
EUROVIS 2023
S. Bruckner, R. Raidou, and C. Turkay
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 3

STAR – State of The Art Report

State-of-the-art in Large-Scale Volume Visualization
Beyond Structured Data

J. Sarton1 , S. Zellmann2 , S. Demirci3 , U. Güdükbay3 , W. Alexandre-Barff4 ,
L. Lucas4 , J.M. Dischler1 , S. Wesner2 , I. Wald5

1University of Strasbourg, France 2University of Cologne, Germany 3Bilkent University, Ankara, Turkey
4University of Reims Champagne-Ardenne, France 5NVIDIA

Empty space skipping
data structures

Structured Adaptive Mesh
Refinement

Unstructured Compressed and Neural
Representations

Neural networks

Paging and out-of-core

Smooth sampling
at level boundaries

Parallel and
distributed rendering

Cell location
data structures

Cell location
data structures Hierarchical compression

Out-of-core CPU volume rendering

Out-of-core on-demand loading
and processing on the GPU

k-d trees and bricks

Coherent ray traversal

Grid and octree methods

High-quality k-d trees

RTX-based space skipping

Tent basis functions

Octant reconstruction

Massive MPI parallelism

Non-convex cluster boundaries

BVH sampling

Sampling data structure
compression

Learning-based compression
of volumetric scalar fields

Unified encoding of precision-resolution

Adaptive Multilinear Meshes (AMM)

Figure 1: In this state-of-the-art report, we evaluate current research papers on interactive volume visualization. Nowadays, volume visual-
ization is primarily data-driven, and how the various methods, frameworks, and tools cope with that data largely depends on the topology.
This figure shows the structure we follow in this paper. We focus on different data representations (center). For each of them, we discuss
different approaches of large-scale visualization (blue captions) and the different techniques used to implement them (black captions).

Abstract
Volume data these days is usually massive in terms of its topology, multiple fields, or temporal component. With the gap between
compute and memory performance widening, the memory subsystem becomes the primary bottleneck for scientific volume
visualization. Simple, structured, regular representations are often infeasible because the buses and interconnects involved need
to accommodate the data required for interactive rendering. In this state-of-the-art report, we review works focusing on large-
scale volume rendering beyond those typical structured and regular grid representations. We focus primarily on hierarchical and
adaptive mesh refinement representations, unstructured meshes, and compressed representations that gained recent popularity.
We review works that approach this kind of data using strategies such as out-of-core rendering, massive parallelism, and other
strategies to cope with the sheer size of the ever-increasing volume of data produced by today’s supercomputers and acquisition
devices. We emphasize the data management side of large-scale volume rendering systems and also include a review of tools
that support the various volume data types discussed.

CCS Concepts
• Computing methodologies → Rendering; Volumetric models; Ray tracing; Graphics processors; Massively parallel algo-
rithms; Distributed algorithms; • Human-centered computing → Visualization toolkits; Scientific visualization;

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14857

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7667-1626
https://orcid.org/0000-0003-2880-9090
https://orcid.org/0000-0001-8805-5310
https://orcid.org/0000-0003-2462-6959
https://orcid.org/0000-0001-5537-1501
https://orcid.org/0000-0001-6662-2548
https://orcid.org/0000-0003-4444-2719
https://orcid.org/0000-0002-7270-7959
https://orcid.org/0000-0003-0046-713X
https://doi.org/10.1111/cgf.14857

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

1. Introduction

Direct volume rendering has historically been associated with reg-
ular grids obtained from numerical simulation or acquisition tech-
niques grounded in medical imaging, microscopy, and others. An
inherent problem with volumetric data is its size, which can eas-
ily become hard to handle on commodity systems. Volume render-
ing can be quite resource intensive, particularly on the processor’s
memory subsystem. In the early 2000s, the introduction of GPUs
with dedicated texture units boosted this performance-hungry tech-
nique, so the representation using regular grids and better-quality
interpolation became very popular. Regular grids can, however,
only scale to a certain degree because a doubling in resolution
per spatial dimension causes the data to grow by a factor of eight.
Hence, intricate techniques have been proposed to accommodate
and efficiently render such data sets on GPUs; these techniques
have been discussed in much detail by Beyer et al. [BHP15].

At the same time, in the age of ExaScale computing, it is not
only the rendering algorithms that are challenged by increasing data
size. Generally, memory throughput has not kept up with compute
performance, which still roughly follows Moore’s law. This can
also be observed in simulation codes—the more popular ones (in-
cluding Fun3D [Nat20], FLASH [DAC∗14], Chombo [CGL∗00],
AMReX [AMR18], or Lava [KHB∗16]) nowadays use adaptive
mesh refinement (AMR) [BC89] or unstructured grids [ST90] to
overcome these issues. These irregular data representations have
become prevalent and also need to be dealt with by visualization
software. At the same time, even these data representations tend to
be huge with possibly time-varying, multi-variate datasets.

Regardless of the considered volume data topology, visualiza-
tion techniques must incorporate solutions to cope with the size
of the input data and the auxiliary data structures needed to render
them. These solutions, based on data streaming, use of massive par-
allelism or in-situ visualization techniques, depend on the targeted
hardware in terms of computing resources and memory level. On
the other hand, no matter what solutions are implemented to dis-
tribute and access the data, the visualization algorithms themselves
must address the quantity and/or complexity of the data. A rigorous
survey has not yet explored these aspects, and our paper aims to fill
this gap.

Another trend we observe is the execution model used by the
rendering subsystems of modern visualization systems, such as
OSPRay [WJA∗17] or VisRTX [Ams19], which uses general-
purpose compute and ray tracing in favor of rasterization. While
rasterization APIs allow for ray tracing inside a fragment shader,
general purpose compute—on either the GPU or the CPU using
ispc [PM12]—enables the use of ray tracing APIs with optimized
bounding volume hierarchy (BVH) traversal [WWB∗14, NVI09b].
This trend has not only led to different types of algorithms used in
terms of how the volume data is traversed and sampled but also al-
lowed for a more flexible control flow overall, including incoherent
ray workloads and Monte Carlo rendering. Where applicable, our
state-of-the-art report will emphasize ray tracing-centric execution
models and hardware-accelerated ray tracing.

Data Type/Repr. Key Papers Other

Structured [SCRL20] [WWJ19]
[HAAB∗18]

[ZSL21]
[WZM21]

AMR
[WBUK17] [WWW∗19]

[WZU∗21]
[ZSM∗22]
[ZWS∗22a]

Unstructured
[BPL∗19] [WMZ21]

[MWUP22]
[MUWP19]
[SDM∗21]

Compressed &
Neural

[LJLB21] [HSB∗21]
[BHM∗22]

[PZGY19] [QCJJ18]
[WN21]

Table 1: Papers discussed in this state-of-the-art report.

The main contributions of our state-of-the-art report are

• an extensive review of volume visualization research in recent
years that includes structured and unstructured volume data,

• a review of volume rendering techniques that use general pur-
pose and hardware ray tracing APIs, and

• an engineering-focused review that also includes tools and how
they support the kind of algorithms and data management rou-
tines discussed in this paper.

In this sense, we hope that our survey is beneficial not only to the
scientific visualization community, which continuously advances
state of the art in this field but also to practitioners who use the
algorithms discussed to create high-quality visualizations and po-
tentially get a deeper understanding of the performance of the vi-
sualization system.

1.1. Survey scope

This state-of-the-art report reviews and categorizes recent research
on direct volume rendering techniques. Following recent trends,
a major focus is placed on ray tracing techniques. While we will
discuss in detail the different sampling and traversal methods of
visualization algorithms that can be found in in-core or out-of-
core, single or multi CPU/GPU approaches, we will not discuss
in-situ visualization solutions that rely on data that will not even
touch the persistent storage. A survey on volume rendering of
structured data complements that by Beyer et al. [BHP15] with
CPU-based methods and with an overview of empty space skip-
ping and out-of-core techniques that emerged later on. In ad-
dition to this, we focus on unstructured, adaptive mesh refine-
ment (AMR), compressed and neural or similar topologies be-
yond structured volume data. The influential papers we review
are shown in Table 1. In addition to algorithmic aspects, we also
emphasize system approaches and tools like OSPRay [WJA∗17].
Ray-tracing hardware extensions that became widely available in
2018 have since played a significant role in scientific visualiza-
tion [WUM∗19,WZU∗21,MSG∗22,ZWB∗22] and will be another
focus point for us.

Data: In this state-of-the-art report, we review methods that han-
dle volumetric data that can come from high-resolution acquisitions
or large-scale simulations. This implies data whose nature can vary
from a structured grid with a single time step and a single scalar
field to more complex grids that evolve in time and can store sev-
eral scalar and/or vector fields. For the approaches that manipulate

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

492

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

structured grids, these are fixed, contain only one scalar field, and
can reach 1012 regular cells for an input size of up to 1.5 TB. For
AMR grids, the approaches discussed handle time-varying meshes
up to several hundred million cells with several scalar fields at each
time step for input data up to 4 TB. For unstructured data, it is about
meshes that can contain up to a few billion elements for a size of
a few GB. It is important to note that these data can be categorized
as large-scale either by their initial representation (input data) or
because their efficient interactive visualization requires data struc-
tures and/or sampling methods that may require a memory footprint
of several orders of magnitude larger than the data itself.

Hardware: We discuss methods that focus on interactive visual-
ization of large volume data on GPU or CPU. For the first category,
the presented methods target workstations equipped with one or
multiple GPUs. We do not focus on a specific vendor in particu-
lar, but note that especially when it comes to hardware-accelerated
ray tracing, the literature is dominated by papers that use NVIDIA
GPUs and the OptiX API. On the CPU side, typical target systems
are x86 multi-core workstations as well as cluster systems with on
the order of tens to hundreds of x86 CPU nodes.

1.2. Survey structure

The state-of-the-art report follows a data-driven structure. Fig. 1
shows this organization according to the addressed data types. We
broadly categorize by data type into structured, regular volume data
(), AMR data (), unstructured meshes (), and data that fo-
cuses on compression, including mixed resolution-precision trees
and neural network compression (). The use of neural networks
in sci-vis is a relatively new field. A detailed survey was recently
presented by Wang et al. [WHss], so here we only briefly describe
basic concepts and pointers to papers presenting recent develop-
ments.

We distinguish methods that focus on traversal (e.g., empty
space skipping or space partitions assigned to cluster nodes) and
on sampling (e.g., cell location in AMR volumes, sample point re-
construction in the presence of virtual page tables) (cf. Section 2).
The papers we review can also be broadly categorized as in-core
running on single CPU or GPU systems, as out-of-core using pag-
ing between the file system, the CPU, and (optionally) the GPU,
and as massively parallel. The main sections are structured by the
topology of the data, while the sections themselves follow the latter
methodological categories. Tools focusing on volume rendering are
discussed in a separate section.

2. Background and Terminology

In our survey, we concentrate primarily on the data handling as-
pects of sci-vis volume rendering. Scientific visualization software
has to cope with bringing the data into a form amenable to render-
ing on the target hardware. Rendering often amounts to a fraction
of the overall processing; still, the rendering algorithm determines
the eventual layout necessary to visualize the data efficiently. This
section introduces terminology common to the methods we sum-
marize in this survey.

2.1. Direct volume rendering with ray traversal

We focus on direct volume rendering algorithms, i.e., algorithms
that do not a priori extract level sets but sample and classify the data
directly. Typical integration algorithms are direct volume rendering
(DVR) with absorption and emission [Max95], implicit isosurface
rendering, and free-flight distance sampling (here exemplified via
delta tracking [WMHL65]) that we present in the Appendix and
that help us to introduce some terminology (cf. Appendix A). These
algorithms compute some quantities for volumetric domains, such
as absorption and emission, iso-surfaces, and transmission coeffi-
cients for volumetric domains.

In recent years, we have observed a gradual shift towards vol-
umetric path tracing, also in the scientific visualization commu-
nity [KPB12, WJA∗17, MHK∗19, HMES20, IGMM22, MSG∗22,
ZWB∗22, XTC∗ss, ZWS∗22b]. Instead of stepwise sampling the
domain [tmin, tmax] using ray marching, volumetric path tracers
compute free-flight distances inside the domain.

Free-flight distances represent the probability with which a pho-
ton travels along the ray (o,ω) without colliding with a particle
from the volume density; they are computed using tracking algo-
rithms [WMHL65]. State-of-the-art methods use fictitious parti-
cles or other control variates [GMH∗19] to homogenize the usu-
ally inhomogeneous volume; this requires one to store the maxi-
mum (“majorant”) extinction µ̄ along with the domain [tmin, tmax].
The result is not an alpha-composited color but a collision-free dis-
tance, and sometimes, the transmittance (i.e., the stochastic amount
of light passing through the domain [tmin, tmax]). Extinction coeffi-
cients (often defined as the alpha component obtained from clas-
sification) and phase function albedo (RGB component from clas-
sification) can then be sampled for that distance by the rendering
algorithm as required.

Noise-free images usually result by accumulating convergence
frames; each is typically computed by tracing one path per pixel. In
contrast to ray marching, only one or few samples are taken from
[tmin, tmax]; the number of samples usually correlates with the dif-
ference between the majorant and the actual sampled density. The
majorants can hence be used to build space-skipping data struc-
tures. An appealing property of free-flight distance sampling is its
unbiasedness. This property is also desirable for sci-vis since it
helps reduce artifacts that can otherwise cause aliasing and obfus-
cate important features. Free-flight distance sampling is a technique
orthogonal to the light transport algorithm (e.g., absorption plus
emission, single scattering, multi scattering) used, and with spa-
tially varying majorants, it naturally supports adaptive sampling.
Regardless of the different execution flow and quantities computed,
the three algorithms have two major operations in common:

Sampling: The functions µsrc(x) and Csrc(x) sample the volume
at positions x ∈R3 to retrieve the local extinction µ(x), or an RGBα

color (Csrc(x)). In scientific visualization, this operation comprises
a lookup into the volume density implemented, e.g., using simple
trilinear interpolation or hierarchy traversal/cell location for more
complex volume data, followed by (post)-classification using an
alpha transfer function to obtain an alpha/extinction value or an
RGBα tuple. We refer to this whole operation (volume lookup and
classification) as sampling.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

493

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

Traversal: Obtaining the domains [tmin, tmax] usually involves
some type of data structure. In the simplest case, the domain is
obtained as the intersection of the ray with the bounding box of
the volume; the traversal operation is then trivial. More complex
volume renderers use a space-skipping data structure that is tra-
versed using DDA [SKTM11, DHTI21] or other hierarchical data
structures such as a k-d tree [ZSL21] or bounding volume hierarchy
(BVH) [ZHL19]. In the case of tracking, the domains are not only
given by their interval [tmin, tmax] but also by their majorant extinc-
tion µ̄. µ̄ presents an upper bound (and is often just the maximum
value) of the extinction in the region that is traversed. However,
in the presence of post-classification, the majorant extinction is, in
general, not the maximum value of the volume inside the domain,
but the maximum post-classified value.

The methods we explore in the following all cater to this com-
mon structure of first traversing domains in space and, inside these
domains, compute quantities such as color, local extinction, and
free-flight distances. The algorithms serve as intrinsic building
blocks, and the visualization systems we explore usually employ
sophisticated methods to optimize the surrounding data structures.
Some of the data structures involved may be trivial, or it might even
be possible to use the same data structure for sampling and traver-
sal. One of the essential topics of this paper is how this can be done
for different volume data types.

2.2. Ray tracing APIs and terminology

We provide a brief review of hardware ray tracing execution mod-
els, since this emerging technology is relevant to many of the pa-
pers discussed here. For a general ray tracing review, see the sur-
vey article by Meister et al. [MOB∗21]. The execution model is
implemented by NVIDIA OptiX [PBD∗10,NVI09b], by Microsoft
DXR [Mic23], and by the Khronos Vulkan Ray Tracing exten-
sions [Koc20]. In this execution model, ray tracing modules are
launched on a GPU with hardware ray tracing cores (RT cores).
The entry point to the ray tracing module is called the ray gener-
ation program (RG), which is executed on the shader cores of the
GPU and shares commonalities with ordinary compute kernels. RG
instances are executed in parallel, according to the number of rays
scheduled by the launch configuration (often one ray/thread per im-
age sample). RG-generated rays can be traced into a BVH using an
intrinsic function call. The execution then switches from the shader
to the RT core, incurring a context switch.

Depending on the vendor, both ray/triangle intersections and
BVH traversal are performed in hardware.The user can intercept
execution with software programs, e.g., on closest intersection
(closest hit program (CH)), on any intersection be it the closest or
not (any hit program (AH)), or when the ray misses the scene (miss
program (MI)). Some architectures support custom user primitives
that are implemented via bounds and intersection (IS) programs.

Ray tracing hardware extensions were first implemented by
NVIDIA, but the other vendors are slowly progressing in the same
direction [Adv23, Lar22]. Hence, how high-performance volume
renderers are implemented nowadays has changed in light of these
new APIs. On the CPU side (and other Intel hardware), an impor-
tant API is Intel’s Embree [WWB∗14]. While the execution model

here is more flexible, and the comments about software and hard-
ware context switches do not generally apply, the APIs share basic
concepts such as BVH traversal, user geometry, and any hit call-
back functions.

3. Rendering of Structured Volume Data

Volume rendering of structured data where the volume is defined on
a Cartesian grid and all cells are implicitly represented in memory
has been extensively evaluated in Beyer et al.’s [BHP15] state-of-
the-art report. Still, the field has advanced here as well, and there-
fore we briefly review topics that have been the focus of research
papers published after Beyer’s survey.

With the gap between compute and memory performance widen-
ing, we generally observe that research focuses more on hierar-
chical volume data (or, on making volume data hierarchical to
suit modern compute architectures well) or on other representa-
tions with lower storage demand than structured grids. The ad-
vancements that we do observe regarding this simplest topology
after Beyer’s state-of-the-art report was published primarily focus
on empty space skipping and paging and streaming techniques to
accommodate volumes that exceed the available compute node’s
memory (e.g., cluster node, GPU with pageable host memory).
Here we concentrate on an assortment of papers that we believe
complements Beyer’s state-of-the-art report and direct the reader to
the latter for an extensive review.

3.1. Empty space-skipping data structures

Empty space skipping identifies coherent regions where the vol-
ume is truly empty. Depending on the context, it is sometimes de-
sirable to skip over empty and over homogeneous space where all
samples have the same value. The latter is essential for volumet-
ric path tracing, where domains are considered homogeneous with
roughly the same majorant. Hence, the number of samples the re-
jection sampling loop takes in Algorithm 3 (see Appendix A) can
be reduced [YIC∗10]. In contrast, true empty space skipping fo-
cuses on those regions of space where all the samples have an ex-
tinction/alpha value of 0. This is more relevant in the cases of Al-
gorithms 1 and 2 (see Appendix A) that do not adapt the sampling
rate to the majorant extinction.

