State-of-the-art in Large-Scale Volume Visualization
Beyond Structured Data

J. Sarton¹, S. Zellmann², S. Demirci³, U. Güdükbay³, W. Alexandre-Barfî⁴, L. Lucas⁵, J.M. Dischler¹, S. Wesner², I. Wald³

¹University of Strasbourg, France ²University of Cologne, Germany ³Bilkent University, Ankara, Turkey ⁴University of Reims Champagne-Ardenne, France ⁵NVIDIA

Abstract
Volume data these days is usually massive in terms of its topology, multiple fields, or temporal component. With the gap between compute and memory performance widening, the memory subsystem becomes the primary bottleneck for scientific volume visualization. Simple, structured, regular representations are often infeasible because the buses and interconnects involved need to accommodate the data required for interactive rendering. In this state-of-the-art report, we review works focusing on large-scale volume rendering beyond those typical structured and regular grid representations. We focus primarily on hierarchical and adaptive mesh refinement representations, unstructured meshes, and compressed representations that gained recent popularity. We review works that approach this kind of data using strategies such as out-of-core rendering, massive parallelism, and other strategies to cope with the sheer size of the ever-increasing volume of data produced by today’s supercomputers and acquisition devices. We emphasize the data management side of large-scale volume rendering systems and also include a review of tools that support the various volume data types discussed.

CCS Concepts
• Computing methodologies → Rendering; Volumetric models; Ray tracing; Graphics processors; Massively parallel algorithms; Distributed algorithms; • Human-centered computing → Visualization toolkits; Scientific visualization;

Figure 1: In this state-of-the-art report, we evaluate current research papers on interactive volume visualization. Nowadays, volume visualization is primarily data-driven, and how the various methods, frameworks, and tools cope with that data largely depends on the topology. This figure shows the structure we follow in this paper. We focus on different data representations (center). For each of them, we discuss different approaches of large-scale visualization (blue captions) and the different techniques used to implement them (black captions).
1. Introduction

Direct volume rendering has historically been associated with regular grids obtained from numerical simulation or acquisition techniques grounded in medical imaging, microscopy, and others. An inherent problem with volumetric data is its size, which can easily become hard to handle on commodity systems. Volume rendering can be quite resource intensive, particularly on the processor’s memory subsystem. In the early 2000s, the introduction of GPUs with dedicated texture units boosted this performance-hungry technique, so the representation using regular grids and better-quality interpolation became very popular. Regular grids can, however, only scale to a certain degree because a doubling in resolution per spatial dimension causes the data to grow by a factor of eight. Hence, intricate techniques have been proposed to accommodate and efficiently render such data sets on GPUs; these techniques have been discussed in much detail by Beyer et al. [BHP15].

At the same time, in the age of ExaScale computing, it is not only the rendering algorithms that are challenged by increasing data size. Generally, memory throughput has not kept up with compute performance, which still roughly follows Moore’s law. This can also be observed in simulation codes—the more popular ones (including Fun3D [Nat20], FLASH [DAC*14], Chombo [CGL*00], AMReX [AMR18], or Lava [KHB*14]) nowadays use adaptive mesh refinement (AMR) [BC90] or unstructured grids [ST90] to overcome these issues. These irregular data representations have become prevalent and also need to be dealt with by visualization software. At the same time, even these data representations tend to be huge with possibly time-varying, multi-variate datasets.

Regardless of the considered volume data topology, visualization techniques must incorporate solutions to cope with the size of the input data and the auxiliary data structures needed to render them. These solutions, based on data streaming, use of massive parallelism or in-situ visualization techniques, depend on the targeted hardware in terms of computing resources and memory level. On the other hand, no matter what solutions are implemented to distribute and access the data, the visualization algorithms themselves must address the quantity and/or complexity of the data. A rigorous survey has not yet explored these aspects, and our paper aims to fill this gap.

Another trend we observe is the execution model used by the rendering subsystems of modern visualization systems, such as OSPRay [WJA*17] or VisRTX [Ams19], which uses general-purpose compute and ray tracing in favor of rasterization. While rasterization APIs allow for ray tracing inside a fragment shader, general-purpose compute—on either the GPU or the CPU using ispc [PM12]—enables the use of ray tracing APIs with optimized bounding volume hierarchy (BVH) traversal [WWB*14, NVI09b]. This trend has not only led to different types of algorithms used in terms of how the volume data is traversed and sampled but also allowed for a more flexible control flow overall, including incoherent ray workloads and Monte Carlo rendering. Where applicable, our state-of-the-art report will emphasize ray tracing-centric execution models and hardware-accelerated ray tracing.

Table 1: Papers discussed in this state-of-the-art report.

<table>
<thead>
<tr>
<th>Data Type/Repr.</th>
<th>Key Papers</th>
<th>Other</th>
</tr>
</thead>
</table>

The main contributions of our state-of-the-art report are

- an extensive review of volume visualization research in recent years that includes structured and unstructured volume data,
- a review of volume rendering techniques that use general-purpose and hardware ray tracing APIs, and
- an engineering-focused review that also includes tools and how they support the kind of algorithms and data management routines discussed in this paper.

In this sense, we hope that our survey is beneficial not only to the scientific visualization community, which continuously advances the state of the art in this field but also to practitioners who use the algorithms discussed to create high-quality visualizations and potentially get a deeper understanding of the performance of the visualization system.

