
High-Performance Graphics 2023
J. Bikker and C. Gribble
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 8

Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical
Level of Detail

Carsten Benthin Christoph Peters

Intel Corporation

Figure 1: Thai Statues (200 M triangles), Displaced Rungholt (100 M triangles), and Landscape (132 M triangles) micro-poly geometries
rendered with a diffuse path tracer at 1920× 1080 with > 20 fps (1 spp, denoising included). All micro-poly geometries are clustered and
compressed prior to rendering. For each frame a LOD subset of clusters (∼ 16− 40 M triangles) are decompressed, converted and fused
together into a BVH suitable for hardware-accelerated ray tracing. With a per-frame overhead of just 5.7− 9 ms, our approach is suitable
for real-time applications.

Abstract

In recent work, Nanite has demonstrated how to rasterize virtualized micro-poly geometry in real time, thus enabling immense
geometric complexity. We present a system that employs similar methods for real-time ray tracing of micro-poly geometry.
The geometry is preprocessed in almost the same fashion: Nearby triangles are clustered together and clusters get merged
and simplified to obtain hierarchical level of detail (LOD). Then these clusters are compressed and stored in a GPU-friendly
data structure. At run time, Nanite selects relevant clusters, decompresses them and immediately rasterizes them. Instead of
rasterization, we decompress each selected cluster into a small bounding volume hierarchy (BVH) in the format expected by
the ray tracing hardware. Then we build a complete BVH on top of the bounding volumes of these clusters and use it for ray
tracing. Our BVH build reaches more than 74% of the attainable peak memory bandwidth and thus it can be done per frame.
Since LOD selection happens per frame at the granularity of clusters, all triangles cover a small area in screen space.

1. Introduction

Real-time rendering has always been striving for greater geometric
complexity to increase the fidelity of scenes. In recent years, real-
time rasterization of micro-poly geometry with billions of virtual-
ized triangles has become viable through Nanite [KSW21]. This
system allows artists to feed extremely detailed geometry to the
renderer. A preprocessing step partitions the geometry into clus-
ters, generates a hierarchical level of detail (LOD) structure on
top of these clusters and compresses them. At run time, the rele-
vant LODs are streamed in, much like mipmaps for sparse virtual
textures. Then clusters get selected for rasterization to a visibility
buffer using occlusion culling and LOD heuristics.

Support for ray tracing in Nanite is rudimentary. It builds
bottom-level acceleration structures (BLAS) on top of a low LOD
of the Nanite meshes, independently of which LOD would be suit-

able for a particular view. In rasterization, Nanite typically ren-
ders around 20 million triangles for a single frame. Real-time
ray tracing of a BLAS with that many triangles is viable. How-
ever, building the acceleration structure is a problem. APIs such
as Vulkan [Khr20] and Direct3D 12 [Mic20] use top-level accel-
eration structures (TLAS) and BLAS, which can either be built
from scratch or updated when only vertex positions have changed.
Since the LOD mechanism in Nanite makes major changes to the
mesh topology, the BLAS would need to be rebuilt completely each
frame, which simply takes too much time. On our hardware, it
would take 57-67 ms [BDTD22]. Building a BLAS for the high-
est LODs is not viable either because the memory footprint of a
triangle in a BLAS is much bigger than that of a compressed tri-
angle in a cluster. Most of the virtualized geometry will not fit into
VRAM.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14868

e14868 pp. 1 - 11

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14868

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

We propose a viable approach to render such micro-poly geom-
etry with hierarchical LOD in real time using existing ray tracing
hardware. Our method sidesteps the notion of monolithic BLAS
builds by modifying the GPU-accelerated bounding volume hierar-
chy (BVH) builder in Embree 4 [Int23]. Because of that, our current
implementation is specific to Intel hardware but with sufficiently
low-level access to hardware BVH layouts, the same methods could
work on any other GPU (Sec. 7). Much like Nanite, our system
starts with extensive preprocessing of the input geometry (Sec. 3).
First it partitions the geometry into clusters of up to 256 nearby
triangles (Sec. 3.1). Then connected clusters are merged and their
combined geometry is simplified without changing the boundary
edges of the merged cluster (Sec. 3.2). Repeating this process yields
hierarchical LOD, but eventually boundary edges become abun-
dant and make simplification ineffective. In the spirit of Nanite, we
occasionally split clusters to introduce new boundary edges, thus
turning the LOD tree into an LOD directed acyclic graph (DAG)
(Sec. 3.3). Finally, we use aggressive quantization to compress
these clusters in a way that preserves water tightness (Sec. 3.4) and
store them in a GPU-friendly data structure (Sec. 3.5).

The goal of the per-frame phase is to construct a BLAS with
exactly the right LOD for a single frame (Sec. 4). First it selects
the relevant clusters using heuristics for the appropriate LOD while
obeying rules that guarantee a crack-free mesh (Sec. 4.1). Then
a single pass over the selected clusters decompresses them into
GPU’s shared local memory, builds a small BVH per cluster and
writes it to memory (Sec. 4.2). These small BVHs already use the
format required by the ray-tracing hardware and are at their final
memory locations. Finally, a BVH builder operates on top of the
axis-aligned bounding boxes (AABB) of the clusters to build the
upper levels of the BLAS (Sec. 4.3). At this point, the BLAS is
ready to be used for ray tracing or path tracing.

Through this combination of preprocessing, compression and a
BVH build on top of cluster AABBs, we reach unprecedented build
speeds for BVHs (Sec. 5). We reach more than 74% of the memory
bandwidth utilization of a thoroughly optimized MemCopy kernel.
Thus, our work demonstrates that it is viable to generate a BLAS
with exactly the right LOD for a single frame in real time. Of course
our system is inferior to Nanite in many regards: The clustering,
merging and splitting are less sophisticated and cannot reduce tri-
angle counts as heavily. Geometry is not streamed in from disk,
our LOD selection is less efficient and we do not have occlusion
culling. Nonetheless, we demonstrate that hierarchical LOD in the
spirit of Nanite is viable with existing ray tracing hardware.

2. Previous Work

Reducing memory consumption when ray tracing complex geome-
tries has always been of high importance, and therefore been a re-
search focus for decades. Various approaches either compress the
geometric representation, introduce LOD or combine both.

Segovia et al. [SE10] propose an approach which reduces mem-
ory consumption of both BVH and geometry data. They apply hier-
archical mesh quantization to combine BVH and triangle data into
a single unified data structure. All vertices within a BVH leaf are
quantized with respect to the leaf bounding box. Gaps due to dif-

ferent quantization reference points are avoided by snapping the
vertices and leaf bounding boxes to a global grid over the scene.

Yoon et al. [YLM06] propose one of the first approaches that
explores LOD generation for ray tracing. It uses a plane as dis-
tant LOD representation. In recent work, Ikeda et al. [IKH22] use
AABBs of the BVH as proxy for distant LOD representation, as
well as stochastic material sampling for material evaluation at any
LOD level.