The rendering algorithm will use space-skipping data structures
to obtain domains [tmin, tmax], i.e., according to our terminology,
they are traversal data structures. Sampling is typically simpler in
the case of structured volumes. It is required to locate a neighbor-
hood of samples for the sampling position x ∈R3 to perform the in-
terpolation. Since the underlying Cartesian grid gives us an implicit
indexing scheme to the data arrays involved, the neighbor lookups
usually are trivial. In the case of 3D textures on the GPU, the vol-
ume density sample can be obtained using a single operation. Some
sampling approaches require the use of ghost cells [PNP∗17] if the
data is distributed or not stored coherently in memory.

Important to note here is that empty or homogeneous space is
subject to post-classification: a domain is empty only if the RGBα

transfer function (TF) assigns all samples from that domain the al-
pha value 0. Likewise, if a domain or region of space is homoge-
neous, it is subject to the extinction/alpha value obtained from the

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

494

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

TF. Because it is required that the TF can be edited interactively in
scientific visualization, space-skipping data structures should allow
for interactive updates or rebuilds. Since the spatial arrangement
can vary significantly based on the TF, updating space-skipping
data structures is not trivial, even in the case of structured data.

Space-skipping data structures are all the more important if vol-
umes are large because they help reduce pressure on the memory
subsystem by reducing the number of samples. At the same time,
one must be careful that the number of data accesses required for
traversal is strictly in a lower order than the number of samples
taken. With a complex hierarchy, the space-skipping algorithm can
easily be limited by the number of traversal steps, which was first
observed by Hadwiger et al. [HAAB∗18]. Their SparseLeap data
structure uses an Octree as the base empty space skipping structure.
The authors observed that Octrees could have many neighboring
leaf nodes with the same size and same occupancy class (empty/not
empty) but are stored in different octants and subtrees of the Oc-
tree. To traverse from one subtree to another, traversal would have
to unwind significant portions of the tree to skip from one leaf node
to the next. The SparseLeap system uses an optimization that was
formerly also proposed by Liu et al. [LCDP13] to combine con-
secutive ray segments of the same occupancy class to form coher-
ent domains. These are stored in a per-pixel linked list [YHGT10]
constructed using the GPU rasterization pipeline when the camera
changes. After domain construction, a fragment shader traverses
the domains via ray marching (cf. Algorithm 1 in Appendix A) to
integrate color and opacity.

3.1.1. Grid and octree-based methods

Empty space skipping classification generally falls into two camps.
Data structures like min/max trees by Knoll et al. [KWPH06] first
roughly classify some coarser regions of space (such as bricks of
N×M×K voxels or Octree leaves of a certain minimum size) only
by their minimum and maximum voxel value. When the transfer
function changes, the min/max values are indexed into the (piece-
wise linear) alpha transfer function. If any alpha value inside the
min/max range is non-zero, the region of space—and hence the
domains computed when rays traverse the region—are non-empty.
With this coarse representation, the same data structure (e.g., oc-
tree, uniform grid of bricks/macrocells) is reused without rebuild-
ing. Empty leaf nodes or subtrees are only pruned and hence not
traversed but still remain part of the space-skipping data structure.

3.1.2. High-quality k-d trees

Orthogonal to that are methods that aim at building an exact data
structure whenever the spatial arrangement changes due to an up-
date to the TF, such as the k-d trees by Vidal et al. [VMD08]. These
approaches trade rendering for construction performance. The k-d
trees by Vidal et al. are based on using 3D summed-area tables
(3D-SAT) over coherent regions of space. The 3D-SATs are com-
puted over a binary representation of the volume—empty voxels
obtain the value 0, non-empty voxels the value 1. With 3D-SATs,
querying if all the values inside an axis-aligned bounding box
(AABB) are empty is an O(1) operation. This allowed the authors
to implement a simple top-down construction algorithm using plane
sweeping, combined with a heuristic that compares the volume of

the tight bounding boxes surrounding the non-empty cells to the
left and to the right of the sweep plane candidates.

The algorithm by Vidal et al. [VMD08] served as the basis for
several papers by Zellmann et al. [ZSL18, ZML19, ZSL21], who
proposed methods to accelerate the construction algorithm up to
a point where the k-d trees could be built in real-time. The au-
thors observed that the 3D-SAT construction phase limits overall
tree construction, while the ensuing plane sweeping phase was rel-
atively cheap. 3D-SAT construction is equivalent to prefix summa-
tion. By breaking up the prefix sum into several smaller 3D prefix
sums and computing 3D-SATs not for the whole volume but for
bricks, the authors could reduce the computation time for this first
phase and the precision required to store the 3D-SATs (and hence
the memory consumption). By breaking the 3D-SAT computation
apart, this phase could be trivially parallelized on a multi-core
CPU. The ensuing, formerly O(1) operation determining if bound-
ing boxes are non-empty becomes O(K), where K is the number
of bricks. This algorithm was first proposed in [ZSL18] and was
later adapted to run on the GPU [ZSL21]. For that, the authors first
compute the brick-wise 3D-SATs but immediately discard them in
favor of directly storing tight bounding boxes surrounding non-
empty voxels inside the bricks. These bounding boxes are sorted
on a Morton curve. The ensuing plane splitting phase (now real-
ized with binning) combines these bounding boxes and computes
the volume for the resulting union of boxes to evaluate the split
plane heuristic.

3.1.3. Hardware accelerated ray-tracing based space skipping

Ray marching relies on the space skipping algorithm to traverse
the domains in order and thus requires spatial data structures such
as grids or k-d trees. Bounding volume hierarchies (BVHs) can,
however, be used if the regions covered by the leaf nodes do
not overlap [ZHL19]. This has led several authors to use hard-
ware ray tracing to accelerate traversal. The work by Ganter and
Manzke [GM19] used an OptiX user geometry (cf. Section 2.2) to
traverse empty rectangular regions of space represented by AABBs.
A source of inefficiency with user geometry is that the GPU needs
to perform costly context switches when calling the user-supplied
intersection program. This back-and-forth between tree traversal on
the dedicated ray tracing core and the user intersection program
executed on the shader core can result in serious performance bot-
tlenecks.

Wald et al. [WZM21] proposed a method to leverage hardware
accelerated ray tracing without user geometry but using a trian-
gulated region boundary. Triangle primitive intersection tests can
be accelerated in hardware on GPUs so that the traversal algo-
rithm does not need to switch back and forth between dedicated
ray tracing cores and shader cores. The triangulated region bound-
ary is recomputed whenever the transfer function changes. The au-
thors a priori build a min/max grid of coarse macrocells that can be
quickly classified using the alpha TF. Full vertex and index buffers
are pre-allocated for a quad geometry (realized with triangles) for
all the macrocell faces. A CUDA kernel activates only those faces
that partition macrocells of different occupancy classes (empty/not
empty). The resulting triangle geometry (and BVH built from that)
is used as a boundary to compute ray traversal domains, inside

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

495

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

which a ray marcher is employed to integrate the volume density.
By inserting quads/triangles only between macrocells of different
occupancy classes, the algorithm also solves the same problem ad-
dressed by Hadwiger et al.’s [HAAB∗18] SparseLeap algorithm.

We note that a majority of the (empty) space-skipping algorithms
presented in this section are fundamentally also applicable to other
volume representations. The algorithm by Wald et al. [WZM21],
e.g., functions off an a priori space subdivision using macrocells,
which can, in theory, also be obtained for unstructured data sets.

3.2. Paging and out-of-core approaches

The empty space skipping approaches described above generally
apply to cases where the data (including the sampling and traversal
data structures) fully fit into the memory of the GPU or compute
node. This section focuses on approaches where the (structured)
volume data does not fully fit into the node’s main memory and
requires out-of-core approaches. Out-of-core means using pageable
memory to stream data to the GPU or asynchronously fetch the data
from disk. Fundamentally, many of the techniques described here
also apply to other types of volume representations.

For a complete review, we refer the reader to the state-of-
the-art report by Beyer et al. [BHP15]. Recent papers presenting
out-of-core paging and streaming approaches for structured vol-
ume data include the ones by Hadwiger et al. [HAAB∗18], by
Beyer et al. [BMA∗19], by Wang et al. [WWJ19], and by Sar-
ton et al. [SRL19, SCRL20]. We concentrate specifically on the
data management aspects of such systems. We, therefore, review
the work by Wang et al. as an approach for large-scale CPU vol-
ume rendering, as well as the work by Sarton et al. who present a
general purpose GPU framework and an API that is used to imple-
ment several visualization-centric case studies.

3.2.1. Out-of-core volume rendering on the CPU

Due to memory limitations, out-of-core approaches for the interac-
tive visualization of large volumes are mainly used for GPU archi-
tectures. Wang et al. [WWJ19] shows that out-of-core techniques
can also be used for multi-core CPU architectures to decrease the
loading times of large-scale volume data. They use a hierarchical
data structure called Bricktree to represent the volume data. Brick-
tree is a multi-resolution and compressed data structure similar to
the N3 data structure by Lefebvre et al. [LHN05]. The N3 tree is a
generalization of the octree which divides the nodes into N3 instead
of 23. This N3 structure has been used by several out-of-core visu-
alization methods on GPU: the GigaVoxels [Cra11] system stores
the bricks in N3 tree structure (with N = 2) and later the CERA-
TVR [Eng11] system that extended GigaVoxels stores scalar aver-
ages on the inner nodes instead of storing scalars only on the leaves,
which enables them to perform progressive rendering. Wang et al.
extends the CERA-TVR progressive rendering idea. Compared to
the N3 tree structure used in CERA-TVR, Bricktree has a more
compact layout in memory which is more suitable for progressive
rendering. Instead of representing the large volume with a single
Bricktree, Wang et al. tile the large volume into a list of Bricktrees
called “Bricktree forest." This allows them to use Bricktree struc-
ture when the volume dimensions are not equal or the dimensions
are not a power of N.

GPUDevice API

Cache
Manager

CPU

Cache
Manager

Voxel
Requests

1

DISK

Brick
Request

3

Bricks
5

Bricks
4

Voxels
6

request thread

Brick
Request

2

copy via CUDA pagelocked mem brick cache in RAM

hierarchical page table

Figure 2: The data path of the framework by Sar-
ton et al. [SCRL20].

Wang et al. use the Bricktree structure for progressive ray-
marching. Streaming threads asynchronously load the bricks de-
manded by the rendering threads. During rendering, if a brick is not
in the memory, the rendering thread approximates the scalar value
by using the parent node’s average scalar value and requests the
brick from a data streaming thread. After a streaming thread loads
the requested brick, the renderer refines the sample. Data streaming
threads load the data in a breadth-first manner. Streaming threads
prioritize loading the bricks by their level. Since the inner bricks
constitute a tiny portion of the data, loading the inner nodes is faster
than loading the leaf nodes.

The Bricktree structure and ray-driven progressive rendering al-
low visibility culling by only loading the required bricks. Addi-
tionally, the method allows Wang et al. [WWJ19] to perform early
ray termination. Bricktree traversal can be stopped before reach-
ing a leaf node to implement level-of-detail (LOD). Moreover, rays
are terminated early if a predefined opacity threshold is reached.
Fully transparent bricks for the given transfer function can be de-
termined and terminated by storing the minimum and maximum
scalar range in each Bricktree node, similar to the min/max trees
from Section 3.1.1.

3.2.2. GPU out-of-core on-demand rendering and processing

[SCRL20] Frameworks that implement paging systems on GPU
have been proposed, including the SparseLeap system by Had-
wiger et al. [HAAB∗18] that can on-demand load brick-sized data
pages upon viewpoint changes, which, however, only become avail-
able at a later frame. On-demand loading of data pages is initiated
when rays intersect the brick-bounding boxes. The predecessor of
SparseLeap, the system by Hadwiger et al. [HBJP12], can visual-
ize dense, anisotropic petascale volumes by decoupling 3D multi-
resolution representation construction from data acquisition and
decoupling sample access time during ray-casting from the multi-
resolution hierarchy size. Their architecture uses a multi-resolution
virtual memory architecture to detect missing data during volume
ray casting as cache misses and propagates them backward for on-
demand out-of-core processing.

The framework by Beyer et al. [BMA∗19] that supports volume
rendering of tera-byte-sized, pre-segmented microscopy data fol-
lows this spirit of making on-demand loading an image space deci-
sion. In contrast, the system by Sarton et al. [SCRL20] maintains
the whole page table hierarchy in GPU memory, allowing them to
implement more sophisticated mechanisms to initiate page load re-
quests. The system implemented with CUDA is centered around
a hierarchical page table fully managed on the GPU. Applications
can use a device-side API to request voxels according to the data

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

496

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

path shown in Fig. 2. The primary data structures and software
components involved are i) a multi-resolution 3D mipmap hierar-
chy present on the disk and computed in a pre-process, ii) a host-
side, asynchronous cache management component that retrieves
data pages (in the form of LZ4-compressed 3D blocks) from disk
on demand and places them in a page-locked memory buffer read-
able from the device, iii) a device-side, multi-level least recently
used (LRU) cache comprised of 3D blocks, and iv) a device-side
API that can be used to implement arbitrary volume processing ap-
plications.

From the API perspective, the address space of the voxels is fully
opaque and extends from the device side down to the file I/O level.
The user simply requests a voxel in a normalized texture coordinate
system with the desired LOD. The GPU cache manager processes
these requests and queries the hierarchical page table. If the block
containing the voxel is present on one of the page table levels, the
information that the block is now in the cache is updated accord-
ingly. If the block cannot be found, the cache manager issues a
block request served by the host system. To navigate the page ta-
ble, the framework uses a multi-resolution page directory (MRPD),
introduced by Hadwiger et al. [HBJP12]. The MRPD is available
on the device and stores the blocks’ locations in the cache hierar-
chy. The MRPD is intentionally shallow, so lookup costs do not
depend on the LOD requested.

Block requests are maintained in a request buffer that all GPU
threads have access to, and that is also used to update time stamps to
mark blocks as recently used. This buffer can be accessed by mul-
tiple threads (and overlapping kernels) simultaneously. A polling
thread on the CPU periodically processes and serves the requests
by placing the respective blocks in page-locked host memory. The
data transfer is realized using a parallel CUDA kernel, where each
thread is responsible for copying one voxel to its dedicated position
in the cache. When the data is placed in the cache, the page in the
MRPD associated with the block gets updated to store the cache
offset where the block is found.

The authors show that this asynchronous and demand-driven sys-
tem can scale well for both visualization applications where the
data is just being read and also for image processing applications
where the framework is used to modify the data. A demand-driven
rendering system can maintain consistently high frame rates be-
cause CPU/GPU communication only happens when it is strictly
required, and even then, the data movement is asynchronous.

The framework by Sarton et al. [SCRL20] is a good example
that demonstrates how visualization systems targeted at large-scale
data are, in fact, sophisticated data management systems. The ac-
tual rendering algorithm is a small part of the overall system. The
complexity of Sarton’s system, in particular, lies in the sampling
operation. While sampling of structured data is a relatively sim-
ple operation per se, it can become a complex task in the presence
of cache hierarchies and virtual addressing, requiring careful opti-
mization to be efficient.

Another notable, output-sensitive approach for out-of-core ren-
dering and processing is proposed by Solteszova et al. [SBS∗17].
Their method eliminates the need for processing and operations that
have a negligible impact on the final image, by calculating the po-
tential contribution of all voxels to the final image. The authors use

a fast scheme to filter voxels that contribute significantly based on
a maximal permissible error per pixel.

4. Volume Rendering of Adaptive Mesh Refinement Data

The term adaptive mesh refinement (AMR) has been coined by
Berger et al. [BO84, BC89] in the field of numerical simulation
and refers to semi-structured, hierarchical data topologies that the
simulation code adaptively refines in regions of interest. AMR tech-
niques provide significant computational and memory savings for
producing and storing simulation data. AMR generates discrete
simulation data at various levels of detail for problems that do not
require uniform precision all over the simulation domain. This way,
the regions of interest are represented at high resolutions, whereas
the less critical areas are at lower resolutions. AMR data comes in
different forms that usually (but not necessarily) have a structured,
Cartesian base domain but vary widely in how they represent the
hierarchy. Popular examples are block-structured AMR (cf. for ex-
ample, the Chombo simulation code [CGL∗00]), where the topol-
ogy is represented by a set of overlaid grids from different refine-
ment levels. Another popular representation is tree-based AMR,
which again comes in multiple flavors, such as Octrees [LCPT11]
and forests of Octrees [BWG11]. Some codes use trees structurally
similar to Octrees but have different branching factors, like the data
structure used by FLASH [DAC∗14].

The output produced by many numerical simulation codes uses
staggered grids [Kim17], which are cell-centric, i.e., scalar data
such as density or pressure are not stored at the eight box corners,
but at the center of the cell. Interpolation algorithms for first-order
continuous reconstruction (e.g., the multilinear interpolation hard-
ware on GPUs) usually require a neighborhood of eight horizon-
tally, vertically, and depth-aligned data points (e.g., box, cube) as
in Fig. 3a. For structured regular data as discussed in Section 3,
the pragmatic solution employed by many frameworks is to shift
the whole grid by half a cell’s width, giving us the dual grid or
dual mesh, where the data is vertex-centric. With structured volume
data, this shift can be realized as a coordinate transformation inside
the volume rendering loop (e.g., for Algorithm 1 in Appendix A by
adding an offset of 1

2 to the coordinate where the density field is
evaluated at, in line 4).

This trick of shifting from the main grid to the dual grid using
coordinate transforms only works inside the local grids but not at
level boundaries for cell-centric AMR data (cf. Fig. 3b). There, the
T-junction problem arises, and the locations of the data points do
not line up (cf. Fig. 3c), which prohibits smooth reconstruction
if not handled carefully. Prior methods, such as the one by Käh-
ler et al. [KWAH06] would, in such cases, resort to reconstruction
on the main grid and use a nearest-neighbor filter at level bound-
aries. This approach can result in all sorts of artifacts, such as iso-
surfaces with cracks [WWW∗19] or volume renderings with vis-
ible seams where the subgrids meet [WBUK17]. Another possi-
ble solution is to convert the dual grid to an unstructured mesh
comprised of hexahedra cells that are actually perfect cubes and
to so-called stitching cells, which are generally unstructured el-
ements (e.g., tetrahedra, pyramids, and wedges) to tessellate the
level boundaries (Fig. 3d). This approach, referred to as “stitching”
by the literature [WKL∗01, WCM12, ME11, Wal20] has, however,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

497

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

(a) (b) (c) (d)
Figure 3: The problem of rendering cell-centric AMR data with smooth, first-order interpolation at level boundaries. If the data is vertex-
centric (a), reconstruction is equivalent to trilinear interpolation across the whole volumetric domain. The output generated by virtually
all numerical simulation codes is cell-centric (b). Then, a common strategy is to shift the whole grid to perform reconstruction on the dual
grid (c). Reconstruction with a rectangular interpolator at level boundaries is ill-defined because of T-junctions. One strategy to overcome
this issue is to convert the whole dual to an unstructured mesh (d). This approach, however, is prohibitive when storage is limited because
subgrids are now represented with hexahedra.

extraordinarily high storage demands that come with turning all the
cells that were originally just uniform voxels into full hexahedra.

