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Abstract
Over the past years, an increasing number of publications in information visualization, especially within the field of visual ana-
lytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are
usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they
have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become
widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space
through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing
downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding meth-
ods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of
the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the
current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research
directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for
the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023.

Keywords: embedding techniques, distributed representations, visual analytics, visualization

ACM CCS: • Human-centered computing → Visual analytics; • Human-centered computing → Information visualization; •
Human-centered computing → Visualization systems and tools; • Computing methodologies → Machine learning; • Applied
computing

1. Introduction

In recent years, the concept of embedding technology has gained
a lot of attention within the research community. The term “em-
bedding” refers to the process and/or the results of projecting data
entities into a (relatively) low-dimensional space where the sim-
ilarities of different points reflect their semantic closeness in the
original space [MLMRC18,GWW19]. (Besides the process, the re-
sulting embedding vectors are often referred to as “embeddings”,
too.) Various embedding approaches have been developed based
on a target application domain and data types, such as numeri-
cal values [BCV13], word/text [MSC∗13,LM14,AX19,FYC∗22],
graphs/networks [HYL17,GF18,ZYZZ20], media data [AGH∗23],
or a combination of those [BCV13, WMWG17]. Learning effec-
tive embeddings is crucial for performing downstream tasks in vari-
ous fields, such as information retrieval [JSR∗19], natural language
processing [EAKC∗20], social network analysis [AAM∗21], and
urban planning [MHL∗20]. To further enhance the accuracy, ex-
plainability, and credibility of either the embedding process or the
higher-level objectives, many studies incorporate a human-in-the-
loop process in addition to optimizing the computational compo-

nents [EHR∗14]. There is a need to explore relationships within the
embedding space and interpret the embedding process—and that is
where visual analytics steps in.

In information visualization (InfoVis) and visual analytics (VA),
many studies have been carried out on creating interactive user in-
terfaces (UI) to understand embeddings over the past years. The
rapid development of embedding methods, especially in deep rep-
resentation learning [GWW19], enables many VA tools that acquire
non-numerical data to perform new types of joint analysis, creating
customized visual encodings and interactions. As Figure 1 shows,
embeddings can be computed as part of VA pipelines or provided
as part of input data. They are associated with various approaches
for performing analytical tasks, encoding visual meanings, and en-
abling user interactions within the embedding space. These em-
beddings can be evaluated with regard to both their computational
processes and their visual analytical aspects. The methodology and
application scenarios for embedding technologies are highly het-
erogeneous. Furthermore, the terminology of the field is far from
being standardized [KØSV18], making it hard to get a comprehen-
sive overview for the respective interested readers.
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Figure 1: A generic visual analytic pipeline instantiated for the VA approaches and tools that either include embedding computations as part
of the computational approach, or make use of externally computed data embeddings. The aspects such as the overall domain application
context, target user, input data, resulting embedding vectors, computational and human-centered methods, and corresponding evaluation
concerns define the scope of our survey and the proposed categorization discussed throughout this manuscript.

For the research community in visualization, understanding how
embeddings play a role here is important yet challenging, and the
reason is twofold. First, in line with the rapid advances in em-
bedding technologies, there is an increasing number of InfoVis
and VA papers mentioning embeddings as part of their computa-
tional pipeline. Second, due to the heterogeneous nature of this
topic, there are various domain-specific visualization approaches
and representations. Similarities and differences between the do-
mains might provide insight into the common ground and gaps for
future research. They also act as success stories of applying VA that
might attract further interest from researchers and practitioners in
other disciplines and domains. However, there is currently a lack
of a systematic taxonomy and overview of the fields of InfoVis and
VA that would offer a comprehensive examination of how embed-
ding approaches are used within these fields.

This survey attempts to address this gap, specifically within the
context of information visualization and visual analytics. Further-
more, we restrict its scope to only focus on peer-reviewed publi-
cations which meet at least one of the following two criteria: (1)
embeddings are explicitly represented in at least one visual repre-
sentation, and (2) embeddings of some source data items are ex-
plicitly computed within the described pipeline. We also limit our
scope to embedding spaces larger than 4 dimensions (4D) only.
This is done to exclude a potentially much broader selection of
VA papers that use general dimensionality reduction (DR) tech-
niques [LMW∗17, SZS∗17, EMK∗21] solely to compute a layout
in 2D/3D/3D+time.

Figure 1 illustrates the basic aspects and challenges of the use
of embeddings mentioned above in the context of a typical visual
analytic pipeline inspired by the works by Keim et al. [KAF∗08]
and Sacha et al. [SSS∗14]. A visual analytic approach is typically
designed to address a particular problem, be it a particular domain
application or a more generic, domain-agnostic problem. In order to
address the needs of the respective target users, the input data is fed
into computational and visual/interactive modules, which are also
communicating with each other, e.g., to provide visual represen-
tations of computational results. Data embeddings might be com-
puted by such VA approaches as part of the computational mod-
ule and used as an intermediate representation for further analyses
(e.g., computing word vectors for further document clustering), or

alternatively, fed to the visualization module (e.g., to provide a vi-
sual summary of the embedding vector values). Furthermore, the
embeddings computed outside of the VA tool itself might be pro-
vided as part of the input data. The precise focus of this survey thus
lies on the VA approaches that explicitly make use of data embed-
dings, according to the two criteria named above (explicit visual
representation and/or explicit computation); and for this reason, we
also consciously limit the discussion of potentially numerous co-
ordinated views and interactions [Rob07] available in complex VA
applications beyond the ones directly relevant to data embeddings.

The contributions of our work are as follows:

• We present a categorization schema for VA approaches involving
embeddings, which takes not only visualization-related aspects
but also the computational aspects and domain applications into
account.

• Based on the proposed categorization and our corpus containing
122 papers, we identified 15 subfields (scattered within 9 do-
mains) that use embedding techniques in their VA systems. For
each subfield, we provide a collection of state-of-the-art papers
and an overview of their use of embeddings integrated into vi-
sualization systems, including motivations, analytical tasks, and
VA-related commonalities.

• Besides within-field overviews, we offer a cross-domain sum-
mary and discussion of existing trends, challenges, and poten-
tial research directions from two perspectives: using embedding
techniques to enhance a VA system (embeddings4VA) and using
visual interfaces to understand and explore embedding spaces
(VA4embeddings).

• We provide an interactive survey browser for the collected and
categorized survey data, available online at

https://va-embeddings-browser.ivis.
itn.liu.se/

1.1. How to Use This Survey

Our article aims to incentivize the visualization community to re-
flect and focus on this important topic directly (rather than ap-
proaching it purely from the ML or DR perspectives) and, to the
best of our knowledge, this is the first survey that takes a detailed
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look at embedding methods through the lens of VA. We propose the
following usage scenarios:

• read as a general overview, for any researcher who needs a com-
prehensive summary of how embedding data is currently being
visualized in different VA tools but who does not have this as
their main domain of research;

• use the survey browser to identify visualization techniques that
meet specific criteria, for researchers who are searching for in-
spiring examples/solutions to specific problems within their do-
main of expertise;

• read to identify gaps and/or research opportunities, for any re-
searcher who intends to focus more specifically on embedding
visualization within their field of research; and

• use the supplementary material to dive into details on a particular
category, frequent category pattern, or co-authorship network.

The rest of this manuscript is organized as follows: in Section 2,
we discuss the terminology, origins, and variety of the existing em-
bedding computation approaches in relation to the topic and scope
of our survey. Section 3 positions our work with respect to the
previous survey articles within and beyond the visualization field.
Next, we discuss the methodology of data collection and annota-
tion in Section 4. Section 5 focuses on the resulting categoriza-
tion of VA + embedding approaches: here, we discuss various as-
pects, from the application domain to the details of computational
and visual/interactive components evaluation, and provide exam-
ples of the respective approaches. Besides focusing on the results
and examples for each particular category, we carry out further
data-driven analyses in Section 6, including temporal, category cor-
relation, topical, and (co-)authorship analyses. We reflect on and
discuss the findings and limitations of this study in Section 7, as
well as the open challenges identified in this field. Finally, Section 8
concludes this manuscript.

2. Background

Before going into the details of the survey results, we first want
to provide some general background information regarding embed-
dings and embedding technologies. First, we note that the word
embedding can have different meanings in the English language
and that there, to the best of our knowledge, is no formally ac-
cepted definition that is applicable to our selected scope. Therefore,
we start by noting that, within the scope of the surveyed corpus,
the word embedding is generally used in the following meaning:
an alternative representation of some underlying data which aims
to preserve important characteristics and/or relations of the data
points [CTL18,HPX∗21,WJM∗22,YHZ22]. Consequently, embed-
ding technology is used in the meaning: a method that transforms
data points into a different form while preserving important char-
acteristics and/or relations. Precisely what these important charac-
teristics/relations are may vary from case to case. Still, in general,
the main goal of embedding algorithms is to preserve the close-
ness/similarity of the data points in the original data space, so that
points that are close/similar end up being close/similar also in the
embedding space (which is often referred to as the latent space).
We also note that for all but one of the surveyed publications, the
embedding representation is in the form of a numerical vector—
so the words embedding and vector are often used interchangeably

(although the single exception should serve as a reminder that this
does not always need to be the case). For the reader seeking a more
compact wording, we offer the following: “in most cases, embed-
ding algorithms represent domain data as numerical vectors that
preserve similarity (from the original data space) and allow for ef-
ficient computational analysis.”

The origin of embedding technologies arguably lies in the field
of natural language processing (NLP) and computational linguis-
tics (CL), where several different technologies (such as statisti-
cal, matrix-based, and machine-learning models) have been de-
veloped to transform the words of a corpus into numeric vector
representations which preserve the semantic relationships between
them [BDVJ03, CWB∗11]. The primary rationale for developing
such types of transformations is that it is much easier to calcu-
late the distance between two vectors than computationally deriv-
ing the semantic similarity of two words directly from their tex-
tual representations (i.e., the level of semantic closeness/similarity
between two words is instead established by a calculation us-
ing the numerical embedding vectors as proxies). A more de-
tailed explanation of the development, and inner workings, of dif-
ferent word/text embedding technologies, falls outside the scope
of this survey [OMK21]. Therefore, we would like to note that,
with the arrival of deep learning (DL) models and algorithms such
as word2vec [MSC∗13] and bidirectional encoder representations
from transformers (BERT) [LM14,DCLT19], the initial hopes have
been more than exceeded in the sense that the complex semantic
relationships between words and/or text sequences can be captured
by such embedding algorithms and thereafter exploited by vector
calculations.

After the initial success of embedding technologies within the
field of NLP, attempts were made to adapt the general idea to other
types of data suffering from the same type of inherent challenges
as texts (i.e., the seemingly unstructured and complex nature of the
original data making it hard to perform direct calculations on it).
A prominent example of such a data type is graph/network data
since it suffers from the fact that many topology-related calcula-
tions are cumbersome and computationally expensive to perform.
However, with the discovery that the core ideas of the word2vec
learning model could be applied to network topology data (as in
the node2vec algorithm [GL16], which, loosely speaking, treats
nodes as “words” and random walks in the network as “sentences”),
this field also became an important area of development for em-
bedding algorithms. From the initial methods for pure graph em-
bedding [GF18] (supporting tasks such as graph topology com-
parison and subgraph search), the field has evolved towards al-
gorithms that also take into account the attributed data on nodes
and edges [CWPZ19], which in turn allows for even more complex
analysis scenarios, e.g., similarity comparisons of nodes jointly
evaluated on topological position and attribute resemblance.

The concept of dimensionality is important within the field of
embeddings since it puts a restriction on how much of the desired
characteristics of the underlying data the algorithm will be able to
capture. All other things being equal, a vector of higher dimension
(i.e., with greater length) will have higher “expressiveness” than a
vector of lower dimensions (i.e., with shorter length), simply be-
cause there are more possible ways to group data points (i.e., to ex-
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press their relations) in a larger embedding space than in a smaller
one. On the other hand, a longer vector will introduce an overhead,
both in computational load and in memory usage, so a trade-off is
usually needed. Furthermore, it is not uncommon to see statements
indicating that embeddings are “low-dimensional” vector represen-
tations of the underlying data, which may seem contradictory to
the fact that many such algorithms use several hundred dimensions
for their yielded vectors. Whether such a representation of a word
in a text, or a node of a network, really can be seen as truly low-
dimensional is debatable. However, with the knowledge that com-
plete texts or networks can be captured by such vectors, the notion
of (relatively) low-dimensional becomes more apparent.

We would like to end this section by noting that embedding tech-
nologies are a relatively new addition to the ML/AI field [BCV13],
and as such, a lot of research effort has been directed toward de-
veloping and using rather than visualizing. However, in accordance
with the large trend of eXplainable AI (XAI), several initiatives
have proven that there is much to be learned from opening the
“black box” of embeddings and embedding spaces. With this sur-
vey, we hope to provide the reader with a structured overview of
this emerging field. We also hope that it can catalyze further ad-
vances in developing visualizations for embedding data.

3. Related Surveys

Existing surveys published in other disciplines and fields focus
mainly on exploring the computational aspect of embedding tech-
niques, while visualization is only mentioned in passing, typi-
cally in relation to static plots with limited interaction [WMWG17,
GF18, CWPZ19, HRZ∗20]. For instance, Cui et al. [CWPZ19]
present a network embedding survey focusing on challenges and
opportunities in this field, as well as relationships across different
methods. The article includes one paragraph on network visualiza-
tion, but the authors frame it as a visual demonstration of how em-
beddings could preserve the intrinsic structure of the network. As
for most surveys on embeddings in the field of NLP, visualization
is barely mentioned [KØSV18, LY18, LKB20].

We have also examined recent visualization surveys that mention
embedding techniques. The topics of those surveys range from vi-
sualization techniques for explainable machine learning [HKPC18,
CMJK20, CMJ∗20, SEAG∗21] to specific types of networks and
maps [HHS20, WNT∗20] or text data [KPK18, LWC∗19]. There
are also several surveys analyzing how specific computational tech-
niques benefit VA by focusing on integrating general ML meth-
ods [ERT∗17], as well as DR algorithms [LMW∗17, SXG∗19,
EMK∗21]. Nonato et al. [NA19] focus on DR projections for multi-
dimensional data, specifically on handling distortions (such as false
or missing neighbors), so that the negative impact on the visual
analysis of the projection can be kept limited.

Furthermore, we have identified two surveys within InfoVis
and VA that come closest to our survey scope. First, Sacha et
al. [SZS∗17] focus on how people can interact with the DR pipeline
and how visualization can be integrated into an interactive dimen-
sionality reduction process. The methodology used in this survey
is similar to ours. However, they concentrate mainly on DR, which
typically maps data from high dimensions to 2D or 3D. This map-

ping often has implications for the design of the complete work-
flow and any (interactive) visualizations. While DR and embed-
ding methods are deeply intertwined, our survey holds a different
emphasis and perspective: we focus on the techniques and applica-
tion scenarios involving embedded data representations in spaces
higher than 4 dimensions, thus separating our focus from typical
DR use in visualization. Second, Wu et al. [WWS∗21] have re-
cently provided a survey on how AI applications could benefit data
visualization. Some of the techniques for exploring the embedding
space within an ML model are discussed in their paper; however,
they are mentioned only as part of the broad coverage of their sur-
vey, with limited analysis and no comparisons of those particular
methods across domains.