1.1. Survey scope

This state-of-the-art report reviews and categorizes recent research on direct volume rendering techniques. Following recent trends, a major focus is placed on ray tracing techniques. While we will discuss in detail the different sampling and traversal methods of visualization algorithms that can be found in in-core or out-of-core, single or multi CPU/GPU approaches, we will not discuss in-situ visualization solutions that rely on data that will not even touch the persistent storage. A survey on volume rendering of structured data complements that by Beyer et al. [BHP15] with CPU-based methods and with an overview of empty space skipping and out-of-core techniques that emerged later on. In addition to this, we focus on unstructured, adaptive mesh refinement (AMR), compressed and neural or similar topologies beyond structured volume data. The influential papers we review are shown in Table 1. In addition to algorithmic aspects, we also emphasize system approaches and tools like OSPRay [WJA*17]. Ray-tracing hardware extensions that became widely available in 2018 have since played a significant role in scientific visualization [WUM*19, WZU*21, MSG*22, ZWB*22] and will be another focus point for us.

Data: In this state-of-the-art report, we review methods that handle volumetric data that can come from high-resolution acquisitions or large-scale simulations. This implies data whose nature can vary from a structured grid with a single time step and a single scalar field to more complex grids that evolve in time and can store several scalar and/or vector fields. For the approaches that manipulate
structured grids, these are fixed, contain only one scalar field, and can reach 10^{12} regular cells for an input size of up to 1.5 TB. For AMR grids, the approaches discussed handle time-varying meshes up to several hundred million cells with several scalar fields at each time step for input data up to 4 TB. For unstructured data, it is about meshes that can contain up to a few billion elements for a size of a few GB. It is important to note that these data can be categorized as large-scale either by their initial representation (input data) or because their efficient interactive visualization requires data structures and/or sampling methods that may require a memory footprint of several orders of magnitude larger than the data itself.

Hardware: We discuss methods that focus on interactive visualization of large volume data on GPU or CPU. For the first category, the presented methods target workstations equipped with one or multiple GPUs. We do not focus on a specific vendor in particular, but note that especially when it comes to hardware-accelerated ray tracing, the literature is dominated by papers that use NVIDIA GPUs and the OptiX API. On the CPU side, typical target systems are x86 multi-core workstations as well as cluster systems with on the order of tens to hundreds of x86 CPU nodes.

1.2. Survey structure

The state-of-the-art report follows a data-driven structure. Fig. 1 shows this organization according to the addressed data types. We broadly categorize by data type into structured, regular volume data (●), AMR data (●), unstructured meshes (●), and data that focuses on compression, including mixed resolution-precision trees and neural network compression (●). The use of neural networks in sci-vis is a relatively new field. A detailed survey was recently presented by Wang et al. [WHss], so here we only briefly describe basic concepts and pointers to papers presenting recent developments.

We distinguish methods that focus on traversal (e.g., empty space skipping or space partitions assigned to cluster nodes) and on sampling (e.g., cell location in AMR volumes, sample point reconstruction in the presence of virtual page tables) (cf. Section 2). The papers we review can also be broadly categorized as in-core running on single CPU or GPU systems, as off-core using paging between the file system, the CPU, and (optionally) the GPU, and as massively parallel. The main sections are structured by the topology of the data, while the sections themselves follow the latter methodological categories. Tools focusing on volume rendering are discussed in a separate section.

2. Background and Terminology

In our survey, we concentrate primarily on the data handling aspects of sci-vis volume rendering. Scientific visualization software has to cope with bringing the data into a form amenable to rendering on the target hardware. Rendering often amounts to a fraction of the overall processing; still, the rendering algorithm determines the eventual layout necessary to visualize the data efficiently. This section introduces terminology common to the methods we summarize in this survey.

2.1. Direct volume rendering with ray traversal

We focus on direct volume rendering algorithms, i.e., algorithms that do not a priori extract level sets but sample and classify the data directly. Typical integration algorithms are direct volume rendering (DVR) with absorption and emission [Max95], implicit isosurface rendering, and free-flight distance sampling [e.g. delta tracking (WMHL65)] that we present in the Appendix and that help us to introduce some terminology (cf. Appendix A). These algorithms compute some quantities for volumetric domains, such as absorption and emission, iso-surfaces, and transmission coefficients for volumetric domains.

In recent years, we have observed a gradual shift towards volumetric path tracing, also in the scientific visualization community [KP12, WJA’17, MHK’19, HMES20, IGMM22, MSG’22, ZWB’22, XTC’22, ZWS’22b]. Instead of stepwise sampling the domain $[t_{\text{min}}, t_{\text{max}}]$ using ray marching, volumetric path tracers compute free-flight distances inside the domain.

Free-flight distances represent the probability with which a photon travels along the ray (o, o) without colliding with a particle from the volume density; they are computed using tracking algorithms [WMHL65]. State-of-the-art methods use fictitious particles or other control variates [GMH*19] to homogenize the usually inhomogeneous volume; this requires one to store the maximum (“majorant”) extinction μ along with the domain $[t_{\text{min}}, t_{\text{max}}]$. The result is not an alpha-composed color but a collision-free distance, and sometimes, the transmittance (i.e., the stochastic amount of light passing through the domain $[t_{\text{min}}, t_{\text{max}}]$). Extinction coefficients (often defined as the alpha component obtained from classification) and phase function albedo (RGB component from classification) can then be sampled for that distance by the rendering algorithm as required.

