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Abstract
We present an acceleration structure to efficiently query the Signed Distance Field (SDF) of volumes represented by triangle
meshes. The method is based on a discretization of space. In each node, we store the triangles defining the SDF behaviour in
that region. Consequently, we reduce the cost of the nearest triangle search, prioritizing query performance, while avoiding
approximations of the field. We propose a method to conservatively compute the set of triangles influencing each node. Given a
node, each triangle defines a region of space such that all points inside it are closer to a point in the node than the triangle is.
This property is used to build the SDF acceleration structure. We do not need to explicitly compute these regions, which is crucial
to the performance of our approach. We prove the correctness of the proposed method and compare it to similar approaches,
confirming that our method produces faster query times than other exact methods.
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1. Introduction

A model may be stored using several representations, each with
their own set of advantages and disadvantages. One possibility is
to use a Signed Distance Field (SDF), which encodes more infor-
mation than just the boundary, allowing to easily obtain offset sur-
faces. SDFs may also be used to accelerate raytracing, collision
detection, improve ambient occlusion culling, and they are a pop-
ular way of encoding shape as input as well as output for neural
networks.

The literature is full of different methods that may be used to
compute SDFs. One way is to precompute a discretization of the
field, either a regular grid or a hierarchical subdivision of space.
Queries may then be estimated by interpolation of the precomputed
samples [XB20]. Another option is to fit independent polynomial
functions to each region of the discretized field using quadratures.
This option [KDB16] produces better results as it captures more
of the original SDF. These discretizations are good for problems
where low resolution is enough. In particular, for techniques based
on raycasting, anything other than primary and shadow rays is a
perfect fit.

An alternative is to compute the distance for every query, thus
making acceleration critical [MHN03]. For triangle meshes, the dis-

tance from a query point to the mesh is the distance of that point to
the closest triangle. As such, one solution is to use Bounding Vol-
ume Hierarchies (BVH) or a hierarchical subdivision of space, sim-
ilarly to the approaches used to accelerate proximity queries. Such
solutions are conservative in the triangles that are checked given a
query point. A subset of the triangle mesh will be considered for
distance computation, with the closest triangle guaranteed to be in
that subset.

Provided that we could have access to the Voronoi diagram of the
elements of the triangle mesh, it would be possible to find which re-
gion the query point is in, and compute the distance from the point
to the mesh element corresponding to the found region. Clearly
this is not an option because of the cost of computing, storing, and
querying the Voronoi diagram of anything other than a small trian-
gle mesh.

In this paper, we propose an alternative. The field is hierarchically
subdivided using an octree, and each node contains a list of all the
triangles that are the closest to at least one point inside that node (see
Figure 1). Once this structure is computed, a distance query only
needs to find the node it is in, and compute which of the triangles
listed in that node is closest. The hierarchical structure is computed
top-down, assigning the full mesh to the root node, then recursively
subdividing a node if its triangle list size is above a threshold. Each
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Figure 1: Given a triangle mesh, we compute an octree that, for every terminal node, contains a conservative list of the triangles needed to
compute the signed distance between a point inside that node and the input mesh. A planar section of the signed distance field of the Armadillo
model (left and middle images) computed using our method is shown. The field values are expressed with respect to the longest axis of the
bounding box. On the right image, the octree nodes intersected by the same plane are shown. The colour of a node represents the amount of
triangles relevant to the computation of distances inside it. For this figure the octree’s depth is limited to six levels.

time a new node is created, it inherits the triangle list of its parent
and discards any triangles that are no longer relevant to compute the
SDF inside that node.

The resulting structure allows for exact queries to be performed
conservatively and efficiently. Even though approximate methods
outperform it, many of them still require to query the SDF ex-
actly during their construction stage. For example, the approach
by Koschier et al. [KDB16] needs to evaluate exact distances to
compute the needed quadratures. This makes it possible to min-
imize the error between the polynomials they compute and the
exact SDF. Also, as the performance of our method scales bet-
ter than volume hierarchy approaches, it is particularly suited to
evaluate the precision of approximate methods. Finally, given a
query point, the algorithm returns the closest primitive (vertex,
edge, or triangle), which may be used to derive the exact gradi-
ent of the SDF, as well as, the closest point of the input triangle
mesh.

In summary, the technical contributions presented in this paper
are:

• An acceleration structure that, for each node, stores the triangles
that are relevant to the computation of the SDF inside that node.

• An algorithm for checking if the distance between two arbitrary
convex shapes is smaller than a threshold.

• A way to efficiently and conservatively discard triangles that are
not relevant to the SDF computation inside a cuboid node.

In the following sections, we present the method used to discard
triangles in detail. We prove that it is conservative, and we show
its behaviour on different triangle meshes. We also show that our
solution outperforms querying times of similar approaches.

2. Previous Work

There are many methods for computing signed distance fields from
triangle meshes, depending on the intended application [JBS06].
We can distinguish between algorithms that focus on accelerating
signed distance queries at arbitrary points, and others that compute
a discretization of the field. Usually, this second type use the dis-
cretization to compute an approximation of the signed distance at
any point in space.