4. Methodology

The methodology for conducting this survey is based on a number
of previous visualization surveys and meta-analyses [CK15,KK15,
KKLS17, KPK18, KMK18, KK19, CMJK20, CMJ∗20, WJMK21],
and further inspired by other surveys and sensemaking mod-
els [PC05, BKW16, SEAG∗21].

Figure 2 provides an overview of the activities and outcomes
of our work on this survey. The initial stages of this process were
dedicated to the definition of scope and inclusion/exclusion criteria
for publications that act as the basis for survey entries (we should
note that InfoVis and VA tools, approaches, and techniques are the
primary units of our survey rather than publications themselves).

The initial pilot collection of candidate publications was com-
piled by querying and manually screening articles published in two
journals, Computer Graphics Forum (CGF) and IEEE Transactions
on Visualization and Computer Graphics (TVCG). We arrived at
425 hits based on several search queries that contain the keyword
“embedding” and further keywords such as “visualization”, “in-
terface”, “interact”, and derivatives with similar meanings. Initial
manual screening of the publication titles and abstracts was con-
ducted to ensure that the respective publications were related to
interactive visualization and embedding approaches (at this point,
with a very broad notion of “embedding”). After this stage, the re-
sulting pilot data set included 69 articles.

As we did not consider the basic keyword search to be sufficient,
the next step involved a closer inspection of the pilot data set by
3 annotators with the goal of marking each paper as relevant or ir-
relevant to the scope of our survey. At this stage, we formulated
the inclusion/exclusion criteria and applied them to the respective
candidate papers (based on title and abstract, as the procedure was
to be applied to a large set of candidates afterwards). The result-
ing annotations from individual annotators were afterwards com-
pared and discussed in order to resolve conflicts and clarify the
criteria. At this step, Cohen’s kappa values were calculated to esti-
mate the pairwise inter-annotator reliability [AP08], with the values
of 0.605, 0.593, and 0.673 for three pairs of annotators from among
the authors of this survey. These values indicate moderate to sub-
stantial, albeit far from perfect agreement [AP08]; thus, the par-
ticular disagreement cases were discussed by the annotators, and
furthermore, the decision to check the full contents of candidate
papers in case of doubt was made (which is not practical for clear
inclusion/exclusion cases).
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Figure 2: Overview of the methodology and data involved in the preparation of this state-of-the-art report. The main outcomes and contri-
butions of our work are highlighted in bold.

Figure 3: Temporal distribution of the entries included in our sur-
vey (122 in total as of April 2023) based on the base publication
year.

While the overall inclusion/exclusion criteria stated as part of
the survey scope in Section 1 proved to be adequate, such detailed
checks were helpful in order to exclude, for instance, papers that
did not provide evidence of embedding use beyond 2D/3D DR pro-
jections. Some of the interesting borderline cases that we eventu-
ally removed from the survey set include, for instance, the work
by Raidou et al. [RvdHD∗15] that explicitly mentions embedding
high-dimensional data points into an abstract 2D space. Similar
considerations led us to exclude the papers by Sohns et al. [SGL22],
Eckelt et al. [EHA∗22], and Zeng et al. [ZZL∗22], which all present
valuable contributions, but do not fit the scope of this survey.

The next major step consisted of the categorization design for
the included survey entries. While the resulting categorization is
presented in detail in the following section, it is worth noting that
in order to refine the design, an initial version of categorization
was used for annotating the included papers from the pilot set de-
scribed above. We iteratively discussed the results and ambiguities
in order to finalize the categorization schema. Then, the search for
further candidate papers (involving the search in particular jour-
nals/libraries, but also further Google Scholar search and snow-

balling [Woh14] to extend the candidate set), relevance check with
inclusion/exclusion criteria, and annotation according to the cate-
gorization took place.

The resulting set of 122 entries is summarized with respect to
the underlying publication year in Figure 3. These entries are based
on articles and papers from the broad field of visualization (IEEE
TVCG, CGF, IEEE VIS, EuroVis, PacificVis, Inf Vis, JoV, and
other venues), but also a number of publications from other fields
such as NLP, for instance (with publications from several ACL
venues). Rather than limiting our survey to a particular group of
venues, we have been interested in discovering the various domain
applications of visual analytics related to the use of embeddings,
and in the future we intend to keep extending the survey data set
using the approach discussed below; further candidate entries are
available for annotation, and, as Figure 3 demonstrates, the past
several years have resulted in a number of relevant publications in-
dicating interest in this topic, so we expect to see a lot of interesting
contributions in the near future.

To facilitate data exploration and present the results, we have
developed (and extensively used ourselves) an interactive survey
browser demonstrated in Figure 4. The overall user interface design
here follows the existing survey browsers [KK15,KPK18,CMJ∗20]
and allows for exploration of individual survey entries (the grid of
thumbnails on the right) as well as faceted search (the filters on
the left). The implementation was, however, extended to accom-
modate the free-text detail categories and potential multiple ref-
erences and URLs specified per survey entry. For instance, while
the entry for DRIFT by Pocco et al. is based on the 2022 journal
article [PdSP∗22] identified during the literature search stage, an-
other reference for the related conference paper [PPV∗21] is also
mentioned in the browser entry. This might come across as a trivial
implementation detail, but the aim here is to keep supporting and
extending the survey data in the future for the benefit of the visu-
alization research community, while promoting the cases of sev-
eral successful applications of visual analytic approaches with em-
beddings that the respective authors might describe in a series of
publications. Additional URLs included for the survey entries can
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Figure 4: The online survey browser accompanying this manuscript.

also typically lead to source code repositories, project websites, or
online demos, thus contributing to the visibility of the respective
research.

As indicated in Figure 2, the remaining steps of the work on
this survey included the annotation and analysis of publications
with respect to corresponding categories (performed mainly by the
first two authors of this survey, and presented in the next section),
further data-driven analyses of the collected survey data (see Sec-
tion 6), and discussion of the respective outcomes (Section 7).

5. Categorization of VA + Embedding Approaches

As presented in Figure 1 and discussed in Section 1, the catego-
rization design for this survey aims to ensure that a wide range
of aspects, including application domains, user profile, embed-
ding computation methods, and visual/interactive design concerns,
are addressed. Table 1 presents the resulting categorization, with
the previously mentioned top-level aspects comprising particular
nested categories. Similar to the previous surveys [KK15, KPK18,
CMJ∗20], the categories are generally not exclusive within the
same group/aspect, e.g., a particular visual analytic approach could
support several application domains. Furthermore, while the cur-
rent survey data set includes 122 entries, certain aspects do not
cover 100% of the entries. Additionally, as we had a pragmatic
intention to keep the size of categorization constrained, not every
possible computational model, visual representation, or evaluation
approach could be promoted to a category of its own. Thus, we in-
troduced additional free-text comment categories for most of the
top-level aspects of this categorization. The notes made by individ-
ual annotators that were recorded within such free-text comments
are available via the online survey browser. The counts of entries
that include such notes are also provided in Table 1.

This section outlines the motivation for including particular cat-
egories in our proposed categorization, discusses their support

within the current survey data set, highlights noteworthy findings,
and describes the prominent examples.

5.1. Application Domain

Here, we present our categorization of application domains, explain
the included subfields, and provide an overview of papers in our
corpus for each subfield within each categorized domain.

VA tools that use embedding technology are designed for a
wide range of topics, such as enhancing ML model understand-
ing [PDD∗22], diagnosing graph embeddings [RSL∗22], analyzing
medical records [CEBV22], urban soundscapes [RMH∗22], and
product reviews [JCSM22]. Papers in different fields may contain
similar or different initiatives, themes, and perspectives related to
VA+embeddings. Classifying papers according to their application
domains is necessary to gain insights into within-field applications
and make between-field comparisons. This section presents our cat-
egorization of application domains, which serves as the basis for
our analysis and further discussion in Section 7. As shown in Ta-
ble 1, approximately half of the publications in our corpus were
classified within the domain ML, AI, data science (57). This
distribution is consistent with the common mentioning of the word
“embeddings” under a machine learning context for VA-assisted
ML (VIS4ML) applications [SZS∗17]. The remaining publications
were distributed across several other domains, including com-
puting (24), humanities, social sciences, and education (23),

life sciences and medicine (13), domain-agnostic (12),
business, management, governance, law (12), physical

sciences, engineering, and mathematics (3), and sports and
entertainment (3).

We choose the above domain categorization with two main
considerations: practicality and representativeness. Concerning the
number of publications surveyed and the wide variety in the con-
text of each paper, a too fine-grained categorization could risk mak-
ing the overview less comprehensive. Thus, we opted for fewer
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Table 1: The overview of the categorized survey data set. Each row contains the number of corresponding techniques/entries in our data set
as of April 21, 2023. The percentage relative to the current total of 122 techniques is also illustrated by heatmap-style icons (note that the
categories within each group/aspect are not necessarily mutually exclusive).

Application Domain 122

ML, AI, Data Science 57
Computing 24
Life Sciences and Medicine 13
Physical Sciences, Engineering, Mathematics 4
Humanities, Social Sciences, Education 23
Business, Management, Governance, Law 12
Sports and Entertainment 3
Domain-Agnostic 12

Free-text details 122

Target User 32

Explicit Target User Description 32
Free-text details 33

Input Data Type 122

Numerical/Tabular 25
Textual 70
Graph/Network 22
Image/Video/Audio 17
Mixed 17
Data-Agnostic 6

Free-text details 59

Computational Method 116

Neural Network 88
Matrix Analysis 33
Statistical Analysis 16
Computational Method-Agnostic 12

Free-text details 122

Embedding Vector Dimensionality 122

Under 50 Dims. 15
Between 50–500 Dims. 31
Above 500 Dims. 14
Embedding Dims. N/A 70

Visual Analytic Task 118

Model Construction 14
Model Debugging/Quality/Bias Control 8
Model Results Representation 63
Model Results Explanation 23
Interactive Exploration 53
Comparison/Selection 52

Free-text details 122

Visualization Aspects 102

Explicit Embedding Representation 102
Free-text details 107

Interaction Aspects 77

Interaction Techniques Support 77
Free-text details 79

Evaluation Aspects 98

Evaluation of Computational Components 53
Evaluation of Visual/Interactive Components 84

Free-text details 101

and broader categories in our categorization approach. To estab-
lish our domain categorization, we drew upon multiple sources,
including the ACM Computing Classification System (CCS) and
the list of application domains used by the IEEE Visualization and
Graphics Technical Community (VGTC) and IEEE Visualization
(IEEE VIS). In addition, we gathered insights from our previous
research related to the trustworthiness of machine learning models
(TrustML) visualization and NLP-related sentiment visualization
[KPK18, CMJK20], and also from other surveys on visualization
and embedding techniques [SKKC19,CWPZ19,LKB20,XZL∗22].

The interdisciplinary nature of some publications makes them fit
under more than one category. For instance, a VA tool that uses
advanced interactive recurrent neural networks to analyze medical
records [KCK∗19] would fall under both the categories of ML,
AI, data science, as well as life sciences and medicine. In bor-
derline cases, we consider additional factors, such as the framing
of a paper to make a final judgment.

While we preferred to avoid adding another level of nesting di-
rectly to our overall categorization, it is worth noting that we were
able to identify some smaller groups of interesting examples within
specific application domains. For example, medical records analy-
sis [GFL∗20] and mass cytometry [HPvU∗16] (see Figure 5(a)) are
put under the umbrella of life sciences and medicine, while

business, management, governance, law includes examples
from the fields such as market analysis [JCSM22], collaboration
tools [XBL∗18], and maintenance [ZFC∗21] (see Figure 5(b)).

Thus, readers interested in using embedding approaches for a spe-
cific domain application area of visualization could navigate di-
rectly to the following paragraphs:

• Visualization for NLP and CL (Sect. 5.1.1)
• Neural Network Interpretation (Sect. 5.1.1)
• Performance and Software Visualization (Sect. 5.1.2)
• Visual Search (Sect. 5.1.2)
• Biological Data Visualization (Sect. 5.1.3)
• Visualization for Healthcare (Sect. 5.1.3)
• Social Media Visual Analytics (Sect. 5.1.4)
• Urban Visual Analytics (Sect. 5.1.4)
• Visualization for Public Safety (Sect. 5.1.4)
• Visualization for Traffic Flow (Sect. 5.1.4)
• Geo-text Data Visualization (Sect. 5.1.4)
• Visual Interfaces for Collaboration (Sect. 5.1.5)
• Visual Browsing of Multimedia Collections (Sect. 5.1.6)
• Visualization for Sports and Entertainment (Sect. 5.1.7)
• Visualization for Embedding Interpretation (Sect. 5.1.8)

5.1.1. ML, AI, Data Science

Exploring latent representations [FZCM20], decision bound-
aries [SGR∗20], and network characteristics [JLB22] are essential
to examine and understand machine learning models. Particularly
as certain aspects of the embedding process or embedding space are
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considered research questions, visual analytics is an effective way
to help ML understanding, diagnosis, and refinement [LWLZ17].
57 papers in our corpus fit under the domain of ML, AI, and Data
Science. Among them, we included 39 papers within the field of
natural language processing and computational linguistics.

Visualization for NLP and CL Creating and using embed-
dings in NLP and CL is crucial for representing and capturing
the context and content of words, phrases, sentences, and doc-
uments. VA + embedding techniques in this set focus on four
themes: exploring the semantics and contextualization of em-
bedding spaces [CTL18, LBT∗18, EAKC∗20, MWZ19, SSKEA21,
GHM21, BN21, BCS22, VMZL22, LWZ∗23, MM23], active learn-
ing and interpretation for language models [LCSEK19, TWB∗20,
SH20, ARCL21, LXW∗21, SKB∗21, SCR∗23], data-driven infor-
mation retrieval [CWDH09,BMS17,ZSHL18,KOK∗18,DMdO19,
RSBV21, PdSP∗22, JWC∗23], and annotation tools [SJB∗17,
BNL∗18, PKL∗18, MWJ22].

Interpreting embeddings at a word level is still the predomi-
nant topic. Instead of calculating static metrics, VA makes interac-
tive comparisons across groups possible. For instance, Embedding
Comparator by Boggust et al. creates visualizations to compare and
link different local neighborhoods of words with the global embed-
ding structure (Figure 5(c)) [BCS22]. For different word and con-
cept groups, one may observe patterns of intersectional biases along
different social categorizations [GHM21], structures for semantic
and syntactic analogies [LBT∗18], regularization processes in dif-
ferent dimensions [LWZ∗23], and diachronic changes [CTL18].

Pre-trained language models are widely used to consider a
word’s context and move beyond probing classifiers. They are
trained on a vast amount of text data, with multiple layers capturing
different levels of information. VA tools in this set also align with
the computational trends in visually exploring contextualized word
embeddings. Unlike traditional approaches that rely on discovering
distribution patterns and frequencies of keyword clusters, encoding
contextualization involves using neural representations from pre-
trained language models to convey the context of a word. Besides
exploring a single embedding space, VA tools for understanding
contextualized word embedding focused more on intra-layer prop-
erties and inter-layer differences [SKB∗21]. For instance, Sevast-
janova et al. [SKB∗22] compare transformer-based language mod-
els’ layerwise context specificities to help explain how contextual-
ization propagates through BERT-like models (Figure 6(a)).