A high-quality sampling of AMR data, and consequently, traver-
sal data structures to efficiently do that on GPUs, has been the
topic of several recent papers [WBUK17, WWW∗19, WMU∗20,
WZU∗21, ZWS∗22a, ZSM∗22, ZWS∗22b] that we review in the
following.

4.1. Sampling with smooth level transitions

We first review methods that fall in the sampling category (cf. Sec-
tion 2). The types of AMR data that the papers we review focus
on are structured regular and Cartesian; the AMR cells’ sides have
a uniform length (cubes), and the refinement law splits cells into
eight equally sized finer cells. AMR cells are uniquely identified
by the tuple {x, l},x ∈ N3, l ∈ Z, where x is a position in cell co-
ordinates, and l is the refinement level. The uniform cell size Cw
is proportional to the refinement level: Cw = 2l (some numerical
simulation codes define the level to increase with higher refine-
ment, in which case it can simply be transformed into the repre-
sentation considered here). AMR cells form a logical coordinate
system [WBUK17] whose integer coordinates have the same spac-
ing as the finest cell size of the data set. Depending on the AMR
type (e.g., block-structured, tree-based), the cells sometimes form
a full space decomposition across all levels. In any case, cells from
the same level are not allowed to overlap, although in general, cells
from different levels can, and then form a level-of-detail (LOD) hi-
erarchy that can be put to use by the renderer. We sometimes refer
to the dual of a cell, obtained by shifting the cell itself by some
amount. In that case, to distinguish the two types of cells, we refer
to the original cell as the leaf cell to the dual.

4.1.1. Reconstruction with tent-shaped basis functions

The trilinear interpolation operation (cf. Fig. 3a) on (locally) struc-
tured data can also be viewed as the convolution of the eight data
values with a tent-shaped basis function as shown in Fig. 4a (here in
1D). Wald et al. [WBUK17] extended this concept, which borrows
from scattered/point-based data reconstruction [FN80], to devise a
C0 continuous filter for high-quality reconstruction of AMR data,
including at the level transitions. For structured data (where the

AMRbasis
Cvi

Ci-1

HCi

l=0 l=2

Ci Ci+1
(a) (b)

Figure 4: AMR basis reconstruction by Wald et al. [WBUK17].
(a) For structured data, basis function reconstruction is equivalent
to trilinear interpolation. (b) Reconstruction at a l = 0 to l = 2
level transition. The reconstructed function is C0-continuous and
adaptive, yet not interpolative.

convolution in practice is folded into the trilinear interpolation op-
eration), the footprint of the tent basis function just reaches one-half
cell’s width beyond the cell boundaries (Fig. 4a). With AMR data,
we have the situation that a coarse-level cell can have many small
cells from a finer level as direct neighbors or as indirect neighbors,
which do not share a face with the cell but are close-by. In that
case, if the smaller cells fall inside the footprint of the larger cell,
the latter contributes to the reconstructed data value at the positions
of the finer cells proportionally to its size. With Wald et al.’s basis
reconstruction method for AMR data, this is accounted for by set-
ting the footprint of the cells to twice the actual cell size so that the
filter extends by half a cell size of the current level in each direc-
tion (cf. Fig. 4b). To obtain values at position x the authors com-
pute a weighted average using a tent-shaped basis function centered
around the cell, and reaching one half cell’s width across each side.

Note that this reconstruction method does not have an interpola-
tive property, i.e., reconstructed values at the known data points are
generally not the exact cell values at those points (Fig. 4b). Further-
more, this reconstruction method requires an operation the litera-
ture refers to as cell location to locate not only the direct neighbors
of each cell but all the neighbors in the neighborhood defined by
the footprint of its coarsest cell. Cell location is an operation com-
monly required by all the reconstruction methods we review and
has sparked further research on efficient cell location data struc-
tures that we review below in Section 4.2.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

498

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

OP
O(x) O(0)

O(xy) O(y)

PP OP'

O(y') O(xy')

O(0') O(x')

P

P' ε

(a) (b) (c) (d) (e)
Figure 5: Octant method by Wang et al. [WWW∗19]. The octant method presents a rectilinear AMR interpolator that supports smooth
reconstruction at level boundaries (a). Interpolation inside an octant (b) defined by corner points O(..) is similar to interpolation using dual
cells (dashed rectangle in (a,b)); the corner values can be directly derived from the dual corners. (c) not all the octant corners directly align
with data points; then, the coarsest side in the neighbor recursively provides its value to the finer side. To reach the coarse side, the current
evaluation position P is offset by a small value ε (e.g., half the width of the finest cell in the data set) in the direction of the coarser cell.
(d) Once inside the coarsest side, different strategies exist for how the octant vertices are interpolated from the surrounding cells. (e) When
all data values are available, the value at P can be obtained via trilinear interpolation of the octant corner values.

4.1.2. Reconstruction with octants

The method proposed by Wang et al. [WWW∗19] is orthogonal
to sampling with tent basis functions. It follows the idea of first
finding octants that form a complete space decomposition of the
refined grid and its leaf cells, whose corner points carry data so we
can interpolate linearly inside them. Conceptually, when it comes
to interpolation, an octant is similar to a dual cell. Dual cells can be
obtained by shifting the leaf cell (whose data is stored at the cen-
ter) by 1

2 its width along the principal axes. The sign of the shift
(±X ,±Y,±Z) does not affect the definition of a dual cell. Valid
dual cells can be obtained by shifting in either direction. The oc-
tant’s extent is equivalent to the intersection of the dual and the leaf
cell.

A dual cell is shown in Fig. 5a. Here, two of the dual’s corners
align with actual data points, which can be directly used to deter-
mine the data values at the rightmost corners of the octant. The
octant is given by eight (in our 2D illustration: four) corner points.
The corner point O(0) is defined to be the one aligned with the leaf
cell center. The other vertices fall on the leaf cell’s corner, edge, or
face and are named accordingly. For example, the corner obtained
by moving along the X direction only and which falls on a face
(in 2D: edge) is called O(X). The corner vertex obtained by mov-
ing along all principal directions is called O(XY Z) (in our example,
O(XY) because we are in 2D).

If we were to interpolate inside the dual (which we do not be-
cause the duals that form a complete decomposition of space are
not trivial to find), we would trilinearly interpolate the corner val-
ues. Fortunately, the octant corners can easily be derived from the
corners of a dual by computing averages. In Fig. 5b, for example,
the value at O(Y) can be obtained as the median of the two right-
most dual corner values. The value at O(0) is just the value of the
leaf cell’s center, as the two points line up.

For the two leftmost octant corners (O(X) and O(XY) in Fig. 5b),
data values are not available because the dual’s corners do not line
up with vertices. In that case, the rule is that the missing data values
are obtained via interpolation on the coarser side. If we always pick
the coarser side to dictate the data value, we thereby implicitly find
the aforementioned duals’ space decomposition that is non-trivial
to find explicitly. For that, we shift the evaluation position P by a

small amount ε (e.g., half the finest cell width of the data set), so
the new evaluation point P′ falls inside the coarse side and there
induces a new octant (cf. Fig. 5c). Inside that octant, which is now
on the coarse but not necessarily the coarsest side, the procedure
is repeated recursively. As either corners, edges, or faces can have
level boundaries, this results in potential recursion when computing
the values at the octant corners.

On the coarse side, it is mainly up to the user of this frame-
work how to interpolate the missing corner values, as indicated in
Fig. 5d. The methods proposed by Wang et al. [WWW∗19] include
linear interpolation on the coarsest or finest level, on the current
level, or even the tent basis functions by Wald et al. [WBUK17]
from Section 4.1.1. Finally, when the corner values are available
and the potential recursion returned, the value at P is obtained via
trilinear interpolation (cf. Fig. 5e). Note that this procedure does
not require recursion inside subgrids but gracefully provides the
same reconstruction that we would also obtain by performing tri-
linear interpolation on the dual grid, which would be obtained by
shifting all cells in the neighborhood by the same amount in the
same direction.

4.2. Data structures for efficient cell location

This section discusses data structures to accompany the sampling
methods discussed above. Some of those data structures serve the
purpose of sampling the data and traversing it as efficiently as pos-
sible.

Cell location fundamentally is a neighbor search: given the
cell we are in, we need to find the (directly or indirectly) adja-
cent cells to form dual cells, octants, etc. Even in the simplest
cases, this neighbor query needs to be supported by a data struc-
ture that directly stores or allows retrieving the adjacency informa-
tion. Traditional data structures used for neighbor search are k-d
trees [Pan08]. Wald et al. [WBUK17] also use this data structure to
find all the neighboring cells inside the neighborhood of the sample
point. During construction, the authors compute split candidates by
first determining a list of all the level boundaries inside the region
to split. They pick the boundary closest to the mid-point/spatial me-
dian along the current axis.

The k-d tree by Wald et al. [WBUK17] serves the very purpose

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

499

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

of accelerating cell location—i.e., sampling and not traversal. A ray
that is marched through the volume density, such as in Algorithm 1
or Algorithm 2 in Appendix A, will traverse the k-d tree over and
over at each 3D sample position. This process is wasteful if the
cells of multiple consecutive samples are from the same refinement
level or even subgrid. Suppose we take N samples from the same
subgrid of, e.g., a block-structured AMR data set. Locating the cells
also includes locating the same subgrid repeatedly. A more efficient
strategy would first traverse the subgrid hierarchy and take the N
samples directly from the subgrid without traversing the hierarchy
again. This strategy is efficient for relatively large subgrids. How-
ever, suppose the AMR structure is an octree or similar. In that case,
one suffers from the same issue we also encountered in Section 3
when discussing SparseLeap by Hadwiger et al. [HAAB∗18] that a
multitude of leaf nodes from the same level are adjacent but do not
reside in the same subtree. A solution to this problem in the con-
text of AMR volume rendering was proposed in seminal work by
Kähler et al. [KSH03, KWAH06]. They preprocess the AMR data
by first dropping whatever hierarchy is there so that only the cells
themselves are considered. They then build a k-d tree to find bricks
as big as possible to contain as many same level cells as possible.
Contrary to Wald et al.’s k-d tree, this one can serve as a traversal
data structure, where rays first determine the brick they are in and
then sample and integrate that brick from front to back. This proce-
dure is repeated until the ray segment reaches the volume boundary
or reaches tmax.

Apart from special handling for potentially overlapping
block-structured AMR subgrids, the bricks generated by Käh-
ler et al. [KSH03] form a complete space decomposition and are
not allowed (nor designed) to overlap. Hence, the k-d trees do
not help find neighboring cells near the level transition. Complete
traversals are necessary to determine the neighborhood in those
regions. As the setting of Kähler’s approach is rather static—the
method traverses the k-d tree using a rasterization API, and traver-
sal is initiated on the CPU—their method is limited to vertex-
centric data or generates the artifacts mentioned above at level
boundaries.

The ExaBricks framework proposed by Wald et al. [WZU∗21]
extends Kähler et al.’s [KSH03] idea to use a spatial subdivision
for coherent traversal and support smooth reconstruction at cell-
centric AMR level boundaries. We note that Kähler’s framework
is almost two decades older than Wald’s, and hence the ExaBricks
framework only borrows basic concepts but builds upon different
technology that requires other kinds of optimizations overall. While
Kähler’s framework uses rasterization, ray tracing in a fragment
shader, and k-d tree traversal on the CPU, ExaBricks incorporates
a GPGPU execution model, hardware ray tracing, and GPUs with
abundant resources, which allows the authors to implement state-
of-the-art techniques such as implicit isosurfaces (cf. Algorithm 2
in Appendix A), ray-traced ambient occlusion, or adaptive sam-
pling. The two frameworks share the basic concept of traversing
coherent rays through spatial partitions of, ideally, larger regions
of same-sized cells.

ExaBricks is not only a (prototypical) framework but also a data
structure. The basis for the ExaBricks data structure form Käh-
ler et al.’s [KSH03] coarse k-d trees of bricks. The ExaBricks

framework provides tools to convert any AMR format with a Carte-
sian base domain to the internal format, consisting of two file types.
One file type stores the linear array of scalar volume data per scalar
field—ExaBricks supports multiple scalar fields that can be ren-
dered using multi-channel DVR or that are mapped as color fields
onto an implicit isosurface. The other file type stores cells, defined
by their position in logical grid coordinates, refinement level, and
scalar ID. Like Kähler et al., Wald et al.’s [WZU∗21] framework
discards whatever original AMR hierarchy is there and, in the fol-
lowing, only uses these arrays of scalars and cells.

The common scalar and cell formats serve as input to a prepro-
cess where the cells are turned into bricks, defined by their origin,
number of cells, the common refinement level, and the cell IDs
indexing into the scalar field arrays. This representation is equiva-
lent to Kähler et al.’s [KSH03] representation. To obtain the bricks,
Wald et al. [WBUK17] also use a k-d tree; they, however, experi-
mented with different heuristics when building these. Notably, the
data targeted by Wald et al. is much more large-scale, given the dif-
ferent periods in which the two frameworks were developed. In the
presence of billions of cells, the k-d trees generated for Wald et al.’s
test data sets can become quite complex. The heuristic the authors
recommend is similar to a surface area heuristic (SAH) [Wal07] for
volumes. In contrast to Kähler et al., Wald et al. never use the k-d
tree other than for generating the bricks. Hence, the preprocessing
output is bricks, while the k-d tree is immediately discarded.

To support smooth interpolation at level boundaries,
Wald et al. [WBUK17] first decide on a reconstruction method.
This method determines by how much the filter support of the
bricks overlaps. For example, when using tent-shaped basis
functions (cf. Section 4.1.1), each cell has a filter support of 1

2
the cell’s width at the brick boundaries; the brick domains, hence,
reach by 1

2 cell’s width of the brick’s refinement level beyond
the tight bounding boxes of the bricks. While the brick bounding
boxes form a complete space decomposition, the brick domains
generally overlap. The overlap regions themselves (including the
regions where only a single brick is active and there is no overlap),
however, implicitly form a space decomposition as well. The
authors call these the brick overlap regions. Brick overlap regions
can form the equivalents of what in 2D would be T- or L-shapes
and hence are not amenable to efficient rendering on GPUs.

ExaBricks builds yet another k-d tree to prepare the brick over-
lap regions for rendering, this time to split the overlap regions into
convex, axis-aligned boxes called the active brick regions (ABRs).
Again, the k-d tree hierarchy is dropped, and the framework keeps
just the resulting ABRs. The resulting ABR data structure consists
of a linear list of all brick IDs indexing into the brick list generated
during preprocessing. The ABRs are defined by their offset and
length into this ABR leaf list. In addition, the ABRs also store an
axis-aligned bounding box generated by the k-d tree splitter. A ren-
derer can traverse the ABRs using that data structure. When a ray
hits an ABR, it uses the offset and length to retrieve the IDs of the
bricks covered by the ABR. This process adds another level of in-
direction (from ABRs to bricks) on top of Kähler et al.’s [KSH03]
original data structure, but allows the renderer to perform basis
function interpolation inside the region covered by the ABR.

To traverse the ABRs, Wald et al. [WBUK17] use hardware-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

500

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

accelerated ray tracing with RTX by building an OptiX BVH over
the ABR bounding boxes. This BVH replaces the k-d tree, which
could also be used to traverse the ABRs on architectures with-
out hardware ray tracing. To support empty space skipping and
adaptive sampling, Wald et al. also store the min/max data val-
ues for the ABRs. During ABR construction, the authors carefully
compute the actual cells’ min/max values, not bricks, that con-
stitute the ABRs. Would they use the bricks’ min/max values in-
stead, the space-skipping data structure would be of much lower
quality, as later reported by Zellmann et al. [ZWS∗22a]. This ap-
proach allows them to classify and deactivate empty ABRs when-
ever the transfer function changes, similar to the min/max trees by
Knoll et al. [KWPH06]. When that happens, the OptiX BVH is re-
built interactively. Zellmann et al. [ZWS∗22a] later proposed to use
BVH refitting to accelerate this further and showed that the result-
ing BVHs allow for equivalent sampling performance. The result-
ing data structure allows for empty space skipping because a ray
traversing the ABR BVH will never report an intersection with an
empty ABR, as it is not even present in the BVH. Once an ABR’s
bounding box is intersected, the OptiX intersection program reports
a hit, and the ABR is processed using a ray marcher. The stepsize
of the ray marcher is proportional to the ABR’s finest cell size.

The ExaBricks data structure was later used by various other
works, including Zellmann et al. who extended the data structure
to support RTX-accelerated flow visualization [ZSM∗22] and fast
streaming updates [ZWS∗22a]. In a recent pre-print [ZWS∗22b],
the authors extend ExaBricks to support volumetric path tracing
with delta tracking (cf. Algorithm 3 in Appendix A). Here, the sam-
pler is no longer coherent: in the typical case, only a single or very
few samples are taken from the traversed ABR. This preliminary
work suggests that for Monte Carlo path tracing and other incoher-
ent workloads, ABRs form a viable sampling data structure but not
necessarily a data structure that is optimal for (incoherent) traver-
sal. Alternative data structures and interpolation schemes based on
dual cells were later proposed by Wang et al. [WMU∗20] but were
limited to tree-based AMR.

5. Rendering Unstructured Volume Data

Unstructured meshes that are, e.g., produced by finite elements or
finite volume codes can be thought of as the ultimate way of re-
fining the data to adapt to regions of interest. Some codes output
tetrahedra only, while others produce meshes with different types of
polyhedra such as tetrahedra, hexahedra, pyramids, wedges, or high
order [NLKH12], twisted and bent elements. Unlike structured vol-
umes that can be directly sampled in texture space, volume visual-
ization of unstructured grids requires managing the topology, ge-
ometry, and scalar field to locate and render these polyhedral cells.

The fundamental question of how to render such data has long
been solved by seminal works. A common object-order approach
also implemented by standard software like [AGL05], for exam-
ple, is the cell/tetrahedra projection [ST90], which involves a costly
sorting per viewpoint update to bring the cells into visibility order.
Garrity [Gar90] was the first to propose ray casting for unstructured
volumes, and Weiler et al. [WKME03] were the first to propose a
parallel GPU implementation. Silva et al. [SCCB05] reviewed early
GPU-based approaches for volume rendering of unstructured grids.

However, in times of ExaScale computing, the data management
aspects rather than rendering pose significant challenges. Traver-
sal and sampling through ray casting techniques, unanimously used
today, has to cope with the complexity and ever-increasing size of
the unstructured volumes. At the same time, advancements in hard-
ware technology have led to heterogeneous systems with complex,
potentially distributed memory hierarchies that the visualization al-
gorithms must adapt to.