Another popular approach that explores LOD generation for ray
tracing is the Razor system proposed by Djeu et al. [DHW∗11].
The Razor system uses a multi-resolution geometry cache. Due
to the high synchronization cost in coordinating shared cache ac-
cesses between different CPU threads, Djeu et al. propose that each
CPU thread maintains its own cache independently from all other
cores. However, a tessellation cache per thread suffers from redun-
dant computation and data replication, thus leading to excessive
memory requirements on architectures with large thread counts.
Benthin et al. [BWN∗15] introduce a method to cache tessellation
data of subdivision surfaces without replication. The approach re-
lies on adaptive subdivision of Catmull-Clark subdivision patches
combined with lazy caching of tessellation results in a fixed-size
cache, optimized for multi-core CPU rendering.

Tessellation data for subdivision surfaces or other structures
with fine geometric detail can often be represented locally by a
small grid-like topology (excluding adjacency information). Sev-
eral works propose efficient methods for lossy compression of these
grid-like topologies. For example, Benthin et al. [BVW21] encode
the grid vertices as offset from a base primitive, i.e. a bilinear patch,
using a reduced precision floating point representation.

NVIDIA’s Ada Lovelace architecture introduces hardware sup-
port for ray tracing of displaced micro meshes [BM23]. A displaced
micro mesh consists of base triangles with a displacement vector
per vertex. Based on user-defined subdivision levels, the base tri-
angles are hierarchically subdivided into micro triangles. The dis-
placement vectors are interpolated across the base triangles, scaled
by hierarchically encoded height values and applied as offsets to the
micro vertices. This approach offers a compact geometry represen-
tation (1 to 8 bits per micro triangle) and an LOD mechanism. How-
ever, the used height fields within triangular prisms cannot capture
arbitrary geometry since vector displacements are not supported.
Additionally, the simplification cannot go lower than one micro tri-
angle per base triangle. If a base mesh is inadequate or unavailable,
it has to be generated from the high-resolution mesh.

In the realm of rasterization, Nanite [KSW21] makes real-time
rendering of micro-poly geometry practical. This system starts with
extensive per-mesh preprocessing: Initially, it creates clusters of up
to 128 triangles, while optimizing for few boundary edges. Then it
groups and merges clusters with many shared boundary edges to-
gether. Mesh simplification halves the triangle count of the merged
clusters without changing their boundary edges. This process could
be continued iteratively to get a hierarchical LOD tree. However,
after a few steps, there will be too many boundary edges in com-
parison to interior edges (Figs. 3a, 3b). Nanite solves this prob-
lem through splitting: Simplified clusters are split into two clusters,
each with at most 128 triangles, again while optimizing for few
boundary edges. That introduces new, longer boundary edges and

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

2

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

turns the hierarchy into a DAG (Fig. 3c). The optimization prob-
lems for initial clustering, grouping and splitting are solved using
graph partitioning but it is non-trivial to enforce the maximal trian-
gle counts. Subsequently, clusters are compressed and stored in a
format that enables streaming and GPU-driven rendering.

At run time, Nanite streams in the relevant pages of preprocessed
geometry at the required LOD. It does occlusion culling using hier-
archical depth buffers and visibility information from the previous
frame. Clusters to display are selected in a parallel fashion using
LOD heuristics. The heuristics produce a cut through the DAG,
which guarantees complete and crack-free geometry (App. A). The
selected clusters get rendered into a visibility buffer using a mix-
ture of hardware and software rasterization. The visibility buffer is
then turned into a G-buffer for deferred shading.

The preprocessing in our system has the same steps as Nanite but
implements them differently. Since the AABBs of our clusters are
eventually used in a BVH, clustering and grouping use heuristics of
BVH builders. At run time, our system works quite differently since
its purpose is BVH construction, not rasterization. Our main goal
is to construct a BVH from a compressed hierarchical LOD repre-
sentation of micro-poly geometry in real time. The quality of the
hierarchical LOD representation is not crucial to demonstrate that
this is possible and thus we do not compare our design decisions
for preprocessing to the ones in Nanite directly. Quite possibly, the
preprocessing in Nanite would give better results but that does not
invalidate our approach for fast BVH build.

3. Preprocessing Phase

Our system utilizes a preprocessing phase with the same steps as
Nanite. To keep this paper self-contained and to explain all the as-
pects that differ, we describe it in detail. It starts with the initial
mesh clustering (Sec. 3.1), followed by merging and simplifica-
tion of clusters to generate the LOD hierarchy (Sec. 3.2). Merging
alone eventually yields too many boundary edges, so clusters are
split when necessary (Sec. 3.3). Next, the cluster geometry is com-
pressed lossily to reduce its memory footprint (Sec. 3.4) and stored
in a GPU-friendly data structure (Sec. 3.5). As a scene typically
consists of multiple geometric objects, all of these steps are per-
formed for each object individually. Like Nanite, we assume that
the original scene geometry consists of triangle meshes.

3.1. Initial Cluster Generation

In a first step triangles are converted into triangle pairs/quads. This
is an efficient way to reduce memory consumption of the input
data, as the quadification rate for micro-poly geometries is typi-
cally high. It is also well-aligned with the final ray-tracing hard-
ware BVH layout that is going to be used (Sec. 4). Triangles which
cannot be paired are stored as a degenerate quad, where the third
and fourth vertex are the same. In the following, we refer to triangle
pairs with a shared edge simply as quads.

Next, a binary BVH is built over all quads. For BVH con-
struction, one can chose any high quality BVH build algo-
rithm [MOB∗21]. We opted for PLOC [MB18], as we use the
same algorithm later in the cluster hierarchy construction phase

Figure 2: (a) Initial generation of spatially coherent clusters with
≤ 128 quads (256 triangles) using a binary BVH. (b) Pairs of adja-
cent clusters sharing a common boundary are merged and simpli-
fied, while preserving the outer boundary. (c) The iterative merging
of clusters generates a binary hierarchy over the clusters.

(Sec. 3.2). The resulting binary BVH is then traversed top-down
and each subtree containing ≤ 128 quads (256 triangles) and ≤ 256
vertices is converted into a cluster. These constraints are due to the
compression scheme applied later (Sec. 3.4). The cluster geometry
itself is again represented as an indexed quad mesh. Relying on a
BVH to extract the initial clusters efficiently identifies spatially co-
herent sets of quads (Fig. 2a). It is important to reduce the overlap
between bounding boxes of neighboring clusters as much as possi-
ble, as a ray entering the overlapping region will have to descend
into all associated cluster BVHs.

3.2. LOD Generation by Cluster Merging

Based on the set of initial clusters (Sec. 3.1), the goal is to gener-
ate a LOD hierarchy of clusters in a bottom-up manner. The initial
clusters form the bottom-level or leaf level of the hierarchy, cor-
responding to the finest LOD resolution. Nodes higher up in the
hierarchy contain simplified geometry of their descendants. The hi-
erarchy is created by merging pairs of clusters while at the same
time simplifying the merged geometry (Fig. 2b, 2c). It is impor-
tant that the simplification process preserves the boundary edges of
the merged cluster, such that adjacent clusters can select a different
LOD without introducing visible cracks at the shared boundary.

For mesh simplification we rely on MeshOptimizer [Mes23]. It
strives to maintain the overall appearance by preserving the topol-
ogy of the original mesh including attributes like seams and bound-
aries. The output of the simplification step is a new vertex index
buffer, which uses a subset of the vertices in the input index buffer.