A visual approach of encoding contextual information is
to add Voronoi maps of keywords [VMZL22] and colored
glyphs [SCR∗23] to partition the semantic space. However, it is
challenging to deal with uncertainties arising from the projection
of the dataset and the partitioning process. Although the com-
mon assumption is to ensure the resulting partitioning is non-
overlapping [SSJ∗22], there will be probabilities associated with
each resulting set/area. As a result, in KeywordSpace [VMZL22],
uncertainties are represented by glyph coloring. Alternatively,
Sohns et al. propose the use of specific scalar-field projections and
geometric set-based visualizations for such spatial augmentations
to handle uncertainties [SSJ∗22].

Contextualizing word embeddings offers opportunities to pro-
vide guidance at different levels. Many existing VA tools for ex-

ploring word embeddings allow comparisons between different
groups of data entities. Visualization of the embedding space al-
lows the user to observe the comparisons directly [HG18,GHM21].
With contextualized information, comparisons can be made at var-
ious levels. As previously mentioned, pre-trained embeddings of-
fer multiple layers of information, providing a space for user in-
teractions in a hierarchical fashion. Conducting multi-level explo-
rations is a common VA interaction technique, but with embed-
dings, guidances can be aggregated based on the similarities of
words in the embedding space [JWC∗23]. Further, embeddings can
be calculated based on the same or different context of a word,
providing interactions with different levels of granularity (Figure
6(a)) [SKB∗22].

Compared to exploring the resulting set of data clusters and the
embedding space, for other techniques, users are more active and
participatory in human-in-the-loop language model optimization.
For example, El-Assady et al. model semantic spaces based on a set
of word embeddings and visualize concepts at different semantic
abstraction levels for topic model refinement [EAKC∗20]. Sperrle
et al. provide active guidance in the topic modeling process. They
map the embedding of keyword descriptors to visual cues in the
interface [SSKEA21]. For data-driven techniques, user interaction
with embeddings offers more support to specific applications such
as peer reviewing [KOK∗18] or general document labeling systems
[RSBV21]. Here, the guidance from embeddings is beyond ways to
explore the semantic space—it supports users in making decisions
on a higher-level analytical task.

Handling uncertainties from NLP-related tasks is another moti-
vation for several papers in the set. From a word disambiguation
perspective, a task of uncertainty tackling could be providing an
interactive ambiguity resolution technique for named entity recog-
nition [SJB∗17], readjusting semantic relation of concepts based
on users’ understanding for topic model refinement [EAKC∗20],
or supporting an information retrieval system to achieve high re-
call [DMdO19]. Adding embeddings in a VA pipeline not only rep-
resents input text data, but the projection of the embedding space
also acts as a source of validation to the process of word disam-
biguation [DMdO19].

Neural Network Interpretation We observe less direct user in-
volvement for general neural network visualization papers in the
corpus. Like neural language models, generalized neural network-
related VA tools in our corpus focus on model understanding
and validation [BPP∗16, SGR∗20, FZCM20, CDHP21, RSL∗22,
PDD∗22, LWBM22, SGL22]. Users may explore decision and fea-
ture spaces for counterfactual reasoning [SGL22], kernel actions
[BPP∗16], and neuron group interactions [PDD∗22], or validate
unfairness and errors in AI systems [CDHP21, RSL∗22].

In many cases, embeddings may not function as a guidance gen-
erator, and users may not actively participate in a human-in-the-
loop process to optimize a model. Instead, visualization of embed-
dings aims to give an overview of the underlying data distributions.
Global structures are presented to aid model understanding and val-
idation, rather than a details-on-demand visualization of local data
subsets. Correspondingly, the predominant visual representations
are 2-dimensional scatter plots projecting the embedding space to
give an overview of the dataset. One particularly interesting ap-
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(a) (b) (c)

Figure 5: Examples of 2D-projections of the embedding vectors. (a) Cytosplore by Höllt et al. [HPvU∗16, vUHP∗17] for visual analysis of
biological data. (b) Visual analytics approach for machine maintenance data by Zhang et al. [ZFC∗21] (image courtesy of Xiaoyu Zhang).
(c) Embedding Comparator by Boggust et al. [BCS22] for interactive comparison of user-defined embedding models.

proach in this set is from Liu et al. [LWBM22] (see Figure 7(a)).
They present node-link diagrams to visualize node embeddings for
graph neural networks. This technique captures both global topolo-
gies and features of the data in the visual representation. Numerous
other VA-assisted ML (VIS4ML) [SZS∗17] papers address similar
motifs as embeddings.

As stated in many VIS4ML surveys, visualizing the hidden state
representations of neural networks appears almost everywhere in
explaining the model [CMJK20]. However, they may refer to it us-
ing different terms such as “latent space”, “latent representations”,
“feature space”, “activation vectors”, and “spatialization”, among
others [WZY20,FZCM20,RCPW21,LWBM22,PDD∗22]. Each of
the terms works under a slightly different context. In this study, we
have elected to focus on the VA papers where authors explicitly
mention “embedding” and exclude others that may cover a simi-
lar topic but use different terminology. It should be acknowledged
that this approach may introduce bias into our selection criteria.
However, we believe the insights derived from our corpus are valu-
able and worthwhile. The findings will be further discussed in Sec-
tion 7.3.

5.1.2. Computing

In this category, we include papers that focus on computing-related
problems and applications beyond ML. The reason for this design
is two-fold: first, as mentioned above, we drew inspiration from
ACM CCS and the categorization of application domains used by
IEEE VIS / VGTC, with the latter separating ML-related applica-
tions from other areas of computing (e.g., databases, computer net-
works, or security). Secondly, given the topic of this STAR and the
expectation for a large number of publications/techniques focusing
on VIS4ML, etc., we preferred to keep this category separate in
order to paint a more clear picture of the respective applications.
Most of the papers in this set focus on mining graphs and/or se-
quential data. The embeddings may represent the nodes of a net-
work [CZIM18, XXM19, XTYL20, PCZ∗21, LTHL21, SDXR22,
LWBM22] or sequences of events [LDL∗20, XTYL20], ultimately
aiding in identifying structural, temporal, and multivariate prop-

erties within groups of nodes [PCZ∗21], communities [CZC∗17],
ensembles [FFST19, WJM∗22] (see Figure 6(c)), etc.

Performance and Software Visualization For performance vi-
sualization in high-performance computing, a call stack tree can
depict the context of function execution and retrieve anomalous
execution behavior [XXM19]. Similarly, creating a visual analyt-
ics tool for software engineering data may involve understanding
complex code dependencies. Constructing a hierarchical graph us-
ing file structure can assist in obtaining statistical information and
evaluating the similarities between bad dependencies [LTHL21].

When we review the VA pipeline, in performance visualization,
embeddings represent a variety of data structures, including file
structures, source code dependencies, and other data ecosystems.
The dataset can be heterogeneous. Computing embeddings is of-
ten at the beginning of a VA pipeline to unify input data into the
same vector space, particularly for anomaly detection and risk in-
spection. In PRIVEE [BIVD22], embeddings are used to find and
represent joinable datasets. Additional operations, such as weight-
ing factors, can be incorporated into embedding vectors to convey
additional customized, attribute-based information.

For those tools, the visual representation of embeddings is a sup-
plementary support of navigation for the main panels. Even though
graphs are embedded, the embeddings are represented visually by
scatter plots rather than by node-link diagrams. Positions of the
points convey semantic similarities of the embedded entities. Users
can use the 2D projection of embeddings to filter out or select points
that may appear anomalous compared to others.

Visual Search By embedding the data into a high-dimensional
space, it becomes possible to identify patterns and construct inter-
active search query interfaces. For either topic-, graph-, or image-
based queries, it can be challenging to create a search motif that
is both intricate and generalizable. Furthermore, the correspond-
ing interface needs to consider providing guidance, expansion
hints, and feedback to user-defined queries. The commonality be-
tween TopicSifter, an interactive search space reduction technique
[KCD∗19], the interactive visual pattern search technique proposed
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by Song et al. [SDXR22], and VISAtlas, an imaged-based query
system for visualization collections [YHZ22], is about finding ways
of creating human-interpretable embedding vectors. Users can ob-
serve object alignments inside the embedding space. At the same
time, those clusters guide users in refining their search.

A visual querying interface often consists of three key compo-
nents: the original data, the queries, and the filtered results. Neu-
ral network-based embedding methods enable data from different
modalities to be projected into a vector space [GWW19, YHZ22].
For many applications, measuring data similarities in the embed-
ding space is the most essential part of querying, but there are mul-
tiple ways to interact with the space to obtain the final querying re-
sult. Filtering can be restricted to documents containing keywords,
to keywords and their nearest neighbors, or loosened to include
similar documents ranked by some distance measure in the embed-
ding space, giving users multiple levels of constraints with thresh-
olds to customize their search. Embeddings are often integrated into
the computational part of a VA pipeline and may not be explicitly
mapped to a visual representation [KCD∗19, SDXR22]. In other
cases where embeddings are explicitly represented, the interactive
interface allows for another dimension of user customization. For
example, in VISAtlas [YHZ22], the 2D scatter plot projection of
the embedding space allows users to query similar data objects by
selecting points on the panel. Regardless of whether embeddings
are visually represented or not, users can have multiple ways to fil-
ter and query items by changing the distance metrics, adding con-
straints to the aggregation and filtering process, and providing a
target set with additional threshold values.

There are various novel visual encodings available in this cate-
gory, especially for layout refinement in graph drawing [CZIM18,
XTL∗21, JCS∗21, PCZ∗21, TCS∗22]. Our visual browser includes
a filter button for computing in the application domains, allow-
ing readers who are interested in comparing those tools directly,
and potentially they can be a source of inspiration.

5.1.3. Life Sciences and Medicine

Mainly papers in biology and medical natural language processing
(MedNLP) are included in this set.

Biological Data Visualization For those biology visualiza-
tion techniques, data are collected from massive individual cells
[HPvU∗18] or epigenetic modifications within the human genome
sequence [LPH∗20]. The size of the data is large and high-
dimensional. For instance, single-cell data could be gigabytes to
terabytes [LGY∗20], and the human genome is a sequence of
roughly 3.3 billion chemical units [LPH∗20]. Researchers seek
to summarize those large-scale data into an exploratory lower-
dimensional space and find patterns that shed light on some biolog-
ical phenomena. After applying embedding techniques, the learned
representations can be utilized to generate clusters at different gran-
ularity levels. Valuable insights can be obtained by visualizing hi-
erarchies of clusters [HPvU∗16,HPvU∗18] (Figure 5(a)) or embed-
ded representations of omics data sequences [AHH22].

Unlike many other domains where visual representations of em-
beddings are often supplementary views, embedding representation
usually plays the central role in this context. Due to the large scale

of biological datasets, computational complexity is a major con-
cern when integrating these methods into a VA pipeline. Clustering
derived from embeddings plays an essential part in this set of bi-
ological data visualization, as different aggregation levels of clus-
ters provide different levels of summary view for the large dataset.
Here, inspecting the points, clusters, and the additional associated
information is enough to develop an effective VA system for a re-
search question. Typical tasks of exploring the embedding space in-
clude examining the feature characteristics of each cluster, discov-
ering inter-cluster relationships, and associating observations from
the feature space to other reference data. However, variations of
those tasks are common in other domains as well. As such, we link
them with high-level visual analytical tasks in our categorization
elaborated in Section 5.6.

Visualization for Healthcare MedNLP is a subfield of NLP that
often uses language models to extract representations and contex-
tualization from medical records, medical claims [CEBV22], treat-
ment concepts [JSR∗19], and patient information [KGM∗22]. The
included VA+embeddings papers can also be considered a sub-
field within the healthcare domain. Compared to those NLP papers
previously mentioned in the subsection of AI/ML domain, we
can verify that these MedNLP papers focus primarily on leverag-
ing users’ domain expertise as inputs for a VA system. Focus has
shifted from exploring linguistic dimensions to constructing a pa-
tient network from raw data [JCS∗21, KGM∗22] or modeling pa-
tients’ histories for clinical prediction [KCK∗19, LYY∗20].

Based on electronic medical records (EMR) or electronic health
records (EHR), it is common NLP practice to extract features as
low-level building blocks and identify topics as high-level synthe-
ses of documents sharing similar characteristics [JSR∗19]. Further,
documents and topics guide the exploration of features and em-
bedding dimensions. However, for medical data, it is even more
critical to ensure the interpretability of a system. A clinician with
sufficient domain knowledge can explain the reasons behind their
diagnosis to a patient. A VA tool is expected to incorporate a
similar level of interpretability not just for patients but also for
clinical professionals [KCK∗19]. Electronic health and medical
records are often large-scale, sensitive, and irregular in terms of
timelines. Many papers not only work towards summarizing them
accurately, but also aim to produce a visual analytics system that
clearly illustrates how and why a particular prediction is made
[JSR∗19, KCK∗19, LYY∗20]. If the produced representations are
similar, it is often necessary to communicate in which aspects they
may be different [GFL∗20, JCS∗21, KGM∗22, CEBV22]. The em-
phasis on high recall and system credibility in meeting user expec-
tations has led to changes in research papers’ framing and evalua-
tion methods. We elaborate on this point across multiple domains
in Section 5.2.

Oubenali et al. conducted a scoping review on visualizing word
embedding explicitly for medical concepts and identified 7 papers
within this scope [OMF∗22]. Their work confirms our analysis that
visualization is used to explore embedding results for MedNLP
applications. Despite many papers highlighting the importance of
trustworthiness in this domain, there is still work to be done in eval-
uating the embedding-related systems with respect to both compu-
tational performance and the effectiveness of the visual representa-
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tions. In Section 7.1.4, we will discuss the open challenge of con-
ducting an evaluation of VA systems under different contexts.

5.1.4. Humanities, Social Sciences, Education

This set contains VA tools on urban science [XTYL18, LKJ∗20,
MZAD∗20,MHL∗20,BZQ∗21,RMH∗22,GZRP∗22,SNP∗22] and
for the analysis of various sources of data, including social me-
dia [BEF17, XO21, WSP∗21, AAM∗21, AYL∗22], news/creative
writing [PS21, HGE22], literature/digital humanities [NKWW22,
MWJ22], and human behaviors/gestures [WLHO19, ZWW∗22].

Incorporating and representing temporal information is one of
the primary motivations for using embeddings within this set. Even
though there is a large design space to visualize time series from
different narratives [BLB∗17], the irregular and multivariate na-
ture of many datasets in this category makes it challenging to
effectively present temporal data without abstraction and vector-
ized representations. Furthermore, a common goal is capturing
similarities between phrases or sequences. Even though dynamic
time wrapping (DTW) [Mül07] is an alternative method, embed-
dings generated from models such as autoencoders [KW19] and
word2vec [MSC∗13] are useful as they aim to capture semantic
similarities by transforming the data into features. While there are
more granularities between embeddings and other alternative meth-
ods when it comes to integrating them into a VA pipeline under
a similar context, neural embedding models are often considered
a more general approach for both representation and comparison
purposes [GZRP∗22]. The embedded space can be visualized us-
ing 2D scatter plots, enabling users to track the embedded vectors
to the data entities, along with a temporal view and sometimes a
spatial view. Further discussion of the computational methods be-
ing used across different domains can be found in Section 5.4.