This section discusses recent trends in traversing and sam-
pling unstructured volumes (see Fig. 6). We discuss how these
methods compress and augment the data with auxiliary struc-
tures. We will first discuss element marching approaches that lo-
cate the cells via connectivity information [MHDH07, MHDG11,
SDM∗21]. While the advantage of these approaches is that they
do not require large auxiliary traversal and sampling data struc-
tures, their flexibility is limited because they always require to com-
pletely march from the entry to the exit point of the ray/volume
segment traversed (cf. Fig. 6a). Alternative approaches like that by
Binyahib et al. [BPL∗19] use a fixed sampling pattern (cf. Fig. 6b),
which can be helpful when targeting distributed memory systems.
Another family of techniques we discuss use point ray sampling
(cf. Fig. 6c) by traversing rays with length zero into a ray trac-
ing acceleration structure and locating the cell by determining if
the origin falls inside. Here we focus on the papers by Morri-
cal et al. [MWUP22] and by Wald et al. [WMZ21] who proposed
efficient implementations using OptiX and RTX.

5.1. Marching with element connectivity

Ray tracing-based volume traversal requires one to find ray seg-
ments [tmin, tmax] to take samples from (cf. Section 2). While with
structured volumes, this is often as simple as testing the ray for an
intersection with the axis-aligned bounding box of the grid, with
unstructured data, the volume boundary is usually non-convex and
defined by an arbitrary surface mesh. The papers we review in this
section propose traversing the spatial partitions by finding entry and
exit points and marching from cell to cell (“element marching”).
When the spatial partition we are in is left, we need to check if
we actually exited the volume, or just the current local partition,
in which case we need to find the next pair of entry/exit points
(cf. Fig. 6a). Early work by Muigg et al. [MHDH07] proposed a
hybrid approach for volume traversal that first decomposes the un-
structured grid into bricks using a k-d tree. That allowed them to
traverse the (convex) brick boundaries, not the boundary mesh.

Follow-up work by Muigg et al. [MHDH07] implemented the
traversal step using rasterization and depth peeling [BPCS06]. The
boundary mesh is rendered using the standard rasterization pipeline
with back-face culling turned on to fill the depth buffer. Then the
mesh is rendered again, but with front-face culling active to find
the exit face for the entry face that is now in the depth buffer.
Ray/element marching is implemented in a fragment shader. Af-
ter that, the layer is “peeled off,” and the process is repeated until
the whole volume is traversed. This is a multipass approach: the
host program initiates rendering passes whenever a layer is peeled
off, and the volume is not fully rendered. The authors also proposed
a very compact data structure to store the connectivity information
without redundancy through a list of faces and without explicitly

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

501

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

Figure 6: Unstructured data ray-casting. (a) Element marching using connectivity information: Muigg et al. [MHDH07, MHDG11], Sahis-
tan et al. [SDM∗21, SDW∗22]. (b) Fixed-width sampling: Binyahib et al. [BPL∗19] (c) Empty space skipping and adaptive sampling with
RTX-BVH traversal: Morrical et al. [MUWP19] and Morrical et al. [MSG∗22]

representing cells. They achieve this by separating the number and
indices of the vertices that make up a face from the mesh topology.
Both papers by Muigg et al. [MHDH07, MHDG11] employ inter-
polation with a combination of simple barycentric coordinates at
the ray/face intersections and mean value coordinates [Flo03] for
the cell’s interior, distributing the samples equally along the ray
segment within it. Additional samples can then be computed be-
tween the positions of the already computed samples by linearly
interpolating between them.

More recently, Sahistan et al. [SDM∗21] proposed to leverage
hardware-accelerated ray tracing for element marching by using
an OptiX triangle BVH to find entry and exit points. The BVH
is built over what the authors call the shell—the same boundary
mesh also traversed by Muigg et al. [MHDG11] defined by the
unconnected faces of the boundary elements of the data set. The
method supports tetrahedra only. The authors compress the data by
what they call XOR compaction, an alternative to Muigg et al.’s
to store the element connectivity. Using a ray tracing API to tra-
verse from one spatial partition to another allows the authors to use
secondary rays for ambient occlusion or shadows, which is more
challenging to achieve with rasterization-based frameworks. The
authors also need to find entry faces for the secondary rays to ini-
tialize sampling via element marching. For that, they first trace a
ray from the current position inside the volume backward against
the shell and then march from the shell intersection until they pass
by the current position to only then start computing transmission. In
contrast to the BVH sampling techniques we summarize below in
Section 5.3, this approach’s memory consumption is very compet-
itive, both through compression and because the BVH is only built
over the shell, which accounts for a fraction of the actual elements.
A direct comparison between Sahistan et al.’s and Muigg et al.’s
techniques in terms of runtime and memory performance was un-
fortunately not provided.

5.2. Parallel and distributed rendering

Binyahib et al. [BPL∗19] propose a scalable unstructured volume
rendering algorithm that extends the one in VisIt [CBW∗12] and
is based on prior work by Childs et al. [CDM06]. Binyahib’s
algorithm proceeds in three phases. It first classifies the input
cells/unstructured elements as small or large by estimating the
number of samples a viewing ray will take, given a fixed-width
sampling as in Fig. 6b. As a rule of thumb, a cell that a ray crossing
samples only once would be considered small, but the framework
exposes a threshold value that allows the user to control this.

The three-phase algorithm first processes the small cells in an
object-order fashion. Then, processors exchange their generated
samples’ results for only the small cells, as well as the remain-
ing large cells directly. Each processor then generates a sub-image
from its share of what the authors call partial composites—i.e., the
partially composited pixel results for the small cells—and the re-
maining large cells in an image-order fashion.

The sampling pattern incurs a view frustum-aligned uniform grid
(cf. Fig. 6b) for which a shared buffer is pre-allocated. Typical sam-
ple counts are 1K3 for a 1K viewport (i.e., 1K × 1K samples in
image space and 1K in the z-direction). For modern workloads,
the sample count increases proportionally to the number of cells
to sample at the Shannon-Nyquist limit. This approach, which was
also employed by Childs et al. [CDM06], has a prohibitive memory
footprint.

During the first phase of the algorithm, the processors evaluate
their samples in object order, and the threads per processor fill the
pre-allocated grid buffer in parallel (i.e., parallelism over cells).
Then, in an image-parallel process, consecutive samples from that
buffer are post-classified with the RGBα transfer function and par-
tially composited to form partial composites. We propose to also
refer to those partial composites as fragments that are associated
not with samples directly but instead are the composited and asso-
ciated with the (locally convex) ray segments (cf. the center ray in
Fig. 6b). Each fragment carries RGB, opacity, and depth informa-
tion. To compute these, the authors use over compositing [PD84].
The lighting model used is “absorption plus emission” (cf. Algo-
rithm 1 in Appendix A). After this process, the fragments of a sin-
gle pixel are potentially distributed across several processors.

During the second phase, the processors exchange the frag-
ments/partial composites and the remaining large cells. In prepa-
ration for the next phase, the algorithm now transitions from object
to image order processing and hence partitions the image into tiles
distributed equally across the processors. The processors exchange
the data (fragments and large cells) using direct-send [Hsu93], re-
alized with MPI.

During the third phase, the processors receiving their data first
process the large cells and generate partial fragments. Afterward,
the fragments (coming from the other processors and/or resulting
from large cell sampling) are sorted using their depth value and
composited using pre-multiplied alpha, giving us the final RGB
sub-image for the tile the processor is responsible for. The sub-
images are finally sent to a single host processor for display.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

502

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

The framework can enforce object- or image-order processing
only by using the threshold to classify cells into small/large. All
cells are considered large if the threshold is set to 1, so no work is
performed during the first phase. Conversely, if the threshold goes
to infinity, all cells are small, and during the third phase, only frag-
ments but no large cells are processed. In that case, the rendering
algorithm becomes object-order only.

A potential source of the inflexibility of this algorithm is the
large pre-allocated sample buffer, which needs to scale better
with growing data resolution and when sampling at the Shannon-
Nyquist limit is desired. At the same time, the sampling pattern
is not adaptive. With adaptive sampling, one could design an al-
gorithm that takes fewer samples from the large than from the
small cells and thus would not require a hybrid phase with separate
phases for small and large cells at all. Algorithms that can adapt the
sampling rate to the local frequency and naturally skip over empty
space are the subject of section Section 5.3.

The framework by Sahistan et al.’s [SDM∗21] was later also
adapted to support large, non-convexly shaped distributed data as
Binyahib et al. [BPL∗19] does. The extension was first published
by Zellmann et al. [ZWB∗22], but is explained in more detail in the
pre-print by Sahistan et al. [SDW∗22]. The authors extended Sahis-
tan’s element marcher with a deep compositing algorithm. Instead
of employing IceT [MKPH11] for compositing, which is the state
of the art in most parallel distributed renderers [CBW∗12,AGL05],
the authors allocate fragment buffers to hold partially composited
samples per MPI rank and data partition. The fragments are later
exchanged via direct send and finally composited by the processor
responsible for the pixel. Conceptually, this is similar to Binyahib’s
partial composites (cf. Section 5.2). However, the method is not
restricted to fixed sample positions, nor does it require allocating
large sample buffers. The deep compositing approach is also not
restricted to element marching but can easily be combined, e.g.,
with BVH sampling (see below). As such, it represents a general
traversal routine (cf. Section 2) where the ray segments for the spa-
tial partitions are processed in parallel by different processors.

5.3. Cell location with hierarchical data structures

The previously presented methods implement sampling either
by marching to the sample position using element connectiv-
ity [MHDH07, MHDG11] or by placing samples at fixed positions
and using object space methods [BPL∗19]. An alternative tech-
nique first established by Rathke et al. [RWCB15] performs the
necessary cell location to obtain the samples via point queries.
To this end, a hierarchical acceleration structure (e.g., BVH or
k-d tree) is used. With a software implementation, the acceleration
structure is traversed. At each hierarchy level, the sample position
is tested for point containment inside the domain bounds, or half-
space, until finally arriving at the leaves, where the individual el-
ements are tested for containing the point. Point containment tests
are often much cheaper than ray/element intersection tests. In the
case of unstructured elements with planar faces, this can be imple-
mented by simple tests for the signed volume that the point forms
with each face. This approach is conceptually similar to the raster-
ization test performed by GPUs [Pin88].

5.3.1. Cell location with RT cores

On modern GPUs with ray tracing hardware, the point-in-element
test can be implemented by clever use of RT cores. The accelerator
of choice is a BVH, and instead of a point, one traverses a ray with
zero length (tmin = tmax = 0), originating at the sample position, and
with an arbitrary direction vector, through the hierarchy. In the sim-
plest case, the point containment test is implemented using user ge-
ometry. This method of using an acceleration structure to perform
cell location has the significant advantage that sampling can be de-
coupled from traversal. While it is perfectly viable also to use the
BVH for traversal, additional (often simpler) data structures can be
used to skip over empty space, or to adapt the local sampling rate,
e.g., based on the frequency or density majorants (cf. Section 2).
RTX-accelerated versions of this algorithm were first presented by
Wald et al. [WUM∗19] and by Morrical et al. [MWUP22], who
proposed extensions to support higher order elements with non-
planar faces. Conceptually, the method is illustrated in Fig. 6c.

Efficient implementations must make several design choices that
can affect memory consumption and sampling performance. For
example, one way to represent unstructured elements chosen by
Morrical et al. [MWUP22] is to allocate eight indices per element
into the shared vertex array, regardless of the element type stored.
Elements with fewer indices, such as tetrahedra and pyramids, have
their excess indices padded using an invalid value (e.g., −1). That
way, the elements can be represented in a single list. Alternative
layouts (cf., e.g., [MSG∗22]) store offsets into an index list sorted
by element ID, which allows representing the elements more com-
pactly and may also be more efficient in terms of thread group
divergence on the GPU. While planar elements can be efficiently
tested with the aforementioned rasterization techniques, non-planar
elements are tested with Newton Raphson refinement using the
plane distance as an initial approximation for the root [MWUP22].

User geometry intersection programs suffer from the back and
forth between shader and RT cores mentioned in Section 2.2. To
overcome this issue, Morrical et al. [MWUP22] also propose a
point query that uses ray/triangle intersection tests exclusively and
can thus be performed entirely in hardware. For that, they tessel-
late the faces of the elements into triangles and quads and dupli-
cate the shared faces of adjacent elements. In contrast to the user
geometry-based method, this one uses the fact that when tracing
a non-infinitesimal ray with a sufficiently set tmax originating in-
side an element will have the closest intersection with one of the
element’s faces. By duplicating the shared faces, using backface
culling, and using the convention that face normals belonging to
the element point inwards, the corresponding element ID can be
obtained. The choice of the ray’s tmax parameter can influence the
performance of this method. If tmax is too small, it will poten-
tially not hit the element boundary at all, while a tmax that is too
high results in unnecessary (yet hardware-accelerated and gener-
ally cheap) ray/triangle intersection tests before finding the closest
intersection. Although the authors propose regrouping the elements
in an (expensive) pre-process, which allowed them to eventually get
rid of the duplicate faces, this method is rather expensive regarding
memory consumption. The authors report that in contrast to the
user geometry-based method, the triangle-based one, on average,
uses twice as much memory.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

503

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

5.3.2. Space skipping and adaptive sampling

Using RT cores, cell location with point queries can use hardware
acceleration. Their flexibility in sample position placement makes
them a viable alternative to marching- and shared-face-based solu-
tions. As the cell location procedure does not require face connec-
tivity, this method is less prone to sampling issues due to degenerate
geometry. Still, performing a complete BVH traversal per sample
position, even in hardware, can be costly, mainly when the model is
large. As discussed in Section 3.1, like in the structured case, care-
ful sample placement can significantly improve performance. This
is even more relevant in the case of BVH cell location, where the
individual sample is expensive compared to, e.g., simple trilinear
interpolation in a 3D array. In the case of structured data, the spa-
tial arrangement depends on the density and the alpha value from
the RGBα TF but not on the shape of the volume (which is triv-
ially just a box). Unstructured meshes, in general, have non-convex
boundaries so that empty space is defined by both the boundary
mesh as well as the RGBα TF. Furthermore, adaptive sampling is
even more critical in this case because individual elements can vary
significantly in size, whereas structured voxels, though potentially
spanning multiple level sets, usually vary less in local resolution.

With point query-based sampling, it is per se possible to adapt
the local sampling rate according to some criterion arbitrarily. For
that, a traversal data structure accompanies the BVH used for sam-
pling. Morrical et al. [MUWP19] propose to base the traversal
data structure of a k-d tree partitioning computed in a pre-process.
The resulting domain boxes, though presenting a space partition-
ing, can still be traversed using OptiX and RTX, and the fact that
the domains do not overlap allows for efficient traversal and min-
max tree-based empty space skipping (cf. Section 3.1.1). To adapt
the sampling rate, the authors compute the variance of the post-
classified density values inside the domain boxes, roughly repre-
senting the local frequency after TF application. Morrical et al.
use absorption plus emission-style ray marching (cf. Algorithm 1
in Appendix A). They use opacity correction to account for the
adapted sample rate, so the resulting RGBα color roughly matches
the result obtained with a fixed marching step size.

5.3.3. Mesh data and acceleration structure compression

Compared to BVH-based cell location, element marchers (cf. Sec-
tion 5.1) have the primary advantage of only requiring face con-
nectivity, which can also be compressed significantly. In contrast,
the BVH and complete vertex index lists required by the above ap-
proaches can come at very high memory costs. Apart from prag-
matic solutions using distributed memory computing [ZWB∗22],
research has also focused on compressing both the unstructured
mesh and the sampling acceleration data structure. Two alternative
approaches that optimize for different objectives were proposed by
Wald et al. [WMZ21], and later by Morrical et al. [MSG∗22].

These compression algorithms build on research on sur-
face mesh compression. Solutions in this field include mul-
tiresolution decomposition [PDP∗19], and compression of
face index arrays [FFMW20, FWDF21]. The framework by
Wald et al. [WMZ21] borrows from these concepts. The authors
use a meshlet decomposition, which allows them to reorganize
the mesh’s vertices so their indices can form small groups. Inside

each group, the indices can be represented with lower resolution
(16 bits instead of 32 bits) or flattened altogether, resulting in even
lower memory consumption with a careful meshlet generation
scheme. Other minor optimizations include grouping neighboring
tetrahedra to pairs (“tet-pairs”), similar to how production ray
tracers sometimes group triangle pairs to quads so they can lower
the storage requirement to four instead of six vertices. With
tet-pairs as an extra element type, they rearrange the element list
so that elements of the same type are stored next to each other,
allowing for an even more compact representation.

At the center of this method is a (software) BVH compres-
sion scheme building off an unoptimized reference implementation
taken from OSPRay [WJA∗17]. The authors, step by step, extend
this reference. They transform the reference to become an eight-
wide BVH and use quantization [YKL17, BWWA18] with 16-bit
precision for the domain boxes of the subtree nodes. By carefully
rearranging the nodes and primitives, the authors do not require
to store any indices, but instead, node and primitive lists directly.
Another optimization to the sampling BVH that the authors pro-
pose is to (bottom-up) collapse up to eight leaf nodes to form what
they call multi-leaves. These multi-leaves can be traversed linearly;
however, the authors evaluated building small OptiX BVHs over
each, which proved superior to linear traversal in software. In this
case, the software and OptiX BVH form a two-level acceleration
structure, with the top level realized in software and the bottom
level realized with OptiX.

While Wald et al. [WMZ21] propose to use extreme compres-
sion for the sampling acceleration structure and element indices,
which eventually allows them to visualize the 2.9 billion elements
NASA Mars lander [Nat21] on a single GPU, they do not compress
vertices, which renders this compression method lossless.

While resulting in extreme compression with highly supe-
rior peak and total memory performance, building the acceler-
ation structure can take up to several hours for the largest of
data sets used by Wald et al. [WMZ21]. The method by Morri-
cal et al. [MSG∗22] seeks to overcome this issue by implementing
compression based on a lazy sorting and clustering scheme result-
ing in much lower pre-processing times. The authors first sort the
elements on a Hilbert curve and let N (typically, N ∈ {4,8,16, . . .})
adjacent elements on the space-filling curve form a cluster. Those
clusters are, of course, much less optimized than the exact BVH
heuristic by Wald et al. [WMZ21] can achieve. The authors com-
bine that with similar measures also taken by Wald et al., such as
meshlets to reduce the element index precision or element sort-
ing to group elements of the same type together. In contrast to
Wald’s OptiX-accelerated multi-leaves, Morrical et al. traverses the
N-sized clusters linearly, resulting in better memory yet lower sam-
pling performance. Compared to Wald et al.’s method, this method
trades sampling performance for pre-processing times.