Signed distance fields find many applications in computer graph-
ics. They are useful for computing geometrical operations like off-
sets, spherical dilations and erosions [LW11]. They can also be ap-
plied to efficiently extract the medial axis of a model [XT10], which
may be used for automatic rigging [PYX*09] and shape segmenta-
tion [LLL*22]. Surface reconstruction is also possible by fitting a
signed distance field to the input, then extracting the resulting sur-
face [CT11]. Signed distance fields may also be rendered [Har96]
or even used to improve rendering by providing better approxima-
tions of ambient occlusion [Eva06] and soft shadows [TCKB22].
One of themain applications of SDFs is collision detection. They are
useful to detect and solve collisions between solid objects and flu-
ids [MM13] or deformable models [MEM*20]. Finally, SDFs have
been popular as a 3D shape representation for the input and/or out-
put of neural networks [PFS*19, WLL*21, YGKL21, TLY*21]. All
these applications depend on the precision of the scalar field. For
methods based on a pre-discretization of the field, this depends on
the resolution.

Not all the triangle meshes represent solid volumes. In this paper,
we focus on SDF algorithms that work with well-defined meshes.
A mesh represents a valid solid if it is a closed orientable two-
manifold mesh. In a well-defined triangle mesh, the distance to an
arbitrary point is equal to the distance to the nearest triangle. Also,
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the field sign can be calculated using only the nearest triangles us-
ing pseudonormals as shown in [BA05]. When dealing with non-
manifold meshes, where the inside/outside is ill-defined, it is possi-
ble to use winding numbers [BDS*18], but inconsistent orientation
and geometry duplication may still cause problems. An alternative
is to exploit an offset of the input geometry to compute an effective
SDF [XB20]. Despite accuracy being the main concern, in some
applications like blending, the fact that SDFs are C1 discontinuous
may cause artifacts. Sanchez et al. [SFFP15] proposed to use con-
volution filtering to address this issue.

Methods focused on computing the triangle mesh distance at ar-
bitrary points usually create a volume hierarchy of the mesh to ac-
celerate the nearest triangle search. Maier et al. [MHN03] use a
method based on spheres hierarchies to accelerate the nearest primi-
tive search. This approach constructs a sphere hierarchy in a bottom-
up style to calculate theminimumdistance. During a search, it tracks
the minimum upper bound distance found, and uses it to avoid vis-
iting distant nodes. The approach in [CGA] uses a hierarchy of ori-
ented bounding boxes, and a priority queue to traverse the hierar-
chy. An upper bound strategy is used to limit the number of inserted
nodes in the queue. Both methods traverse unnecessary nodes be-
cause of the minimum upper bound, which is used to reduce the
number of visited nodes, and is calculated during the traversal. Most
of these methods are good when querying distances for points near
the surface. But, perform poorly when the query point is far from
the surface because they have more geometry in radius and have to
traverse more branches of the hierarchy.

An alternative is to discretize the SDF field, sampling it, and inter-
polate the resulting samples during querying. Computation may be
accelerated depending on the structure of the sampling. In order to
compute these samples efficiently, we may rasterize the Voronoi re-
gions of the elements of the mesh [Mau00]. These methods rasterize
the Voronoi region of every triangle, edge and vertex of the triangle
mesh. The grid value is only updated if the distance is smaller than
the previous one. This approach is especially efficient when it com-
putes distances to points near the surface. Graphics hardwaremay be
used to accelerate SDF computation on a grid. Sigg et al. [SPG03]
proposed such an approach based on the CSC algorithm [Mau00],
which is particularly efficient in narrow bands of manifold meshes.
DiFi [SOM04] is another approach that rasterizes the SDF in a uni-
form grid on the GPU. The algorithm rasterizes the whole triangle
mesh Voronoi cells by slices orthogonal to the z-axis in an itera-
tive way. The results obtained in one slice are used to reduce the
number of regions to rasterize in the next one. Sud et al. [SGGM06]
also contributed a GPU accelerated algorithm that provides better
bounds for the Voronoi regions of the input primitives, while reduc-
ing the bandwidth used between CPU and GPU.

Additionally, the SDFmay be sampled close to the surface, where
queries are most efficient, then the field may be propagated on a uni-
form grid. Fast Marching [Set96] starts by initializing the distances
of grid points close to the surface to their exact value, and the rest
to a large constant value. Then, the method updates the grid values
until the Eikonal equation is fulfilled along the grid, which forces
the distance field gradient to be always zero. The method can re-
quire a lot of solver iterations until convergence. The Fast sweeping
method [Zha04] is an extension of the Fast Marching, which re-
duces the number of required iterations to reach convergence. The

main advantage is that the complexity of the algorithms depends on
the grid size, not on the number of triangles. But the propagation in-
troduces errors because the distance field is only propagated in some
directions. In many applications, a precise distance is only needed
in a band close to the surface. In these cases, using a sparse grid
representation [SABS14] improves the performance as well as the
memory cost. In other cases, we may need to have high detail far
away from the surface, but still in a sparse subset of the space. For
these cases, Museth [Mus13] proposed VDB, which is quite popular
in the film industry for volumetric applications.