Noise-free images usually result by accumulating convergence frames; each is typically computed by tracing one path per pixel. In contrast to ray marching, only one or few samples are taken from $[t_{\text{min}}, t_{\text{max}}]$; the number of samples usually correlates with the difference between the majorant and the actual sampled density. The majorants can hence be used to build space-skipping data structures. An appealing property of free-flight distance sampling is its unbiasedness. This property is also desirable for sci-vis since it helps reduce artifacts that can otherwise cause aliasing and obfuscate important features. Free-flight distance sampling is a technique orthogonal to the light transport algorithm (e.g., absorption plus emission, single scattering, multi scattering) used, and with spatially varying majorants, it naturally supports adaptive sampling. Regardless of the different execution flow and quantities computed, the three algorithms have two major operations in common:

Sampling: The functions $\mu_{\text{src}}(x)$ and $C_{\text{src}}(x)$ sample the volume at positions $x \in \mathbb{R}^3$ to retrieve the local extinction $\mu(x)$, or an RGBt color ($C_{\text{src}}(x)$). In scientific visualization, this operation comprises a lookup into the volume density implemented, e.g., using simple trilinear interpolation or hierarchy traversal/cell location for more complex volume data, followed by (post)-classification using an alpha transfer function to obtain an alpha/extinction value or an RGBt tuple. We refer to this whole operation (volume lookup and classification) as sampling.
Traversals: Obtaining the domains $[t_{\min}, t_{\max}]$ usually involves some type of data structure. In the simplest case, the domain is obtained as the intersection of the ray with the bounding box of the volume; the traversal operation is then trivial. More complex volume renderers use a space-skipping data structure that is traversed using DDA [SKTM11, DHTT12] or other hierarchical data structures such as a k-d tree [ZSL21] or bounding volume hierarchy (BVH) [ZHL19]. In the case of tracing, the domains are not only given by their interval $[t_{\min}, t_{\max}]$ but also by their majorant extinction μ. μ presents an upper bound (and is often just the maximum value) of the extinction in the region that is traversed. However, in the presence of post-classification, the majorant extinction is, in general, not the maximum value of the volume inside the domain, but the maximum post-classified value.

The methods we explore in the following all cater to this common structure of first traversing domains in space and, inside these domains, compute quantities such as color, local extinction, and free-flight distances. The algorithms serve as intrinsic building blocks, and the visualization systems we explore usually employ sophisticated methods to optimize the surrounding data structures. Some of the data structures involved may be trivial, or it might even be possible to use the same data structure for sampling and traversal. One of the essential topics of this paper is how this can be done for different volume data types.

2.2. Ray tracing APIs and terminology

We provide a brief review of hardware ray tracing execution models, since this emerging technology is relevant to many of the papers discussed here. For a general ray tracing overview, see the survey article by Meister et al. [MOB+21]. The execution model is implemented by NVIDIA OptiX [PBD+10, NVI09b], by Microsoft DXR [Mic23], and by the Khronos Vulkan Ray Tracing extensions [Koc20]. In this execution model, ray tracing modules are launched on a GPU with hardware ray tracing cores (RT cores). The entry point to the ray tracing module is called the ray generation program (RG), which is executed on the shader cores of the GPU and shares commonalities with ordinary compute kernels. RG instances are executed in parallel, according to the number of rays scheduled by the launch configuration (often one ray/thread per image sample). RG-generated rays can be traced into a BVH using an intrinsic function call. The execution then switches from the shader to the RT core, incurring a context switch.

Depending on the vendor, both ray/triangle intersections and BVH traversal are performed in hardware. The user can intercept execution with software programs, e.g., on closest intersection (closest hit program (CH)), on any intersection be it the closest or not (any hit program (AH)), or when the ray misses the scene (miss program (MI)). Some architectures support custom user primitives that are implemented via bounds and intersection (IS) programs.

Ray tracing hardware extensions were first implemented by NVIDIA, but the other vendors are slowly progressing in the same direction [Adv23, Lar22]. Hence, how high-performance volume renderers are implemented nowadays has changed in light of these new APIs. On the CPU side (and other Intel hardware), an important API is Intel’s Embree [WWB+14]. While the execution model here is more flexible, and the comments about software and hardware context switches do not generally apply, the APIs share basic concepts such as BVH traversal, user geometry, and any hit callback functions.

3. Rendering of Structured Volume Data

Volume rendering of structured data where the volume is defined on a Cartesian grid and all cells are implicitly represented in memory has been extensively evaluated in Beyer et al.’s [BHP15] state-of-the-art report. Still, the field has advanced here as well, and therefore we briefly review topics that have been the focus of research papers published after Beyer’s survey.

With the gap between compute and memory performance widening, we generally observe that research focuses more on hierarchical volume data (or, on making volume data hierarchical to suit modern compute architectures well) or on other representations with lower storage demand than structured grids. The advancements that we do observe regarding this simplest topology after Beyer’s state-of-the-art report was published primarily focus on empty space skipping and paging and streaming techniques to accommodate volumes that exceed the available compute node’s memory (e.g., cluster node, GPU with pageable host memory). Here we concentrate on an assortment of papers that we believe complements Beyer’s state-of-the-art report and direct the reader to the latter for an extensive review.

3.1. Empty space-skipping data structures

Empty space skipping identifies coherent regions where the volume is truly empty. Depending on the context, it is sometimes desirable to skip over empty and over homogeneous space where all samples have the same value. The latter is essential for volumetric path tracing, where domains are considered homogeneous with roughly the same majorant. Hence, the number of samples the rejection sampling loop takes in Algorithm 3 (see Appendix A) can be reduced [YIC+10]. In contrast, true empty space skipping focuses on those regions of space where all the samples have an extinction/alpha value of 0. This is more relevant in the cases of Algorithms 1 and 2 (see Appendix A) that do not adapt the sampling rate to the majorant extinction.

The rendering algorithm will use space-skipping data structures to obtain domains $[t_{\min}, t_{\max}]$, i.e., according to our terminology, they are traversal data structures. Sampling is typically simpler in the case of structured volumes. It is required to locate a neighborhood of samples for the sampling position $x \in \mathbb{R}^3$ to perform the interpolation. Since the underlying Cartesian grid gives us an implicit indexing scheme to the data arrays involved, the neighborhood lookups are trivial. In the case of 3D textures on the GPU, the volume density sample can be obtained using a single operation. Some sampling approaches require the use of ghost cells [PNP+17] if the data is distributed or not stored coherently in memory.

