarily be subjective. However,
we want to briefly sketch two such case-in-point examples.

Experimental Blender Integration. We prototypically integrated
our sample implementation into Blender (see Figure 8). We do this
using a Blender plugin that intercepts the data Blender would usu-
ally have given to Blender’s own Cycles renderer, and writes that
in our renderer’s scene format. This plugin then remotely starts our
renderer on a different node in the data center, and waits for this
to connect back using a TCP socket—at which point the plugin
can interact with our renderer, change render settings, display the
resulting pictures in the Blender GUI, etc. Though crude, this in-
tegration is not unlike Cycles itself; in particular, that plugin does
not even have to be aware that our renderer is data-parallel: model
partitioning happens on the fly during loading, everything is fully
automatic, and the data-parallel rendering across multiple GPUs
just so happens without Blender even being aware of it.

Figure 8: The island-XL and museum scenes in our experimental
Blender integration, interactively rendered with our method on a
DGX-2, while controlled from, and displayed in, Blender.
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Extension to Other Data Types. To evaluate how general our
method is we also experimentally extended it to a totally different
type of data: volume data. This required lots of different changes
in terms of data loaders, user interface, applying transfer func-
tions, etc., but conceptually was trivially easy: We load different
parts of the volume to different GPUs, then use Woodcock track-
ing [WMHL65] to compute intersections between rays and volume,
and a 3D-DDA for traversing the volume. All these components are
completely compatible with the rest of the system, meaning we can
also mix surface and volume data on the same GPUs, or load some
GPUs with volume data while others use surface data; we can also
run that inside our Blender plugin, etc. Two examples of this are
shown in Figure 9; extensions to other types of data—both volu-
metric and/or surface based—should be similarly easy. We also ob-
serve that these case-in-point examples, too, are fairly large models
of hundreds of Gigabytes.

Figure 9: Proof-of-concept application of our method to volume
data (both inside our Blender plugin). Left: the 10,240× 7,680×
1,536 DNS data set (483 GB). On a DGX-2 with 16 GPUs of 32 GB
each our method renders this at 9 frames per second (1625× 930
resolution, 16 paths per pixel). Right: The Space Shuttle data set
featuring both surface data and a 218 GB volume data set.

6. Summary and Discussion

In this paper, we have presented a novel approach to single-
node/multi-GPU data-parallel path tracing that we termed ray
queue cycling. Our method employs ray-forwarding, and primar-
ily aims for practicability and generality. Each ray is sent to—and
traced on—each GPU, requiring the presence of interconnect such
as fully switched PCIe, or preferably NVLink; however, on typical
cloud or data center hardware where such is available our method is
significantly simpler to employ than other recently proposed meth-
ods. Our method does not require a user to be familiar with MPI or
clusters, nor does it require any sophisticated (and possibly precar-
ious) data-partitioning to work well: instead, data can be assigned
to different GPUs on the fly during the load time, with which GPU
gets what part of the data is largely irrelevant.

We have shown a sample implementation of our method to be
able to interactively render even massively complex models with
hundreds of Gigabytes of data, including both surface- and volume
data, including non-trivial path traced shading, and including a pro-
totypical integration into Blender.

While our implementation makes heavy use of NVIDIA-specific
technologies (and will benefit from both ray tracing hardware and
NVLink where available) we have shown it also works without ray
tracing cores, and on vendor-agnostic PCIe. Similarly, we make
heavy use of NVIDIA APIs such as OptiX and CUDA, but the core
ideas are not specific to those APIs.

6.1. Comparison to Alternative Approaches

One obvious question is how our framework refers to other meth-
ods, in particular those by Wald and Parker [WP22], and Jaros et
al. [JRSS21]. For the former, the authors report 7.9 FPS for is-
land, using four nodes of two RTX 8000 cards each. For the same
model and camera position, in our best configuration we achieve
2.9 FPS on a DGX-2 and an HGX, respectively, and 6 FPS on an
RTX Server—but each using 8 times as many paths per pixel. To
get an even closer comparison we also used a desktop PC with two
RTX 8000 cards, which is virtually identical to the render nodes
used in BriX. On this machine, our framework renders the island
model at 12.3 FPS. This is faster than BriX—at 4× less nodes.