Finally, Koschier et al. [KDB16] proposed an approach that rep-
resents the SDF of an input mesh using piecewise polynomials for
each of the cells of an octree. Precision is achieved via a combina-
tion of finer subdivision of the cells that require it, and an increase of
the degree of the approximating polynomials. Their method is able
to produce very accurate SDFs, while consuming a small amount
of memory. Still, the inherent discontinuity between cells may only
be reduced using very small target errors. Also, their method needs
an efficient way of sampling the SDF of the input mesh during con-
struction, a step in which our approach could help.

3. Outline

The input of our algorithm is a closed orientable two-manifold tri-
angular mesh. From it, we compute an acceleration structure based
on an octree. We start with its root node and all the triangles in the
mesh. Each time we subdivide an octree node, we pass the triangles
in that node to its children, and each of them discards any triangles
that do not influence the distance computation inside them. Given
an octree node R, a way to discard a triangle Tf is to find another
triangle Tc that is closer to all points of R than Tf (see Figure 1).

Let us define a region R∗
Tc
such that:

R∗
Tc

=
⋃
x∈R

S(x, d(x,Tc))

where S(x, r) is the set of points contained by a sphere centred at
x and radius r, and d(x, Tc) is the unsigned distance between point
x and triangle Tc. Then, R∗

Tc
contains all the points that are closer

to a point in R than Tc is. Or, more useful for us, if another trian-
gle Tf does not intersect R∗

Tc
, then it is farther from all points of R

than Tc is. We could use this to test pairs of triangles and determine
which ones may be discarded. But computing R∗

Tc
and testing it for

intersection with another triangle is too expensive. Instead, we use
RCHTc , a superset of R

∗
Tc
(see Appendix A for a proof that it is indeed

a superset, and Figure 1c for an example):

RCHTc = CH(
⋃

i, j,k∈{0,1}
S(ci jk, d(ci jk, Tc)))

where CH(C) is the convex hull of C and the eight points ci jk are
the corners of the node R. Therefore, RCHTc is the convex hull of the
eight spheres centred at the corners of R with their respective radii
equal to the unsigned distance between the corresponding corner
and triangle Tc.

AsRCHTc is a superset ofR∗
Tc
, if there is no intersection between RCHTc

and another triangle Tf , we may discard Tf . Thus, this new region
leads to a conservative test. Also, RCHTc is a relatively tight superset
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Figure 2: 2D comparison between regions RCHTc and R∗
Tc
. (a) shows region R with its four corners ci j, as well as segment Tc. In (b) the distances

from Tc to corners ci j are used to build RCHTc . Finally, in (c) R
CH
Tc

is a superset of R∗
Tc
. Any segments that do not intersect RCHTc , cannot intersect

R∗
Tc
either. For example, segment Tf1 does not intersect R

CH
Tc
, which means it does not intersect R∗

Tc
either, and so there is no point in R that is

closer to Tf1 than it is to Tc. Thus, Tf1 is not needed for distance queries performed inside R.

of R∗
Tc
, as shown in Figure 1c. Finally, as we will see in the next sec-

tion, RCHTc is a convex region and intersections with it may be tested
using methods like GJK [Jov08], that do not require for RCHTc to be
explicitly computed. This is key to the performance of the proposed
algorithm. In Section 4, we describe how to test for the intersec-
tion between RCHTc and Tf efficiently. In Section 5, we show how to
avoid checking every pair of triangles when discarding redundant
triangles from an octree node.

Using the resulting acceleration structure to speed up distance
computations is then quite simple. For the query point, we search the
octree leaf node that contains it. Then, we compute the signed dis-
tance to each of the triangles inside that leaf node, and keep the one
with the smallest absolute value. In order to guarantee that the sign is
computed correctly, we use the pseudonormals described in [BA05].

4. Intersection Test

One option to efficiently test if two convex shapes A and B inter-
sect is to use the GJK algorithm. Its main advantage is that it does
not need the geometry of the two shapes. Instead, it checks if the
origin intersects (is inside) the corresponding Configuration Space
Obstacle (CSO) of A and B, which is theirMinkowski difference. To
do this it only needs sCSO(A,B)(v), the support function of the CSO,
which can be derived from the support functions of the shapes A
and B:

sCSO(A,B)(v) = sA(v) − sB(−v)

Figure 2 contains an example of the Minkowski difference be-
tween convex polygons. Also, the figure illustrates how to compute
the support function in a specific direction. In the example, the two
polygons are not intersecting, therefore, the CSO does not contain
the origin. When they do not intersect, the distance between the two
polygons is equal to the distance between the CSO and the origin.
GJK builds simplices (in our case, points, segments, triangles, and
tetrahedra) contained in the CSO, that are progressively closer to the
origin. If it finds that the origin is inside the current simplex, then it
is inside the CSO, and the objects used to build it intersect. At each

Figure 3: Example showing the Minkowski difference between two
polygons, A and B. d is the minimum distance between the two poly-
gons.

step it looks for the direction of minimum distance between the cur-
rent simplex and the origin, determines which is the support point
furthest in that direction, and builds a new simplex using it. Figure 3
illustrates this process.