Social Media Visual Analytics Visualizing social media data
is an interdisciplinary field, as it involves applying language mod-
els for posts, performing network analysis, and applying text and
multivariate visualization techniques. For those VA+embeddings
papers, they do share a common motivation in developing the
system—social media is populated with false and harmful infor-
mation, and their tools aim to assist in the decision-making pro-
cess. For example, Recast [WSP∗21] uses interactive visualization
to help increase the interpretability of toxicity detection models.
Przybyła et al. [PS21] propose sets of visualization tools to ex-
plain the news credibility assessment process interactively. Other
papers do not directly focus on misinformation, but they do men-
tion that understanding social network topics and their transitions
plays an important role in the decision-making of government
[XO21, AAM∗21] and individual analysts [BEF17]. Embeddings
are often produced during the neural network classification pro-
cess, and visualizing them allows users to find data sharing similar
classification/prediction results, such as harmful information. On
the other hand, users can rank the distance between a source object
and the rest to produce a list of items as potential alternatives. Cor-
respondingly, ranked lists, tables, and word clouds are displayed in
the interface.

Even though the high-level objectives sound similar, this set of
papers presents a variety of customized visualization techniques.
Recast [WSP∗21] and the work from Przybyła and Soto [PS21]

have simple yet intuitive visualization consisting of one scatter plot
or a few bar charts to help with language model explanation. On
the contrary, the VA systems proposed by Xiao et al. [XO21],
Badam et al. [BEF17], and Andreadis et al. [AAM∗21] embed
multiple customized and juxtaposed views with close and dis-
tance reading to represent topic relationships, temporal trends, geo-
information, and user interactions. The complexity of visual inter-
faces can vary depending on their research question formulation,
but embedding-related views generally rely on 2D scatter plots as
the predominant visual representation. However, lines/links are of-
ten used as an augmentation approach to convey relationships be-
tween data entities, features, and other attributes. The word “align-
ment” is frequently used to describe the motivation for integrating
embeddings [MWJ22, XWX∗22, AYL∗22], and computing clus-
ters under different time snapshots or other constraints can inform
changes or connections. To facilitate the interpretation of clustering
results, parallel coordinate plots [XWX∗22, CGH∗22, AYL∗22],
line charts [GZRP∗22], and node-link diagrams [XO21, CGH∗22]
are introduced as ways for users to find alignment for individual
features, multidimensional attribute values, or within-cluster and
between-cluster trends and patterns.

Urban Visual Analytics In terms of visualizing urban data, de-
signing visual representations and interfaces can help better under-
stand the characteristics of a city, such as human mobility patterns,
ultimately enhancing the lives of citizens and promoting sustain-
able development [RMH∗22]. However, the challenges of analyz-
ing urban data are highly dependent on specific techniques, since
data may come from multiple sources, such as maps, traffic flows,
human movement trajectories, loop sensors, acoustic sensors, so-
cial applications, etc. Although the generalized workflow may con-
sist of data retrieval, parsing, analysis, evaluation, and visualiza-
tion [Hu18, MZAD∗20], the specifics are highly dependent on the
desired use case and context of research questions. For example, the
design considerations for a real-time monitoring system would be
different from an offline analysis tool. As a result, there are multiple
considerations for embeddings and diverse ways that embeddings
are integrated into a VA pipeline.

In the following paragraphs, we provide a brief overview of three
key areas for those urban visual analytics papers in our corpus:
crime pattern analysis (visualization for public safety), traffic con-
gestion monitoring (visualization for traffic flow), and geo-text data
visualization. We also discuss the different roles embeddings play
in those three areas, but it is not surprising that embeddings mainly
function as a bridge that links original irregular and heterogeneous
data entities to specific spatial areas for users to explore on the map,
and a common challenge is integrating those additional supports,
e.g., clustering, classification, or prediction results, onto the map.

Visualization for Public Safety Crime data, which is crucial to
gather for enhancing public safety, is often sparse and spreading
in large spatial areas [GZRP∗22]. Identifying crime hotspots and
uncovering patterns requires gathering a combination of tempo-
ral sequences, geographic locations, socio-demographic attributes,
and other descriptive categorical values. Crime Prevention Through
Environmental Design (CPTED) [CSH05] often focuses on find-
ing statistical correlations between elements of the environment
and crimes. CriPAV [GZRP∗22], on the other hand, uses spatial
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discretization to convert streets and streets’ intersections into net-
works, and employs autoencoder to embed crime time series in a
Cartesian space. Crime hotspots are detected by applying a clus-
tering algorithm for the resulting feature vectors. The proximity
information in the embedding space is one important factor that in-
fluences the choice of users to select a point/place as anchor points
to further link with Google Street View photos. Neural network-
based embeddings are generated and projected into a 2D panel to
classify events concerning public safety, but at other times they are
the byproduct of predicting the ongoing temporal sequences, espe-
cially in the area of visualizing traffic flows.

Visualization for Traffic Flow Aside from dividing urban ar-
eas through spatial discretization that divides a physical continu-
ous space into discrete regions, for analyzing traffic flow, it is im-
portant to consider both inter-area directional interactions and lo-
cal attribute information [ZDL21]. With spatial-temporal data as
inputs, traffic flow and congestion are often derived from transit
mobility structures such as bus stops. Graph embedding is one
way to represent those geospatial map-like data after discretization.
Lee et al. [LKJ∗20] employ DeepWalk [PARS14] to embed a road
network to extract latent similarity features. As part of their ap-
proach, the embedded feature matrix with speed and rush hour ma-
trices will be fed into a Long Short-Term Memory (LSTM) [HS97]
model for the classification and forecasting of traffic congestion.
Zhang et al. [ZDL21] employ attributed graph embedding for tran-
sit trips. They combine mobility pattern graphs and attribute simi-
larity matrices into an autoencoder model [VLL∗10] to detect mo-
bility communities. To understand the temporal-spatial correlation,
many works focus on either embedding time series or discretized
maps as graphs, such that correlations can be represented by map
coloring, or observed by placing marks on a map.

Geo-text Data Visualization Besides crime hotspot detection
and traffic flow analysis, other geographical visualization in this set
focuses on spatial-temporal topics coming from geo-tagged prod-
uct reviews [XTYL18] and social media posts [MZAD∗20]. The
corresponding VA tools embed only the textual data, and tend to
focus more on integrating the resulting word embeddings that re-
veal linguistical dimensions with a map in a 2D interface.

Despite the limited number of papers in this set, we observe a
few intriguing connections. For the included urban/geographical
visualization techniques, the VA tools focusing on developing com-
plex embedding methods for representing data tend to provide mul-
tiple linked panels to explain the embedding projection results.
Meanwhile, papers that deal with simpler embedding techniques,
seem to prioritize building an intuitive and effective visual inter-
face with overlay for users to explore. In the paper GTMapLens
[MZAD∗20], Ma et al. propose a lens-based visual interaction tech-
nique that provides word recommendations to users. When a user
explores a geographical region and inputs a keyword of interest, the
content of the lens will automatically trace and highlight closely
related words. GTMapLens uses word embedding to generate word
recommendations. It would be interesting to investigate the possi-
bility of incorporating other types of data, such as time series, into
the embedding process. At the same time, CriPAV [GZRP∗22] em-
beds crime time series for users to detect crime hotspots. They pro-
vide a location view with dots to show the detected crime hotspots

along with multiple linked panels displaying temporal trends. It
would be of interest to enhance user interaction by allowing them
to input a keyword or timeframe of interest, and having the sys-
tem trace and suggest related concepts. This is just a simple and
brief hypothetical scenario. There are certainly more opportunities
for future directions when connecting VA+embeddings tools across
different domains. We will further discuss the trends and opportu-
nities in Section 7.

5.1.5. Business, Management, Governance, Law

Research on visualization for business analytics and management
tools focuses on developing interactive interfaces for various busi-
ness and management data. There are several topics covered in
this set of papers, including market data analysis [CKC19,CKC20,
HKD∗21, JCSM22, CKN22, CGH∗22] (see Figure 7), collabora-
tive and multi-user analysis [XBL∗18], visualization of meeting
content [CBS∗19], and machine maintenance data [ZFC∗21] (Fig-
ure 5(b)).

Market Data Visualization For businesses, a market data vi-
sual analytics tool can inform customer satisfaction with their prod-
ucts. It can be used for strategic recommendations in marketing and
decision-making purposes [CKC19, CKC20, CKN22], as well as
identify marketing targets [CGH∗22]. Meanwhile, VA techniques
can help customers explore product-related topics [HKD∗21] (Fig-
ure 7(c)) and perform serendipitous discoveries [JCSM22]. A pop-
ular source that produces market and product data is social me-
dia platforms, containing large-scale text and network data. Al-
though most of the papers in this set are not directly related to
natural language processing, they express the need to use state-
of-the-art NLP methods to perform sentiment, opinion, and aspect
analysis [CKC19,CKC20]. In such cases, word/sentence/document
embeddings are calculated as part of the computational pipeline to
output a correlation/similarity rating for topics or sentiments, and
there is either no explicit visual representation or, for instance, a
bar chart or some percentage numbers as extra information.

Visual Interfaces for Collaboration Designing a visualization
tool for collaboration can be synchronous or asynchronous. For
synchronous group support systems, data is shared, analyzed, and
interacted with by multiple persons in real time. Meanwhile, asyn-
chronous VA tools enable sharing and reviewing prior workers’ out-
puts. Effectively summarizing and connecting findings are impor-
tant for both types. Via embeddings, multi-user outputs can be rep-
resented to calculate “relatedness”, such that similar contents can
be put together in the interface [ZFC∗21].

Depending on the usage scenario, the collaboration object to be
embedded may vary. For example, TalkTraces [ZFC∗21] provides a
visualization tool for displaying real-time meeting contents. Word
embeddings are used to determine how discussions relate to one an-
other. Chart Constellations [XBL∗18], on the other hand, supports
a single analyst to review and analyze data visualizations from prior
collaborators. They also incorporate word embeddings of tagged
keywords in the meta-label, along with chart encoding and dimen-
sional intersection information to aggregate pairwise distances such
that similar charts can be clustered. Even though the visual inter-
face is still largely encoded as 2D scatter plots, each point now rep-
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(a) (b) (c)

Figure 6: Examples of custom visualizations of embedding data. (a) LMFingerprints by Sevastjanova et al. [SKB∗22] for visual explanation
and comparison of embedding spaces. (b) Emblaze by Sivaraman et al. [SWP22] for animated and interactive comparison of embedding
spaces with Star Trail augmentation. (c) EEVO by Witschard et al. [WJM∗22] for interactive optimization of embedding ensembles.

resents a visualization chart. An ensemble calculation of different
distances with user-customized weights determines their positions.

5.1.6. Physical Sciences, Engineering, Mathematics

The papers in this set focus on exploring model collec-
tions [AKZM14], analyzing air quality evolution by embedding
pollutant event sequences into latent stages [QLL∗22], extracting
contents of mineral exploration reports by embedding keywords
and visualizing semantically similar words [WMW∗22], and de-
signing new lubricants by calculating importance and correlation
values from molecular embeddings [MNS∗23].

Visual Browsing of Multimedia Collections Shape brows-
ing and navigation refer to a process of exploring collections of
3D shapes, images, labels, and other multimodal representations
through an interface. It falls under the intersection between com-
puter graphics and human-computer interaction. More often than
not, many papers on this topic have a very simple interface with
minimal visual representations, often a 2D projection plot, but it is
still relevant to our survey. There exist two main challenges. First,
given a high-dimensional search space of images and shapes, it is
not efficient to generate a global manifold that preserves similar-
ity relations among all objects for a user to navigate [KFLCO13].
Second, given the low-dimensional representations, users need to
effectively navigate through the space and perform desired tasks in
an intuitive way [AKZM14].

There are many papers aiming to address the first challenge.
Since users essentially are browsing through a small subset of ob-
jects, one approach is to generate a local manifold that only cap-
tures the region currently observed by the user [KFLCO13]. An-
other method, which is more of a global approach, is to apply a
neural network to extract feature vectors for all the objects, and then
employ a DR method to project features into a 2D space with a 2D
projection plot for exploration [LSE21]. For the second challenge,
due to our restricted and limited search (as described in Section 4),
fewer papers aim from a visual analytics and interaction perspec-
tive. One particularly interesting example, ShapeSynth [AKZM14]
not only provides an embedding technique for part-aware shape de-

scriptors, but also presents an interface for exploring the embedding
hierarchically at various levels. The overall application goal of this
approach is to enable non-expert modelers to explore possible syn-
thesizable shapes for their model. We expected other related papers
to narrate from downstream domain applications’ perspective, and
aim at different audience groups within the physical sciences and
engineering domain. However, we were not able to identify further
papers that fit the scope of this survey in this regard so far.

5.1.7. Sports and Entertainment

There exist a few papers that make our corpus a little more diverse.
We include them here. The topics of those papers involve game
visual analytics [XWX∗22], sports visualization [WWC∗21], and
an interactive system for art generation [FCH∗22]. Those papers
use different embedding techniques and different visual represen-
tations of the resulting embedding. For RoleSeer [XWX∗22], a vi-
sual analytics tool to inform social role changes during gameplay,
dynamic network embedding is used to represent the social identity
of players. Users can observe role transition by comparing clus-
ters at different timestamps. For Tac-Miner [WWC∗21], a visual
table tennis tactic mining system, table tennis strokes are embed-
ded via word2vec as a basis for further visual analytic tasks. For
iPoet [FCH∗22], a multimodal system to allow users to compose
poems for paintings, embeddings play a role in labeling and visu-
ally showing the sentiments of poems, and they are generated via
gated recurrent units. Even though the contents between those VA
tools vary a lot, they still use the same building blocks as other
domains: using word2vec variants to embed domain-specific data,
such as the strokes from racket sports, and calculating graph em-
beddings to represent social relationships, similar to what has been
discussed in Section 5.1.4.

5.1.8. Domain-Agnostic

We define a VA approach in our corpus as “domain-agnostic” if the
system focuses on embedding space visualizations. In such cases,
the source of the embedding space may be user-defined, unspeci-
fied, or independent of domain-specific tasks. There are two possi-
ble scenarios for papers to be included in this set. (1) Papers may
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be framed in a specific context, but the input data for embedding
are generalizable. For instance, Emblaze [SWP22] is designed for
ML representations, but the emphasis remains on embedding space
exploration, and they do not explicitly mention the constraint of
input data (see Figure 6(b)). Another similar example is from Re-
noust et al. [RRM∗21]. While their VA system is largely focused on
information retrieval and querying, the embedded data can be gen-
eralized to support multiple formats and types. (2) For systems that
only deal with one data type, such as text, their system can work as
a module for tasks across various domains. For instance, Witschard
et al. [WJM∗22] provide an interactive optimization system focus-
ing on text embedding-related metrics (Figure 6(c)). Their system
is applicable to fields beyond the scope of text analysis, though.

Visualization for Embedding Interpretation Embeddings are
ubiquitous in machine learning. Beyond designing a panel for em-
bedding analysis in a larger system of ML model interpretation as
mentioned in Section 5.1.1, there exist many visual analytics pa-
pers dedicated to interpreting user-defined embeddings [STN∗16]
or exploring user-defined multi-dimensional data via embeddings
[XTL∗21]. Smilkov et al. [STN∗16] summarized three high-level
tasks to facilitate the interpretation of embeddings: (1) exploring
local neighborhoods, (2) viewing global geometry and finding clus-
ters, and (3) finding semantically meaningful directions for a cer-
tain concept set. A handful of papers in our corpus from various
domains reflect at least one of the themes.