Identifying pairs of clusters follows the same iterative logic as
the PLOC algorithm [MB18] for building BVHs. It works by man-
aging an array of active clusters which is initialized from the set
of initial clusters. In each PLOC iteration, all active clusters scan
(within a given search radius) their neighbors and evaluate a dis-
tance function. In our case, that is the surface area of the merged
cluster AABBs. The neighbor with the smallest distance is marked
as the nearest neighbor. If two clusters mutually agree on being
their nearest neighbors, they will be merged and a new cluster is

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

3

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

(a) Two clusters (b) Merged & simplified (c) Split
Figure 3: (a) Two clusters are selected to be merged. Shared
boundary vertices between clusters are shown in red. (b) The
merged cluster is simplified but boundary edges are preserved. Due
to abundant boundary edges, the merged cluster has more than 256
triangles. (c) In this case, the simplified cluster is split into two new
clusters. That introduces new, longer boundary edges. Both clusters
resulting from the split become parents of the original two clusters.
That turns the LOD hierarchy from a binary tree into a binary DAG.

created. The new cluster becomes the parent of the two input clus-
ters. Hence, the merging process builds a binary hierarchy over the
clusters. The new parent cluster now replaces one of its children in
the active cluster array, while the other child gets marked as invalid.
Note that for the nearest neighbor search, each cluster will test only
clusters sharing a boundary edge (hence their AABBs must over-
lap). Finally, a compaction step removes all invalid entries in the
active cluster array and the process continues with the next itera-
tion.

The PLOC algorithm typically continues until only a single en-
try in the active cluster array remains, corresponding to the bi-
nary BVH root node. At this point the entire binary BVH hierar-
chy has been created. When merging clusters, the assumption of a
single root node does no longer hold, as the cluster merging pro-
cess can fail. A failing merge can be caused by several factors, e.g.
the merged cluster cannot be simplified enough (the reduced num-
ber of quads is not small enough) or the resulting cluster does not
meet certain compression constraints (Sec. 3.4). That commonly
happens because of too many boundary edges (Fig. 3b). A failed
cluster merge is not considered critical. It only leads to having more
cluster roots, which cannot be merged anymore, instead of having
only one root node. The LOD selection process then works with
multiple entry points in the LOD hierarchy (Sec. 4.1).

Basing the LOD hierarchy generation on a bottom-up BVH con-
struction algorithm has the advantage that the hierarchy will be of
high quality in terms of surface area, limiting the overlap between
selected clusters in the hierarchy. That is beneficial when the se-
lected cluster BVHs are fused together (Sec. 4.2).

3.3. Binary Directed Acyclic Graph (DAG2)

When merging and simplifying a pair of clusters, we aim for a 30-
50% reduction in quad count, while preserving the boundary edges.
If there are too many boundary edges, the reduction in the number
of quads may be low (or none at all). The probability of these failed
cluster merges increases towards the upper levels of the hierarchy

(Fig. 3b), resulting in an unsatisfactory maximal simplification of
the given geometry. Like Nanite, we reduce the probability of failed
merges through splitting: If a merge fails, we take the merged clus-
ter and cut it approximately in half while trying to keep the number
of edges of the newly created boundary small (Fig. 3c). Next, for
each half a new cluster is created with both input clusters as chil-
dren. The two new clusters replace their two children in the active
cluster array. In the next iteration of the PLOC-based merge pro-
cess these newly created clusters will try to find different clusters
to merge as we prohibit direct re-merging with the other half.

Cutting a merged cluster in a new way and reinserting both
halves back in the cluster merging process requires a change of the
LOD hierarchy representation, namely the transition from a binary
tree (Fig. 3b) to a binary DAG (Fig. 3c), where nodes can have two
parents instead of one. We refer to a binary DAG as DAG2. Special
care needs to be taken when traversing the DAG2 for LOD cluster
selection (Sec. 4.1 and App. A). Switching from a binary tree to
a DAG2 representation allows us to get better cluster merging in
the upper levels of the hierarchy, thereby reducing the number of
cluster roots by up to 2×. Note that Nanite applies splitting in each
step, uses different heuristics, and permits topological changes in
simplification steps. This way, it achieves even better simplifica-
tion.

3.4. Cluster Compression

Given a hierarchy of clusters (Sec. 3.3), we compress each cluster
to reduce the overall memory footprint. First, all vertices are quan-
tized with respect to the bounding box of the geometric object the
cluster belongs to using 16 bits per dimension. That means a 3D
vertex will require 3×2 = 6 bytes after quantization instead of the
12 bytes needed with 32-bit single precision floating point values.
We limit the maximum number of vertices to 256, which allows
for using 8-bit indices for the indexed quad mesh of the cluster.
The maximum number of quads inside a cluster is set to 128 which
corresponds to 256 triangles. Also the quads inside the cluster are
ordered spatially by building a small binary BVH over them and
rearranging the quads based on a depth-first BVH traversal. The
spatial ordering helps to increase the BVH quality over the quads
inside a cluster (Sec. 4.2).

The vertex quantization with respect to the bounding box of
the geometric object guarantees vertex consistency across bound-
ary edges between all clusters of the object, which is important as
neighboring clusters can be subdivided to different LODs. Identi-
cal vertices in different clusters are affected by quantization error
in the same way, such that water tightness is preserved. In terms of
memory consumption our simple vertex quantization and indexing
scheme reduces average memory consumption to 8-12 bytes per
quad / 4-6 bytes per triangle (Tab. 1). That allows for storing 165-
222 million triangles within a gigabyte of memory. Note that shared
vertices at the cluster boundary are stored in all adjacent clusters.
This vertex replication increases the memory consumption of the
LOD hierarchy.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Table 1: Our lossy cluster compression scheme reduces memory
consumption by ∼ 2.5 − 2.9× when comparing the finest clus-
ter LOD level to the uncompressed triangle/grid meshes. On av-
erage the scheme reduces memory consumption per triangle to
∼ 4.8 − 6.5 bytes. Including LOD data for all levels, which in-
cludes vertex replication in clusters, the memory consumption is
still ∼ 1.2− 1.5× lower than the standard uncompressed mesh/-
grid case. For the grid case, all LOD levels are generated on the
fly from the original grid. Hence, no explicit storage of simplified
clusters is required.

Thai Rungholt Landscape
(mesh) (mesh) (grid)

Triangles 200 M 100 M 134 M
Vertices 30 M 44.3 M 67.1 M

Uncompressed triangle meshes/grid
Memory 2.94 GB 1.57 GB 0.77 GB
Bytes per triangle 15.6 17.7 6.0

Compressed clusters (finest LOD only)
Clusters 1.19 M 0.56 M 1.01 M
Memory 0.9 GB 0.57 GB 0.29 GB
Bytes per triangle 4.8 6.5 2.3

Compressed clusters (all LODs)
Clusters 2.45 M 1.21 M 1.01 M
Memory 1.97 GB 1.28 GB 0.29 GB
Bytes per triangle 5.7 6.6 2.3

Cluster roots (coarsest LOD only)
Clusters 16.6 k 192.6 k 65 k
Triangles 2.7 M 21.8 M 8.3 M
Max simplification 71.8× 4.2× 16×

3.5. Cluster Data Structures

As cluster compression (Sec. 3.4) relies on the geometric object the
cluster belongs to, all compressed vertex and quad data of all clus-
ters belonging to the geometric object are stored in a consecutive
region of memory (Fig. 4). The amount of data per cluster will vary
depending on the number of quads per cluster and the amount of
vertex sharing.