Important to note here is that empty or homogeneous space is subject to post-classification: a domain is empty only if the RGBx transfer function (TF) assigns all samples from that domain the alpha value 0. Likewise, if a domain or region of space is homogeneous, it is subject to the extinction/alpha value obtained from the
Space-skipping data structures are all the more important if volumes are large because they help reduce pressure on the memory subsystem by reducing the number of samples. At the same time, one must be careful that the number of data accesses required for traversal is strictly in a lower order than the number of samples taken. With a complex hierarchy, the space-skipping algorithm can easily be limited by the number of traversal steps, which was first observed by Hadwiger et al. [HAAB+18]. Their SparseLeap data structure uses an Octree as the base empty space skipping structure. The authors observed that Octrees could have many neighboring leaf nodes with the same size and same occupancy class (empty/not empty) but are stored in different octants and subtrees of the Octree. To traverse from one subtree to another, traversal would have to unwind significant portions of the tree to skip from one leaf node to the next. The SparseLeap system uses an optimization that was formerly also proposed by Liu et al. [LCDP13] to combine consecutive ray segments of the same occupancy class to form coherent domains. These are stored in a per-pixel linked list [YHGT10] constructed using the GPU rasterization pipeline when the camera changes. After domain construction, a fragment shader traverses the domains via ray marching (cf. Algorithm 1 in Appendix A) to integrate color and opacity.

3.1.1. Grid and octree-based methods

Empty space skipping classification generally falls into two camps. Data structures like min/max trees by Knoll et al. [KWPH06] first roughly classify some coarser regions of space (such as bricks of \(N \times M \times K\) voxels or Octree leaves of a certain minimum size) only by their minimum and maximum voxel value. When the transfer function changes, the min/max values are indexed into the (piecewise linear) alpha transfer function. If any alpha value inside the min/max range is non-zero, the region of space—and hence the domains computed when rays traverse the region—are non-empty. With this coarse representation, the same data structure (e.g., octree, uniform grid of bricks/macrocells) is reused without rebuilding. Empty leaf nodes or subtrees are only pruned and hence not traversed but still remain part of the space-skipping data structure.

3.1.2. High-quality k-d trees

Orthogonal to that are methods that aim at building an exact data structure whenever the spatial arrangement changes according to an update to the TF, such as the k-d trees by Vidal et al. [VMD08]. These approaches trade rendering for construction performance. The k-d trees by Vidal et al. are based on using 3D summed-area tables (3D-SAT) over coherent regions of space. The 3D-SATs are computed over a binary representation of the volume—empty voxels obtain the value 0, non-empty voxels the value 1. With 3D-SATs, querying if all the values inside an axis-aligned bounding box (AABB) are empty is an \(O(1)\) operation. This allowed the authors to implement a simple top-down construction algorithm using plane sweeping, combined with a heuristic that compares the volume of the tight bounding boxes surrounding the non-empty cells to the left and to the right of the sweep plane candidates.

The algorithm by Vidal et al. [VMD08] served as the basis for several papers by Zellmann et al. [ZSL18, ZML19, ZSL21], who proposed methods to accelerate the construction algorithm up to a point where the k-d trees could be built in real-time. The authors observed that the 3D-SAT construction phase limits overall tree construction, while the ensuing plane sweeping phase was relatively cheap. 3D-SAT construction is equivalent to prefix summation. By breaking up the prefix sum into several smaller 3D prefix sums and computing 3D-SATs not for the whole volume but for bricks, the authors could reduce the computation time for this first phase and the precision required to store the 3D-SATs (and hence the memory consumption). By breaking the 3D-SAT computation apart, this phase could be trivially parallelized on a multi-core CPU. The ensuing, formerly \(O(1)\) operation determining if bounding boxes are non-empty becomes \(O(K)\), where \(K\) is the number of bricks. This algorithm was first proposed in [ZSL18] and was later adapted to run on the GPU [ZSL21]. For that, the authors first compute the brick-wise 3D-SATs but immediately discard them in favor of directly storing tight bounding boxes surrounding non-empty voxels inside the bricks. These bounding boxes are sorted on a Morton curve. The ensuing plane splitting phase (now realized with binning) combines these bounding boxes and computes the volume for the resulting union of boxes to evaluate the split plane heuristic.

3.1.3. Hardware accelerated ray-tracing based space skipping

Ray marching relies on the space skipping algorithm to traverse the domains in order and thus requires spatial data structures such as grids or k-d trees. Bounding volume hierarchies (BVHs) can, however, be used if the regions covered by the leaf nodes do not overlap [ZHL19]. This has led several authors to use hardware ray tracing to accelerate traversal. The work by Ganter and Manzke [GM19] used an OptiX user geometry (cf. Section 2.2) to traverse empty rectangular regions of space represented by AABBs. A source of inefficiency with user geometry is that the GPU needs to perform costly context switches when calling the user-supplied intersection program. This back-and-forth between tree traversal on the dedicated ray tracing core and the user intersection program executed on the shader core can result in serious performance bottlenecks.

Wald et al. [WZM21] proposed a method to leverage hardware accelerated ray tracing without user geometry but using a triangulated region boundary. Triangle primitive intersection tests can be accelerated in hardware on GPUs so that the traversal algorithm does not need to switch back and forth between dedicated ray tracing cores and shader cores. The triangulated region boundary is recomputed whenever the transfer function changes. The authors priori build a min/max grid of coarse macrocells that can be quickly classified using the alpha TF. Full vertex and index buffers are pre-allocated for a quad geometry (realized with triangles) for all the macrocell faces. A CUDA kernel activates only those faces that partition macrocells of different occupancy classes (empty/not empty). The resulting triangle geometry (and BVH built from that) is used as a boundary to compute ray traversal domains, inside
which a ray marcher is employed to integrate the volume density. By inserting quads/triangles only between macrocells of different occupancy classes, the algorithm also solves the same problem addressed by Hadwiger et al.’s [HAAB’18] SparseLeap algorithm.