VA systems can be used for comparing two or more embedding
spaces in addition to exploring one embedding space. For those
types of techniques included in our corpus, it seems that some of
them choose to focus primarily on one of those three high-level
tasks. Extending task (1) to compare local neighborhoods, emb-
Comp [HKMG22] provides a neighborhood overlapping view dis-
playing the number of similar neighbors in the two embeddings,
along with other metrics reflecting properties such as spread and
density of neighbors. Extending task (2) to compare the global ge-
ometry of embedding spaces, EmbeddingVis [LNH∗18] provides
multiple panels in a row to compare the global structure of differ-
ent embedding results. Task (3) of identifying semantically mean-
ingful directions may be of interest to computational linguistics
researchers. Especially for word embeddings, subtracting the vec-
tor representations of two related words and adding the result to a
third word would help researchers detect potential biases in those
vector relations [BCjC19]. A system from Liu et al. [LBT∗18]
aims to address this task primarily. The proposed tool supports
visual exploration and reviews the semantic relationships of syn-
tactic analogies in an embedding space. Even though there are no
side-by-side comparisons in the interface, users can switch between
word embedding methods. Embedding Projector [STN∗16], which
specifically works on interpreting embeddings interactively, sup-
ports users in performing all three tasks. In Section 5.6, we link
those three tasks with the high-level visual analytic tasks in our
categorization schema suitable for all domains.

As the complexity of VA applications increases when it comes
to comparing multiple embedding spaces, there is tension between
adding more features to the visual interface versus making the inter-
face simpler and more intuitive to enhance visual literacy [Rus16].
As a result, it is crucial to find the right balance for the targeted

audiences. Visual interfaces need to provide them with enough per-
spective to facilitate their tasks of interest and enough evidence to
make the sophisticated metrics and visual representation trustwor-
thy. We will discuss these trade-offs in detail in Section 7.2 Visual
Analytics for Embeddings.

5.2. Target User

Visualization tools assist users in performing tasks such as discov-
ering trends or identifying outliers. It is equally important to con-
sider the profiles of target users, which in turn have an important ef-
fect on the chosen design. However, it was unexpected to discover
that only 32 out of the 122 papers provide explicit target user
description. Out of these, an even smaller portion explicitly stated
the assumed level of user expertise [WWC∗21, FCH∗22, SWP22,
AHH22]. While these numbers clearly should prompt some self-
scrutiny within the research community, it must also be said that
many of the publications contain a lot of implicit information,
which makes it possible to deduce a profile of the targeted user.
Hence, the situation is not as bad as it first might seem.

Two common ways for papers to mention the scope of tar-
geted users are expert interviews before development and post-
development evaluations, including usage scenarios, user stud-
ies, and quantitative measures. While evaluation concerns are dis-
cussed in Section 5.9, there are two types of assumptions for
defining target users at any stage of development beyond for-
mulating implications and design goals. First, all users share a
set of common knowledge, or at least they need to meet cer-
tain criteria. Similar to many other VA papers, a common ref-
erence to indicate such shared knowledge is to refer to the
users as “researchers” [KCK∗19,CEBV22,RSL∗22,SCR∗23], “do-
main experts/scientists/specialists” [LBT∗18, AHH22, MNS∗23,
WHC∗23], “expert readers” [MWJ22, JCSM22], and “practition-
ers” in a certain domain [MHL∗20, XWX∗22, RSL∗22, SWP22].
Even though those terms provide a narrower scope than simply
“users” in order to refer to the target groups of a VA tool, still,
the explicit prerequisites to use a domain-specific tool are hidden
behind the scenes.

Besides commonalities and user study guidelines for develop-
ing every VA tool, we observe different levels of requirements for
using embedding-related panels. Obviously, for tools that aim at
exploring embedding spaces, users are expected to have experience
in working with embedding models. While other tools incorporate
an explicit visual representation of embeddings as a supplementary
panel, several authors mention the following criteria when decid-
ing on user study participants. Even though the target users may be
from a specific domain such as medicine or just game players, they
are implicitly required to have “basic concepts of machine learn-
ing”, use “software for patient data analysis”, be “computer sci-
ence major students”, or students who understand “statistics” and
“intrinsic dimensionality” [XWX∗22,CEBV22,MM23,WHC∗23].

As a result, we would like to highlight the user-centric eXplain-
able Artificial Intelligence (XAI) considerations proposed by Wang
et al. [WHC∗23]. Even though not all embedding methods we sur-
veyed are AI-based, according to the well-defined considerations
from Wang et al., we believe it is valuable to specify users’ research
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(a) (b) (c)

Figure 7: Examples of node-link diagrams for trees and graphs/networks, mainly or partly derived using embedding data. (a) CorGIE by Liu
et al. [LWBM22] for visualizing graph neural networks. (b) BiaScope by Rissaki et al. [RSL∗22] for interactive investigation of unfairness
for graph embeddings. (c) SocialVisTUM by Hagerer et al. [HKD∗21] for exploration of relationships between topic embeddings.

field, AI (in this case embedding-related) expertise, and their role
in using VA+embeddings systems when writing a paper.

Creating embedding-related panels may require users to have
a certain level of knowledge to use the tool effectively. However,
from another perspective, embeddings open up opportunities for
creating personal visualization [HTAA∗15] that enables data analy-
sis in a personal context. Metaphorical Visualization by Tkachev et
al. [TCS∗22] proposes an inspiring VA+embeddings approach that
uses embeddings to create metaphors. They link one data entity
to another via distance-based mapping derived from ML embed-
ding spaces along with other mapping algorithms. As an example,
authors can be explored metaphorically by mapping them into En-
glish nouns or even cat images. Although users may have different
backgrounds and goals, the created visualization aims to encourage
all of them to experiment with it. As discussed in Sections 5.1.4
and 5.1.5, several other approaches also use embeddings to support
serendipitous discoveries. As noted in the evaluation section of the
work from Jasim et al. [JCSM22], users with explicit knowledge
about a data item also gain implicit knowledge about all other data
entities that are semantically similar. For such cases, embeddings
help to mitigate the knowledge gap by indicating semantic simi-
larities within and across different datasets, allowing users to infer
unknown concepts based on their existing background. At the same
time, such approaches ensure less redundancy and a more balanced
exploration of data with different attributes.

We want to summarize this subsection by reiterating four ob-
servations. First, many papers in our corpus have not explicitly
mentioned target users and usage contexts for their proposed VA
tools. Second, the scope and background knowledge of target users
that authors frame in the introduction of their paper is often differ-
ent than what they illustrate as criteria for finding suitable candi-
dates for user studies. Thirdly, introducing embedding-related pan-
els adds further background assumptions to target audiences, and
papers rarely mention such assumptions. Lastly, embeddings open
a broad space for personal visualization [HTAA∗15], as one of
the main motivations for using embeddings is to make distance-
based recommendations to potential exploration targets. Incorpo-

rating embeddings to make guidance can leverage users’ knowl-
edge from one domain to another if the concepts are represented by
a common embedding space [TCS∗22].

5.3. Input Data Type

One important factor in assessing the use and spread of embed-
ding technologies within the visualization community is to keep
track of the type of data which is being embedded. The classifi-
cation scheme used for this survey (together with the number of
publications within each class) is: textual (70), numeri-
cal/tabular (25), graph/network (22), mixed (17), im-
age/video/audio (17), and data-agnostic (6).

Since NLP is one of the domains where embedding technolo-
gies were first adopted and their use and development are still
highly successful, it is no surprise that textual data input
is used within almost half of the publications in our data set.
Prominent examples of use from this domain are semantic anal-
ysis [HG18, MWZ19, GHM21, LWZ∗23], document search and
retrieval [CWDH09, KOK∗18, RSBV21], and analysis of social
media posts and/or customer reviews [BEF17, WSP∗21, CKN22,
JCSM22].

The second largest category, numerical/tabular, accounts
for nearly one-quarter of the publications. Here, it is important to
note that this category generally includes much more intricate ex-
amples than just collecting values over several numerical features.
For instance, there are examples of analysis of sequential data (time
series, mobility patterns, etc.) [LPH∗20,BZQ∗21,ZJQH22] as well
as of applications that load embedding vectors that have been
calculated and published by other parties [HKMG22, EHA∗22].

Graph/network data also accounts for an important contri-
bution. This field has seen substantial growth after some initial
word-embedding technologies were modified to handle this data
type. Common usage scenarios are analysis and comparison of
graph topology [CZC∗17,PCZ∗21,SDXR22], and (just as for word
embeddings) comparing the embedding spaces of different algo-
rithms can give important insights to the different algorithms as
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well as to the underlying network [LNH∗18, CZG∗22]. Further-
more, TorusTrafficND [CZIM18] provides an interesting example
of embedding network topology onto a Hilbert curve rather than
using a numerical vector.

As indicated by the name, the mixed category includes ex-
amples of applications that use more than one input data type.
A common scenario is to combine textual data with time and/or
geospatial data [XTYL18, GFL∗20, LYY∗20, AAM∗21], and an-
other approach is to combine network topology with node attribute
data [LHZ∗22]. As for the image/video/audio data type cat-
egory, the most prominent example is image data, which is used
both on its own (e.g., in applications using image/shape similar-
ity calculations) [KFLCO13, AKZM14, YHZ22, HHS∗23] as well
as in combination with other data types [PdSP∗22, GGW22]. An
exception to the image-based focus of this category can be found
in [RMH∗22], which embeds audio data for analyzing urban noises.

Finally, we have the data-agnostic category, where the in-
put data is typically treated as generic numerical vectors, and little,
or no, assumptions are made on the underlying data. Here, we find
applications for more generic exploration and comparison of differ-
ent embedding spaces without taking full advantage of knowledge
from the underlying data domain [STN∗16, BCS22, SWP22].

5.4. Computational Method

We classify the computational approach into three main methods,
which can of course be used in combination within the scope of a
single paper. The most common, with 88 occurrences, is neu-
ral network, where different types of ML/DL models are used to
obtain the embeddings [ZJQH22,RSL∗22,SDXR22]. Even though
there are many different variants, some of which are highly cus-
tomized for the specific tasks, our analysis shows that using the
BERT [DCLT19] model or word2vec [MSC∗13] (or some of the
other versions inspired/derived from it) is a common choice among
the surveyed papers. This is yet another indication (compare to
5.3) that NLP continues to be a key area for using and develop-
ing embedding technologies, and that advances regarding textual
data sometimes also can be transferable to other data types, such as
the case of word2vec (used for word embedding) whose algorithm
has been modified to obtain variants for embedding graph/network
data, such as stack2vec [XXM19] for representing call stack trees,
struc2vec [XWX∗22] for learning the structural identity of nodes,
and metapath2vec [DSS∗23] for capturing cross entity interaction
features. To explore all the survey entries using a variant of the
word2vec techniques, readers can enter “2vec” in the search bar of
the visual browser accompanying this survey article (assuming that
the respective titles are available as part of free-text details).

The second most common method (with 33 occurrences) is
matrix analysis, which relies on matrix decomposition meth-

ods such as spectral analysis/eigenvalue decomposition to calcu-
late the embeddings [KCD∗19,FFST19,PCZ∗21]. Within this cate-
gory, the choice of using the precalculated GloVe word embeddings
[PSM14] is fairly common. The third category (with 16 occur-
rences) is statistical analysis, such as term frequency–inverse
document frequency (TF-IDF) [KFLCO13, HMW∗15, QLL∗22].
Finally, the smallest category is the computational method-
agnostic category, which accounts for 12 occurrences, and just as

for the data-agnostic cases of Section 5.3, these applications do not
make specific assumptions on the embeddings, but rather treat them
as generic numerical vectors that are sometimes directly from user
input [STN∗16,HPvU∗18,LJLH19]. From the overall distribution,
we find it reasonable to conclude that the most prominent develop-
ment of embedding technologies currently takes place within the
ML/DL domain, as those neural representation learning methods
can learn semantic, geometric, and contextual information. How-
ever, it is also clear that some of the “older” technologies still have
their area of successful use.

After obtaining the embeddings, applying clustering algorithms
and computing distance-based similarities for two vectors are often
the following steps. While some papers focus on distances based
on the embedding space, such as cosine similarities and calculat-
ing Euclidian distances [HKD∗21, JCSM22], others may consider
additional attribute values [GHM21] or graph centrality measures
such as PageRank and betweenness [XWX∗22] in combination
with embedding proximity to make a final similarity ranking for
data entities. Those distances and rankings can not only indicate
semantically similar items but also suggest the fairness of an em-
bedding approach. An example of such an application is BiaScope
from Rissaki et al. [RSL∗22], which visualizes fairness scores in
graph embeddings for both individual nodes and groups (see Fig-
ure 7(b)). When using embeddings to provide recommendations,
ensuring equal representation of all population groups is crucial.
This can be achieved by measuring the proportion of embedding-
based recommendations belonging to a specific population, which
allows detecting if a sub-population is recommended dispropor-
tionately more [RSL∗22].

5.5. Embedding Vector Dimensionality

The dimensionality of the embedding vectors affects both the
possibility of capturing and representing the underlying data and
the computational load (i.e., a vector of higher dimension may
be able to capture the data in a better way, but on the other
hand, calculations will be slower compared to using vectors of
lower dimensions.) Since we expected word/text embedding to be
a prominent topic within our corpus, and since many word/text
embedding algorithms typically produce vectors of dimensional-
ity within the range [50–500] dimensions, we chose this as the
expected base bin of our classification and then added the side
bins for shorter/longer vectors as well. From this, we obtain the
following classification result: under 50 dimensions (15 en-
tries) [STN∗16, BCS22, PDD∗22], between 50–500 dimen-
sions (31) [CZC∗17,KW18,XTYL20], above 500 dimensions
(14) [KCK∗19, WJM∗22, RMH∗22], and output dimensions
N/A (70) [BEF17, MZAD∗20, NKWW22].

As seen from the results above, many publications do not spec-
ify the dimensionality of the used embedding vectors. Even though
authors often argue for their chosen dimensionality as “the best that
preserves the semantics in the embedding space”, there is often no
proper justification provided. The choice seems to be based on em-
pirical experiences and fine-tuning without a clear definition of un-
der what metrics the results would consider “best”. Furthermore,
only a few applications have seen the need to use embedding vec-
tors with more than 500 dimensions (which is mainly due to the
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fact that the BERT word embedding algorithm and the Universal
Sentence Encoder typically output vectors of 768 and 512 dimen-
sions, respectively). In general, the low attention that the discussion
of dimensionality gets within the surveyed papers leads us to con-
clude that a main takeaway from this section is that vectors of up to
500 dimensions will most likely be sufficient and adequate (both in
terms of data representation capabilities and computational load)
for most applications, regardless of domain and underlying data
type.

5.6. Visual Analytic Task

Regarding the classification of visual analytic tasks, we would like
to acknowledge the prior work that laid a solid theoretical foun-
dation within the fields of InfoVis and VA, including the work by
Amar et al. [AS05, AES05], Brehmer and Munzner [BM13], and
Schulz et al. [SNHS13], among others. For this survey in particu-
lar, we have been inspired by the VIS4ML ontology by Sacha et
al. [SKKC19], but we have also seen the need for customization to
fit our needs. The rationale is that we specifically want to target the
reasons why embeddings are being used within the visualization—
and this will not necessarily coincide with the (possibly) larger task
that the whole application was developed. With the intent to provide
answers to the question “What for/how are the embeddings used
within this visual analytic application?”, we have chosen to use
the following categories: model results representation (63),

interactive exploration (53), comparison/selection (52),
model results explanation (23), model construction (14),

and model debugging/quality/bias control (8).