As we want to check if there is an intersection between RCHTc and
another triangle Tf , we may use GJK to avoid having to compute
RCHTc explicitly. Instead, we need to be able to find the furthest point
of RCHTc along a direction v, i.e. its support function sCH (v). Since
RCHTc is the convex hull of eight spheres, its support function may
be computed by combining the result of the support functions of all
eight of them (see Figure 4b).

GJK is very efficient, but needs testing at each iteration which
Voronoi region of the simplex contains the origin. This requires
several dot and cross products. An alternative is to use Frank-
Wolfe [MLSC22], as determining if the origin is inside a convex
set can be reformulated as a constraint convex problem. The Frank-
Wolfe algorithm searches a point x inside a convex set D that mini-
mizes a function f (x). Given a start point x0 inside D, Frank-Wolfe
computes the new point value as:

xn+1 = xn + α(sD(−∇ f (xn)) − xn)
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Figure 4: GJK iteration example

In our particular case, the convex set D is the CSO of RCHTc and
triangle Tf , while function f is:

f (x) = ‖x‖, ∇ f (x) = x
‖x‖

the distance to the origin, as we want to check if it is insideD. This is
equivalent to theGJK solution described previously, that also checks
if the origin is inside the CSO of RCHTc and triangle Tf .

Because of this, we can calculate the optimal step value for
Frank-Wolfe as the projection of the origin to the line xn +
α(sD(−∇ f (xn)) − xn), because the projection of a point to a line
represents the nearest point inside the line. We need to clamp the α

value to 1 to avoid going outside the set D when the projection of
the origin is outside D. Therefore, we can define the optimal α as:

α = min

(
1,

−xn · d
‖d‖2

)

where d = (sD(−∇ f (xn)) − xn is the Frank-Wolfe descend direc-
tion. In Figure 5 we have an example of one iteration minimizing
the distance to the origin.

This iteration step is repeated until we are close enough to the ori-
gin to determine that it is inside D, or we reach a maximum number
of iterations (15 in our implementation) and decide that it is out-
side. In the second case, as the origin is outside the CSO of RCHTc and
triangle Tf , we determine that RCHTc and Tf intersect. If the origin is
inside D, but we do not reach it because not enough iterations are
performed, this would only result in considering that triangle Tc does
not make Tf redundant. Using triangles in an octree cell that do not
determine the distance field inside it does not change the computed
distances, so using the resulting octree to accelerate the distance
field querying is a conservative solution. Also, as the method only
descends towards the support points, we need to add a threshold to

Figure 5: (a) Construction of RCH in 2D. (b) Support point compu-
tation of RCH in direction v. The support points of the eight spheres
are computed, and any of the furthest along v is returned.

Figure 6: Frank-Wolfe iteration example. The negative gradient of
the minimization function is the vector pointing to the origin. The
orange point is the support point in this direction. Notice the algo-
rithm moves x to the projection of the origin in the support point
direction.

specify when the current point xn is close enough to the origin. For
that, when the distance between the current point xn and the origin
is smaller than δ, we stop iterating. As δ has to be close to zero to
discard as much as possible, we will need a relatively large amount
of iterations to detect that the origin is inside D.

However, for the particular test we are performing, there is an op-
portunity to improve its performance. Remember that we are test-
ing if RCHTc and Tf intersect by checking if the CSO of RCHTc and Tf
includes the origin. But RCHTc is the convex hull of the eight spheres
centred at the corners of R with their respective radii equal to the
unsigned distance between the corresponding corner and triangle
Tc. If the smallest of those distances dmin is larger than zero, then
we can erode RCHTc by dmin to obtain �RCHTc . Thus, the intersection
test is equivalent to checking if the distance between Tf and �RCHTc
is smaller than dmin. Using Frank-Wolfe, our region D becomes the
CSO of �RCHTc and Tf , the function to optimize is still the distance
to the origin, but our δ becomes the minimum radius dmin. In fact,
we do not need to explicitly compute the erosion. The new region
�RCHTc is just the convex hull of the same eight spheres as RCHTc , but
decreasing the radii by dmin (see Figure 6).

We also add a stopping criterion for the case when the distance
to the origin is greater than δ. In each iteration, the Frank-Wolfe
method searches the support point in the negative gradient direction,
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Figure 7: RCHTc spherically eroded by the minimum sphere radius
(d00) to obtain �RCHTc .