The LOD selection phase (Sec. 4.1) does not access the com-
pressed vertex and quad data, so we separate the data required by
this phase from the compressed cluster data and store it in a sep-
arate 40-byte cluster header (Fig. 4). The cluster header contains
the compressed bounding box of the cluster, adjacency information
like references to the left and right child, as well as a reference to
a potential neighbor cluster, which arose from a split (Sec. 3.3). It
also contains a reference to the AABB of the geometric object as
well as an offset which marks the beginning of cluster data within
the compressed cluster data of the object.

4. Per-Frame Phase

The per-frame phase builds a BVH containing a selection of clus-
ters with appropriate LOD for the current frame. Such a BLAS
could be reused in a subsequent frame when the LOD selection
has not changed, but we evaluate using the worst case. It produces
this BVH directly in the format required by our target GPU (an
Intel Arc A770). The GPU’s ray tracing units require a 6-wide

Figure 4: Each compressed geometric object holds an uncom-
pressed AABB which is used for decompressing all compressed ver-
tices of all clusters belonging to the object. The compressed vertex
and quad index data vary in size depending on the number of quads
per cluster and the amount of vertex sharing. For each cluster a
cluster header is created which contains the cluster’s compressed
AABB, used during LOD selection, as well as references to the ge-
ometric object’s uncompressed AABB (black), the cluster’s com-
pressed data (black), the two cluster header children (blue) and the
neighbor (red) used for the DAG2 representation.

quantized/compressed BVH with quads at leaf level [Int23]. We
refer to such a BVH as QBVH6. Each QBVH6 node and quad leaf
take 64 bytes. After selecting clusters (Sec. 4.1), we perform de-
compression and write a small QBVH6 for each selected cluster to
memory (Sec. 4.2). Then we fuse these QBVH6 into a full BLAS
by building the upper levels (Sec. 4.3).

4.1. LOD Cluster Selection

Given a DAG2 hierarchy of clusters (Sec. 3.3) a subset of clusters
needs to be selected which will be decompressed and converted
into a QBVH6 (Sec. 4.2). We therefore traverse the DAG2 in a
top-down manner, starting at the root clusters, which represent the
coarsest LOD. Each node gets to decide whether its LOD is suffi-
cient based on the compressed AABB stored in the cluster header.
A node and its neighbor arising from the same split (if any) always
store the same AABB and thus they make the same LOD decision.
If the LOD is sufficient, the cluster is selected for inclusion in the
BVH. Otherwise, all of its children will be tested subsequently. In
Appendix A, we prove that such a top-down traversal is guaranteed
to give a complete and crack-free mesh.

The heuristic that determines whether a cluster has a sufficient
LOD differentiates between clusters inside and outside the view
frustum. For the sake of secondary rays, clusters completely outside
the view frustum are not discarded. However, they use a coarser
LOD, solely based on the distance to the viewer. For clusters in-
side the view frustum, the cluster’s compressed AABB (stored in
the cluster header) is projected onto the image plane. Then the
length of the diagonal of the projection of the 2D AABB is com-
puted. The DAG2 top-down traversal stops if the diagonal length
is smaller than a threshold, in our case 24 pixels. Note that LOD
selection happens once per frame, not per ray, so these heuristics
apply equally to all primary and secondary rays.

The cluster selection is implemented in two steps: First dur-
ing top-down traversal, we mark all clusters selected by the LOD
heuristic. In the second step, all marked clusters are added to the
list of active clusters per frame. The two step approach is neces-
sary to avoid adding the same cluster multiple times during top-
down traversal, as a cluster in a DAG2 can have two parents.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

5

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Nanite [KSW21] instead relies on a monotonic heuristic, where
each cluster that has sufficient LOD but a parent with insufficient
LOD must be rendered. An additional tree data structure is used
to cull irrelevant clusters early. That enables greater parallelism but
requires another data structure and makes it harder to design a good
LOD heuristic.

4.2. Cluster Decompression and BVH Build

Once all currently active clusters per frame are selected (Sec. 4.1),
references to these clusters are passed to a GPU BVH builder based
on PLOC++ [BDTD22]. Our implementation of this and the next
step is hardware specific as it exploits knowledge of the hardware
BVH layout. Support for other hardware requires alternative im-
plementations. The builder first iterates over the list of active clus-
ters and decompresses the cluster’s compressed vertices into the
GPU’s shared local memory. This does not consume main memory
bandwidth, as shared local memory is not backed up by the GPU’s
cache/memory hierarchy. As we limit the number of quads per clus-
ter to ≤ 128 and let a sub-group (wave) work on a single cluster,
enough shared local memory space per sub-group is available to
hold all decompressed vertices.

The next step builds a small QBVH6 over the decompressed
data. First, four decompressed vertices per quad are directly con-
verted into the QBVH6’s quad leaf layout and stored out to global
memory. Next, the decompressed vertex data per quad in shared
local memory are overwritten with the quad’s AABB, as the ver-
tex data are no longer needed. Based on the list of AABBs the
QBVH6, is now built bottom-up in an iterative manner. In each
iteration, groups of six AABBs are assembled together in a dense
fashion and a new QBVH6 node per assembled group is stored out
to global memory. As the quads per cluster are spatially ordered
(Sec. 3.4), the overlap between the densely packed nodes is limited
and therefore the quality of the resulting QBVH6 remains high.

Note that we experimented with more sophisticated QBVH6
build algorithms over the cluster’s quads but due to the limited
number of quads, requiring only a few inner QBVH6 nodes, the
quality and therefore ray tracing performance impact was very lim-
ited. Either way, the AABB of a quad is tested before a ray-quad
intersection test. Thus, the number of ray-quad intersection tests is
mostly unaffected. In the worst case, a lower quality of the QBVH6
for a single cluster manifests in a few additional traversal steps,
which is typically negligible. Also with a less dense packing, more
inner QBVH6 nodes have to be written out to global memory which
is costly (Sec. 5). Once the root node of the cluster’s QBVH6 is cre-
ated, its uncompressed AABB as well as a reference to the QBVH6
is also written out to global memory. These data are required by
the next phase, which fuses the cluster BVHs together (Sec. 4.3).
In terms of memory consumption, the maximum size of a cluster
with 128 quads and 256 vertices is 2.0 kB, converting to 9.7 kB of
QBVH6 data, which is a ∼ 5× size expansion.

4.3. Cluster BVH Fusing

The uncompressed AABBs of all cluster QBVH6 root nodes are
the input of the modified PLOC++ builder, which builds a QBVH6
over them. Its final phase connects the leaf nodes of this QBVH6

directly to the previously written root nodes of the cluster QBVH6s.
This fuses all cluster QBVH6s together into a single QBVH6,
which can be used to efficiently ray trace all decompressed geome-
try in the scene.