We note that a majority of the (empty) space-skipping algorithms presented in this section are fundamentally also applicable to other volume representations. The algorithm by Wald et al. [WZM21], e.g., functions off an a priori space subdivision using macrocells, which can, in theory, also be obtained for unstructured data sets.

3.2. Paging and out-of-core approaches

The empty space skipping approaches described above generally apply to cases where the data (including the sampling and traversal data structures) fully fit into the memory of the GPU or compute node. This section focuses on approaches where the (structured) volume data does not fully fit into the node’s main memory and requires out-of-core approaches. Out-of-core means using pageable memory to stream data to the GPU or asynchronously fetch the data from disk. Fundamentally, many of the techniques described here also apply to other types of volume representations.

For a complete review, we refer the reader to the state-of-the-art report by Beyer et al. [BHP15]. Recent papers presenting out-of-core paging and streaming approaches for structured volume data include the ones by Hadwiger et al. [HAAB’18], by Beyer et al. [BMA’19], by Wang et al. [WWJ19], and by Sar- ton et al. [SRL19, SCRL20]. We concentrate specifically on the data management aspects of such systems. We, therefore, review the work by Wang et al. as an approach for large-scale CPU volume rendering, as well as the work by Sarton et al. who present a general purpose GPU framework and an API that is used to imple- ment several visualization-centric case studies.

3.2.1. Out-of-core volume rendering on the CPU

Due to memory limitations, out-of-core approaches for the interactive visualization of large volumes are mainly used for GPU architectures. Wang et al. [WWJ19] shows that out-of-core techniques can also be used for multi-core CPU architectures to decrease the loading times of large-scale volume data. They use a hierarchical data structure called Bricktree to represent the volume data. Bricktree is a multi-resolution and compressed data structure similar to the \(N^3 \) data structure by Lefebvre et al. [LHN05]. The \(N^3 \) tree is a generalization of the octree which divides the nodes into \(N^3 \) instead of \(2^3 \). This \(N^3 \) structure has been used by several out-of-core visualization methods on GPU: the GigaVoxels [Cra11] system stores the bricks in \(N^3 \) tree structure (with \(N = 2 \) and later the CERA-TVR [Eng11] system that extended GigaVoxels stores scalar averages on the inner nodes instead of storing scalars only on the leaves, which enables them to perform progressive rendering. Wang et al. extends the CERA-TVR progressive rendering idea. Compared to the \(N^3 \) tree structure used in CERA-TVR, Bricktree has a more compact layout in memory which is more suitable for progressive rendering. Instead of representing the large volume with a single Bricktree, Wang et al. tile the large volume into a list of Bricktrees called “Bricktree forest.” This allows them to use Bricktree structure when the volume dimensions are not equal or the dimensions are not a power of \(N \).

Wang et al. use the Bricktree structure for progressive ray-marching. Streaming threads asynchronously load the bricks demanded by the rendering threads. During rendering, if a brick is not in the memory, the rendering thread approximates the scalar value by using the parent node’s average scalar value and requests the brick from a data streaming thread. After a streaming thread loads the requested brick, the renderer refines the sample. Data streaming threads load the data in a breadth-first manner. Streaming threads prioritize loading the bricks by their level. Since the inner bricks constitute a tiny portion of the data, loading the inner nodes is faster than loading the leaf nodes.

The Bricktree structure and ray-driven progressive rendering allow visibility culling by only loading the required bricks. Addition- ally, the method allows Wang et al. [WWJ19] to perform early ray termination. Bricktree traversal can be stopped before reaching a leaf node to implement level-of-detail (LOD). Moreover, rays are terminated early if a predefined opacity threshold is reached. Fully transparent bricks for the given transfer function can be de- termined and terminated by storing the minimum and maximum scalar range in each Bricktree node, similar to the min/max trees from Section 3.1.1.

3.2.2. GPU out-of-core on-demand rendering and processing

[SCRL20] Frameworks that implement paging systems on GPU have been proposed, including the SparseLeap system by Hadwiger et al. [HAAB’18] that can on-demand load brick-sized data pages upon viewpoint changes, which, however, only become available at a later frame. On-demand loading of data pages is initiated when rays intersect the brick-bounding boxes. The predecessor of SparseLeap, the system by Hadwiger et al. [HBJP12], can visualize dense, anisotropic petascale volumes by decoupling 3D multi-resolution representation construction from data acquisition and decoupling sample access time during ray-casting from the multi-resolution hierarchy size. Their architecture uses a multi-resolution virtual memory architecture to detect missing data during volume ray casting as cache misses and propagates them backward for on-demand out-of-core processing.

The framework by Beyer et al. [BMA’19] that supports volume rendering of tera-byte-sized, pre-segmented microscopy data follows this spirit of making on-demand loading an image space decision. In contrast, the system by Sarton et al. [SCRL20] maintains the whole page table hierarchy in GPU memory, allowing them to implement more sophisticated mechanisms to initiate page load requests. The system implemented with CUDA is centered around a hierarchical page table fully managed on the GPU. Applications can use a device-side API to request voxels according to the data...
path shown in Fig. 2. The primary data structures and software components involved are i) a multi-resolution 3D mipmap hierarchy present on the disk and computed in a pre-process, ii) a host-side, asynchronous cache management component that retrieves data pages (in the form of LZ4-compressed 3D blocks) from disk on demand and places them in a page-locked memory buffer readable from the device, iii) a device-side, multi-level least recently used (LRU) cache comprised of 3D blocks, and iv) a device-side API that can be used to implement arbitrary volume processing applications.