Figure 8: In 7(a), we stop when the current point is in radius.
In 7(b), we stop because we determine that the set is out of radius.
The yellow point is the support point in the negative gradient direc-
tion. Notice that the projection of the support point in the gradient
direction is not in radius, therefore, the gradient direction is a sep-
arating axis.

which we will call v. If, in one iteration, the distance between the
support point and the origin in the direction v is bigger than δ and
the support point may be found before the origin in the direction v,
then the convex shape does not have the origin in radius δ, and we
can stop the Frank-Wolfe execution. This is because v is a separating
axis between the set and the sphere centred at the origin with radius
δ. Figure 7 illustrates both stopping criteria.

Notice that larger values of δ make it easier for Frank-Wolfe to
stop early, but they depend on the distances of Tc to the corners of
R. For example, if for a region RCHTc triangle Tc is touching one of the
corners of R, then the minimum sphere radius will be zero. How-
ever, even when δ is zero, the method can still detect not intersecting
triangles. Despite the existence of these cases, the method performs
well. In our tests, using Frank-Wolfe wasmore than two times faster,
despite the fact that our Frank-Wolfe implementation discards be-
tween 1% and 2% less triangles per node than the method based
on GJK. This speed improvement is mainly caused by the iteration
of Frank-Wolfe being cheaper, but also because the method needs
fewer iterations (see Figure 8).

Figure 9: Percentage of calls solved in a given number of iterations
using the frog model. In almost 80% of cases, Frank-Wolfe needs a
single iteration to determine the result.

5. Discarding Triangles

The test we have proposed may be used to determine if a single tri-
angle makes another one redundant for the computation of distances
inside a cuboid region. Every time we subdivide an octree node R,
we could directly use it by comparing each pair of triangles, but this
would be prohibitive. Another option would be to combine all RCHTc
of all triangles assigned to the node. The resulting shape would be
convex, but computing the support vectors would be expensive. In-
stead, we have designed some heuristics to reduce the number of
comparisons needed.

When processing the triangles a node R inherits from its parent,
many of the corresponding regions RCHT are inside others. This leads
to unnecessary region tests that we need to avoid. To reduce them,
we first pass through all the triangles assigned to the node and com-
pute the closest triangle Ti jk to each of the corners ci jk of the node.
We only use those when discarding triangles from the list. Using
only a subset of the triangles assigned to node R, may result in some
triangles that are not relevant to distance computation inside R not
being discarded. But all the discarded triangles will be redundant,
thus producing a conservative list of triangles to assign to node R.
Once this subset has been selected all triangles inherited from the
parent of R are tested against a subset of these eight triangles Ti jk.
Which of these are used depends on two factors. One, when test-
ing if a triangle T from the list may be discarded, we use the trian-
gles Ti jk of the n corners closest to T . Two, to find the corners clos-
est to T , we may check the distance between them, which requires
a point/triangle distance computation, or we may use the distance
from the corner to the centroid of T , which is cheaper. In Figure 9we
show the effect of combining these options. As using the 1-corner
centroid heuristic gave the best results, we use this combination for
the rest of the paper.

Figure 10 is a 2D example showing all the steps done for discard-
ing triangles. Subfigure 10a represents the selection of the triangles
Ti jk for each corner ci jk of region R. The other two illustrate the re-
gions RCH of the different Ti jk triangles (in this case, two different
triangles), and the triangles tested and discarded by each region us-
ing the heuristic 1-corner. Notice that if all the triangles were tested
with only the green region, one triangle would not be discarded.
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Figure 10: Octree build times with different triangle filtering strate-
gies. Only the triangles closest to n of the eight corners of a node
are used. In the options marked as centroid, distances to triangles
are computed to centroids.

Figure 11 illustrates the performance of our approach when dis-
carding triangles from a node. The sampling strategy serves as a
reference of the optimal solution, which would be too expensive to
compute. With this, we build the octree by subdividing nodes un-
til the number of triangles assigned to a node falls below a given
threshold, or we reach a predetermined maximum depth. We also
tested the option of stopping node subdivision when it did not re-
duce the triangles assigned to children substantially, but the final
performance was similar.

In the end, only the leaf nodes would contain the lists of trian-
gles that are needed to compute distances for points that fall inside
them. Still, as triangles are contained in the list of numerous nodes,
the generated octrees would occupy a large amount of memory. As
an example, stored this way, the octree for the Armadillo model (us-
ing the same parameters as shown in Table 1) occupies more than
600 MB. To reduce this cost without too much of an impact over
query performance, we store the triangle lists differently. Leaf nodes
whose depths are two steps higher or more than the maximum, store
their triangle lists directly. Interior nodes at exactly two levels higher
than the maximum depth, store the union of the triangle lists of all
their respective successor leaf nodes. Then, nodes below that level
store a bit vector that encodes which triangles from their parent are

relevant to them. For the same example (Armadillo model), this new
encoding only uses 185 MB. Of course, query times are impacted,
as the triangle lists of some leaf nodes need to be decoded, but our
tests show that query times grow less than 20%.

6. Results

All the timings in the paper were obtained on an Intel(R) Core(TM)
i5-9600K with 16 GB of RAM and a Geforce RTX 2060 with 6 GB.
Query times are the result of averaging the time needed to solve
signed distance field queries at arbitrary points inside the octree
bounding box.