Note that instead of a full QBVH6 build over cluster AABBs
one could have relied on a refitting-based approach, as the cluster
positions with respect to the scene stay mostly constant. This would
likely reduce fusing cost. However, extracting a refitable BVH out
of the DAG2 structure will also introduce an overhead. A full BVH
rebuild has the additional advantage of offering more flexibility,
e.g. other types of primitives, besides the cluster root nodes, can be
easily added to the list of primitives for the final QBVH6 build.

Another alternative is to prepare one BLAS per cluster and to re-
place our cluster BVH fusing by a standard TLAS build. However,
we expect to have more compressed clusters loaded into VRAM
than are actually used in one frame. Since a QBVH6 is ∼ 5× big-
ger than a compressed cluster, this approach utilizes considerably
more memory.

5. Results

For our evaluation, we implemented our approach on top of Em-
bree 4 [Int23] using oneAPI’s SYCL/DPC++ [Int21] as GPU pro-
gramming language. Embree 4 supports ray queries similar to those
in DXR or Vulkan. Our hardware platform uses an Intel Arc A770
as GPU (32 Xe cores, 16 GB GDDR6 memory, 256-bit memory
interface), and a Core i7-11850H as host CPU running Ubuntu
22.04 Linux. All kernel timings in this section are measured on
the GPU such that kernel launch overhead is excluded. On average,
the QBVH6 format required by the GPU’s ray tracing cores takes
up a gigabyte of memory for ∼24 M triangles.

Embree 4 has been chosen because its open source code directly
exposes the hardware-specific BVH layout, which is currently not
possible with DXR or Vulkan. We extended it to support com-
pressed clusters as another primitive type and their decompres-
sion and conversion into the QBVH6 layout (Sec. 4.2) has been
integrated directly into Embree 4’s GPU BVH builder. All clus-
ter preprocessing is done on the CPU while all per-frame phases
are executed as GPU compute kernels: DAG2-based LOD selec-
tion (Sec. 4.1), cluster decompression with cluster QBVH6 build
(Sec. 4.2), and BVH fusing (Sec. 4.3).

Table 2: Cost breakdown in ms for the three per-frame phases. The
total per-frame overhead is ∼ 5.7− 9 ms. The cluster decompres-
sion and per-cluster QBVH6 build takes longest. Combined with
fusing of cluster QBVH6s, the two phases together build a QBVH6
over all triangles in the selected clusters, reaching a QBVH6 build
performance of ≥4 GTriangles/s which is more than 10× higher
compared to building a QBVH6 over all triangles in the selected
clusters (without utilizing the clustering).

Thai Rungholt Landscape
LOD selection 1.7 0.9 1.2
Decompression+QBVH6 2.4 5.9 2.6
Fusing cluster QBVH6s 1.6 2.3 2.0
Total 5.7 9.0 5.8
QBVH6 build perf. [GTris/s] 4.0 4.8 4.5

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Table 3: Per-frame statistics for cluster decompression and QBVH6 construction (for views in Figure 1). For the Thai Statues, the LOD
phase has selected ∼104 k clusters, which correspond to ∼16 M triangles. Decompression and cluster QBVH6 construction take 2.4 ms in
total. That corresponds to ∼ 75% of the attainable memory copy performance on the Intel Arc A770 (∼410 GB/s).

Clusters # Triangles Cluster QBVH6 Time Read mem. Write mem. Total mem. vs. MemCopy
Thai Statues 104 k 16 M 0.62 GB 2.4 ms 45.4 GB/s 260.2 GB/s 305.6 GB/s 74.5%
Rungholt 232 k 40 M 1.56 GB 5.9 ms 44.8 GB/s 264.0 GB/s 309.2 GB/s 75.4%
Landscape 174 k 21 M 0.82 GB 2.6 ms 20.3 GB/s 316.9 GB/s 337.2 GB/s 82.2%

We present timings for these per-frame phases (Sec. 5.1) and for
rendering (Sec. 5.2). Then we assess the visual quality of our LOD
mechanism (Sec. 5.3). We also apply our approach to (animated)
grids with known topology (Sec. 5.4). Finally, we discuss limita-
tions (Sec. 5.5).

5.1. Timings for the Per-Frame Phases

The first per-frame phase is the LOD selection (Sec. 4.1). The cost
of the two step approach is around 0.9-1.7 ms (Tab. 2). The result
of this phase is a subset of clusters which will be decompressed and
converted into the QBVH6 layout in the next phase. Tab. 3 shows
the number of selected clusters, the number of triangles contained
in these clusters, and the total accumulated size of all QBVH6s
for clusters after being written out to memory. Loading of cluster
data, decompression, QBVH6 construction, and writing out ∼0.6-
1.6 GB of QBVH6 data to memory takes 2.4-5.9 ms. In comparison
to the attainable memory copy performance of the target GPU (410
GB/s), our approach reaches 305-337 GB/s, which corresponds to
74-82%.

The final per-frame phase of fusing cluster QBVH6s takes 1.6-
2.3 ms, i.e. slightly longer than the LOD selection. Comparing the
costs of all three phases (Tab. 2), the cluster decompression with
QBVH6 construction takes longest because of its high memory
bandwidth requirements. The total per-frame overhead of all three
phases combined is 5.7-9 ms.

The two latter per-frame phases are equivalent to a full QBVH6
GPU build for all geometry selected in this frame. However, the
two-phase approach with preprocessing is way more efficient than
building the QBVH6 over triangles/quads. For example, the Thai
Statues scene has a combined cost of 4 ms. For 16 M triangles, that
corresponds to a GPU BVH build performance of ∼ 4 GTriangles/s
(Tab. 2). Compared to a regular GPU BVH build for triangles/quads
this throughput is more than 10 times higher. The higher throughput
is due to using a pre-defined hierarchy (clusters) to quickly build
the lowest levels of the QBVH6, which is the most costly part of
BVH construction [HMF07a,HMF07b]. In addition to being signif-
icantly faster, building a BVH over clusters consumes less memory
bandwidth and memory capacity during the QBVH6 build.

5.2. Timings for Ray Tracing and Path Tracing

The per-frame overhead and memory consumption of our ap-
proach depend directly on the number of selected clusters per frame
(Fig. 5). The LOD selection, needs to be very aggressive to keep the
overhead small. If the maximum LOD simplification per geomet-
ric object is limited, the LOD selection will often select too fine
LODs, especially for geometry far away from the viewer. This will
increase the per-frame overhead.

Figure 5: Per-frame overhead vs. geometric complexity introduced
by the three per-frame phases for an increasing number of Thai
Statues. From 65 M to 542 M triangles the overhead increases
linearly with scene complexity. The cluster decompression with
QBVH6 build is the most costly phase.

Due to the LOD selection, only a fraction of the total geome-
try will end up in the per-frame QBVH6. Tab. 4 shows that the
per-frame QBVH6 is 2.5− 13.4× smaller than the QBVH6 built
over the original geometry. A larger QBVH6 size has a significant
impact on the ray tracing performance due to additional ray traver-
sal/intersection steps and a higher number of cache misses. Tab. 4
shows that primary ray performance is 1.5− 2.8× slower than for
the per-frame QBVH6. The ratio changes for diffuse 1-bounce path
tracing to 1.3− 1.7× as only half of the time is spent tracing rays
and due to cache/memory effects caused by less coherent rays.