From the API perspective, the address space of the voxels is fully opaque and extends from the device side down to the file I/O level. The user simply requests a voxel in a normalized texture coordinate system with the desired LOD. The GPU cache manager processes these requests and queries the hierarchical page table. If the block containing the voxel is present on one of the page table levels, the information that the block is now in the cache is updated accordingly. If the block cannot be found, the cache manager issues a block request served by the host system. To navigate the page table, the framework uses a multi-resolution page directory (MRPD), introduced by Hadwiger et al. [HBJP12]. The MRPD is available on the device and stores the blocks’ locations in the cache hierarchy. The MRPD is intentionally shallow, so lookup costs do not depend on the LOD requested.

Block requests are maintained in a request buffer that all GPU threads have access to, and that is also used to update time stamps to mark blocks as recently used. This buffer can be accessed by multiple threads (and overlapping kernels) simultaneously. A polling thread on the CPU periodically processes and serves the requests by placing the respective blocks in page-locked host memory. The data transfer is realized using a parallel CUDA kernel, where each thread is responsible for copying one voxel to its dedicated position in the cache. When the data is placed in the cache, the page in the MRPD associated with the block gets updated to store the cache offset where the block is found.

The authors show that this asynchronous and demand-driven system can scale well for both visualization applications where the data is just being read and also for image processing applications where the framework is used to modify the data. A demand-driven rendering system can maintain consistently high frame rates because CPU/GPU communication only happens when it is strictly required, and even then, the data movement is asynchronous.

The framework by Sarton et al. [SCRL20] is a good example that demonstrates how visualization systems targeted at large-scale data are, in fact, sophisticated data management systems. The actual rendering algorithm is a small part of the overall system. The complexity of Sarton’s system, in particular, lies in the sampling operation. While sampling of structured data is a relatively simple operation per se, it can become a complex task in the presence of cache hierarchies and virtual addressing, requiring careful optimization to be efficient.

Another notable, output-sensitive approach for out-of-core rendering and processing is proposed by Solteszova et al. [SBS*17]. Their method eliminates the need for processing and operations that have a negligible impact on the final image, by calculating the potential contribution of all voxels to the final image. The authors use a fast scheme to filter voxels that contribute significantly based on a maximal permissible error per pixel.

4. Volume Rendering of Adaptive Mesh Refinement Data

The term adaptive mesh refinement (AMR) has been coined by Berger et al. [BO84, BC89] in the field of numerical simulation and refers to semi-structured, hierarchical data topologies that the simulation code adaptively refines in regions of interest. AMR techniques provide significant computational and memory savings for producing and storing simulation data. AMR generates discrete simulation data at various levels of detail for problems that do not require uniform precision all over the simulation domain. This way, the regions of interest are represented at high resolutions, whereas the less critical areas are at lower resolutions. AMR data comes in different forms that usually (but not necessarily) have a structured, Cartesian base domain but vary widely in how they represent the hierarchy. Popular examples are block-structured AMR (cf. for example, the Chombo simulation code [CGL*00], where the topology is represented by a set of overlaid grids from different refinement levels. Another popular representation is tree-based AMR, which again comes in multiple flavors, such as Octrees [LCPT11] and forests of Octrees [BWG11]. Some codes use trees structurally similar to Octrees but have different branching factors, like the data structure used by FLASH [DAC*14].

The output produced by many numerical simulation codes uses staggered grids [Kin17], which are cell-centric, i.e., scalar data such as density or pressure are not stored at the eight box corners, but at the center of the cell. Interpolation algorithms for first-order continuous reconstruction (e.g., the multilinear interpolation hardware on GPUs) usually require a neighborhood of eight horizontally, vertically, and depth-aligned data points (e.g., box, cube) as in Fig. 3a. For structured regular data as discussed in Section 3, the pragmatic solution employed by many frameworks is to shift the whole grid by half a cell’s width, giving us the dual grid or dual mesh, where the data is vertex-centric. With structured volume data, this shift can be realized as a coordinate transformation inside the volume rendering loop (e.g., for Algorithm 1 in Appendix A by adding an offset of $\frac{1}{2}$ to the coordinate where the density field is evaluated at, in line 4).

This trick of shifting from the main grid to the dual grid using coordinate transforms only works inside the local grids but not at level boundaries for cell-centric AMR data (cf. Fig. 3b). There, the T-junction problem arises, and the locations of the data points do not line up (cf. Fig. 3c), which prohibits smooth reconstruction if not handled carefully. Prior methods, such as the one by Kihler et al. [KWAH06] would, in such cases, resort to reconstruction on the main grid and use a nearest-neighbor filter at level boundaries. This approach can result in all sorts of artifacts, such as iso-surfaces with cracks [WWW*19] or volume renderings with visible seams where the subgrids meet [WBUK17]. Another possible solution is to convert the dual grid to an unstructured mesh comprised of hexahedra cells that are actually perfect cubes and to so-called stitching cells, which are generally unstructured elements (e.g., tetrahedra, pyramids, and wedges) to tessellate the level boundaries (Fig. 3d). This approach, referred to as “stitching” by the literature [WKLB01, WCM12, ME11, Wal20] has, however,
extraordinarily high storage demands that come with turning all the cells that were originally just uniform voxels into full hexahedra.

A high-quality sampling of AMR data, and consequently, traversal data structures to efficiently do that on GPUs, has been the topic of several recent papers [WBUK17, WWW19, WMU20, WZU21, ZWS22a, ZSM22, ZWS22b] that we review in the following.