As may be expected, changing the maximum number of trian-
gles in terminal nodes impacts both the time required to build the
octree and the resulting query times. As shown in Figure 12, in-
creasing this threshold decreases the octree building time but in-
creases the average triangles per node and the query time. Notice
that the building time does not decrease linearly, while the other
two seem to have a more linear behaviour. In general, leaf nodes
tend to follow the medial axis of the input model (see Figure 13).
Nodes that are close to several parts of the mesh will have more tri-
angles influencing them, which will result in more subdivision of
the octree.

We have also compared our acceleration structure with simi-
lar algorithms. We tested two other methods, one based on the
signed distance field computation using sphere volume hierarchies
(SVH) [MHN03], and another based on using axis-aligned bound-
ing box volume hierarchies. The last one is incorporated inside the
CGAL library (CGAL BVH [CGA]).

In Table 1, we compare these two methods with our strategy. Im-
ages of the used models may be found in Figure 14. As we can
see, the other methods are much faster computing their structure be-
cause they only need to compute a hierarchy of the triangles. How-
ever, our method can achieve faster times in queries with an aver-
age speed-up of more than ten times. Our method is better when

Figure 11: Example showing all the steps made in the discarding process. (a) shows the selection of the nearest triangles to each vertex of
the node. In this case, the green and the orange triangles are the nearest ones. (b) and (c) illustrate the discarding step using the green and
orange triangle RCH region using the 1-corner heuristic (only test triangles with the nearest node vertex). The discarded triangles are marked
in red. The grey triangles are not tested with the region because they are nearer to other node vertices.
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Table 1: Running times of our method and other approaches with different models. Building columns reflect the time taken to build the corresponding data
structure using 1 thread (1T) and 6 threads (6T), while the Query columns do the same for the query operation.Max. depth is the maximum octree depth and
Max. triangles is the maximum of triangles to stop a node subdivision.

Models Our method CGAL SVH

Name Num. triangles Max. depth Max. triangles Building (1T) Building (6T) Query Building Query Building Query

Armadillo 345, 944 8 32 151 s 27.98 s 1.42 us 0.01 s 31.43 us 0.87 s 25.29 us
Happy 814, 216 8 64 269 s 72.5 s 1.98 us 0.04 s 41.74 us 2.7 s 45.35 us
Frog 390, 978 8 64 201.12 s 39.5 s 1.83 us 0.01 s 47.18 us 0.94 s 40.01 us
Bunny 70, 346 8 32 40.45 s 7.69 s 0.87 us 0.003 s 17.83 us 0.12 s 13.16 us
Crankshaft 1, 496, 720 8 128 605.56 s 137.2 s 4.28 us 0.06 s 68.67 us 5.3 s 81.5 us
Dragon 7, 218, 906 8 256 1637.76 s 340.14 s 5.1 us 0.22 s 47.73 us 25.58 s 54.2 us
Boolean 16, 922 8 32 19.06 s 3.77 s 0.64 us 0.001 s 13.76 us 0.022 s 30.97 us
Temple 151, 328 8 32 21.36 s 4.69 s 0.37 us 0.004 s 4.79 us 0.273 s 8.14 us

Figure 12: Triangles influencing a node with different strategies.
Using the distance to the point inside the node furthest from the
surface (By radius) returns 8521 triangles. Using our method re-
turns 976 triangles. And sampling the node and finding the closest
triangles to those samples returns 188 triangles.

the user needs fast distance queries or when it needs to do a large
amount of calls. For example, for the Armadillo model, and com-
paring to SVH, our method starts taking less time (adding up octree
building and query time) when the user needs to make more than 6.3
million queries. The first six models of the table are high-resolution
models made of small triangles. The Boolean model contains very
thin and large triangles, while the Temple model combines triangles
of different sizes, with its main structure made with big triangles,
and the columns using smaller ones to capture its details. As we can
see in the results, our method performs well on these type of ge-
ometries. Notice that the SVH method is not performing well with
the Boolean model because the thin and large triangles are diffi-

Table 2: Memory cost of our method and other approaches with different
models.

Model name Our method CGAL SVH

Armadillo 185.07 MB 20MB 91.4 MB
Happy 318.28 MB 42.38 MB 214.76 MB
Frog 260.57 MB 21.53 MB 103.32 MB
Bunny 66.68 MB 3.5 MB 18.65 MB
Crankshaft 513.58 MB 76.215 MB 394.406 MB
Dragon 2051.93 MB 360.78 MB 1901.1 MB
Boolean 32.94 MB 1.4 MB 4.5 MB
Temple 34.99 MB 8.49 MB 39.82 MB

cult to encapsulate in spheres. We have also included timings for
our single-threaded and multi-threaded versions of the construction
phase. The parallelization is done by dividing the work into tasks.
We create a task for each node at a fixed depth during the top-down
construction. For all the construction timings in Table 1 we created
a task for each node at depth 3, creating a group of 512 tasks to
distribute between 6 threads. Table 2 compares the memory cost of
our method to SVH and CGAL BVH. As triangles are contained in
many nodes of the resulting octree, it has a larger memory cost than
the other approaches.