5.3. Visual Quality of our Hierarchical LOD

Fig. 6 shows to what extent our LOD mechanism manages to pro-
vide similar quality on surfaces with different LOD. Since the LOD
hierarchy has the original mesh at its leaf-level, nearby surfaces
are rendered with high fidelity. On more distant surfaces, we ob-
serve slight artifacts. These occur partly because we do not store
per-vertex normals and instead rely on triangle normal vectors for
shading. In addition, some of the triangles at low LOD are nearly as
large as their corresponding clusters and thus they cover more pix-
els compared to triangles of a higher LOD. Since all clusters have
similar quad counts, that indicates a greater number of boundary
edges in clusters of low LOD. A possible remedy is to use split-
ting (Sec. 3.3) more frequently, like Nanite. Under camera mo-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

7

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Table 4: Rendering performance comparison (1920×1080, 1 spp) of our approach against a QBVH6 built over triangles at the finest LOD.
Since the final QBVH6 is significantly smaller, our approach accesses less data during ray traversal achieving a 1.5−2.8× faster rendering
performance for primary visibility (PV), which is dominated by tracing rays. For diffuse path tracing (PT) where only 50% of the time is
spent tracing rays, and memory effects impact performance even more, the speedup is reduced to 1.3− 1.7×. The cluster-based hierarchy
inside our QBVH6 moderately affects SAH quality, as our QBVH6 has a ∼ 1.2× higher SAH than a QBVH6 built over all cluster triangles.

Our approach Finest LOD
Tris QBVH6 SAH Per-frame PV PT # Tris QBVH6 PV PT

Thai Statues 16M 0.62 GB 1.17× 5.7 ms 1.0 ms 24.4 ms 200 M 8.33 GB 2.8 ms (2.8×) 42.1 ms (1.7×)
Rungholt 40M 1.56 GB 1.19× 9.0 ms 1.0 ms 25.1 ms 100 M 3.92 GB 1.6 ms (1.6×) 32.6 ms (1.3×)
Landscape 21M 0.82 GB 1.20× 5.8 ms 1.2 ms 24.4 ms 134 M 5.66 GB 1.8 ms (1.5×) 31.7 ms (1.3×)

tion, these issues manifest as minor popping artifacts, which can
be seen in our supplemental video. On the other hand, the LOD
selection (Sec. 4.1) successfully selects clusters of similar size in
screen space, even on distant surfaces.

5.4. Alternative LOD Hierarchies and Dynamic Geometry

Our approach is not limited to compressed cluster meshes only but
supports other types of input formats as well, e.g. quad-tree based
LOD hierarchies over grid-like structures as typically used for rep-
resenting large terrains (Fig. 1 right). The only major difference
compared to our compressed, clustered meshes is that clusters at
each LOD level can be extracted from the grid structure directly.
No cluster merging is required. Besides, there is no need to store in-
dex buffers. For our implementation, we use a bilinear patch-based
compression scheme [BVW21], which is suited for grid-like topol-
ogy. It reduces the storage cost to ∼ 2.3 bytes per triangle.

The grid-like structure allows us to exploit another advantage of
our approach: As the cluster’s compressed vertex data are decom-
pressed into shared local memory (Sec. 4.2), we can modify the
vertices before converting them to the QBVH6 layout without addi-
tional memory traffic. This allows us to implement dynamic crack

(a) Shaded scene (b) Tesselation (c) Clusters
Figure 6: (a) 12 Thai Statues rendered using our LOD mechanism.
On nearby geometry (orange inset), results are detailed. The same
surface seen at a greater distance (red inset) shows minor artifacts.
(b) A red wireframe view reveals that many triangles at the lower
LOD (red inset) are actually larger in screen space than triangles
closer to the camera (orange inset). (c) Visualizing different clus-
ters in different colors shows that clusters on more distant geometry
are slightly smaller in screen space, unlike some of the triangles.

fixing at cluster boundaries (due to different LODs) and to blend
vertices between different LOD levels to support continuous LOD.
Our supplemental video shows the Landscape scene with continu-
ous LOD.

A similar approach also works for meshes with animated con-
trol points. Fig. 7 shows an animated model consisting of 52 k
patches (B-spline and Gregory patches). LOD heuristics select a
suitable tesselation level for each of the four (shared) patch edges.
The patch interior is tessellated according to the maximum of the
four edge levels. Then the tesselated patch is stored as lossy com-
pressed cluster with header (with up to 128 quads). At this point,
our usual per-frame processing generates a BLAS.

5.5. Limitations

Our system is a proof of concept focusing on fast BVH build and
compared to more mature technologies like Nanite, it has clear
shortcomings. At low LOD, our method sometimes yields too large
triangles on curved surfaces (Sec. 5.3). We also cannot simplify
meshes to an arbitrary extent (Tab. 1). A more sophisticated pre-
processing phase, possibly coupled with a wider DAG, might over-
come these problems. There is no streaming mechanism but it could
be added naturally. Efficient occlusion culling is more challenging.
For path tracing, we do not want to cull anything but we would
like to use a lower LOD for occluded surfaces. Nanite rasterizes
visible clusters from the previous frame into a hierarchical depth
buffer [KSW21]. It is not obvious how to do something similar for
ray tracing without building a BVH twice per frame.

For long diagonal geometry, e.g. branches of a tree, our dense
QBVH6 generation per cluster is rather inefficient in terms of BVH
quality and therefore ray tracing performance. The impact could be
largely mitigated by pre-splitting of long diagonal geometry before
partitioning it into clusters. An alternative is to perform the spatial
splits directly after decompression and to store out a larger QBVH6
to memory. However, this would increase the complexity of the
decompression kernel and lead to slower run-time.

Vertices are quantized with respect to the bounding box of their
geometric object (e.g. a single Thai statue). That ensures water
tightness for all clusters of a given geometric object but not across
different objects. It will also suffer from precision issues for objects
with a large spatial extent due to 16bit quantization per dimension.
The approach of Segovia et al. [SE10] could mitigate these issues
by aligning bounding boxes of geometric objects to a global grid
over the scene.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Figure 7: An animated model consisting of 52 k patches. It is ren-
dered with LOD by converting each patch into a compressed clus-
ter with the appropriate LOD for one frame. In this view, the 52 k
patches are tessellated into 1.01 M triangles. LOD selection, tessel-
lation (including crack-fixing) and cluster conversion take ∼0.5 ms.

6. Conclusions

Starting the BVH construction with small spatially coherent clus-
ters of quads is ten times faster than constructing a BVH over in-
dividual triangles. This immense speedup is made possible by a
preprocessing phase with clustering and compression. Arguably,
per-mesh preprocessing like that is acceptable in many cases. We
have demonstrated that this approach is useful for hierarchical level
of detail. Our proof of concept still has many shortcomings but
it shows that “Nanite with ray tracing” is more feasible than one
might think. The per-frame overhead of ≤ 9 ms is greater than the
cost of rasterizing a similar scene with Nanite, largely because writ-
ing a BVH to memory takes a lot of bandwidth, but it is not that far
from being practical. All of this is enabled by the fact that Embree 4
comes with an open-source BVH builder. Turning our technique
into a cross-vendor solution requires a standardization effort.