4.1. Sampling with smooth level transitions

We first review methods that fall in the sampling category (cf. Section 2). The types of AMR data that the papers we review focus on are structured regular and Cartesian; the AMR cells’ sides have a uniform length (cubes), and the refinement law splits cells into eight equally sized finer cells. AMR cells are uniquely identified by the tuple \(\{ \mathbf{x}, l \} \), \(\mathbf{x} \in \mathbb{N}^3 \), \(l \in \mathbb{Z} \), where \(\mathbf{x} \) is a position in cell coordinates, and \(l \) is the refinement level. The uniform cell size \(C_w \) is proportional to the refinement level: \(C_w = 2^l \) (some numerical simulation codes define the level to increase with higher refinement, in which case it can simply be transformed into the representation considered here). AMR cells form a logical coordinate system [WBUK17] whose integer coordinates have the same spacing as the finest cell size of the data set. Depending on the AMR type (e.g., block-structured, tree-based), the cells sometimes form a full space decomposition across all levels. In any case, cells from the same level are not allowed to overlap, although in general, cells from different levels can, and then form a level-of-detail (LOD) hierarchy that can be put to use by the renderer. We sometimes refer to the dual of a cell, obtained by shifting the cell itself by some amount. In that case, to distinguish the two types of cells, we refer to the original cell as the leaf cell to the dual.

4.1.1. Reconstruction with tent-shaped basis functions

The trilinear interpolation operation (cf. Fig. 3a) on (locally) structured data can also be viewed as the convolution of the eight data values with a tent-shaped basis function as shown in Fig. 4a (here in 1D). Wald et al. [WBUK17] extended this concept, which borrows from scattered/point-based data reconstruction [FN80], to devise a \(C^0 \) continuous filter for high-quality reconstruction of AMR data, including at the level transitions. For structured data (where the convolution in practice is folded into the trilinear interpolation operation), the footprint of the tent basis function just reaches one-half cell’s width beyond the cell boundaries (Fig. 4a). With AMR data, we have the situation that a coarse-level cell can have many small cells from a finer level as direct neighbors or as indirect neighbors, which do not share a face with the cell but are close-by. In that case, if the smaller cells fall inside the footprint of the larger cell, the latter contributes to the reconstructed data value at the positions of the finer cells proportionally to its size. With Wald et al.’s basis reconstruction method for AMR data, this is accounted for by setting the footprint of the cells to twice the actual cell size so that the filter extends by half a cell size of the current level in each direction (cf. Fig. 4b). To obtain values at position \(\mathbf{x} \) the authors compute a weighted average using a tent-shaped basis function centered around the cell, and reaching one half cell’s width across each side.

Note that this reconstruction method does not have an interpolative property, i.e., reconstructed values at the known data points are generally not the exact cell values at those points (Fig. 4b). Furthermore, this reconstruction method requires an operation the literature refers to as cell location to locate not only the direct neighbors of each cell but all the neighbors in the neighborhood defined by the footprint of its coarsest cell. Cell location is an operation commonly required by all the reconstruction methods we review and has sparked further research on efficient cell location data structures that we review below in Section 4.2.
4.1.2. Reconstruction with octants

The method proposed by Wang et al. [WWW19] is orthogonal to sampling with tent basis functions. It follows the idea of first finding octants that form a complete space decomposition of the refined grid and its leaf cells, whose corner points carry data so we can interpolate linearly inside them. Conceptually, when it comes to interpolation, an octant is similar to a dual cell. Dual cells can be obtained by shifting the leaf cell (whose data is stored at the center) by $\frac{1}{2}$ its width along the principal axes. The sign of the shift ($\pm X, \pm Y, \pm Z$) does not affect the definition of a dual cell. Valid dual cells can be obtained by shifting in either direction. The octant’s extent is equivalent to the intersection of the dual and the leaf cell.

A dual cell is shown in Fig. 5a. Here, two of the dual’s corners align with actual data points, which can be directly used to determine the data values at the rightmost corners of the octant. The octant is given by eight (in our 2D illustration: four) corner points. The corner point $O^{(0)}$ is defined to be the one aligned with the leaf cell center. The other vertices fall on the leaf cell’s corner, edge, or face and are named accordingly. For example, the corner obtained by moving along the X direction only and which falls on a face (in 2D: edge) is called $O^{(X)}$. The corner vertex obtained by moving along all principal directions is called $O^{(X,Y,Z)}$ (in our example, $O^{(X,Y)}$ because we are in 2D).

If we were to interpolate inside the dual (which we do not because the duals that form a complete decomposition of space are not trivial to find), we would trilinearly interpolate the corner values. Unfortunately, the octant corners can easily be derived from the corners of a dual by computing averages. In Fig. 5b, for example, the value at $O^{(Y)}$ can be obtained as the median of the two rightmost dual corner values. The value at $O^{(0)}$ is just the value of the leaf cell’s center, as the two points line up.

For the two leftmost octant corners ($O^{(X)}$ and $O^{(XY)}$ in Fig. 5b), data values are not available because the dual’s corners do not line up with vertices. In that case, the rule is that the missing data values are obtained via interpolation on the coarser side. If we always pick the coarser side to dictate the data value, we thereby implicitly find the aforementioned duals’ space decomposition that is non-trivial to find explicitly. For that, we shift the evaluation position P by a small amount ε (e.g., half the finest cell width of the data set), so the new evaluation point P' falls inside the coarse side and there induces a new octant (cf. Fig. 5c). Inside that octant, which is now on the coarse but not necessarily the coarsest side, the procedure is repeated recursively. As either corners, edges, or faces can have level boundaries, this results in potential recursion when computing the values at the octant corners.

On the coarse side, it is mainly up to the user of this framework how to interpolate the missing corner values, as indicated in Fig. 5d. The methods proposed by Wang et al. [WWW19] include linear interpolation on the coarsest or finest level, on the current level, or even the tent basis functions by Wald et al. [WBUK17] from Section 4.1.1. Finally, when the corner values are available and the potential recursion returned, the value at P is obtained via trilinear interpolation (cf. Fig. 5e). Note that this procedure does not require recursion inside subgrids but gracefully provides the same reconstruction that we would also obtain by performing trilinear interpolation on the dual grid, which would be obtained by shifting all cells in the neighborhood by the same amount in the same direction.