Ourmethod is faster than SVH andCGALBVH, but its behaviour
depends on the distance between the query point and the triangle
mesh. This effect is displayed in Figure 15, where larger perfor-
mance increases are achieved when the query is performed far from
the mesh. Comparing our method to the approximate approach of
Koschier et al. [KDB16], the authors report 270 s to build their data
structure for the Armadillo model on a 24-core machine and 0.47
us to query it, while having a much smaller memory footprint than
our approach.

We compare our approach with the approximate method included
in OpenVDB, which is based on VDB [Mus13]. The algorithm
computes a sparse grid containing the distances to the surface.
These are computed using flooding of the nearest triangle indices
from the closest nodes to the model surface. After computing
the structure, the value of the distance field in a point is linearly
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Figure 13: Results using different maximum number of triangles per leaf with the Armadillo model (345,944 triangles).

Figure 14: Images of all the models used in Tables 1 and 2.
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Figure 15: Speedup achieved by our method with respect to others
(SVH and CGAL BVH) at different distances from the input mesh
(Frog in this case).

Figure 16: OpenVDB distance field algorithm absolute error. The
selected slice is the same as the one used on Figure 14. The error is
expressed with respect to the voxel size.

interpolated using the nearest nodes. Table 3 shows the timings and
errors produced using this algorithm with different resolutions. As
expected, the building and query times are smaller than using our
method. The last two columns are the MAE (Mean Absolute Error)
and the maximum error. These errors are expressed with respect
to the voxel size used in OpenVDB. As expected, as the resolution
increases, the linear interpolation captures the field better, and
MAE is reduced. However, the maximum error increases because
the flooding algorithm fails in some specific cases. The error was
computed by taking 20 million samples inside the model bounding
box with some extra margins and using our method as a ground
truth. For this task, and due to the large number of samples used,
our method was faster than the other exact methods. Including
building time, our method takes 56 s to compute the error, CGAL
takes 887 s, and SVH takes 716 s. In Figure 16, we can see the error
distribution on a slice of the armadillo model. Notice that larger
errors tend to be found in the medial axis of the model. Increas-

Table 3: Time taken byOpenVDB to compute an approximate distance field,
as well as the error of the resulting field. The resolution represents the voxels
used to cover the sampling. The error columns are expressed with respect to
the OpenVDB voxel size used.

Model Resolution Building Query MAE
Max
error

Armadillo 64x64x64 1.25 s 0.129 us 0.023 0.87
128x128x128 1.42 s 0.2 us 0.01 0.91
256x256x256 5.2 s 0.32 us 0.0083 3.41

Dragon 64x64x64 4.96 s 0.129 us 0.021 4.98
128x128x128 5.46 s 0.2 us 0.014 10.25
256x256x256 8.83 s 0.32 us 0.009 20.48

Table 4: Execution time for the computation of the offsets of Figure 17. The
isovalue is expressed as a percentage of the diagonal of the bounding box of
the input model.

Isovalue Our method SVH Speed-up

5% 37.58 s 281.35 s 7.49
3% 35.87 s 225.62 s 6.29
1% 32.64 s 161.73 s 4.95

−1% 23.3 s 114.13 s 4.9
−3% 11.27 s 74.53 s 6.61
−5% 3.93 s 35.9 s 9.13

ing the resolution makes these regions thinner, but they are still
present.

We have also directly tested our approach on two applications:
offset computation and collision detection. In Figure 17 we have
taken the Armadillo model and computed several offsets. Table 4
compares the time taken to extract the isosurfaces of these when the
SDF is computed using either our approach or SVH. The algorithm
used to extract the isosurface is the one included in CGAL [BO05].
We have also tested our method for collision detection in a particle
simulation. The scene is shown in Figure 18 and is composed of four
objects, adding up to 927K triangles, and 700 particles. Construction
of our data structure takes 335.84 s, while SVH needs only 3.87 s.
However, the physics iteration takes an average of 7.6 6ms when
using our method, while using SVH takes 30.84 ms.

7. Conclusions

We have presented a data structure that accelerates distance
computation to triangle meshes. Using an octree we subdivide
space into regions and conservatively determine which triangles
influence distance computation inside each of them. In order to
make this process efficient, we have introduced a test to determine
if a triangle makes other triangles redundant to the SDF inside a
convex region. This test requires a potentially expensive check for
intersection between a convex shape and the candidate triangle.
Still, applying a Frank-Wolfe solver combined with ideas from the
GJK algorithm yields an efficient implementation. Furthermore,
we have examined different criteria to select which triangles to use
to discard others. The code for the construction of the proposed
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Figure 17: Using our method, we can compute offsets. The labels of the images indicate the amount of offset applied as a percentage of the
diagonal of the bounding box of the model.

Figure 18: Scene to test particle simulation using different distance
computation approaches.

data structure, as well as for using it for distance computation, is
available at https://github.com/UPC-ViRVIG/SdfLib.git.