Morrical et al. [MSG∗22] also initiated what we think might be-
come a trend—to use Woodcock tracking (cf. Algorithm 3 in Ap-
pendix A) instead of ray marching to compute transmission esti-
mates. The authors do not use this unbiased sampling method to
implement a full multi-scattering path tracer but instead evaluate a
primary absorption and emission sample, plus an optional shadow
ray towards a point light source. Apart from apparent trade-offs

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

504

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

(fewer samples being taken for single pixel samples resulting in
higher variance, but no bias when converged), an interesting prop-
erty is that, through the use of local majorants (cf. Section 2), adap-
tive sampling does not have to rely on heuristics such as variance
estimates. Instead, the number of (rejection) samples taken by Al-
gorithm 3 in Appendix A is directly proportional to the local majo-
rant density.

In summary, the methods presented in this section, including the
marching and object-order approaches, BVH point location, and
acceleration structure compression schemes, present several differ-
ent trade-offs. The literature still lacks a rigorous evaluation com-
paring all the aspects of pre-processing times, memory consump-
tion, and sampling and traversal performance within the same soft-
ware framework. What we can distill from the literature and results
presented therein is, however, that marching-based approaches of-
ten have a superior memory footprint and linear sampling times,
whereas BVH point queries can perform cell location in hardware
and logarithmic time, yet at the expense of storing an extra acceler-
ation structure in memory. Compression schemes can bring mem-
ory costs down significantly, but their implementation is not trivial.
BVH sampling seems slightly more flexible because it can more
easily deal with degenerate geometry, such as duplicate shared
faces, where a marcher would run into endless loops or prematurely
break out the traversal loop.

6. Compressed and Neural Representations

Adaptive representations, some of which have been mentioned pre-
viously, have become indispensable for the interactive analysis and
visualization of scientific data. A primary goal of these represen-
tations is to reduce the memory footprint and processing costs of
massive data without any perceptible degradation in the visualiza-
tion quality or the analysis results. The approaches we presented
so far are mainly limited to multi-resolution structures such as oc-
trees or k-d trees. However, these multi-resolution representations
involve structural constraints, sometimes leading to unnecessary
refinement in unimportant regions, primarily when the domain is
characterized by a non-rectangular shape, such as strong and thin
thread-like variations or L-shapes. The data size can also be re-
duced by reducing its precision, e.g., the number of bits for en-
coding numerical values. Recent work by Hoang et al. [HSB∗21]
and Bhatia et al. [BHM∗22] have shown that the combination of
these two, usually separate, concepts, namely resolution adaptation
and precision reduction, can offer significant benefits in terms of
storage reduction and/or quality versus efficiency tradeoff. We first
review these two works in the following subsection. Then, we re-
view recent works that base data size reduction on neural networks
and deep learning.

6.1. Unified resolution–precision compressed representation

Multi-resolution-based techniques implement levels of details that
often express themselves in the form of a tree, a set of wavelet co-
efficients, and/or multi-level space-filling curves. Precision-based
techniques, on the other hand, generally apply quantization to trun-
cate lower-order precision levels. Both types of methods achieve
significant reductions in memory footprint. However, working indi-
vidually with either approach restricts the achievable gains because

they do not localize precision, meaning they either preserve all bits
for some values or a few bits for all. Hoang et al. [HSB∗21] intro-
duce a tree structure and data layout aiming to encode precision and
multi-resolution simultaneously. There are other attempts to do so.
Indeed, a combination of the two is also used by VAPOR [LJP∗19],
a domain-specific visualization package that targets the analysis of
simulation data arising from Earth system science (ESS). It uses
wavelets for compression in combination with precision levels pre-
determined during the compression stage. When accessing the data,
the tool can select an increasing number of wavelet coefficients as
the user increases the quality and/or resolution levels, thereby re-
ducing I/O and computational costs. However, the quality levels
correspond to the number of wavelet coefficients to be decoded and
do not allow for direct control of the data precision. The fact that
only a few, generally four, precision levels are supported limits con-
trol, which the authors of [HSB∗21] propose to remedy.

[HSB∗21] argues that considering precision (number of bits)
and resolution (wavelet coefficients) together in a single unified
tree structure allows navigating more freely in a two-dimensional
data encoding space. This freedom permits improving the quality
and time ratio for regions of interest (ROI) queries. An ROI query
defines a spatial sub-part of the whole dataset, enhanced with pre-
cision error and level of resolution. The tree is built from a reg-
ular grid of points. Unlike other multi-resolution trees, it has the
same number of nodes as points. Figure 7 illustrates this in a sim-
ple 4× 4 2D case. First, a multi-resolution tree (see Figure 7-b) is
built from the regular data (Figure 7-a) using the notion of Z index,
which is formed by the bit interleaving of the point coordinates.
The figure illustrates this through the numbering of points. The bits
of the Z code are partitioned into prefix and suffix bits, from which
a node index corresponding to a breadth-first tree traversal order,
a node level, and the parent node index can be straightforwardly
computed. This tree encodes data in a multi-resolution form, e.g.,
using CDF 5/3 wavelet coefficients. Floating point data values are
expressed as a product between a power of two integer exponent
and an integer quantized value. The bits of these integers are clus-
tered into bitplanes, so the wavelet coefficients are also mapped
into a fixed number of bitplanes. Each node of the previous tree is
then extended by a linked list of bitplanes, used to control data pre-
cision, as shown in Figure 7-c. As for other multi-resolution tree
structures, a query corresponds to a cut in the tree. Here, all nodes
above the cut define an approximation.

Once constructed, the tree is stored in a way that optimizes min-
imal access time, storage costs, and transfer costs. Therefore, the
tree is structured into blocks, bricks, chunks, and files are put into
hierarchies of directories. Each brick is encoded independently into
its own local tree to permit parallelism. Data dependencies among
neighboring bricks, related to the wavelet coefficients, are man-
aged using lifting-based linear extrapolation. The local trees are
also merged into a single tree to reach any desired level of hierar-
chy. The bricks are thus hierarchically structured using the same
Z code for data points. A brick is composed of contiguous blocks,
which are compressed. All data is stored on disk in files composed
of chunks. Given some requested tree nodes, a function that maps
a corresponding file ID using bit packing and the file path is ap-
plied iteratively over the corresponding levels and bit planes. The
authors show that using this tree structure and disk layout achieves

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

505

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

10 54

98 1312

32 76

1110 1514

(a)

0

1 2 3

4 5 6 7 8 9 10 11 12 13 14 15

(b)

(c)

0

1 2 3

4 5 6 7 8 9 10 11 12 13 14 15

Figure 7: Unified tree [HSB∗21] example for a 4× 4 dataset (a);
(b) the wavelet coefficient tree using the Z index; (c) extension by a
linked list of bitplanes to encode precision.

high compression rates on large datasets and fast random access
of ROI, provided that parameters are chosen correctly. Parame-
ter optimization has been achieved through the execution of var-
ious queries on the dataset. In an exhaustive study, the authors
compare their compression method to the most recent techniques,
namely SZ [TDCC17], TTHRESH [BRLP20], JPEG2000 [TM13],
ZFP [Lin14], as well as VAPOR [LJP∗19]. They show that the de-
compression times and memory usage are several orders of mag-
nitude lower than SZ and TTHRESH and that the data quality is
competitive with them for a compression ratio of the order of 300
and is only slightly lower than TTHRESH at very high compression
ratios. The authors compare the quality of their near-lossless com-
pression technique with other methods using the peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM).
They also show that their method achieves ZFP’s decoding speed
while enabling very high compression ratios. For mid- and low-
quality levels, their system can decode at lower resolutions and,
therefore, achieve lower decoding time. For a compression ratio on
the order of 300, their method also achieves better quality than VA-
POR while avoiding blocking artifacts at very low bit rates.

In [BHM∗22], an approach called Adaptive Multilinear Meshes
(AMM), is presented. It is also a mixed representation that al-
lows to vary spatial precision and reduce the in-memory footprint
while generating, storing, and accessing data at a reduced reso-
lution and precision. Unlike existing multi-resolution approaches,
they enable varying the precision spatially. AMM is a compact
and adaptive representation of piecewise multilinear scalar fields
utilizing a tensor-product wavelet basis (linear biorthogonal B-
splines) [WL16]. It uses block-based mixed precision coding for
the vertex values, which provides a data reduction superior to spa-
tial adaptivity alone. It is also the first adaptive representation
that can be incrementally updated using arbitrarily ordered data
streams, offering new opportunities to explore dynamic and hy-

brid data reduction strategies. AMM provides flexible adaptivity in
the representation of uniformly regular scalar data through a new
type of spatial hierarchy that implements, through pointerless rep-
resentation, more general subdivision operations than those used
on existing tree-based hierarchies, i.e., octrees and k-d trees. The
data structure reduces the representation’s size through two contri-
butions: (1) rectangular cubical cells, which ensure that a tree node
is subdivided only along the required axes, and (2) improper nodes,
which facilitate partial division and representation.

The construction of an AMM is associated with two adjacent
refinement levels with a “spatial stencil," indicating how to com-
bine the different wavelet coefficients. Thus, stencil vertices are
“stamped” into a staging phase and combined with the vertices
from coarser and finer levels later in the upstaging step. Regarding
performance (on the spatial hierarchy, mixed-precision represen-
tation, and incremental updates), AMM does not offer a compet-
itive compression rate compared to state-of-art compressors, such
as ZFP or SZ. However, this approach has natural adaptation capa-
bilities by reducing the number of vertices and cells in the repre-
sentation, thus offering significant computational advantages dur-
ing traversal. Current work demonstrates about 50% faster vol-
ume rendering and produces significantly smaller meshes (20–50%
gain) for the same data quality. The authors evaluate the quality
of their mixed-precision representation according to different ways
of streaming the coefficients of the compression function. For this,
they rely on the evaluation of the peak signal-to-noise ratio (PSNR).
They show PSNR values between 40 and 100 dB for resolution
stream techniques (transmits complete coefficients) and values be-
tween 80 and 240 dB for precision stream (transmit bits of a coef-
ficient separately). It also raises several questions regarding perfor-
mance, most notably the stamping process for vertices that requires
tree traversals. It is the crucial bottleneck in further scaling and its
use on sparse data.

6.2. Compression using neural networks

With the advent of learning techniques, mainly based on neural net-
works, it seems relevant to try to exploit this approach to reduce the
data size, which is what Lu et al. [LJLB21] propose to do. They in-
troduce a learning-based method for compressing volumetric scalar
fields. Their approach is based on exploiting neural networks that
map a continuously-defined position from the simulation domain to
a scalar value [PFS∗19,MON∗19]. Their motivation is that a neural
network learning such a mapping function places no assumptions
on the data characteristics. Placing assumptions on data is a disad-
vantage of transformation-based compressive representations (e.g.,
Fourier or Wavelet bases), whose assumptions may not be valid for
the volumetric scalar field under consideration.

They limit the network’s capacity so that the number of network
weights is less than the volume resolution. This way, they obtain
optimized compressive representations that approximate the scalar
field at the sampled values. They build their neural network based
on SIREN [SMB∗20], which has fully-connected layers and si-
nusoids as periodic activation functions. They use residual (skip)
connections to achieve the robustness of the network. The network
weights are distributed so they can be quantized with a small num-
ber of bits.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

506

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

They use a PSNR quality metric to justify their choices through-
out the article. They also provide a quality comparison against
TTHRESH on single time step grids and time-varying datasets
using PSNR quality metric over several compression ratios. The
comparison shows that the neural network method is overall an
improvement over TTHRESH, except for one dataset when low
compression ratios are applied. The method produces compressed
representations approximately half the size of TTHRESH and pro-
vides smoother scalar fields. The authors also report that they ob-
tain larger gains in performance the higher the compression ratio.
This suggests that the method remains robust and can still obtain
good approximations of scalar fields, even when a few parameters
are kept in the network.

In addition to the approaches mentioned above, some other no-
table studies on compressed and neural representations are as fol-
lows. Pan et al.. [PZGY19] describe an adaptive deep learning-
based approach for compressing time-varying volumetric data us-
ing an autoencoder-based neural network with quantization and
adaptation. Weiss et al.. [WHW22] propose using GPU ten-
sor cores to design scene representation networks. They inte-
grate the reconstruction process into on-chip raytracing kernels.
Jain et al.. [JGG∗17] use a deep convolutional autoencoder net-
work to achieve a data-driven representation for volumetric data by
learning high-level hierarchical features. Quan et al.. [QCJJ18] in-
troduce a learning-based voxel classification technique for volume
rendering. Their approach uses hierarchical multi-scale 3D convo-
lutional sparse coding to learn dictionary-based features from the
input data. Mensmann et al.. [MRH10] exploit the CUDA comput-
ing architecture for a hybrid CPU/GPU scheme for lossless com-
pression and data streaming of time-varying volumetric data. Their
approach utilizes temporal coherence and variable-length coding
with a fast block compression algorithm. Weiss and Navab [WN21]
integrate deep neural networks into direct volume rendering. In-
stead of designing features explicitly and manually crafting transfer
functions, they learn mappings for these processes by representing
the rendering process in a latent color space.

Because this is a fast-growing field and many new developments
are on the way, we convey the reader to the survey of Wang and
Han [WHss] on deep learning-based approaches for scientific visu-
alization for extensive coverage.

7. Tools for Volume Rendering

In addition to the recent works on large-scale volume visualization,
we also review the common visualization tools and libraries (APIs)
for these data types. Table 2 summarizes the visualization tools’
and APIs’ support for various data types. The following sections
review and discuss how tools and APIs support the data types and
large-scale visualization techniques discussed in this survey.

7.1. Large-scale visualization APIs

OSPRay [WJA∗17] is a CPU-based ray tracing framework for sci-
entific visualization. It is a scene-description library where de-
velopers describe the scene using OSPRay procedures rather than
specifying the rendering process. Since it uses ray tracing, it sup-
ports shading effects, such as ambient occlusion and shadows. In

Tool type Data type Platform

Tool License A
PI

R
en

de
re

r

St
ru

ct
ur

ed

U
ns

tr
uc

t.

A
M

R

C
PU

G
PU

C
lu

st
er

OSPRay Apache
VisRTX Proprietary
VisIt-OSPRay Apache
VisIt BSD
ParaView BSD
IndeX ® Proprietary

Table 2: Major sci-vis tools and their support for direct volume
rendering. We distinguish by whether the tool is primarily a ren-
derer (user-centric) or an API (developer-centric), the volume data
types they support, and the platform targeted by their rendering
component.

addition, OSPRay contains an MPI module for distributed vol-
ume rendering with a sort-last compositor to render large-volume
data across HPC clusters. The OSPRay framework relies on high-
performance Open Volume Kernel Library (OpenVKL) [Int22] for
rendering. OpenVKL is a collection of high-performance volume
computation kernels that provides point sampling, volume traver-
sal, and isosurface hit kernels for structured, unstructured, and
block-structured AMR meshes. OpenVKL accelerates the spatial
queries using Embree [WWB∗14] ray tracing kernels and pro-
vides current, finest, octant reconstruction methods for AMR vol-
ume. The octant reconstruction method allows to reconstruct crack-
free isosurfaces with smooth boundaries for block-structured AMR
meshes. OpenVKL also supports OpenVDB [Mus21] meshes, an
open-source library composed of a hierarchical data structure and
a set of tools to store and manipulate sparse volumetric data dis-
cretized on 3D grids. OpenVDB was developed by DreamWorks
Animation and is currently maintained by the Academy Software
Foundation (ASWF).

Khronos’ ANARI [SGA∗22] is a high-level scientific visualiza-
tion API designed to connect low-level renderers like OSPRay
and VisRTX [Ams19] with front-end visualization tools like
VisIt [CBW∗12] and ParaView [AGL05]. Inspired by OSPRay,
ANARI is a scene description library. Renderers implementing the
ANARI specification provide high-level scene description proce-
dures for developers to let them build cross-platform visualization
tools that use rasterization or ray tracing. ANARI makes it easier
for developers to implement visualization tools. By using ANARI
specification, visualization tools can use different scientific render-
ers without implementing different renderer bindings or their own
low-level rendering engines. Any visualization tool using ANARI
can use OSPRay and VisRTX. VisRTX [Ams19] is an implementa-
tion of the ANARI specification targeted for RTX-enabled NVIDIA
GPUs. Moreover, by providing new implementations to ANARI,
researchers can easily incorporate their state-of-the-art visualiza-
tion techniques into any existing visualization tool that supports
ANARI. The interested reader may refer to [SGA∗22] for an excel-
lent overview of the 3D ANARI API Standard and its positioning
concerning visualization applications, frameworks, and tools, such
as ParaView [AGL05], VisiT [CBW∗12], and VTK [Kit22], render-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

507

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

Tool Data Type Supported File Format

VisIt Structured bov, conduit, cosmos, pvti, pvtr, pvts,
silo, visit, vtk, vti, vtr, vts, xdmf

AMR conduit, cosmos, silo, visit
Unstructured conduit, cosmos, pvtu, silo, visit, vtk,

vtu, xdmf
ParaView Structured dem, dicom, inp, mrc, netcdf, pvd,

pvti, pvtr, pvts, raw, tecplot, vti, vtk,
vtr, vts, windblade, xdmf

AMR ensight, enzo, flash, openfoam
Unstructured exodus, fluent, mfix, netcdf, prostar,

pvd, pvtu, TecPlot, vtk, vtu, xdmf

Table 3: Supported file types of visualization tools.

ers, such as OSPRay [WJA∗17], VisRTX [Ams19], and acceleration
APIs, such as OptiX [NVI09b].

7.2. Large-scale visualization tools

VisIt [CBW∗12], ParaView [AGL05], and IndeX [NVI09a] are
common scalable tools that are used for visualizing large volumes.
In this section, we review the distributed tools showing how the
tools deal with the different kinds of data. Table 3 shows the file
types these tools support.

7.2.1. Tools for structured data

Due to the popularity of structured grids, most volume visual-
ization tools support this data representation. VisIt [CBW∗12] is
a popular distributed, parallel visualization tool used for 2D and
3D volume visualization. It supports various mesh types, includ-
ing curves, rectilinear, curvilinear, and unstructured, as well as
point-based and molecular data. VisIt supports various CPU and
GPU rendering algorithms to visualize the volumetric data (struc-
tured and unstructured). For GPU architectures, it uses splatting
and 3D Texture rendering methods. These methods require a con-
siderable amount of memory. Therefore, VisIt downsamples the
volume to fit the data into GPU VRAM. VisIt also supports three
ray-casting-based CPU rendering algorithms: Compositing, SLIVR
and VisIt-OSPRay [WUP∗18]. Compositing renderer [CDM06] is
the predecessor of Binyahib et al.’s [BPL∗19] hybrid rendering al-
gorithm. Unlike Binyahib et al.’s algorithm, Compositing renderer
does not support partial compositing of the intermediate samples.
Therefore, compositing method requires a considerable amount of
memory compared to other methods. SLIVR implements a sort-
last rendering pipeline with parallel direct send [Hsu93]. VisIt-
OSPRay uses fast, multi-core OSPRay renderer to render the struc-
tured grids. VisIt-OSPRay utilizes the sort-last compositing li-
brary IceT [MKPH11]. Unlike Compositing and SLIVR renderers,
VisIt-OSPRay employs shared-memory parallelism by using multi-
threading, and therefore VisIt-OSPRay is more memory efficient.