Since embedding technologies have been designed to transform
(possibly unstructured and complex) data and represent it as vec-
tors, it should come as no surprise that the model results rep-
resentation is the most common category. There are cases when
this is the main task [BNL∗18,BN21,PDD∗22], but a common sce-
nario is first to represent the underlying data and then use the result-
ing embeddings for data exploration [SJB∗17, DMdO19, SGL22].
The same is in turn true for the category interactive explo-
ration, which can be a main task [XTL∗21, XTL∗21, LTHL21]
but also commonly be combined with comparison tasks [BMS17,
BMS17, LJLH19, LZ23] (and with data representation tasks, as
we have already seen). Furthermore, the comparison task may of
course also be the only task [KW18, XTYL20, CEBV22]. With
the current research focus on AI, it is logical to see that there are
many cases when embeddings are used for model result explana-
tion scenarios, both as a single task [BPP∗16, GGW22, ZZL∗22],
but more commonly in combination with other tasks [STN∗16,
TWB∗20,SSJ∗22,SCR∗23]. The content of the category model
construction shows that embeddings can be used for construct-
ing high-performing models [PKL∗18, LKJ∗20, WJM∗22], and
they may also be used for different model debugging scenarios
[LXW∗21, CDHP21, RSL∗22].

In Section 5.1.8 domain-agnostic, we identified several rep-
resentative papers that expand the three primary objectives when
exploring the embedding space: (1) viewing local neighborhoods,
(2) finding global geometries, and (3) exploring semantic mean-
ingful directions for concept sets [STN∗16]. Linking back to those
tasks for domain-agnostic techniques, we would see that the cate-

gories we identified in this section can be constructed by a combi-
nation of those three fundamental tasks for visualizing embedding
spaces.

The task interactive exploration can be applicable to
both local and global embedding spaces. Corresponding to objec-
tive (1), some techniques in fields like visualization for health-
care (Sect. 5.1.3) and performance and software visualization
(Sect. 5.1.2) choose to add visual representations to focus on view-
ing local neighborhoods as detail-on-demand or for anomaly de-
tection. Corresponding to objective (2), for many other techniques
in fields like biological data visualization (Sect. 5.1.3) and urban
visual analytics (Sect. 5.1.4), the embedding views provide users
a global overview of data distributions. Corresponding to objec-
tive (3), especially for fields such as social media visual analytics
(Sect. 5.1.5), embeddings are visualized to reveal correlations of
attribute features and user groups.

Moreover, comparing objectives (1) and (2) leads to the high-
level task of comparison/selection, which commonly appear
for domain-agnostic VA tools (Sect. 5.1.8) and neural network in-
terpretation (Sect. 5.1.1) such as understanding contrastive neu-
ral networks [FZCM20]. The process of constructing objective (1)
or (2) leads to model constructions, which refine graph lay-
outs, alter topologies of models, or enhance domain-specific tasks
based on semantics obtained from embeddings [PKL∗18, PCZ∗21,
RPSM22]. If we combine and investigate objectives (1) and (3)
while considering objective (2), this leads to model debug-
ging/quality/bias control, e.g., graph bias or text bias examples.
Last but not least, for various domains with multimodal hetero-
geneous datasets, model results representation makes all the
tasks above possible.

5.7. Visualization Aspects

Classifying the visual aspects of the visualizations from the sur-
veyed publications provides the same challenge encountered in
Section 5.6, since we want to specifically target the visual aspects
regarding the embeddings, and not necessarily regarding the full
applications. In addition to this, in most cases, it is not straight-
forward to put a clear demarcation line for which data is directly
related to the embeddings, and which data is not. Loosely speak-
ing, we have chosen to include all visual components that directly
aim to show information from the embedding vectors (e.g., fea-
ture values, feature value distributions, and dimensionality reduc-
tion results) or data derived from direct vector calculations (e.g.,
distance calculations or similarity calculations). Furthermore, since
visualizing embedding data is far from a standardized task (and the
level of variation is high within our surveyed corpus), we made a
somewhat controversial decision to avoid detailed categories cor-
responding to particular metaphors or techniques here. Instead, we
only focus on the categorical, binary question, and cover further de-
tails within the free-text notes. All in all, this opens for some level
of ambiguity within the classification, but it nevertheless provides
enough rigor for our purposes and allows us to draw some interest-
ing general conclusions.

Our first main observation is that roughly 83% of the applica-
tions (102 entries) contain explicit embedding representa-
tions. This is not surprising in itself (with regard to the profile of
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the survey), but it is still a clear indication that using embeddings
as “black boxes” is not a suitable strategy for many cases. Our sec-
ond main observation is that the most dominant visual represen-
tation (used in 64 visualizations) is a scatter plot showing the 2D
projection of the embeddings by using a dimensionality reduction
algorithm, such as t-distributed stochastic neighbor embedding (t-
SNE) or uniform manifold approximation and projection (UMAP)
(Figure 5).

The main scenario for using such 2D projections is to provide the
user with information on how the data points are distributed and/or
how they are grouped/clustered in the embedding space with regard
to pairwise similarity [HPvU∗18,ZSHL18,HPX∗21,BCH∗22]. The
conformity of the design of these 2D projections and the abundance
of their use lead us to conclude that this is a de-facto standard for vi-
sualizing embedding vectors. As mentioned, the variation is much
higher for other visual representations, with far fewer occurrences
for each specific type. Hence, a main takeaway from this section
is the observation that (apart from the 2D projections) the level of
standardization of visualizations for embeddings is low, and that
many applications contain some element(s) of unique design (Fig-
ure 6). The following are examples of some reoccurring visualiza-
tions: word clouds (8 entries) [CKC19,CBS∗19,WMW∗22], node-
link diagrams (13 entries) [FZCM20,HKD∗21,CGH∗22] (see Fig-
ure 7), and scatter plots with other content than 2D projections [LC-
SEK19]. To directly view all the existing techniques using a spe-
cific visual representation, e.g., word clouds, readers can try typ-
ing “word cloud” in the search bar of our visual browser (cf. Fig-
ure 4)—assuming that the respective term was mentioned in free-
text annotation notes.

Among many other techniques that create a typical scatter plot
and assign the color of 2D projections based on either the clusters
each point belongs to or the labels of those points, we identify sev-
eral other options to assign coloring, such as average distance in
the embedding space [BZQ∗21]. Moreover, in VA systems such as
Emblaze [SWP22] and the tool from Heimerl et al. [HG18], users
are able to customize color assignments to be able to compare dif-
ferent embedding spaces or data co-occurrences in the same view.
There are also a few techniques augmenting the scatter plot by con-
structing a pattern graph and Voronoi maps for each cluster sub-
space via Delaunay triangulation [LDL∗20, VMZL22]. AnchorViz
chooses to use non-orthogonal layouts to project the embedding
space [SGR∗20], and the VA technique from Heimerl et al. allows
users to define the axis of the 2D projection [HG18].

5.8. Interaction Aspects

Going from the visual aspects to the interaction techniques, we
once again want to underline that we specifically target the em-
beddings, and not the full applications. This is the explanation as to
why we have only 77 entries for the category interaction tech-
niques support [FCH∗22, GZRP∗22, RMH∗22] (as compared to
the 102 entries with explicit embedding representation in an
interface), which in turn gives that roughly 25% of the applications
that specifically show some embedding data do not allow any direct
interaction with it [CKC19,BZQ∗21,WMW∗22]. Since interacting
with embedding data is a non-standardized task (cf. Section 5.7),
we decided to also approach this aspect with a single nominal cate-

gory + free-text details, rather than introducing a variety of individ-
ual interaction categories. Browsing through the classification re-
sult, we can find many of the common interaction techniques, such
as click & select, pan & zoom, search & filter, details-on-demand,
etc., as well as customized variants.

In our free-text details of annotations, we found several inter-
esting interaction techniques unique to embeddings, besides other
more common user interactions, such as selecting a point on a scat-
ter plot to show details on demand. Section 5.6 discusses three pri-
mary analytical tasks for embedding spaces. Viewing local neigh-
borhoods is one of them. While common techniques are using
color assignment or hover to show subsets of embedded items,
techniques like Cytosplore [HPvU∗16] allow users to refine and
merge multiple clusters by clicking on one or more clusters repre-
sented by a heatmap with color representing the homogeneity. An-
other way to introduce a more customized display of embedding-
derived views is by enabling user-defined filtering. In Urban Rhap-
sody [RMH∗22], users can stack projections and re-project a subset
of data they choose to keep. User-defined inclusion thresholds for
data and cluster filtering vary greatly by each VA technique.

While some approaches enable users to filter out data points
based on their direct observations and perceptions, others incor-
porate additional calculations to provide users with separate met-
ric views to reference, or impose constraints to limit the range
of items to be filtered [PDD∗22, GZRP∗22]. For example, in
CriPAV [GZRP∗22], a probability-based linear selection mecha-
nism is implemented for filtering a set of embedded items as an al-
ternative to brushing. Here, they use parameters to define the slope
and positions of a straight line that divides points in the scatter
plot into two different groups based on a function that calculates
the probability and/or intensity of embedded items. Therefore, the
visual representation will adapt accordingly to changes in the un-
derlying data, as well as any user-defined changes in aggregation
scores or metrics (Figure 6(a)) [SKB∗22].

5.9. Evaluation Aspects

The type of evaluation that was performed is the last part
of the classification scheme used for this survey. We sepa-
rate between evaluation of computational components (53
cases) [HMW∗15, ZDL21, AAM∗21] and evaluation of vi-
sual/interactive components (84 cases) [MDL07, BMS17, SH20,
PdSP∗22], and also allow for free-text specification of the evalua-
tion details. Going through the results, we find the same examples
of evaluation methods (e.g., expert reviews, user studies, or ques-
tionnaires) as would be expected for evaluating any general visual-
ization systems.

The free-text specifications for all papers in our corpus reveal
that the attributes most commonly emphasized by authors are “use-
fulness” (35 entries), followed by “effectiveness” (25 entries), “ac-
curacy” (22), “performance” (14), “usability” (15), “quality” (11),
“scalability” (7), “efficiency” (6), “stability” (2), and “speed” (2),
along with other terms such as “helpfulness”, “capability”, “valid-
ity”, “consistency”, or “sensitivity”, each occurring only once. For
each entry, those free-text details can be found under “evaluation
details” in the survey browser, and we conducted a basic statistical
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Figure 8: Sparklines representing the support for each category
within our survey data set (see Table 1 for the legend) relative to the
total number of entries for the same year. (Larger version included
in supplementary materials)

frequency count of those annotations to generate the results above.
Based on the results and observations during our annotation pro-
cess, it is evident that only a few papers write down their consid-
erations for the stability and robustness of the embedding methods,
and not all the papers evaluate the computational component in the
VA pipeline compared to user studies performed for visual compo-
nents. Additional discussion related to the stability of embedding
methods is provided in Section 7.1.4.

6. Survey Data Analyses

In this section, we continue analyzing the collected survey data,
albeit with the overall trends and patterns in mind rather than fo-
cusing on individual example approaches.

Temporal Trends While we have presented the overall support
for individual categories in our data in Table 1 and overall tempo-
ral distributions of the survey entries in Figure 3, particular cate-
gories might have become more or less prominent over time. We
can thus consider the temporal distribution for each category (nor-
malized per respective year), as displayed in Figure 8. From these

Figure 9: Correlation matrix for the categories based on the survey
data set. (Larger version included in supplementary materials)

results, we can notice the stable interest for domain applica-
tions in ML/AI and text data, for instance, which could be ex-
pected based on the strong support for these categories in the survey
data. A more interesting result here can be observed with respect to
the computational methods, where the entries included in the past
several years demonstrate strong interest for neural network
approaches for embedding calculations. This result makes sense,
given the existing trends in NLP/ML/AI, but it also confirms the
same trend for the more particular scope of our survey (including
the visual analytic perspective).

Category Correlations Another perspective to consider for the
categorized data is whether the categories tend to co-occur in par-
ticular patterns, or even whether the use of some particular cate-
gory typically means that some other category would not be sup-
ported by the respective visual analytic approach. To address this
question, we have conducted correlation analysis of the survey
data and computed Pearson’s r coefficient values for pairs of cat-
egories. The results are presented in Figure 9, with the shades
of indigo blue indicating positive correlation, while orange indi-
cates negative correlation values. Focusing on the top positive val-
ues, some of the interesting findings here include correlation be-
tween the application domain of computing and graph in-
put data (r = 0.30); support for embedding vectors under 50
dimensions and data-agnostic approaches (r = 0.38); and
description of the target user for input data type-agnostic ap-
proaches (r = 0.30). We could also expect to find the rather strong
(but interestingly enough, far from absolute) correlation between
the visual representation and interaction categories (r = 0.58,
the largest positive correlation value currently). Positive correla-
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Table 2: Topic modeling results for the underlying publication abstracts (computed with BERTopic [Gro22]).

Topic 1
DATA

VISUAL

USERS

EMBEDDINGS

VISUALIZATION

EMBEDDING

MODELS

INTERACTIVE

USER

MODEL

65 entries,
including:
[LBT∗18]
[KCK∗19]
[WHC∗23]
[MWJ22]
[WJM∗22]

Topic 2
GRAPH

EMBEDDING

NETWORKS

NODE

NODES

NETWORK

GRAPHS

STRUCTURAL

COMPARISON

VISUAL

14 entries,
including:
[LNH∗18]
[CGH∗22]
[CZC∗17]
[XTYL20]
[LHZ∗22]

Topic 3
REVIEWS

TOPIC

ANALYTICS

DATA

SOCIAL

SENTIMENT

EVENTS

VISUAL

ANALYSIS

GROUPS

14 entries,
including:
[HKD∗21]
[XTYL18]
[CKN22]
[AYL∗22]
[CKC20]

Topic 4
URBAN

MOBILITY

PATTERNS

CRIME

TRANSIT

AREAS

NOISE

CITY

APPROACH

DATA

8 entries,
including:
[ZDL21]
[BZQ∗21]
[MHL∗20]
[RMH∗22]
[GZRP∗22]

Topic 5
SEQUENTIAL

SEQUENCES

DETECTION

EXECUTIONS

ANOMALY

ANOMALOUS

MOOC

TIME

RARE

BEHAVIORS

5 entries,
including:
[XXM19]
[LDL∗20]
[DSS∗23]
[MDL07]
[WLHO19]

Topic 6
ROLES

INFORMAL

ANALYSIS

MATCHES

CHARTS

ANALYSTS

TACTICS

TENNIS

CONSTELLATIONS

TABLE

4 entries,
including:
[WWC∗21]
[KW18]
[XWX∗22]
[XBL∗18]

Outliers
DATA

ML

VISUAL

GESTURE

TEAMS

PAINTING

ANALYSIS

DEPENDENCIES

KERNEL

USER

12 entries,
including:
[FCH∗22]
[LTHL21]
[SSKEA21]
[ZWW∗22]
[BPP∗16]

tions between domain-agnostic vs computation-agnostic
(r = 0.35), domain-agnostic vs data-agnostic (r = 0.31), and

computation-agnostic vs data-agnostic (r = 0.31) categories
are also reasonable to expect. Other noteworthy results are the cor-
relation between the model results explanation task and the
AI/ML domain (r = 0.26), and the same task with computation-
agnostic approaches (r = 0.26). With respect to negative correla-
tions, we mainly find “competition” within the same aspects, such
as lack of explicit embedding dimensionality description and
the support for embedding vectors between 50–500 dimen-
sions (r =−0.68, the strongest negative result currently); however,
the negative result for text and graph data (r =−0.50) is
interesting, indicating the more focused application of visual an-
alytic approaches, perhaps. Regarding the visual analytic tasks,

model results representation is negatively correlated with
model results explanation (r =−0.25) and comparison/selection
(r =−0.26). Additionally, the model results representation task
is, interestingly enough, negatively correlated with the AI/ML
domain (r =−0.34) in the current survey data, which is related to
the support/correlation for other VA tasks with that domain.