We have developed this technique to compute signed distances
to triangle meshes. However, it works too for any mesh composed
of convex elements for which we know how to efficiently compute
their support vectors. Also, it can be directly adapted to compute un-
signed distances to unorganized sets of such convex elements. One
limitation of the presented method comes from the cost of the octree
construction. To balance it out, we need to be sure that the number
of queries is going to be high. Still, we would like to explore the
possibility of implementing both the octree computation and dis-
tance queries that use it on the GPU. Another avenue for exploration
would be to look for ways to combine multiple triangle influence re-
gions into one, so that more triangles may be discarded during the
construction of the octree. Given that we would need to compute an
intersection of convex sets, the proposed solvers would work. The
problem then becomes how to efficiently compute the support vec-
tors of the resulting shapes. Finally, due to the fact that triangles may
influence many nodes, their indices will appear in many leaf nodes.
This is why the size of the octree is quite large. Finding ways to

reduce this size without severely compromising query performance
would allow for the method to be applied to larger meshes.
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Appendix A: Influence Supersets

In order to prove that RCHTc is a superset of R∗
Tc
, we define another

set R+
Tc
:

R+
Tc

=
⋃

α,β,γ∈[0,1]
S(TriInt(α, β, γ , ci jk ),TriInt(α, β, γ , di jk ))

where TriInt(α, β, γ , vi jk ) trilinearly interpolates the values vi jk us-
ing the coefficients α, β, and γ . Here we are abusing notation be-
cause the values we are interpolating, vi jk, may be scalars (like di jk),
or vectors (like ci jk). We will also only consider trilinear interpola-
tion inside the node R (so α, β, γ ∈ [0, 1]).

R+
Tc
is constructed from the trilinear interpolation of the distances

di jk = d(ci jk, Tc) to approximate the distance field inside the node.

First, we will prove R+
Tc

⊇ R∗
Tc
and then RCHTc ⊇ R+

Tc
. By the defi-

nition of R+
Tc
and R∗

Tc
, we can derive the first statement from:

TriInt(α, β, γ , di jk ) ≥ d(TriInt(α, β, γ , ci jk ), Tc) (A1)

Let us define Qi jk as the nearest points from Tc to ci jk:

qi jk = argmin
x∈T1

‖x− ci jk‖

so that the distance d(ci jk, qi jk ) is the same as d(ci jk, Tc). Then we
can prove (1) using the following steps:

TriInt(α, β, γ , di jk ) = (A2)

= TriInt(α, β, γ , ‖qi jk − ci jk‖) ≥ (A3)

≥ ‖TriInt(α, β, γ , qi jk − ci jk )‖ = (A4)

= ‖TriInt(α, β, γ , qi jk ) − TriInt(α, β, γ , ci jk )‖ = (A5)

= d(TriInt(α, β, γ , qi jk ), TriInt(α, β, γ , ci jk )) ≥ (A6)

≥ d(TriInt(α, β, γ , ci jk ),Tc) (A7)

We can get from (2) to (3) by the definition of the qi jk. The rela-
tionship between (3) and (4) derives from the fact that the norm
of a trilinear interpolation of vectors is always smaller or equal
to the trilinear interpolation of their norms. Because trilinear in-
terpolation is distributive over addition (4) and (5) are equal. The
equality between (5) and (6) uses the definition of distance. Fi-
nally, the relationship between (6) and (7) derives from the fact
that TriInt(α, β, γ , qi jk ) is on Tc and thus (7) cannot be larger
than (6).

Next, we will prove that RCHTc ⊇ R+
Tc

by demonstrating that any
point p inside R+

Tc
is inside RCHTc . If p is inside R+

Tc
, it has to be in-

side one of the spheres S(TriInt(α, β, γ , ci jk ), TriInt(α, β, γ , di jk ))
that compose R+

Tc
, which means that we can write p as

TriInt(α, β, γ , ci jk ) + v where ‖v‖ ≤ TriInt(α, β, γ , di jk ).

Now, let us define one vector vi jk inside each of the spheres
Si jk = S(ci jk, di jk ) with the same direction as v, and a norm equal
to their radii di jk. The trilinear interpolation of these vectors at
p will be TriInt(α, β, γ , vi jk ) and it will have a norm equal to
TriInt(α, β, γ , di jk ) which is larger than ‖v‖. By scaling vi jk by
the ratio between ‖v‖ and TriInt(α, β, γ , di jk ) we get new vec-
tors v′

i jk that are smaller than their correspondent vi jk and, thus, are
still inside their respective spheres Si jk. But now, using the trilinear
interpolation of v′

i jk, we can express p as TriInt(α, β, γ , ci jk ) +
TriInt(α, β, γ , v′

i jk ) or the trilinear interpolation of points c′
i jk =

ci jk + v′
i jk which are each inside one of the eight spheres Si jk. There-

fore, p is inside the convex hull of {c′
i jk} and has to be in RCHTc . Thus,

R+
Tc
is a subset of RCHTc .
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