Another popular visualization tool is ParaView [AGL05].
ParaView is an open-source suite of tools for the interactive manip-
ulation of scientific visualization data by Kitware Inc. ParaView is
developed together with the Visualization Toolkit (VTK) [SML06,
Kit22], which is an open-source for data manipulation and render-
ing. ParaView uses client-server architecture, similar to VisIt and
it supports rendering algorithms for CPU and GPU architectures.

ParaView distributes the large models into multiple nodes, and sim-
ilar to VisIt-OSPRay, ParaView uses sort-last compositing library,
IceT, to composite the individually rendered partial images. For
structured volumes, ParaView uses three renderers: ray casting-
based CPU and GPU renderers and OSPRay renderer. VTK-m
[MSU∗16, Mor23] is a complementary tool to ParaView and VTK
that provides additional support for developing parallel scientific
visualization algorithms. VTK-m makes it easier to create scientific
visualization algorithms that run in parallel by offering a range of
supportive tools and features. VTK-m provides efficient data trans-
fer and processing tools on various parallel architectures, including
multi-core CPUs, GPUs, and distributed computing clusters. Addi-
tionally, it provides a lightweight rendering module. However, it is
important to note that the rendering package in VTK-m is not meant
to function as a complete rendering system or library [Mor23].
Some of the VTK-m features have been integrated into VTK and
ParaView, making it easier for users to take advantage of VTK-m’s
capabilities within these popular visualization tools..

IndeX® [NVI09a] is a 3D volumetric interactive visualization
software development kit that exploits GPU clusters. IndeX pro-
vides functionality to visualize structured and unstructured meshes.
IndeX also provides a plug-in that brings scalable visualization ca-
pabilities to ParaView [NVI20].

7.2.2. Tools for AMR data

ParaView resamples and converts the AMR volume into a struc-
tured grid to render the volume. This method allows AMR data to
be rendered without using a different rendering algorithm. While
resampling, Paraview allows the user to select the grid size. If the
grid size is too small, some features will be undersampled. On the
other hand, increasing the grid size requires more memory. AMR
sampling in Paraview does not address the T-junction problem: The
resulting isosurface might not be smooth and crack-free.

VisIt use Weber et al.’s parallel “stitching” algorithm [WCM12]
(cf. Section 4) for visualizing AMR data. Weber et al.’s “stitch-
ing” algorithm converts the AMR data into an unstructured mesh.
After the stitching, these tools use their unstructured rendering al-
gorithms to visualize the AMR meshes. Weber et al.’s stitching al-
gorithm generates crack-free, smooth isosurfaces when only tran-
sitions of one level between neighboring cells exist. With stitching
VisIt supports crack-free, smooth surfaces at the cost of increasing
the memory footprint.

Additionally, VisIt and ParaView can use OSPRay’s render-
ing capabilities to render the block-structured AMR mesh. Since
OSPRay’s octant reconstruction method does not convert the AMR
mesh into an unstructured grid, it requires less memory than the
“stitching” method.

7.2.3. Tools for unstructured data

VisIt uses the same algorithms (splatting, 3d texture, com-
positing, SLIVR, VisIt-OSPRay) for structured and unstructured
meshes. Splatting, compositing and SLIVR algorithms utilize
cell/tetrahedron projection technique. 3D texture method con-
verts the data into a structured mesh. Then the converted mesh
is rendered with a structured grid rendering method. Projected

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

508

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

Platform Architecture Traversal Sampling
CPU GPU in-core out-of-core distributed software hardware hierarchical direct/linear

[HAAB∗18] [BMA∗19] [SCRL20]
[WWJ19]
[GM19] [WZM21]
[ZSL21]

[WBUK17] [WWW∗19] [WMU∗20]
[WZU∗21] [ZWS∗22a] [ZSM∗22]
[ZWS∗22b]

[MHDH07] [MHDG11]
[SDM∗21]
[BPL∗19]
[SDW∗22]
[WUM∗19] [MUWP19] [WMZ21]
[MWUP22] [MSG∗22]

[HSB∗21] [BHM∗22]
[LJLB21]

Table 4: Comparison of volume visualization techniques for structured (), AMR () and unstructured () data, and compression and
neural representation methods (). Volume traversal technique is expressed according to whether it is based on hardware acceleration or on
a software solution. Hierarchical sampling indicates that this step relies on traversing a hierarchical data structure, whereas direct/linear
methods do not.

cell/tetrahedron and 3D texture methods either under-sample the
volume or require a high amount of memory. VisIt-OSPRay uses
OSPRay library to visualize the unstructured mesh. OSPRay uses
use point ray sampling method for visualization.

ParaView provides four different algorithms for visualizing
unstructured meshes: projected-tetra, Z-sweep, Bunyk Raycast
[BKS97], OSPRay raycaster, OSPRay path tracer and resample to
image methods. Projected-tetra, Z-sweep use cell/tetrahedron pro-
jection method, resample to image method converts the unstruc-
tured mesh into structured one. Bunyk Raycast is a element march-
ing-based method that renders the unstructured volume by travers-
ing the cells.

8. Discussion and Comparison of the Surveyed Approaches

The algorithms and techniques we surveyed fall into different
camps depending on the volume data type, as reflected by the over-
all outline of this state-of-the-art report. Most papers these days
focus on general-purpose ray tracing techniques that can trace in-
dividual rays through the volume density without using a rasteriza-
tion API. This allows for fine-grained control over the path taken
by those individual rays, largely independent of the behavior of
neighboring rays. Such a fine-grained way of scheduling rays nat-
urally allows for space-skipping optimizations—hence we orthog-
onally classify the techniques based on their focus on traversal or
sampling. We also survey trends on techniques to cope with very
large data. Standard measures one can take in that case is out-of-
core visualization, where a lower level of the memory hierarchy is
integrated into the system to asynchronously serve data pages re-
quired by the rendering subsystem, as well as massive parallelism.
We broadly classify the surveyed papers according to these axes
and present our findings in Table 4.

We observe several trends. Naturally, sampling involving the

location of individual cells in the volume is a more com-
plex operation the more unstructured the data is. Sampling is
a trivial operation inside a 3D texture or similar, directly ad-
dressable memory segments as they are involved when render-
ing structured, regular volumes (cf. Section 3). This, however,
changes as soon as the memory hierarchy gets involved, as in
papers by Hadwiger et al. [HAAB∗18], Beyer et al. [BMA∗19],
Wang et al. [WWW∗19], or Sarton et al. [SCRL20], concentrating
on out-of-core techniques. In that case, sampling can still become
a dominating operation.

In the case of semi-structured, cell-centric AMR data (cf. Sec-
tion 4), smooth sampling at level boundaries was not possible until
recently for large data sets. Stitching [ME11] was the agreed-upon
solution for smooth reconstruction at level boundaries. However, it
proved too memory intensive because the hierarchical aspect of the
data was abandoned, and the AMR cells were converted to individ-
ual unstructured cells. Papers re-investigating the problem of high-
quality reconstruction on the original and not the dual AMR grids
thus naturally focused on sampling, which, as opposed to structured
volume rendering, now requires complete hierarchy (e.g., k-d tree,
BVH) traversal to locate individual cells. Approaches presented
treat reconstruction as weighted average computations [WBUK17]
and require all the cells in a given neighborhood to be located. More
complex algorithms such as the one by Wang et al. [WWW∗19] fo-
cus on sampling with a rectilinear filter. This approach involves an
even more complex operation, where an octant space decomposi-
tion of the neighborhood is recursively found, involving cell loca-
tion and implicit sorting of dual cells based on that space decompo-
sition. With these methods established, follow-up papers identified
the problem that AMR sampling is expensive. Then they proposed
to use more intricate traversal schemes to allow for space skipping
and adaptive sampling [WZU∗21, ZWS∗22a, ZWS∗22b].

Sampling can become even more costly when neighborhood

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

509

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

Memory consumption

Re
nd

er
in

g
(F

PS
) 1

2 3

4

5

6

7

1 2 3

4

5

6 71

2

6

5,10

3,8

9 4

7

1 2 3

1 [HAAB∗18] 1 [MHDH07]
2 [GM19] 2 [MHDG11]
3 [BMA∗19] 3 [WUM∗19]
4 [WWJ19] 4 [MUWP19]
5 [SCRL20] 5 [BPL∗19]
6 [WZM21] 6 [SDM∗21]
7 [ZSL21] 7 [WMZ21]
1 [WBUK17] 8 [MWUP22]
2 [WWW∗19] 9 [MSG∗22]
3 [WMU∗20] 10 [SDW∗22]
4 [WZU∗21] 1 [LJLB21]
5 [ZWS∗22a] 2 [HSB∗21]
6 [ZSM∗22] 3 [BHM∗22]
7 [ZWS∗22b]

Figure 8: Classification of the different methods in terms of ren-
dering performance according to the memory occupation. The size
of the circles indicates the pre-processing time needed. Note that
distances between methods are not quantifiable and should rather
be considered rough indications. Since the compression and neu-
ral representation approaches () do not include rendering meth-
ods, they are represented in a neutral position on the y-axis, and
their evaluation concerns compression rate (x-axis) and compres-
sion time (circle sizes).

and connectivity relations are entirely missing from the data, as
in the case of unstructured meshes. In that case, two orthogonal
approaches exist. One way to sample the data is to reconstruct
the connectivity information and transform the data to support
fast one-ring neighborhood queries [MHDG11,SDM∗21]. Another
notable approach builds a hierarchical acceleration structure over
the data that allows for fast point-in-cell queries; it can be more
memory intensive but has seen recent popularity due to the in-
troduction of hardware ray tracing cores [MUWP19, MWUP22].
Our survey reveals that hardware ray tracing is limited if the data
gets large. Compression schemes such as the one proposed by
Wald et al. [WMZ21] require more control over the data layout
of the internal nodes of the acceleration structure so that complete
hardware-accelerated sampling is no longer possible.

A trend we observe is that data sampling workloads become
increasingly incoherent. General-purpose ray tracing techniques
allow one to trace secondary shadow or scattering rays into the
volume [SDM∗21]. Representations optimized for volume render-
ing are sometimes also used for arbitrary sampling, e.g., to com-
pute flow visualizations [ZSM∗22], which involves more divergent
memory access patterns. Finally, we observe a recent trend that path
tracing is adopted by the sci-vis community [MSG∗22,ZWS∗22b],
which is most likely driven by the recent availability of high-quality
denoising techniques [IGMM22] and requires sample placement at
arbitrary positions. Taking individual samples becomes even more
costly with this approach, so efficient volume traversal data struc-
tures become even more critical. Fig. 8 shows the balance between
rendering time and memory usage as well as pre-processing times
of the different methods for all the data types we mentioned.

Lastly, we observe a recent trend toward compressing given
data representations. While not all of the papers focus on sam-
pling and traversal of the volume data [HSB∗21, BHM∗22], an
even more recent trend employs extremely lossy compression by

encoding the volume as a neural network [WDBM22]. This ap-
proach, which borrows from recent development in photogrammet-
ric rendering [MST∗21], has extraordinarily high sampling costs,
as each sample taken involves inferring a neural net. In that case,
photogrammetric approaches break down the neural net into several
smaller neural nets [RPLG21], which form a uniform grid—or, fol-
lowing our terminology—a traversal data structure. This up-and-
coming field is currently still establishing itself [WDBM22], and
yet, it is evident that the need for fast volume traversal is even more
critical in this case.

Our review of tools supporting all those techniques
shows a gradual shift towards general-purpose ray trac-
ing. This trend is reflected by the developments concerning
ANARI [SGA∗22], which, although a general rendering API,
has strong ties to ray tracing since its software design is highly
inspired by OSPRay’s [WJA∗17]. Well-established tools like
ParaView [AGL05] or VisIt [CBW∗12] start integrating both
OSPRay [WUP∗18] as well as ANARI [SGA∗22]. With that,
even these tools that still depend on rasterization techniques
are gradually adopting general-purpose ray tracing. The use of
libraries like OpenVKL [Int22] opens the door for full path tracing
volume rendering to be adopted by these tools.

9. Conclusion

In this state-of-the-art report, we have focused on recent develop-
ments in direct volume rendering techniques for efficient interactive
visualization of large-scale volume data. We established a classifi-
cation of the papers based on their volume data type. Sampling
is the primary operation of reconstructing values at discrete posi-
tions and generally becomes more costly the less regular the data
is. In that case, intricate traversal data structures are used to adapt
the sampling rate or skip over empty space. We generally observe
that data structures adapt more aggressively to how much the data
frequency varies during simulation or data acquisition. That re-
sults in hierarchical and less structured volume data. While reduc-
ing the memory overhead by avoiding to represent the data with
empty or homogeneous cells, visualization algorithms need to be
implemented carefully to not add in memory what was gained, by
introducing additional auxiliary data structures for sampling and
traversal. Another trend we observe is the availability of GPUs with
hardware-accelerated ray tracing. Algorithms make ample use of
that, so that storing BVHs along with the volume is becoming a
commodity. These hardware features help with flexibility, as it is
now easier to traverse individual rays and implement more complex
lighting models. At the same time, using them poses challenges in
terms of memory consumption and interactive changes to the data
or transfer functions, as these become more costly in the presence
of data structures like BVHs that need to be rebuilt each frame.

Acknowledgments

We acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)—–grant no.
456842964, and the French National Agency with LUM-Vis
project—ANR-21-CE46-0005.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

510

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

References
[Adv23] ADVANCED MICRO DEVICES, INC.: Vulkan® ray trac-

ing extension support in our latest AMD Radeon™ Adrenalin
driver 20.11.3, 2023. Available at https://gpuopen.com/
vulkan-ray-tracing-extensions/, Accessed: 6 February
2023. 4

[AGL05] AHRENS J. P., GEVECI B., LAW C. C.: ParaView: An end-user
tool for large-data visualization. In The Visualization Handbook, Hansen
C. D., Johnson C. R., (Eds.). Academic Press / Elsevier, 2005, pp. 717–
731. doi:10.1016/b978-012387582-2/50038-1. 11, 13, 17,
18, 20

[AMR18] AMREX TEAM: AMReX Adaptive Mesh Refinement Frame-
work. https://amrex-codes.github.io/amrex/, 2018. Ac-
cessed: 7 February 2023. 2

[Ams19] AMSTUTZ J.: VisRTX, 2019. Available at https://
github.com/NVIDIA/VisRTX, Accessed: 7 February 2023. 2, 17,
18

[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh refinement
for shock hydrodynamics. Journal of Computational Physics 82, 1
(1989). 2, 7

[BHM∗22] BHATIA H., HOANG D., MORRICAL N., PASCUCCI V.,
BREMER P.-T., LINDSTROM P.: AMM: Adaptive Multilinear Meshes.
IEEE Transactions on Visualization and Computer Graphics 28, 6
(2022), 2350–2363. 2, 15, 16, 19, 20

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-art in
GPU-based large-scale volume visualization. Computer Graphics Forum
34, 8 (2015), 13–37. 2, 4, 6

[BKS97] BUNYK P., KAUFMAN A., SILVA C.: Simple, fast, and ro-
bust ray casting of irregular grids. In Scientific Visualization Confer-
ence (dagstuhl ’97) (1997), pp. 30–30. doi:10.1109/DAGSTUHL.
1997.1423099. 19

[BMA∗19] BEYER J., MOHAMMED H., AGUS M., AL-AWAMI A. K.,
PFISTER H., HADWIGER M.: Culling for extreme-scale segmenta-
tion volumes: A hybrid deterministic and probabilistic approach. IEEE
Transactions on Visualization and Computer Graphics (Proceedings
IEEE Scientific Visualization 2018) 25, 1 (2019), 1132–1141. 6, 19, 20

[BO84] BERGER M. J., OLIGER J.: Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations. Journal of Computational
Physics (1984). 7

[BPCS06] BERNARDON F. F., PAGOT C. A., COMBA J. L., SILVA C. T.:
Gpu-based tiled ray casting using depth peeling. Journal of Graphics
tools 11, 4 (2006), 1–16. 11

[BPL∗19] BINYAHIB R., PETERKA T., LARSEN M., MA K.-L.,
CHILDS H.: A scalable hybrid scheme for ray-casting of unstructured
volume data. IEEE Transactions on Visualization and Computer Graph-
ics 25, 7 (2019), 2349–2361. 2, 11, 12, 13, 18, 19, 20

[BRLP20] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
TTHRESH: Tensor compression for multidimensional visual data. IEEE
Transactions on Visualization and Computer Graphics 26, 9 (2020),
2891–2903. doi:10.1109/TVCG.2019.2904063. 16

[BWG11] BURSTEDDE C., WILCOX L. C., GHATTAS O.: p4est:
Scalable algorithms for parallel adaptive mesh refinement on forests of
octrees. SIAM Journal on Scientific Computing 33, 3 (2011). doi:
10.1137/100791634. 7

[BWWA18] BENTHIN C., WALD I., WOOP S., ÁFRA A. T.:
Compressed-leaf bounding volume hierarchies. In Proceedings of
the Conference on High-Performance Graphics (New York, NY, USA,
2018), HPG ’18, Association for Computing Machinery. doi:10.
1145/3231578.3231581. 14

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J. M.,
NAVRÁTIL P.: VisIt: An end-user tool for visualizing and analyzing very

large data. In High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Chapman and Hall/CRC, New York, NY, Oct 2012,
pp. 357–372. 12, 13, 17, 18, 20

[CDM06] CHILDS H., DUCHAINEAU M. A., MA K.: A scalable, hy-
brid scheme for volume rendering massive data sets. In Proceedings
of the Eurographics Symposium on Parallel Graphics and Visualization
(2006), Heirich A., Raffin B., dos Santos L. P. P., (Eds.), EGPGV 06,
Eurographics Association, pp. 153–161. 12, 18

[CGL∗00] COLELLA P., GRAVES D., LIGOCKI T., MARTIN D., MODI-
ANO D., SERAFINI D., VAN STRAALEN B.: Chombo Software Package
for AMR Applications Design Document, 2000. 2, 7

[Cra11] CRASSIN C.: GigaVoxels: A Voxel-Based Rendering Pipeline
For Efficient Exploration Of Large And Detailed Scenes. PhD the-
sis, Universite De Grenoble, July 2011. URL: http://maverick.
inria.fr/Publications/2011/Cra11. 6