Frequent Category Co-occurence Patterns While Pearson’s
correlation analysis allows us to investigate linear relationships be-
tween categories in the survey data, and other correlation analysis
methods could reveal non-linear relationships, they are limited to
pairs of categories. In order to investigate patterns involving more
than two categories, we have applied frequent pattern mining using
the FPGrowth [HPY00] algorithm. According to the respective re-
sults and focusing on largest pattern sizes (i.e., sets of co-occurring
categories), we can describe the following profile of a VA tech-
nique involving embeddings: designed for the AI/ML domain,
using neural network approaches for embedding computations
(while not specifying explicitly the size of respective embed-
ding vectors), supporting the visual analytic task of compari-
son/selection, explicit visual representation of embeddings (or
derived results) and interaction with them, while discussing
evaluation of such human-centered aspects in the respective publi-
cation. This pattern is supported by 9 entries (7% of the complete
data set) in our current survey data [FZCM20, GHM21, SKB∗21,
CZG∗22,PdSP∗22,RSL∗22,ZJQH22,HHS∗23,WHC∗23]. Shorter
patterns occur more frequently, up to 15 entries (12%) supporting
the pattern of the AI/ML domain, text data, neural net-
works, and interactive visualization & evaluation concerns

. The complete list of the category patterns of length 7 and 6
(with respective citation keys) is included in supplementary mate-
rials.

Table 3: Authorship count distribution. The current data set
includes 122 entries corresponding to visual analytic ap-
proaches/studies and 503 authors in total.

#entries 1 2 3 4 5

#authors 428 59 10 3 3

Topics in Publication Abstracts Switching from the annotated
category data, we have also conducted topic modeling with the
abstracts for the base publications from our survey. The motiva-
tion for this analysis is to provide an alternative way of establish-
ing groups of publications/approaches with respect to the descrip-
tions provided by the original publication authors, rather than the
survey data annotation conducted as part of this STAR—and, fur-
thermore, to identify salient key terms that describe such groups
of publications. Specifically, we have conducted topic analysis us-
ing BERTopic [Gro22] for the current survey data: this approach
essentially assigns documents into one of clusters (or labels the
document as an outlier) and afterwards identifies descriptive terms
for each cluster. The results from this analysis are presented in Ta-
ble 2, including the top 10 terms and up to 5 most strongly associ-
ated entry references for each topic. It is noteworthy that the largest
topic/cluster includes 65 publications (53% of our survey data set),
but the set of respective terms such as “data”, “visual”, “users”, and
“embeddings” provides a reasonable interpretation of this broad
group. Other topics include terms more specific to graph/network
data, text analytics, urban data, sequences & anomalies, and sports
data; the topics thus paint a picture of the main themes addressed
by the existing work on the use of embeddings in visual analytics.

Authorship Statistics Besides the contents of publications them-
selves, it was also interesting to consider the state of the research
community contributing to this topic. While our current data set
is limited to 122 publications, the current authorship statistics pre-
sented in Table 3 indicate the presence of several prominent re-
searchers with 3–5 relevant publications. The top authors according
to our current data are M. El-Assady (5 entries), K.-L. Ma (5), K.
Mueller (5), N. Elmqvist (4), H. Lin (4), and Y. Tao (4).

Co-Authorship Network Furthermore, we have extracted the co-
authorship network, weighted by the number of entries for author
nodes and co-authorship edges and conducted further network anal-
yses in Gephi [BHJ09] (see Figure 10). The current network in-
cludes 65 weakly connected components, and the figure highlights
the top 8 components (based on the size). There is one giant com-
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Figure 10: Co-authorship network for the entries currently in-
cluded in our survey. (Larger version with node labels included in
supplementary materials)

ponent with 75 authors that includes K. Mueller (component #1 in
the figure), while components with 25 (incl. L.G. Nonato, #2), 24
(incl. M. El-Assady, #3), and 23 (incl. D.H. Chau, #4) authors fol-
low. These results might be interesting for the readers that intend
to identify and follow further work of the respective authors and
research groups on this topic in the future.

7. Discussion

In this section, we bring together the insights gathered from our
review of 122 papers included in this survey. We synthesize some
of the findings made in the preceding sections into meta-level dis-
coveries. Specifically, motivations, trends, concerns, and open chal-
lenges will be discussed based on two angles: embeddings for vi-
sual analytics (Section 7.1) and visual analytics for embeddings
(Section 7.2). The former refers to the need to use embedding tech-
niques in enhancing a VA system, while the latter refers to those
visualization interfaces dedicated to understanding and exploring
embeddings.

7.1. Embeddings for Visual Analytics (embeddings4VA)

There are multiple motivations to incorporate embeddings as a
module or as a UI panel for a visual analytics tool, and this choice
may be content-dependent. As discussed in Section 5.1, the neces-
sity to include embedding techniques arises from context-specific
research questions and collaboration with domain experts. On the
other hand, there are more general design considerations for incor-
porating a dedicated embedding view into a VA system.

The unique and specific design decisions (both context-
dependent and independent) for integrating embeddings in visual
analytics are (1) to create an abstraction of raw data in a vector
space for information retrieval across the same or different data
types/modalities; (2) to offer a semantically proximal space for ex-
pert users to perceive global data distributions; (3) to act as interac-
tion launch pads for details-on-demand with the help of clustering
algorithms; and (4) to guide and recommend exploration targets
using distance metrics. Section 7.1.1 elaborates on design deci-
sions (2) and (3) in terms of user interaction, while Section 7.1.2
focuses on the visual representations of these decisions. In Sec-
tion 7.1.3, we examine the evaluations of design decision (2), and
in Section 7.1.4, we discuss all four design decisions from a soci-
etal perspective.

7.1.1. Embeddings as a Basis for Navigation

Unless the main objective of a tool is to address some aspect of
context-independent embedding, the embeddings are explic-
itly visually represented in a UI panel, because it helps to “eval-
uate” the primary visual analytical tasks [SCR∗23]. “Evaluation”
here refers to users using such a panel to perceive the performance
of a VA system, specifically, whether the system accurately ad-
dresses the intended domain challenges. Despite other views dis-
playing various metrics that fulfill the system’s primary objective,
the embedding view sheds light on the original data distributions.
For instance, Li et al. propose a VA tool for analyzing medical
records, which includes a distribution view to embed and project
all patients’ medical records into a scatter plot. It provides a gen-
eral understanding of the data distribution [LYY∗20]. Embeddings
here are not only a numerical representation of data objects, but
their visual representations also act as some sort of “ground truth”
representations of the original dataset. When users perform filter-
ing or selection on a 2D projection of the embedding space, which
is assumed to be a representation that best preserves the semantic
closeness of data points, adding an embedding view can make the
operation more convincing by providing a direct comparison before
and after the operation in a global view. This aims to enhance the
credibility and legibility of the tool.

In visual analytics interfaces that aim to optimize computational
models with human-in-the-loop processes, the interaction se-
quence typically begins with the embedding panel. It acts as a
launch pad for a deeper exploration of subspaces with the help of
clustering techniques [MM23]. Here, users can evaluate the data
using their domain knowledge and perform interactions like as-
signing labels to neighboring points or merging objects into clus-
ters. These interactions result in updates to other panels, which
help users achieve high-level analytical goals such as topic mod-
eling and text alignment [EAKC∗20, MWJ22]. These interactions
result in an update to the entire interface, with the embedding
view showing global distributions that provide feedback on the
user interaction, thereby enhancing the human-in-the-loop pro-
cess [SJB∗17, BNL∗18]. For the process described above, human
knowledge is incorporated, validated, and propagated from the em-
bedding view to other linked panels.

If we consider this process as active involvement in a VA system,
then a more passive involvement would be when the embeddings
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directly provide insights to users. Computing embeddings is part of
the process for recommending similar objects to a target user in-
put, such as keyword suggestions or query search as mentioned in
Section 5.1.2. In such cases, users receive knowledge from the em-
bedding view, obtain serendipitous findings, and incorporate them
to achieve better performance in the analytical goals.

7.1.2. Embeddings for Visual Channel Assignments

Visualizing embeddings explicitly can be a way to augment
the current panel with additional information and features. It is a
common technique to position visual elements based on the results
from dimensionality reduction or multi-dimensional scaling meth-
ods of the corresponding embeddings. This process is referred to as
spatialization by various authors [ERT∗17]. Regardless of the types
of data being analyzed, proximity in the embedding space conveys
information. The closeness, separability, and density between vi-
sual objects may indicate the presence of inherent similarities or
other types of relationships between them. However, it remains an
open question whether users can perceive a coherent message from
such 2D embedding projections.

Visual variable effectiveness is linked to the level of perceptual
precision, which refers to the accuracy of values being interpreted
when encoded by visual channels [BCF20]. As mentioned in Sec-
tion 5.9, most papers in our corpus evaluate effectiveness, useful-
ness, and other system performances by conducting user studies.
However, evaluating embedding-related views as a whole does not
necessarily mean all of the visual encodings work in an effective
way. Using embeddings to assign the position of visual elements is
often data- and model-dependent.

Even though the generated high-dimensional embedding vectors
always manifest some latent patterns, a 2D summarization and po-
sition assignment may not always result in a clear visual separa-
tion between groups of data. The designers’ intent for assigning
embedding-derived positions to data objects is often that the users
should be able to locate clusters. Such intention may not always
lead to accurate perceptions, especially when there are fewer ob-
servable between-cluster separations. Users may falsely find pat-
terns that are actually statistically insignificant. Thus, it is question-
able whether the users’ interpretation of such visual representations
is reliable and functional.

To address this issue, many works add additional guidance to
improve separation. For instance, in Semantic Concept Spaces
[EAKC∗20], Voronoi tessellation is used to enhance the visual as-
sociation of words by adding concept boundaries in the embed-
ding space. Even though there exist multiple other types of layout
enrichment, as discussed in Nonato et al.’s survey about multidi-
mensional projection techniques [NA19], in our corpus, we observe
much less variety in applying enrichment.

7.1.3. Learnability, Stroop Effect, and “Slow Analytics”

Depending on the target user, some papers in our cor-
pus evaluate whether their proposed system is easy to learn
[XBL∗18]. Practicality [FCH∗22], learnability [JSR∗19], and read-
ability [PCZ∗21] are explicitly accessed for a small set of papers,
while most other papers’ primary concern is showing the usefulness
of their tool.

(a) (b)

Figure 11: An example of two types of color encoding for a 2D
scatter plot: (a) applying double encoding with colors to represent
identified clusters, and (b) applying color encoding based on an-
other labeling/attribute. The latter case demonstrates the potential
issues with visual encoding of multivariate data when making use
of DR and projection plots.

Evaluating a VA system’s learnability, effectiveness, and useful-
ness are deeply intertwined. Nevertheless, the multivariate nature
of embedding-related projection panels produces unique challenges
in handling learning difficulties. By multivariate, we mean a panel
that projects data embeddings into a 2D space while the data incor-
porate additional attributes and labeling. Visually, this means that
users can observe clusters of data points based on their similarities
in a high-dimensional embedding space, but the points in the same
cluster may also share different labeling.

Figure 11(a) illustrates the effectiveness of double encoding in
distinguishing between clusters by conveying the same informa-
tion through both position and color, but as Figure 11(b) shows,
assigning colors based on a different grouping can alter the per-
ception. For instance, in ConceptVector [PKL∗18], the word clus-
ter view uses position and coloring as two main visual channels,
where word embeddings determine the position, and the coloring
is another grouping label applied to the data. Such design may cre-
ate incongruence between the encoded positions and colors, similar
to the Stroop effect [Str35] (individuals may find reading a word
printed in blue font as “red” difficult). Moreover, this issue makes
adding additional annotations to the embedding view difficult.

Encoding additional information can result in a fruitful process
for addressing analytical tasks, as Lupi’s Data Humanism mani-
festo and “slow analytics” movement from Bradley et al. encour-
age viewers to spend time with the data to ensure those data are
retained [BEF17]. On the other side of the spectrum, many other
works choose dual-coding [WWC∗21, LZ23] as shown in Fig-
ure 11. There are also many approaches that simply list items using
embedding-derived similarity measures in a table, with no addi-
tional visual representation. The contrast of designing decisions in
our corpus reveals the role embedding as a visual representation
plays within a VA system. With multiple visual channel assign-
ments, the former often plays a critical role in the human-in-the-
loop processes. Meanwhile, the latter that uses dual encoding often
tries to use embedding as a supplementary panel. It provides a ref-
erence to the original data distribution to add trustworthiness to the
VA interface.
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7.1.4. Stability, Reproducibility, and Bias

If we review a typical VA pipeline that produces explicit visual
representations of embeddings, we would likely find that the em-
beddings are never capable of representing the data fully accurately.
Nevertheless, many papers in our corpus may have a slightly differ-
ent assumption, as stated in Section 7.1.1. In the previous Section
7.1.2, we discussed how different data distributions may produce
either easy-to-separate clusters or borderline cases that may be mis-
leading in falsely identifying statistically insignificant groupings.
Besides the varying distribution of source data that may influence
the reliability of a VA system, two additional factors further hin-
der the credibility of an interface: the absence of stability and the
presence of societal bias.

The NLP community has produced a multitude of papers exam-
ining the issue of stability when various computational models gen-
erate embeddings. Embedding-based word similarities, especially
nearest-neighbor distances, are highly sensitive to small changes
in the training corpus [AM18], yet some VA tools in our corpus
rely on embedding-generated keywords as feedback guiding users’
interactions.

Multiple other factors, from data properties to algorithm proper-
ties, influence the stability of embeddings [WKM18]. Hyperparam-
eter choices may also influence the generation process [BBA21].
However, according to Section 5.5, not all papers give an exact
number in the output embedding dimensions. Even a smaller set of
papers mention how their embedding model is trained, fine-tuned,
and evaluated. The interactivity in visualization offers a unique
way to address those concerns of instability, which is to let users
decide. We observe papers state that their visualization is model-
independent, offering the possibility to switch between visualiza-
tions and adding input features that allow users to decide on cer-
tain hyperparameters [SH20, SKB∗22, SSJ∗22]. Still, for many VA
tools that aim at addressing a domain-specific problem and pro-
viding insights to its viewers, the need for more specification for
computational components, together with the hidden instability of
the chosen computational method, would hinder the reproducibility
of their work.