7. Future Work

There is room for improvement in our preprocessing phase
(Sec. 5.5). It would be interesting to feed our method directly with
clusters produced by Nanite. Nanite does not optimize for AABBs
with small surface area but its preprocessing may give better results
for ray tracing nonetheless. A mechanism similar to sampler feed-
back for sparse virtual texturing but based on ray differentials might
be an adequate replacement for occlusion culling. We already sup-
port dynamic, patch-based geometry (Sec. 5.4). To support skinned
triangle meshes, the main challenge is LOD selection.

From a general API perspective, we would like to investigate
how to extend the current DXR and Vulkan APIs to support our
approach. For that a standardized format for compressed geom-
etry clusters would be valuable. Applications could convert their
own geometry representation to this compressed format (either of-
fline or at run time). The DXR and Vulkan implementation in
the driver could decompress these geometries before building the

BLAS (Secs. 4.2 and 4.3). That places the interface at a point
where memory bandwidth requirements are low and flexibility is
high. Code written for such an API remains useful when the hard-
ware BVH layout changes. The main bottleneck of our method is
the bandwidth required to write cluster QBVH6s to VRAM. Thus,
we hope that future hardware will utilize more compact BVH lay-
outs. An API extension which allows the user to fuse multiple
BLAS together into a single BLAS (Sec. 4.3), without the usual
TLAS/BLAS separation, could also be valuable.

Acknowledgements

The Thai Statue is courtesy of the Stanford Computer Graphics
Laboratory, Rungholt is courtesy of kescha, the Landscape scene
is courtesy of Bartosz Domiczek, and the Barbarian model is cour-
tesy of Autodesk (Jesse Sandifer is the original artist).

Appendix A: Characterizing Valid Cluster Selections

The clusters which will be rendered by Nanite are defined by a
“view dependent cut of the DAG.” From the presentation [KSW21],
it is not entirely clear what requirements such a cut has to satisfy
and why that guarantees complete and crack-free geometry. It took
some effort to understand the details. In hopes that it will be use-
ful to others, this appendix explains our learnings and provides a
formal proof that the approach actually works as desired. We start
with some basic definitions about DAGs.

Definition 1. A DAG has a finite, non-empty set of nodes V con-
nected by directed edges E ⊂V ×V without cycles. In our context,
each node is a cluster of geometry. For a node v ∈V , consider its

parents P(v) := {p ∈V | (v, p) ∈ E},

children C(v) := {c ∈V | (c,v) ∈ E},

siblings S(v) := {s ∈V | P(v)∩P(s) ̸= ∅ or v = s}.

That means two siblings have at least one parent in common and
nodes qualify as their own sibling. We call the DAG an LOD DAG
if siblings have all parents in common, i.e. for all v∈V and s∈ S(v),
P(v) = P(s) (Fig. 8). Leaves are nodes with no children, roots are
nodes with no parents.

In our (and Nanite’s) hierarchical LOD DAG, the combined ge-
ometry for all leaves is the original mesh. By definition, the original
mesh is complete and crack-free. Now consider a cluster w ∈V that
is not a root. Its siblings S(w) are clusters that have been grouped
with w. The result of merging, simplifying and splitting these clus-
ters are the parents P(w) (Fig. 3c). Thus, the siblings S(w) describe
the same patch of geometry as the parents P(w) and the geometry
has the same boundary edges. If we have a complete and crack-free
selection of clusters G ⊆ V with w ∈ G and S(w) ⊆ G, removing
siblings of w and adding parents of w gives us another complete
and crack-free selection, but with lower level of detail.

That is a full description of what we can do without introduc-
ing problems but it is hard to reason about. Given a selection of
clusters G ⊆V , we have no good way to tell whether it is complete
and crack-free. In the following, we provide such a characterization
using elementary graph theoretic terms.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

9

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

Figure 8: A LOD DAG with 20 numbered nodes. 1 and 2 are sib-
lings. Their parents are 9 and 10. 3 and 4 are children of 11. The
circled nodes form a cut set G combining three different LODs.
Three paths are shown in different colors and each of them meets
this cut set exactly once. 12 and 13 arose through splitting but only
one of them is selected for the cut set. Thus, boundary edges created
by splitting separate clusters of different LOD.

Definition 2. A path through the DAG V is a sequence of nodes
v1, . . . ,vL ∈ V such that v1 is a leaf, vL is a root and for all i ∈
{1, . . . ,L−1}, vi+1 is a parent of vi. We call G ⊆V a cut set if each
path through the DAG meets exactly one node in G.

Cut sets can be thought of as a barrier between (or at) leaves and
roots that you encounter exactly once, no matter what path along
the edges you choose (Fig. 8). We will learn, that cut sets are ex-
actly the selections of clusters that yield complete and crack-free
geometry. First, we prove that the unproblematic operations identi-
fied above yield cut sets.

Proposition 1. The set of all leaves in an LOD DAG V is a cut set.
Let Tn ⊆ V be a cut set and let wn ∈ Tn be a node that is not a root
with S(wn)⊆ Tn. Then

Tn+1 := (Tn \S(wn))∪P(wn) (1)

is also a cut set.

Proof Each path contains exactly one leaf, so the set of all leaves
is a cut set. An arbitrary path v1, . . . ,vL ∈ V has exactly one node
vi ∈ Tn. If vi ∈ S(wn), vi /∈ Tn+1 but

vi+1 ∈ P(vi) = P(wn)⊆ Tn+1.

If vi /∈ S(wn), vi ∈ Tn+1 but since the path does not meet S(wn)⊆ Tn,
it does not meet P(wn) either. In both cases, the path meets Tn+1
exactly once, i.e. Tn+1 is a cut set.

Now we go the other way and show that each cut set can be con-
structed with these unproblematic operations.

Proposition 2. Let G ⊆V be a cut set in an LOD DAG V . Then G
can be constructed from the set of leaves by replacing siblings by
their parents repeatedly, as in Eq. 1.

Proof We will prove that the following algorithm terminates with
Tn = G:

Set T1 to the set of all leaves in V .
For n = 1,2, . . . until there is no wn ∈ Tn \G with S(wn)⊆ Tn:

Pick a wn ∈ Tn \G with S(wn)⊆ Tn.
Tn+1 := (Tn \S(wn))∪P(wn).

We prove by induction over n, that Tn is always a cut set and that
no path meets a node in G before a node in Tn.