[DAC∗14] DUBEY A., ANTYPAS K., CALDER A. C., DALEY C.,
FRYXELL B., GALLAGHER J. B., LAMB D. Q., LEE D., OLSON K.,
REID L. B., RICH P., RICKER P. M., RILEY K. M., ROSNER R.,
SIEGEL A., WEIDE N. T. T. K., TIMMES F. X., VLADIMIROVA N.,
ZUHONE J.: Evolution of FLASH, a multi-physics scientific simula-
tion code for high-performance computing. The International Journal of
High Performance Computing Applications 28, 2 (2014), 225–237. 2, 7

[DHTI21] DERIN M. O., HARADA T., TAKEDA Y., IBA Y.: Sparse
volume rendering using hardware ray tracing and block walking. In
SIGGRAPH Asia 2021 Technical Communications (New York, NY,
USA, 2021), SA ’21, Association for Computing Machinery. doi:
10.1145/3478512.3488608. 4

[Eng11] ENGEL K.: CERA-TVR: A framework for interactive high-
quality teravoxel volume visualization on standard PCs. In Proceed-
ings of the IEEE Symposium on Large Data Analysis and Visualiza-
tion (2011), LDAV ’11, pp. 123–124. doi:10.1109/LDAV.2011.
6092330. 6

[FFMW20] FELLEGARA R., FLORIANI L. D., MAGILLO P., WEISS K.:
Tetrahedral trees: A family of hierarchical spatial indexes for tetrahedral
meshes. ACM Transactions on Spatial Algorithms and Systems (TSAS)
6, 4 (2020), 1–34. 14

[Flo03] FLOATER M. S.: Mean value coordinates. Computer aided geo-
metric design 20, 1 (2003), 19–27. 12

[FN80] FRANKE R., NIELSON G.: Smooth interpolation of large sets
of scattered data. International Journal for Numerical Methods in En-
gineering 15, 11 (1980), 1691–1704. doi:https://doi.org/10.
1002/nme.1620151110. 8

[FWDF21] FELLEGARA R., WEISS K., DE FLORIANI L.: The stellar
decomposition: A compact representation for simplicial complexes and
beyond. Computers & Graphics 98 (2021), 322–343. 14

[Gar90] GARRITY M. P.: Raytracing irregular volume data. Computer
Graphics (San Diego Workshop on Volume Visualization) 24(5) (1990),
7. 11

[GM19] GANTER D., MANZKE M.: An analysis of region clustered
BVH volume rendering on GPU. Computer Graphics Forum 38, 8
(2019), 13–21. 5, 19, 20

[GMH∗19] GEORGIEV I., MISSO Z., HACHISUKA T.,
NOWROUZEZAHRAI D., KŘIVÁNEK J., JAROSZ W.: Integral for-
mulations of volumetric transmittance. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 38, 6 (2019). 3

[HAAB∗18] HADWIGER M., AL-AWAMI A. K., BEYER J., AGUS M.,
PFISTER H.: SparseLeap: Efficient empty space skipping for large-scale
volume rendering. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (2018), 974–983. 2, 5, 6, 10, 19, 20

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: In-
teractive volume exploration of petascale microscopy data streams us-
ing a visualization-driven virtual memory approach. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2285–2294.
doi:10.1109/TVCG.2012.240. 6, 7

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

511

https://gpuopen.com/vulkan-ray-tracing-extensions/
https://gpuopen.com/vulkan-ray-tracing-extensions/
https://doi.org/10.1016/b978-012387582-2/50038-1
https://amrex-codes.github.io/amrex/
https://github.com/NVIDIA/VisRTX
https://github.com/NVIDIA/VisRTX
https://doi.org/10.1109/DAGSTUHL.1997.1423099
https://doi.org/10.1109/DAGSTUHL.1997.1423099
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1137/100791634
https://doi.org/10.1137/100791634
https://doi.org/10.1145/3231578.3231581
https://doi.org/10.1145/3231578.3231581
http://maverick.inria.fr/Publications/2011/Cra11
http://maverick.inria.fr/Publications/2011/Cra11
https://doi.org/10.1145/3478512.3488608
https://doi.org/10.1145/3478512.3488608
https://doi.org/10.1109/LDAV.2011.6092330
https://doi.org/10.1109/LDAV.2011.6092330
https://doi.org/https://doi.org/10.1002/nme.1620151110
https://doi.org/https://doi.org/10.1002/nme.1620151110
https://doi.org/10.1109/TVCG.2012.240

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

[HMES20] HOFMANN N., MARTSCHINKE J., ENGEL K., STAM-
MINGER M.: Neural denoising for path tracing of medical volumetric
data. ACM Transactions on Graphics (Proceedings of SIGGRAPH ’20)
3, 2 (2020), 13, 18 pages. 3

[HSB∗21] HOANG D., SUMMA B., BHATIA H., LINDSTROM P., KLA-
CANSKY P., USHER W., BREMER P.-T., PASCUCCI V.: Efficient and
flexible hierarchical data layouts for a unified encoding of scalar field
precision and resolution. IEEE Transactions on Visualization and Com-
puter Graphics 27, 2 (2021), 603–613. 2, 15, 16, 19, 20

[Hsu93] HSU W.: Segmented ray casting for data parallel volume ren-
dering. In Proceedings of IEEE Parallel Rendering Symposium (1993),
pp. 7–14. doi:10.1109/PRS.1993.586079. 12, 18

[IGMM22] IGLESIAS-GUITIAN J. A., MANE P., MOON B.: Real-time
denoising of volumetric path tracing for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 28, 7 (2022),
2734–2747. doi:10.1109/TVCG.2020.3037680. 3, 20

[Int22] INTEL CORP.: Open Volume Kernel Library (Open VKL), 2022.
Available at https://www.openvkl.org/, Accessed: 7 FEbruary
2023. 17, 20

[JGG∗17] JAIN S., GRIFFIN W., GODIL A., BULLARD J. W., TERRILL
J., VARSHNEY A.: Compressed volume rendering using deep learning.
In Proceedings of the Large Scale Data Analysis and Visualization Sym-
posium (2017), LDAV ’17, pp. 1187–1194. 17

[KHB∗16] KIRIS C. C., HOUSMAN J. A., BARAD M. F., BREHM C.,
SOZER E., MOINI-YEKTA S.: Computational framework for Launch,
Ascent, and Vehicle Aerodynamics (LAVA). Aerospace Science and
Technology 55 (2016), 189–219. 2

[Kim17] KIM D.: Fluid Engine Development. CRC Press, Taylor &
Francis Group, 2017. 7

[Kit22] KITWARE, INC.: The Visualization Toolkit (VTK), 2022. Avail-
able at https://vtk.org/, Accessed: 7 February 2023. 17, 18

[Koc20] KOCH D.: Vulkan ray tracing final specification release,
2020. Available at https://www.khronos.org/blog/
vulkan-ray-tracing-final-specification-release,
Accessed: 6 February 2023. 4

[KPB12] KROES T., POST F. H., BOTHA C. P.: Exposure render: An
interactive photo-realistic volume rendering framework. PloS One 7, 7
(2012), e38586. 3

[KSH03] KÄHLER R., SIMON M., HEGE H.-C.: Interactive volume
rendering of large data sets using adaptive mesh refinement hierarchies.
IEEE Transactions on Visualization and Computer Graphics 9, 3 (2003),
341 – 351. doi:10.1109/TVCG.2003.1207442. 10

[KWAH06] KÄHLER R., WISE J., ABEL T., HEGE H.-C.: GPU-assisted
raycasting for cosmological adaptive mesh refinement simulations. In
Volume Graphics (2006), VG ’06, pp. 103–110. 7, 10

[KWPH06] KNOLL A., WALD I., PARKER S., HANSEN C.: Interactive
isosurface ray tracing of large octree volumes. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing (2006), RT ’06, pp. 115–
124. doi:10.1109/RT.2006.280222. 5, 11

[Lar22] LARABEL M.: Intel’s Open-Source Vulkan Driver
for Ray-Tracing Gets “Like A 100x Improvement”, 2022.
Available at https://www.phoronix.com/news/
Intel-Vulkan-RT-100x-Improve, Accessed: 6 February
2023. 4

[LCDP13] LIU B., CLAPWORTHY G. J., DONG F., PRAKASH E. C.:
Octree rasterization: Accelerating high-quality out-of-core GPU volume
rendering. IEEE Transactions on Visualization and Computer Graphics
19, 10 (2013), 1732–1745. doi:10.1109/TVCG.2012.151. 5

[LCPT11] LABADENS M., CHAPON D., POMARÉDE D., TEYSSIER R.:
Visualization of octree adaptive mesh refinement (AMR) in astrophys-
ical simulations. In Astronomical Data Analysis Software and Systems
XXI, ASP Conference Series. Astronomical Society of the Pacific, San
Francisco, CA, USA, 2011. 7

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Octree textures

on the GPU. In GPU Gems 2. Addison-Wesley, Boston, MA, USA,
2005. URL: https://developer.nvidia.com/gpugems/
gpugems2/part-v-image-oriented-computing/
chapter-37-octree-textures-gpu. 6

[Lin14] LINDSTROM P.: Fixed-rate compressed floating-point arrays.
IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2674–2683. doi:10.1109/TVCG.2014.2346458. 16

[LJLB21] LU Y., JIANG K., LEVINE J. A., BERGER M.: Compressive
neural representations of volumetric scalar fields. Computer Graphics
Forum 40, 3 (2021), 135–146. 2, 16, 19, 20

[LJP∗19] LI S., JAROSZYNSKI S., PEARSE S., ORF L., CLYNE J.: Va-
por: A visualization package tailored to analyze simulation data in Earth
system science. Atmosphere 10, 9 (2019). 15, 16

[Max95] MAX N.: Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2 (1995), 99–
108. 3, 25

[ME11] MORAN P., ELLSWORTH D.: Visualization of AMR data with
multi-level dual-mesh interpolation. IEEE Transactions on Visualization
and Computer Graphics 17, 12 (2011), 1862–1871. doi:10.1109/
TVCG.2011.252. 7, 19

[MHDG11] MUIGG P., HADWIGER M., DOLEISCH H., GROLLER E.:
Interactive volume visualization of general polyhedral grids. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (2011),
2115–2124. 11, 12, 13, 19, 20

[MHDH07] MUIGG P., HADWIGER M., DOLEISCH H., HAUSER H.:
Scalable hybrid unstructured and structured grid raycasting. IEEE Trans-
actions on Visualization and Computer Graphics 13, 6 (2007), 1592–
1599. 11, 12, 13, 19, 20

[MHK∗19] MARTSCHINKE J., HARTNAGEL S., KEINERT B., ENGEL
K., STAMMINGER M.: Adaptive temporal sampling for volumetric path
tracing of medical data. Computer Graphics Forum 38, 4 (2019), 67–76.
3

[Mic23] MICROSOFT CORP.: DirectX Raytracing (DXR) Functional
Spec, 2023. Available at https://microsoft.github.io/
DirectX-Specs/d3d/Raytracing.html, Accessed: 6 February
2023. 4

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An image compositing solution at scale. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis (New York, NY, USA, 2011), SC ’11, Association for
Computing Machinery. 13, 18

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A survey on bounding volume hierarchies
for ray tracing. Computer Graphics Forum 40, 2 (2021), 683–712. 4

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3D reconstruction in
function space. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), CVPR ’19, pp. 4455–4465.
16

[Mor23] MORELAND K.: VTK-m Users’ Guide, version 2.0. Tech. Rep.
ORNL/TM-2023/2863, Oak Ridge National Lab.(ORNL), Oak Ridge,
TN (United States), 2023. 18

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K. H.: A GPU-
supported lossless compression scheme for rendering time-varying vol-
ume data. In Proceedings of the 8th IEEE VGTC / Eurographics In-
ternational Symposium on Volume Graphics, VG@Eurographics 2010
(2010), Westermann R., Kindlmann G. L., (Eds.), Eurographics Asso-
ciation, pp. 109–116. URL: https://doi.org/10.2312/VG/
VG10/109-116, doi:10.2312/VG/VG10/109-116. 17

[MSG∗22] MORRICAL N., SAHISTAN A., GÜDÜKBAY U., WALD I.,
PASCUCCI V.: Quick clusters: A GPU-parallel partitioning for efficient
path tracing of unstructured volumetric grids. IEEE Transactions on Vi-
sualization and Computer Graphics (2022), 1–11. 2, 3, 12, 13, 14, 19,
20

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

512

https://doi.org/10.1109/PRS.1993.586079
https://doi.org/10.1109/TVCG.2020.3037680
https://www.openvkl.org/
https://vtk.org/
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://doi.org/10.1109/TVCG.2003.1207442
https://doi.org/10.1109/RT.2006.280222
https://www.phoronix.com/news/Intel-Vulkan-RT-100x-Improve
https://www.phoronix.com/news/Intel-Vulkan-RT-100x-Improve
https://doi.org/10.1109/TVCG.2012.151
https://developer.nvidia.com/gpugems/gpugems2/part-v-image-oriented-computing/chapter-37-octree-textures-gpu
https://developer.nvidia.com/gpugems/gpugems2/part-v-image-oriented-computing/chapter-37-octree-textures-gpu
https://developer.nvidia.com/gpugems/gpugems2/part-v-image-oriented-computing/chapter-37-octree-textures-gpu
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2011.252
https://doi.org/10.1109/TVCG.2011.252
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://doi.org/10.2312/VG/VG10/109-116
https://doi.org/10.2312/VG/VG10/109-116
https://doi.org/10.2312/VG/VG10/109-116

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

[MST∗21] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing scenes as neural
radiance fields for view synthesis. Communications of the ACM 65, 1
(2021), 99–106. 20

[MSU∗16] MORELAND K., SEWELL C., USHER W., LO L.-T.,
MEREDITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L.,
CHILDS H., LARSEN M., CHEN C.-M., MAYNARD R., GEVECI B.:
Vtk-m: Accelerating the visualization toolkit for massively threaded ar-
chitectures. IEEE Computer Graphics and Applications 36, 3 (2016),
48–58. doi:10.1109/MCG.2016.48. 18

[Mus21] MUSETH K.: OpenVDB. In ACM SIGGRAPH 2021 Courses,
No. 4 (New York, NY, USA, 2021), SIGGRAPH ’21, Association for
Computing Machinery. doi:10.1145/3450508.3464577. 17

[MUWP19] MORRICAL N., USHER W., WALD I., PASCUCCI V.: Ef-
ficient space skipping and adaptive sampling of unstructured volumes
using hardware accelerated ray tracing. In Proceedings of IEEE Visual-
ization (2019), VIS ’19, pp. 256–260. 2, 12, 14, 19, 20

[MWUP22] MORRICAL N., WALD I., USHER W., PASCUCCI V.: Accel-
erating unstructured mesh point location with RT cores. IEEE Transac-
tions on Visualization and Computer Graphics 28, 8 (2022), 2852–2866.
2, 11, 13, 19, 20

[Nat20] NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(NASA): FUN3D Fully Unstructured Navier-Stokes: Computational
Fluid Dynamics (CFD) Suite of Tools, 2020. Available at https:
//fun3d.larc.nasa.gov/, Accessed: 7 February 2023. 2

[Nat21] NATIONAL AERONAUTICS AND SPACE ADMINISTRATION:
Fun3D Retropropulsion Data Portal—Simulations of retropropulsion to
decelerate a space vehicle entering a planetary atmosphere. https://
data.nas.nasa.gov/fun3d/, 2021. Accessed: 7 January 2023.
14

[NLKH12] NELSON B., LIU E., KIRBY R. M., HAIMES R.: Elvis: A
system for the accurate and interactive visualization of high-order finite
element solutions. IEEE transactions on visualization and computer
graphics 18, 12 (2012), 2325–2334. 11

[NVI09a] NVIDIA CORP.: IndeX®3D Volumetric Visualization Frame-
work, 2009. Available at https://developer.nvidia.com/
nvidia-index, Accessed: 27 January 2023. 18

[NVI09b] NVIDIA CORP.: NVIDIA OptiX Ray Tracing Engine,
2009. Available at https://developer.nvidia.com/optix,
Accessed: 7 February 2023. 2, 4, 18

[NVI20] NVIDIA CORP.: NVIDIA IndeX for ParaView Plugin, Version
2.4, 2020. Available at https://www.mn.uio.no/astro/
english/services/it/help/visualization/paraview/
nvidia-index-paraview-plugin-user-guide-5.8.pdf,
Accessed: 7 February 2023. 18

[Pan08] PANIGRAHY R.: An improved algorithm finding nearest neigh-
bor using kd-trees. In LATIN 2008: Theoretical Informatics (Berlin, Hei-
delberg, 2008), Laber E. S., Bornstein C., Nogueira L. T., Faria L., (Eds.),
Springer Berlin Heidelberg, pp. 387–398. 9

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., ET AL.: Optix: a general purpose ray tracing
engine. Acm transactions on Graphics 29, 4 (2010), 1–13. 4

[PD84] PORTER T., DUFF T.: Compositing digital images. ACM Com-
puter Graphics (Proc. SIGGRAPH ’84) 18, 3 (jan 1984), 253–259.
doi:10.1145/964965.808606. 12, 25

[PDP∗19] PEYROT J.-L., DUVAL L., PAYAN F., BOUARD L., CHIZAT
L., SCHNEIDER S., ANTONINI M.: Hexashrink, an exact scalable
framework for hexahedral meshes with attributes and discontinuities:
multiresolution rendering and storage of geoscience models. Compu-
tational Geosciences 23 (2019), 723–743. 14

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R. A.,
LOVEGROVE S.: DeepSDF: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2019), CVPR ’19, IEEE,
pp. 165–174. 16

[Pin88] PINEDA J.: A parallel algorithm for polygon rasterization. In
Proceedings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 1988), SIGGRAPH ’88,
Association for Computing Machinery, p. 17–20. doi:10.1145/
54852.378457. 13

[PM12] PHARR M., MARK W. R.: ispc: A SPMD compiler for high-
performance CPU programming. In Proceedings of the Innovative Par-
allel Computing (2012), InPar ’12, pp. 1–13. 2

[PNP∗17] PATCHETT J. M., NOUANESENGESY B., POUDEROUX J.,
AHRENS J., HAGEN H.: Parallel multi-layer ghost cell generation for
distributed unstructured grids. In Proceedings of the IEEE Symposium
on Large Data Analysis and Visualization (2017), LDAV ’17, pp. 84–91.
4

[PZGY19] PAN Y., ZHU F., GAO T., YU H.: Adaptive deep learning
based time-varying volume compression. In Proceedings of the IEEE
International Conference on Big Data (2019), Big Data 2019, pp. 1187–
1194. 2, 17

[QCJJ18] QUAN T. M., CHOI J., JEONG H., JEONG W.-K.: An intelli-
gent system approach for probabilistic volume rendering using hierarchi-
cal 3D convolutional sparse coding. IEEE Transactions on Visualization
and Computer Graphics 24, 1 (2018), 964–973. 2, 17