Comparing to Jaros et al. is harder because the underlying path
tracers are different. With this in mind, Jaros et al. report 181 sec-
onds for island-XL, and 126 seconds for museum, each using 1000
paths per pixel. On identical hardware and render settings our ren-
derer takes 172 seconds and 98 seconds, respectively. Unlike Jaros’,
our method can make full use of vendor-supplied accelerated ray
tracing frameworks, and is less dependent on NVLink.

Though such performance comparisons have to be taken with
a grain of salt we believe this proves our method to be at least
competitive with regards to performance (and often faster). This
is important because the real advantage of our method was never
supposed to be performance, but ease of use and generality: BriX,
for example, relies on a costly offline preprocessing step to ren-
der these models at all, plus some amount of expert knowledge
in selecting the right parameters, a much higher hardware hurdle,
etc.—whereas our method can load and render these models on the
fly, in a fully automatic way, and without needing any knowledge
of how to employ clusters via MPI. Jaros’ system is easier to use
than BriX, but also requires some offline preprocessing. More im-
portantly that method depends on knowing a priori which view the
user will want to render (ours has no such constraints), cannot make
use of ray tracing cores where available, and requires the user write
and maintain his own ray tracing back-end.

6.2. Remaining Issues and Limitations

Arguably the biggest limitation of our method is that it assumes
the renderer to be using a Disney Principled BRDF (or similar) that
can be embedded in the ray—this may not work for every renderer.
For renderers that use shader networks it may still be possible to
compile a given ray-scene intersection’s instantiation of that shader
network down to a similar set of BRDF parameters (in which the
same approach would then again work by each GPU doing that on
its local closest hit); but how exactly this may or may not work
would depend on the specific renderer.

On the performance side, the most obvious issue with our current
implementation is that it is necessarily limited to how many GPUs
can be found in a single machine. In theory, our argument about
more GPUs also providing more bandwidth and compute applies
to multi nodes as well, and with some network technologies now
also reaching order 50 GB/s our technique might eventually also
work for some small networked setups as well—but this requires
more investigation.
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Another issue is that our method relies heavily on island paral-
lelism for performance scalability, but it is not clear that this might
always be available. For example, if geometry gets created on the
fly it might not be possible to compute an island size up front. In
that case, our method would still work, but not scale beyond the
performance of a single GPU.

Yet another limitation is that though our method can make use
of ray tracing cores, most data center hardware today does not have
those. Our method is still competitive even without those (and still
saves the user from having to write his own ray tracing back-end),
but it still means that our method cannot use its full potential on
current hardware. Also, even with our method the best way of deal-
ing with data larger than GPU memory is to avoid this situation in
the first place: if techniques like streaming, LOD, etc. can be used
to not go over the GPU memory limit in the first place, then it will
always be more (cost-)efficient to use that.

Finally, our renderer is still but a proof of concept prototype,
and integration into a real production renderer may well raise some
issues we have not yet encountered.

7. Conclusion

In this paper, we have argued for a new approach to data-parallel
rendering on single-node, multi-GPU hardware. The core idea of
our method is to not try and minimize which rays get sent or traced
where, and instead, to make full use of all GPUs’ aggregate com-
pute and bandwidth to simply trace each ray on every GPU. We
have shown that against intuition this approach is both feasible and
desirable: It is feasible, because adding more GPUs will increase
the total aggregate available bandwidth by exactly the same factor
as tracing on all GPUs requires. This allows for model size-scaling
to however many GPUs as are required to hold the model; and when
combined with island parallelism, any additional GPUs can still be
used for performance scaling as well. We have shown our method
to not only be generally feasible, but even to be highly competitive
with the best known existing techniques.

In addition to being feasible, our method is also desirable, be-
cause it comes with significantly fewer constraints than compet-
ing techniques. It can live with essentially arbitrary assignments of
geometry to GPUs, without preprocessing or a priori knowledge,
etc., in a fully automatic way. This we believe finally brings data-
parallel rendering to where it is practical for more mainstream GPU
renderers. Though our method is only intended for single-node se-
tups with a necessarily limited number of GPUs, this still allows
a renderer to scale supported model size by at least one order of
magnitude, with virtually no restrictions as to what kind of content
or exact path tracer is being used.
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