Visualization tools seek to be objective in delivering informa-
tion. Societal bias may seem to be less of a concern for tools we
labeled as domain-agnostic in Section 5.1.8, where they intend
to offer visual exploration of user-defined embeddings. However,
under a different context, the bias encoded in embeddings would be
detrimental to the credibility of a VA system. Especially for those
downstream applications we categorize under the domain of hu-
manities, social sciences, and education, and business, man-
agement, governance, law, they intend to assist in the decision-
making process for governments, companies, and domain special-
ists. As Baumer et al. argue in their recent study [BJSM22], further
perspectives beyond the purely analytical one apply in such scenar-
ios (namely, the political one), which must be taken into account
when considering the existing or designing new such approaches.

Understanding how social biases are reflected in word embed-
dings have been widely studied in NLP and CL communities, and
bias can be encoded in multiple social dimensions [JM20]. Even
though many visual analytical tools use word embeddings to rep-
resent data in a VA pipeline for decision-making, they fail to in-

clude reflections and considerations to mitigate bias. Incorporating
embedding-related visual representations sometimes aims to

empower the VA system with abilities to navigate through high-
dimensional space. At the same time, such visual representations
amplify the existence of biases by making recommendations to the
users and visually displaying connections between words that po-
tentially would reinforce social stereotypes.

7.1.5. Contradictions, Challenges, and Opportunities

In summary, we observe two contradictions when using embedding
techniques for visual analytic tools. First, designers intend to in-
corporate embedding-related panels to add credibility to their tool,
as the embedding view often provides a reference to the un-
derlying data distributions. However, introducing embeddings also
brings more uncertainty. These techniques are prone to instabil-
ity and often encode societal biases. Meanwhile, authors of re-
lated papers often provide limited reasoning and detail regarding
the choices and decisions they make. Second, designers seek to add
multiple visual channels to encode additional information in an em-
bedding projection view. However, adding more visual encodings
would influence the systems’ learnability, but at the same time, one
could argue that spending more time in the panel would help data
be retained and ultimately perform better in high-level analytical
tasks. In addition, complexity in visual encoding schemes offers
more space for user interactions for many human-in-the-loop model
refinement processes. There is no perfect solution to address those
two contradictions, and there are always trade-offs and balances
between two sides of the spectrum. Using embedding techniques to
facilitate high-level tasks in visual analytic tools (embeddings for
visualization) presents many open challenges and opportunities to
develop community-wise suggestions and guidelines.

7.2. Visual Analytics for Embeddings (VA4embeddings)

As discussed in Section 5.1.8, visualization can help reveal
social bias inside embedding spaces [GHM21], interpret user-
defined embeddings, and compare multiple embedding spaces.
Those spaces are generally high-dimensional. Visualizing them
gives users a direct perception of the global geometry and poten-
tial substructures such as clusters [BCS22]. Along with many other
tasks that reveal the characteristics of embeddings, visualization
can communicate insights beyond gathering metrics. The interac-
tivity within a visual analytics system allows users to build the men-
tal map between embedding space and its underlying data distribu-
tions. In addition, it is easier to make visual comparisons across
different embedding spaces.

7.2.1. Comparisons and Aggregations

Typically, comparisons are made between two embed-
ding spaces in a juxtaposition fashion. Those side-by-side 2D-
projection panels assist users in observing the topological differ-
ences [BCS22]. For various other works in our corpus, they pro-
vide analysis across multiple embedding spaces, as well as of-
fer visual detection towards temporal semantic changes. Com-
parisons are facilitated by introducing new visual representations
[XTYL20,SKB∗22,XWX∗22,SWP22], graph drawing techniques
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[JCS∗21], and computational methods [CZC∗17]. Many works ex-
press changes in comparison by adding traces and lines in a scat-
ter plot connecting different data objects or areas. Distance metrics
and neighborhood comparisons are often encoded into visual rep-
resentations to quantify differences. Even though many of those
tools provide unique and effective ways to compare multiple em-
bedding spaces, finding out what to compare remains challenging.
For semantic changes in word embeddings [SLN∗19], diachronic
evolution of node embeddings [XTYL20], or any other collections
of embedding spaces, the reference point for comparison and the
size of aggregated embedding collections (i.e., length of snapshots)
matter. As a result, one open research question would be providing
linked views with other aspects of data that give users insights into
selecting configurations such as reference points.

Other important questions arise when we compare a collection of
embedding spaces: how would we aggregate a set of embeddings,
and how might we perform comparisons analysis over a combina-
tion of embedding technology and ensemble methods? For the for-
mer question, Cavallari et al. [CZC∗17] propose an inspiring way
that treats embeddings not as vectors but as distributions in the low-
dimensional space. Thus, one may visually analyze the embeddings
of communities rather than the embeddings of individual nodes.
According to our corpus, there is a limited number of papers men-
tioning this direction. This work leaves out open challenges in visu-
ally comparing aggregated embedding spaces. For the latter ques-
tion, Witschard et al. [WJM∗22] provide interfaces for comparing
the performance in a combination of various embedding techniques
in an ensemble learning setting. Their work intends to improve the
quality of certain similarity calculations. However, one could ap-
ply a variation of such an idea to visually analyze combinations of
sentence embeddings, locally-aggregated embeddings, etc.

7.2.2. Multimodality and Multi-level Analysis

In our corpus, the objects to be embedded are diverse in their
data type. As mentioned in Section 5.3, besides embedding tex-
tual, numerical, and graph data, some VA tools use different neu-
ral encoders to encode data such as time-series [LDL∗20,LPH∗20,
GZRP∗22], audio [RMH∗22], or images [GGW22, PDD∗22].
The embedding view of some included papers may incorporate

more than one type of data. For instance, Cabrera et al.
[CDHP21] combine images and texts into the 2D projection view.
For some other papers, computing metrics or embedding-related
views may require more than one type of data as well. For exam-
ple, many papers under the Urban Visual Analytics subcate-
gory (as mentioned in Section 5.1.4) require spatial-temporal data
as input for further analysis. However, many of them choose to only
embed one type of data. The resulting embeddings are visually en-
coded and superimposed into a panel.

From the computational side of view, there has been a grow-
ing trend toward developing techniques for generating joint embed-
dings from heterogeneous sources of multimodal data [ZYHD20].
However, for the papers in our corpus, even though many down-
stream domain applications naturally obtain data from various
sources, only a small number of papers in our corpus try to
embed different types of data into a shared latent space. Addi-
tionally, even though multimodal techniques are applied, such as

LeSSS [HMW∗15], the resulting visual representation is often
limited to a 2D projection and need more interactivity.

As a result, multiple gaps exist between the domain-specific di-
verse data sources, the advances in computational techniques, and
the rather limited ways for a VA system to sufficiently represent all
the information. Besides incorporating state-of-the-art embedding
techniques, when designing a VA interface, there is much room for
further investigation on how to encode multiple data types, build
connections between them, and provide context and details when
users navigate through such embedding spaces.

There exists a lot of diversity in input data. At the same time,
there are multiple levels of understanding regarding the embedding
space. Given word embeddings, one could analyze the represen-
tative keywords, descriptors, topics, concepts, and document-level
characteristics [EAKC∗20]. There is a hierarchy of analysis for
the embedding space, as well as a hierarchy for user explorations.
Given a large-scale data set, computing the embeddings of every-
thing may be costly. If a higher-level embedding already shows all
features of interest, it is unnecessary to generate a complete repre-
sentation of the entire data set [HPvU∗18]. For both cases, users
need a sufficient amount of guidance. When exploring an embed-
ding space, it is necessary to provide an overview of the current
state of exploration. In addition, users need to be directed to un-
explored areas based on the potential insights from analyzing its
lower-level embeddings.

In general, for those VA tools aimed at understanding and ex-
ploring a large-scale embedding space (visual analytics for embed-
dings), it can be challenging to provide adequate guidance to users,
which encompasses not only suggesting levels of analysis but also
highlighting potential areas of interest.

7.3. Limitations of the Conducted Survey

One limitation of this study was the number of paper entries in-
cluded for the current corpus and the small number of papers for
each category, especially for application domains. We screened
through approximately 1,704 papers but only included 122 papers
that matched the criteria for inclusion in the analysis. As we ob-
served, the top few reasons for those papers to be not matching our
criteria include the following:

• Papers that have little interactivity or limited contributions in vi-
sualization. Since our search is not restricted to visualization-
specific journals, we searched through those papers working on
the computational side of embeddings, which contains the word
“visualization” and its related concepts. Often, they provide a
static visualization plot for demonstrating and comparing the re-
sults of their proposed embedding process.

• Papers in which the resulting embedding space is 2-dimensional
or unclear. Common dimensionality reduction techniques, such
as locally linear embedding (LLE) or t-distributed stochastic
neighbor embedding (t-SNE), include the term “embedding” in
their titles. In addition, many authors would refer to “embed-
ding” as purely the process of using DR to map their data into
2D projections. There exist some other papers that only mention
multidimensional scaling projection (MDS) in their methods, but
with little computational details.
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• VIS4ML papers that analyze model layers and attention mecha-
nisms, but do not contain specific analysis of the embeddings.

• Visualization papers that use the word “embedding” to express
they “embed” a visual representation or a panel to the interface.

• Visualization papers mentioning “embedding” when they ex-
plain how their ML pipeline would work.

• Papers mentioning “embedding” as one of the future works.

The semantics of the term “embedding” exceeds the definition used
in this survey. Nevertheless, much of its use in the VA context is
closely aligned with how other computational domains, such as
NLP, would describe it. In addition, many visualization papers use
word2vec, GloVe, BERT, etc., to create “embeddings” during their
VA pipeline, but do not explicitly mention the term “embedding”.
Therefore, it is possible that much more diversity is not being in-
cluded. It is expected that there is a need to query more papers and
perform analysis at a larger scale with an extensive amount of key-
words.

7.4. Open Challenges and Future Perspectives

This survey covers a unique and special set of papers. Analyzing
them from different perspectives could result in different findings.
Domain-specific and context-dependent challenges are discussed in
Section 5.1. In Sections 7.1 and 7.2, we group papers by different
criteria (Embeddings for VA, and VA for Embeddings), and discuss
high-level visual analytical challenges from those aspects. Here,
to synthesize all the discussions, we present open challenges and
future perspectives based on our proposed categorization as shown
in Table 1.

Input Data Type Current VA+embeddings works are primarily
focused on standard word embeddings, node embeddings, etc. At
the same time, most of those VA tools aim to solve complex real-
world scenarios that produce a variety of data types from het-
erogeneous sources. As argued in Section 7.2, future work may tar-
get an ensemble approach of incorporating different types of em-
beddings (e.g., sentence embeddings rather than word embeddings)
and learning joint embeddings with multimodal data. Another chal-
lenge is determining the level of generalizability a VA tool should
aim for. Constraints on the input data format can be one key fac-
tor influencing generalizability, as papers in our corpus either al-
low user-defined inputs or build the entire system based on a fixed
dataset.

Computational Method It is never an easy process to decide
what to embed. Different domain-specific research questions lead
to various representation challenges. Finding suitable ways to
transform task descriptions into feature vectors would impact the
performance of using a specific embedding technique for context-
dependent tasks. Furthermore, some VA tools seek to construct a
real-time interface or generate representations of large-scale data
sets. As a result, one needs to identify potential bottlenecks in the
computational pipeline and optimize the process for embedding
generation, similarity search, and metrics calculation. Additionally,
the state-of-the-art embedding methods are changing rapidly, but
not a lot of VA tools in our corpus consider incorporating the most
up-to-date embedding techniques and applying novel metrics be-
yond measuring the Euclidean distances between data objects in an

embedding space. Regardless of what computational methods are
employed, designers of those VA tools need to provide more jus-
tifications for their choices of embedding models and embedding-
related metrics to improve the explainability of their work.

Visualization Aspects As discussed in Section 7.1, ensuring the
credibility and trustworthiness of visual representations for
embeddings is a challenging topic. One way to address this issue is
to carefully consider what elements to present and what additional
metrics to incorporate into the VA interface. For instance, display-
ing a comparison between pre- and post-embedding metrics
may help add transparency to the process. Creating multiple in-
dependent views that reflect features in different dimensions of the
embedding space may also help provide more aspects of measuring
trustworthiness.

2D projections are the predominant visual representation of em-
beddings. They are arguably intuitive (at least on the surface level)
and useful for many situations. However, if we intend to compare
multiple embedding spaces or perform complex human-in-the-loop
interactions, they may not be the optimal choice. Thus, future work
could explore more diverse and novel visual representations.

Interaction Aspects One important motivation for computing
embeddings is to provide suggestions that guide user inter-
actions. As stated in the last paragraph of Section 5.1.4, calculat-
ing distances and neighborhoods in the embedding space can help
users navigate through decision spaces. In our corpus, most pa-
pers related to geospatial data visualization use embeddings in such
a way. Potentially, embedding-based interaction recommendations
can be applied to a broader set of VA systems.

Miscellaneous Aspects There are many more interesting, yet un-
derdeveloped topics that fit within the scope of our survey. Two
areas we would like to highlight are visually exploring diachronic
changes in the embedding spaces and designing novel visual inter-
faces for multimodal embeddings. We discussed both of them in
detail under Section 7.2.

Last but not least, we believe the idea of reproducibility [FF20]
ought to be emphasized for both the VA system implementations
and the corresponding papers. In the context of VA+embeddings,
ensuring reproducibility requires providing justifications and de-
tails on several aspects, including (1) the target audiences and us-
age context, (2) the embedding methods and evaluation metrics, (3)
the dimensionality of the output embedding vectors, (4) the projec-
tion process, (5) the distance metrics and criteria for creating the
visual encoding of semantically similar objects, and (6) the stabil-
ity of the embedding method and its impact on the visual layout.
In addition, it will be beneficial for the whole visualization com-
munity if authors are willing to make their tools open source. In
the provided survey browser, users can get a list of open-source vi-
sualization tools in our corpus available on GitHub, for instance,
by typing “github” in the search bar. More importantly, adding suf-
ficient background information (i.e., target audiences), as well as
computational details for embedding generation in the main text or
as supplementary materials will greatly improve the reproducibility
of a VA system.

Future Work for Surveys and Empirical Studies Here are a
few research topics for future work in this survey and as poten-
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tial topics for other empirical studies. First, extending our catego-
rization to include reproducibility levels for each annotated paper
will benefit those seeking to create derivations of existing works
by guiding them to find suitable candidates. Second, as stated in
Section 7.2.2, a more focused survey on visual analytics tools with
multimodal data would be of interest and value to the visualization
research community and similar audiences of this survey paper.

8. Conclusions

In this survey article, we scrutinize the existing work in visual an-
alytics (and, to some extent, other fields) that makes use of data
embedding approaches. We define the scope of this study, the cor-
responding inclusion/exclusion criteria, and the literature search
methodology that results in 122 included survey entries based on
peer-reviewed publications within and beyond the visualization
venues. We propose a categorization that focuses on the domain
application, embedding computation, and human-centered aspects
of the visual analytic pipeline. By discussing the results of survey
data annotation for this categorization as well as further survey data
analyses, we are able to summarize the current state of the art on
the use of embedding approaches in visual analytics, including the
open challenges. Furthermore, we provide access to the catego-
rized data within an online survey browser, which can be helpful
for researchers, practitioners, and students of visualization as well
as other domains and disciplines, especially considering the rising
interest for this topic during the several past years and the opportu-
nities for further novel and important contributions.
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