[RPLG21] REISER C., PENG S., LIAO Y., GEIGER A.: KiloNeRF:
Speeding up neural radiance fields with thousands of tiny MLPs. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(2021), pp. 14335–14345. 20

[RWCB15] RATHKE B., WALD I., CHIU K., BROWNLEE C.: SIMD
parallel ray tracing of homogeneous polyhedral grids. In Proceedings
of the Eurographics Symposium on Parallel Graphics and Visualization
(2015), EGPGV 15, pp. 33–41. 13

[SBS∗17] SOLTESZOVA V., BIRKELAND A., STOPPEL S., VIOLA I.,
BRUCKNER S.: Output-sensitive filtering of streaming volume data.
Computer Graphics Forum 36, 1 (2017), 249–262. doi:https:
//doi.org/10.1111/cgf.12799. 7

[SCCB05] SILVA C., COMBA J., CALLAHAN S., BERNARDON F.: A
survey of GPU-based volume rendering of unstructured grids. Brazilian
Journal of Theoretic and Applied Computing 12, 2 (2005), 9–29. 11

[SCRL20] SARTON J., COURILLEAU N., REMION Y., LUCAS L.: In-
teractive visualization and on-demand processing of large volume data:
A fully GPU-based out-of-core approach. IEEE Transactions on Visual-
ization and Computer Graphics 26, 10 (2020), 3008–3021. 2, 6, 7, 19,
20

[SDM∗21] SAHISTAN A., DEMIRCI S., MORRICAL N., ZELLMANN S.,
AMAN A., WALD I., GÜDÜKBAY U.: Ray-traced shell traversal of tetra-
hedral meshes for direct volume visualization. In Proceedings of IEEE
Visualization Conference (2021), VIS ’21, pp. 91–95. 2, 11, 12, 13, 19,
20

[SDW∗22] SAHISTAN A., DEMIRCI S., WALD I., ZELLMANN S., BAR-
BOSA J., MORRICAL N., GÜDÜKBAY U.: GPU-based data-parallel ren-
dering of large, unstructured, and non-convexly partitioned data, 2022.
doi:10.48550/ARXIV.2209.14537. 12, 13, 19, 20

[SGA∗22] STONE J. E., GRIFFIN K. S., AMSTUTZ J., DEMARLE
D. E., SHERMAN W. R., GÜNTHER J.: ANARI: A 3-D Rendering
API Standard. Computing in Science & Engineering 24, 2 (2022), 7–
18. doi:10.1109/MCSE.2022.3163151. 17, 20

[SKTM11] SZIRMAY-KALOS L., TÓTH B., MAGDICS M.: Free path
sampling in high resolution inhomogeneous participating media. Com-
puter Graphics Forum 30, 1 (2011), 85–97. doi:https://doi.
org/10.1111/j.1467-8659.2010.01831.x. 4

[SMB∗20] SITZMANN V., MARTEL J. N. P., BERGMAN A. W., LIN-
DELL D. B., WETZSTEIN G.: Implicit neural representations with pe-
riodic activation functions. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (Red Hook, NY,
USA, 2020), NIPS’20, Curran Associates Inc. 16

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

513

https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1145/3450508.3464577
https://fun3d.larc.nasa.gov/
https://fun3d.larc.nasa.gov/
https://data.nas.nasa.gov/fun3d/
https://data.nas.nasa.gov/fun3d/
https://developer.nvidia.com/nvidia-index
https://developer.nvidia.com/nvidia-index
https://developer.nvidia.com/optix
https://www.mn.uio.no/astro/english/services/it/help/visualization/paraview/nvidia-index-paraview-plugin-user-guide-5.8.pdf
https://www.mn.uio.no/astro/english/services/it/help/visualization/paraview/nvidia-index-paraview-plugin-user-guide-5.8.pdf
https://www.mn.uio.no/astro/english/services/it/help/visualization/paraview/nvidia-index-paraview-plugin-user-guide-5.8.pdf
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/54852.378457
https://doi.org/10.1145/54852.378457
https://doi.org/https://doi.org/10.1111/cgf.12799
https://doi.org/https://doi.org/10.1111/cgf.12799
https://doi.org/10.48550/ARXIV.2209.14537
https://doi.org/10.1109/MCSE.2022.3163151
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01831.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01831.x

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

[SML06] SCHROEDER W., MARTIN K. M., LORENSEN W. E.: Visu-
alization Toolkit: An Object-Oriented Approach to 3D Graphics, 4 ed.
Kitware, Inc., Clifton Park, NY, USA, 2006. 18

[SRL19] SARTON J., REMION Y., LUCAS L.: Distributed out-of-core
approach for in-situ volume rendering of massive dataset. In High Per-
formance Computing (Cham, 2019), Weiland M., Juckeland G., Alam S.,
Jagode H., (Eds.), Springer International Publishing, pp. 623–633. 6

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approximation to direct
scalar volume rendering. ACM Computer Graphics (Proceedings of the
Workshop on Volume Visualization, VolVis ’90) 24, 5 (1990), 63–70. 2,
11

[TDCC17] TAO D., DI S., CHEN Z., CAPPELLO F.: Significantly im-
proving lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (Los
Alamitos, CA, USA, jun 2017), IPDPS ’17), IEEE Computer Society,
pp. 1129–1139. URL: https://doi.ieeecomputersociety.
org/10.1109/IPDPS.2017.115. 16

[TM13] TAUBMAN D., MARCELLIN M.: JPEG2000 Image Compres-
sion Fundamentals, Standards and Practice. Springer, New York, NY,
USA, 2013. 16

[VMD08] VIDAL V., MEI X., DECAUDIN P.: Simple empty-space re-
moval for interactive volume rendering. Journal of Graphics Tools 13, 2
(2008), 21–36. doi:10.1080/2151237X.2008.10129258. 5

[Wal07] WALD I.: On fast construction of SAH-based bounding volume
hierarchies. In Proceedings of the IEEE Symposium on Interactive Ray
Tracing (USA, 2007), RT ’07, IEEE Computer Society, p. 33–40. doi:
10.1109/RT.2007.4342588. 10

[Wal20] WALD I.: A simple, general, and GPU friendly method for com-
puting dual mesh and iso-surfaces of adaptive mesh refinement (AMR)
data, 2020. doi:10.48550/arxiv.2004.08475. 7

[WBUK17] WALD I., BROWNLEE C., USHER W., KNOLL A.: CPU vol-
ume rendering of adaptive mesh refinement data. In Proceedings of SIG-
GRAPH Asia 2017 Symposium on Visualization (New York, NY, USA,
2017), SA ’17, ACM, pp. 9:1–9:8. 2, 7, 8, 9, 10, 19, 20

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Efficient par-
allel extraction of crack-free isosurfaces from adaptive mesh refinement
(AMR) data. In IEEE Symposium on Large Data Analysis and Visu-
alization (LDAV) (2012), pp. 31–38. doi:10.1109/LDAV.2012.
6378973. 7, 18

[WDBM22] WU Q., DOYLE M. J., BAUER D., MA K.-L.: Instant
neural representation for interactive volume rendering. arXiv preprint
arXiv:2207.11620 (2022). 20

[WHss] WANG C., HAN J.: DL4SciVis: A state-of-the-art survey on
deep learning for scientific visualization. IEEE Transactions on Visu-
alization and Computer Graphics (In press). doi:10.1109/TVCG.
2022.3167896. 3, 17

[WHW22] WEISS S., HERMÜLLER P., WESTERMANN R.: Fast neural
representations for direct volume rendering. Computer Graphics
Forum 41, 6 (2022), 196–211. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14578, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14578, doi:https://doi.org/10.1111/cgf.14578. 17

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay - A CPU
ray tracing framework for scientific visualization. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 931–940. 2, 3, 14,
17, 18, 20

[WKL∗01] WEBER G. H., KREYLOS O., LIGOCKI T. J., SHALF J. M.,
HAGEN H., HAMANN B., JOY K., MA K.-L.: High-quality volume
rendering of adaptive mesh refinement data. In Proceedings of the Vision
Modeling and Visualization Conference (2001), VMV ’01. 7

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL T.: Hardware-
based ray casting for tetrahedral meshes. In IEEE Visualization, 2003.

VIS 2003. (Oct. 2003), pp. 333–340. ISSN: null. doi:10.1109/
VISUAL.2003.1250390. 11

[WL16] WEISS K., LINDSTROM P.: Adaptive multilinear tensor product
wavelets. IEEE Transactions on Visualization and Computer Graphics
22, 1 (2016), 985–994. doi:10.1109/TVCG.2015.2467412. 16

[WMHL65] WOODCOCK E., MURPHY T., HEMMINGS P., LONG-
WORTH T.: Techniques used in the GEM code for Monte Carlo neu-
tronics calculation in reactors and other systems of complex geometry.
Tech. rep., Argonne National Laboratory, 1965. 3

[WMU∗20] WANG F., MARSHAK N., USHER W., BURSTEDDE C.,
KNOLL A., HEISTER T., JOHNSON C. R.: CPU ray tracing of tree-
based adaptive mesh refinement data. Computer Graphics Forum 39, 3
(2020), 1–12. 8, 11, 19, 20

[WMZ21] WALD I., MORRICAL N., ZELLMANN S.: A memory efficient
encoding for ray tracing large unstructured data. IEEE Transactions on
Visualization and Computer Graphics 28, 1 (2021), 583–592. 2, 11, 14,
19, 20

[WN21] WEISS J., NAVAB N.: Deep direct volume rendering: Learning
visual feature mappings from exemplary images. CoRR abs/2106.05429
(2021). URL: https://arxiv.org/abs/2106.05429, arXiv:
2106.05429. 2, 17

[WUM∗19] WALD I., USHER W., MORRICAL N., LEDIAEV L., PAS-
CUCCI V.: RTX beyond ray tracing: Exploring the use of hardware
ray tracing cores for tet-mesh point location. In Proceedings of High-
Performance Graphics - Short Papers (July 2019), HPG ’19, The Euro-
graphics Association. 2, 13, 19, 20

[WUP∗18] WU Q., USHER W., PETRUZZA S., KUMAR S., WANG F.,
WALD I., PASCUCCI V., HANSEN C. D.: VisIt-OSPRay: toward an ex-
ascale volume visualization system. In Proceedings of the Symposium on
Parallel Graphics and Visualization (Goslar, DEU, 2018), EGPGV ’18,
Eurographics Association, pp. 13–24. 18, 20

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics 33, 4 (2014). doi:10.1145/2601097.
2601199. 2, 4, 17

[WWJ19] WANG F., WALD I., JOHNSON C. R.: Interactive rendering
of large-scale volumes on multi-core CPUs. In Proceedings of the IEEE
Symposium on Large Data Analysis and Visualization (2019), LDAV ’19,
pp. 27–36. 2, 6, 19, 20

[WWW∗19] WANG F., WALD I., WU Q., USHER W., JOHNSON C. R.:
CPU isosurface ray tracing of adaptive mesh refinement data. IEEE
Transactions on Visualization and Computer Graphics 25, 1 (2019),
1142–1151. 2, 7, 8, 9, 19, 20

[WZM21] WALD I., ZELLMANN S., MORRICAL N.: Faster RTX-
accelerated empty space skipping using triangulated active region bound-
ary geometry. In Proceedings of the Eurographics Symposium on Par-
allel Graphics and Visualization (2021), Larsen M., Sadlo F., (Eds.),
PGV ’21, The Eurographics Association. doi:10.2312/pgv.
20211042. 2, 5, 6, 19, 20

[WZU∗21] WALD I., ZELLMANN S., USHER W., MORRICAL N.,
LANG U., PASCUCCI V.: Ray tracing structured AMR data using
ExaBricks. IEEE Transactions on Visualization and Computer Graphics
27, 2 (2021), 625–634. 2, 8, 10, 19, 20

[XTC∗ss] XU J., THEVENON G., CHABAT T., MCCORMICK M., LI
F., BIRDSONG T., MARTIN K., LEE Y., AYLWARD S.: Interactive,
in-browser cinematic volume rendering of medical images. Computer
Methods in Biomechanics and Biomedical Engineering: Imaging & Vi-
sualization (In press). doi:10.1080/21681163.2022.2145239.
3

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the GPU. Computer Graph-
ics Forum 29, 4 (2010), 1297–1304. doi:https://doi.org/10.
1111/j.1467-8659.2010.01725.x. 5

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

514

https://doi.ieeecomputersociety.org/10.1109/IPDPS.2017.115
https://doi.ieeecomputersociety.org/10.1109/IPDPS.2017.115
https://doi.org/10.1080/2151237X.2008.10129258
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.48550/arxiv.2004.08475
https://doi.org/10.1109/LDAV.2012.6378973
https://doi.org/10.1109/LDAV.2012.6378973
https://doi.org/10.1109/TVCG.2022.3167896
https://doi.org/10.1109/TVCG.2022.3167896
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14578
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14578
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14578
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14578
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14578
https://doi.org/https://doi.org/10.1111/cgf.14578
https://doi.org/10.1109/VISUAL.2003.1250390
https://doi.org/10.1109/VISUAL.2003.1250390
https://doi.org/10.1109/TVCG.2015.2467412
https://arxiv.org/abs/2106.05429
http://arxiv.org/abs/2106.05429
http://arxiv.org/abs/2106.05429
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.2312/pgv.20211042
https://doi.org/10.2312/pgv.20211042
https://doi.org/10.1080/21681163.2022.2145239
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01725.x

J. Sarton et al. / State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data

[YIC∗10] YUE Y., IWASAKI K., CHEN B.-Y., DOBASHI Y., NISHITA
T.: Unbiased, adaptive stochastic sampling for rendering inhomogeneous
participating media. ACM Transactions on Graphics 29, 6 (2010). doi:
10.1145/1882261.1866199. 4

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray
traversal on gpus through compressed wide bvhs. In Proceedings of
High Performance Graphics (New York, NY, USA, 2017), HPG ’17,
Association for Computing Machinery. doi:10.1145/3105762.
3105773. 14

[ZHL19] ZELLMANN S., HELLMANN M., LANG U.: A linear time BVH
construction algorithm for sparse volumes. In Proceedings of the IEEE
Pacific Visualization Symposium (2019), PacificVis ’19, pp. 222–226. 4,
5

[ZML19] ZELLMANN S., MEURER D., LANG U.: Hybrid grids for
sparse volume rendering. In Proceedings of the IEEE Visualization Con-
ference (2019), VIS ’19, pp. 1–5. doi:10.1109/VISUAL.2019.
8933631. 5

[ZSL18] ZELLMANN S., SCHULZE J. P., LANG U.: Rapid k-d tree
construction for sparse volume data. In Proceedings of the Sympo-
sium on Parallel Graphics and Visualization (Goslar, DEU, June 2018),
EGPGV ’18, Eurographics Association, pp. 69–77. 5

[ZSL21] ZELLMANN S., SCHULZE J. P., LANG U.: Binned k-d tree con-
struction for sparse volume data on multi-core and GPU systems. IEEE
Transactions on Visualization and Computer Graphics 27, 3 (2021),
1904–1915. 2, 4, 5, 19, 20

[ZSM∗22] ZELLMANN S., SEIFRIED D., MORRICAL N., WALD I.,
USHER W., LAW-SMITH J., WALCH-GASSNER S., HINKENJANN A.:
Point containment queries on ray tracing cores for AMR flow visual-
ization. Computing in Science & Engineering 24, 2 (2022), 40–52.
doi:10.1109/MCSE.2022.3153677. 2, 8, 11, 19, 20

[ZWB∗22] ZELLMANN S., WALD I., BARBOSA J., DEMIRCI S.,
SAHISTAN A., GUDUKBAY A.: Hybrid image-/data-parallel rendering
using island parallelism. In Proceedings of the IEEE 12th Symposium on
Large Data Analysis and Visualization (2022), LDAV ’22, pp. 1–10. 2,
3, 13, 14

[ZWS∗22a] ZELLMANN S., WALD I., SAHISTAN A., HELLMANN M.,
USHER W.: Design and evaluation of a GPU streaming framework for
visualizing time-varying AMR data. In Proceedings of the Eurograph-
ics Symposium on Parallel Graphics and Visualization (2022), Bujack
R., Tierny J., Sadlo F., (Eds.), PGV ’22, The Eurographics Association.
doi:10.2312/pgv.20221066. 2, 8, 11, 19, 20

[ZWS∗22b] ZELLMANN S., WU Q., SAHISTAN A., MA K.-L., WALD
I.: Beyond ExaBricks: GPU Volume Path Tracing of AMR Data, 2022.
arXiv:2211.09997. 3, 8, 11, 19, 20

Appendix A: Algorithms

The three algorithms below present volume integration methods we
refer to throughout the paper and compute common quantities such
as absorption and emission, iso-surfaces, and transmission coeffi-
cients, for the interval [tmin, tmax] in ray parameter space.

Algorithm 1 presents a classic ray marching loop to compute ab-
sorption and emission [Max95] inside the volumetric partition; the
result is a alpha-composited color using over [PD84]. Algorithm 2
implicitly computes an isosurface defined by the ISO value γ; the
result is the distance t from the ray origin where (and if) the iso-
surface was found. Algorithm 3 estimates transmission coefficients
using Woodcock (delta tracking) free-flight distance sampling used
for volumetric path tracing.

Algorithm 1 Absorption plus emission DVR ray marcher.
1: function RAYMARCHINGDVR(o, ω, tmin, tmax)
2: Cdst = 0
3: for t = tmin. . . tmax do
4: Cdst = OVER(Cdst , Csrc(o+ t ∗ω))
5: end for
6: return Cdst
7: end function

Algorithm 2 Implicit ISO-surface extraction.
1: function RAYMARCHINGISO(o, ω, tmin, tmax, γ)
2: for t = tmin +

1
2 . . . tmax − 1

2 do
3: s1 = µ(o+(t − 1

2)∗ω)

4: s2 = µ(o+(t + 1
2)∗ω)

5: if MIN(s1,s2) ≤ γ ≤ MAX(s1,s2) then
6: return t
7: end if
8: end for
9: end function

Algorithm 3 Woodcock free-flight distance sampling.
1: function WOODCOCK(o, ω, tmin, tmax, µ̄)
2: t = tmin
3: do
4: ζ = RAND()
5: t = t − log (1−ζ)

µ̄
6: if t ≥ tmax then
7: break
8: end if
9: ξ = RAND()

10: while ξ >
µ(o+t∗ω)

µ̄
11: return t
12: end function

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

515

https://doi.org/10.1145/1882261.1866199
https://doi.org/10.1145/1882261.1866199
https://doi.org/10.1145/3105762.3105773
https://doi.org/10.1145/3105762.3105773
https://doi.org/10.1109/VISUAL.2019.8933631
https://doi.org/10.1109/VISUAL.2019.8933631
https://doi.org/10.1109/MCSE.2022.3153677
https://doi.org/10.2312/pgv.20221066
http://arxiv.org/abs/2211.09997