Induction start, n = 1: The set of all leaves T1 is a cut set (Prop. 1).
Paths begin at leaves, so they meet T1 first.
Induction step, n → n+1: By the induction hypothesis, a path that
meets wn ∈ Tn \G meets G afterwards, so wn is not a root. Applying
Prop. 1, we find that Tn+1 is a cut set.
An arbitrary path v1, . . . ,vL ∈ V meets the cut sets Tn,Tn+1,G at
vi,v j,vk, respectively. We have to prove j ≤ k. By the induction
hypothesis, i ≤ k. If vi /∈ S(wn), v j = vi ∈ Tn+1 and hence j ≤ k.
Now consider the case vi ∈ S(wn). Let u1, . . . ,uK ∈V be a path that
meets wn = ul at an index l ∈ {1, . . . ,K}. It meets G after wn ∈
Tn \G. Then v1, . . . ,vi,ul+1, . . . ,uK is another path and it meets G
after vi. Therefore, vi /∈ G and thus k ≥ i + 1. And since vi+1 ∈
P(vi) = P(wn), i+1 = j. That completes the induction.
The algorithm must terminate because the graph is finite and
acyclic and in each step, at least one node (namely wn) is replaced
by its parents. If the loop ran long enough, it would eventually reach
roots and after additional steps Tn would be the empty set.
Now consider the situation upon termination. An arbitrary path
v1, . . . ,vL ∈ V meets the cut sets Tn,G at vi,vk, respectively. We
have proven i ≤ k. Assume that the path has been chosen such that
k− i is maximal.
Suppose i < k. Then vi ∈ Tn \G must have a sibling s ∈ S(vi) with
s /∈ Tn. Let u1, . . . ,uK ∈ V be a path that meets s = ul at an index
l ∈ {1, . . . ,K}. Then u1, . . . ,ul ,vi+1, . . . ,vL is another path. Since
vi ∈ Tn, vi+1, . . . ,vL /∈ Tn and therefore u j ∈ Tn for some j < l.
The index where the composited path meets G is k+ l − i. But that
means

(k+ l − i)− j = k+(l − j)− i > k− i,

which contradicts k− i being maximal. Thus, i = k for all paths and
therefore Tn = G.

Now we know that complete and crack-free selections of clusters
correspond to cut sets of the LOD DAG. Furthermore, we know
that we can construct them in a bottom-up fashion starting at the
leaves. However, our cluster selection works top-down. Thankfully,
the same proof works for that case:

Corollary 1. Let G ⊆V be a cut set in an LOD DAG. Then G can
be constructed from the set of roots by replacing parents and the
parents of their children by their children repeatedly.

Proof Reverse the direction of each edge of the DAG. That changes
nothing about which sets are cut sets and the graph is still an LOD
DAG afterwards. However, it turns roots into leaves, parents into
children and vice versa.

References

[BDTD22] BENTHIN C., DRABINSKI R., TESSARI L., DITTEBRANDT
A.: PLOC++: Parallel locally-ordered clustering for bounding volume
hierarchy construction revisited. Proc. ACM Comput. Graph. Interact.
Tech. 5, 3 (2022). doi:10.1145/3543867. 1, 6

[BM23] BICKFORD N., MORETON H.: Getting started with com-
pressed micro-meshes. In NVIDIA GPU Technology Confer-
ence (Mar. 2023). URL: https://register.nvidia.com/
flow/nvidia/gtcspring2023/attendeeportal/page/
sessioncatalog/session/1666430278669001BFSR. 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10

https://doi.org/10.1145/3543867
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666430278669001BFSR
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666430278669001BFSR
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666430278669001BFSR

C. Benthin, C. Peters / Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail

[BVW21] BENTHIN C., VAIDYANATHAN K., WOOP S.: Ray tracing
lossy compressed grid primitives. In Eurographics 2021 - Short Pa-
pers (2021), Theisel H., Wimmer M., (Eds.). doi:10.2312/egs.
20211009. 2, 8

[BWN∗15] BENTHIN C., WOOP S., NIESSNER M., SELGRAD K.,
WALD I.: Efficient ray tracing of subdivision surfaces using tessellation
caching. In Proceedings of High-Performance Graphics (2015), ACM.
doi:10.1145/2790060.2790061. 2

[DHW∗11] DJEU P., HUNT W., WANG R., ELHASSAN I., STOLL G.,
MARK W. R.: Razor: An architecture for dynamic multiresolution ray
tracing. ACM Trans. Graph. 30, 5 (2011). doi:10.1145/2019627.
2019634. 2

[HMF07a] HUNT W., MARK W., FUSSELL D.: Fast and Lazy Build
of Acceleration Structures from Scene Hierarchies. In Proceedings of
Symposium on Interactive Ray Tracing (2007), pp. 47–54. 7

[HMF07b] HUNT W., MARK W., FUSSELL D.: Fast and Lazy Build of
Acceleration Structures from Scene Hierarchies. In IEEE Symposium on
Interactive Ray Tracing (2007). 7

[IKH22] IKEDA S., KULKARNI P., HARADA T.: Multi-Resolution
Geometric Representation using Bounding Volume Hierarchy for
Ray Tracing. Tech. rep., Advanced Micro Devices, Inc., 2022.
URL: https://gpuopen.com/download/publications/
GPUOpen_BVHApproximation.pdf. 2

[Int21] INTEL CORPORATION: oneAPI programming model, 2021. URL:
https://www.oneapi.com/. 6

[Int23] INTEL CORPORATION: Embree 4.0, 2023. URL: https://
github.com/embree/embree. 2, 5, 6

[Khr20] KHRONOS GROUP: Vulkan Ray Tracing Extensions Specifi-
cation, 2020. URL: https://www.khronos.org/registry/
vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_
tracing.html. 1

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive
into Nanite virtualized geometry, 2021. in Advances in Real-Time
Rendering in Games: Part I (proc. SIGGRAPH courses). URL:
https://advances.realtimerendering.com/s2021/
Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf. 1,
2, 6, 8, 9

[MB18] MEISTER D., BITTNER J.: Parallel locally-ordered clustering
for bounding volume hierarchy construction. IEEE Transactions on Vi-
sualization and Computer Graphics 24, 3 (2018). doi:10.1109/
TVCG.2017.2669983. 3

[Mes23] Mesh optimizer, 2023. URL: https://github.com/
zeux/meshoptimizer. 3

[Mic20] MICROSOFT: DirectX Raytracing (DXR) Functional
Spec, 2020. URL: https://microsoft.github.io/
DirectX-Specs/d3d/Raytracing.html. 1

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A Survey on Bounding Volume Hierarchies
for Ray Tracing. Computer Graphics Forum 40, 2 (2021). doi:
10.1111/cgf.142662. 3

[SE10] SEGOVIA B., ERNST M.: Memory efficient ray tracing with
hierarchical mesh quantization. In Proceedings of Graphics In-
terface (2010). URL: https://dl.acm.org/doi/10.5555/
1839214.1839242. 2, 8

[YLM06] YOON S.-E., LAUTERBACH C., MANOCHA D.: R-lods: Fast
lod-based ray tracing of massive models. The Visual Computer: Inter-
national Journal of Computer Graphics 22 (2006). doi:10.1007/
s00371-006-0062-y. 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

11

https://doi.org/10.2312/egs.20211009
https://doi.org/10.2312/egs.20211009
https://doi.org/10.1145/2790060.2790061
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/2019627.2019634
https://gpuopen.com/download/publications/GPUOpen_BVHApproximation.pdf
https://gpuopen.com/download/publications/GPUOpen_BVHApproximation.pdf
https://www.oneapi.com/
https://github.com/embree/embree
https://github.com/embree/embree
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_tracing.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_tracing.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_tracing.html
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://doi.org/10.1109/TVCG.2017.2669983
https://doi.org/10.1109/TVCG.2017.2669983
https://github.com/zeux/meshoptimizer
https://github.com/zeux/meshoptimizer
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1111/cgf.142662
https://dl.acm.org/doi/10.5555/1839214.1839242
https://dl.acm.org/doi/10.5555/1839214.1839242
https://doi.org/10.1007/s00371-006-0062-y
https://doi.org/10.1007/s00371-006-0062-y