4.2. Data structures for efficient cell location

This section discusses data structures to accompany the sampling methods discussed above. Some of those data structures serve the purpose of sampling the data and traversing it as efficiently as possible.

Celllocation fundamentally is a neighbor search: given the cell we are in, we need to find the (directly or indirectly) adjacent cells to form dual cells, octants, etc. Even in the simplest cases, this neighbor query needs to be supported by a data structure that directly stores or allows retrieving the adjacency information. Traditional data structures used for neighbor search are k-d trees [Pan08]. Wald et al. [WBUK17] also use this data structure to find all the neighboring cells inside the neighborhood of the sample point. During construction, the authors compute split candidates by first determining a list of all the level boundaries inside the region to split. They pick the boundary closest to the mid-point/spatial median along the current axis.

The k-d tree by Wald et al. [WBUK17] serves the very purpose
of accelerating cell location—i.e., sampling and not traversal. A ray that is marched through the volume density, such as in Algorithm 1 or Algorithm 2 in Appendix A, will traverse the k-d tree over and over at each 3D sample position. This process is wasteful if the cells of multiple consecutive samples are from the same refinement level or even subgrid. Suppose we take N samples from the same subgrid of, e.g., a block-structured AMR data set. Locating the cells also includes locating the same subgrid repeatedly. A more efficient strategy would first traverse the subgrid hierarchy and take the N samples directly from the subgrid without traversing the hierarchy again. This strategy is efficient for relatively large subgrids. However, suppose the AMR structure is an octree or similar. In that case, one suffers from the same issue we also encountered in Section 3 when discussing SparseLeap by Hadwiget et al. [HAAB+18] that a multitude of leaf nodes from the same level are adjacent but do not reside in the same subtree. A solution to this problem in the context of AMR volume rendering was proposed in seminal work by Kähler et al. [KSH03, KWAH06]. They preprocess the AMR data by first dropping whatever hierarchy is there so that only the cells themselves are considered. They then build a k-d tree to find bricks as big as possible to contain as many same level cells as possible. Contrary to Wald et al.'s k-d tree, this one can serve as a traversal data structure, where rays first determine the brick they are in and then sample and integrate that brick from front to back. This procedure is repeated until the ray segment reaches the volume boundary or reaches \(t_{\text{max}} \).

Apart from special handling for potentially overlapping block-structured AMR subgrids, the bricks generated by Kähler et al. [KSH03] form a complete space decomposition and are not allowed (nor designed) to overlap. Hence, the k-d trees do not help find neighboring cells near the level transition. Complete traversals are necessary to determine the neighborhood in those regions. As the setting of Kähler’s approach is rather static—the method traverses the k-d tree using a rasterization API, and traversal is initiated on the CPU—their method is limited to vertex-centric data or generates the artifacts mentioned above at level boundaries.

The ExaBricks framework proposed by Wald et al. [WZU’21] extends Kähler et al.'s [KSH03] idea to use a spatial subdivision for coherent traversal and support smooth reconstruction at cell-centric AMR level boundaries. We note that Kähler’s framework is almost two decades older than Wald’s, and hence the ExaBricks framework only borrows basic concepts but builds upon different technology that requires other kinds of optimizations overall. While Kähler’s framework uses rasterization, ray tracing in a fragment shader, and k-d tree traversal on the CPU, ExaBricks incorporates a GPGPU execution model, hardware ray tracing, and GPUs with abundant resources, which allows the authors to implement state-of-the-art techniques such as implicit isosurfaces (cf. Algorithm 2 in Appendix A), ray-traced ambient occlusion, or adaptive sampling. The two frameworks share the basic concept of traversing coherent rays through spatial partitions of, ideally, larger regions of same-sized cells.

ExaBricks is not only a prototypical framework but also a data structure. The basis for the ExaBricks data structure is Kähler et al.'s [KSH03] coarse k-d trees of bricks. The ExaBricks framework provides tools to convert any AMR format with a Cartesian base domain to the internal format, consisting of two file types. One file type stores the linear array of scalar volume data per scalar field—ExaBricks supports multiple scalar fields that can be rendered using multi-channel DVR or that are mapped as color fields onto an implicit isosurface. The other file type stores cells, defined by their position in logical grid coordinates, refinement level, and scalar ID. Like Kähler et al., Wald et al.’s [WZU’21] framework discards whatever original AMR hierarchy is there and, in the following, only uses these arrays of scalars and cells.

The common scalable and cell formats serve as input to a preprocessing where the cells are turned into bricks, defined by their origin, number of cells, the common refinement level, and the cell IDs indexing into the scalar field arrays. This representation is equivalent to Kähler et al.’s [KSH03] representation. To obtain the bricks, Wald et al. [WBUK17] also use a k-d tree; they, however, experimented with different heuristics when building these. Notably, the data targeted by Wald et al. is much more large-scale, given the different periods in which the two frameworks were developed. In the presence of billions of cells, the k-d trees generated for Wald et al.’s test data sets can become quite complex. The heuristic the authors recommend is similar to a surface area heuristic (SAH) [Wal07] for volumes. In contrast to Kähler et al., Wald et al. never use the k-d tree other than for generating the bricks. Hence, the preprocessing output is bricks, while the k-d tree is immediately discarded.

To support smooth interpolation at level boundaries, Wald et al. [WBUK17] first decide on a reconstruction method. This method determines by how much the filter support of the bricks overlaps. For example, when using tent-shaped basis functions (cf. Section 4.1.1), each cell has a filter support of \(\frac{1}{2} \) the cell’s width at the brick boundaries; the brick domains, hence, reach by \(\frac{1}{2} \) cell’s width of the brick’s refinement level beyond the tight bounding boxes of the bricks. While the brick bounding boxes form a complete space decomposition, the brick domains generally overlap. The overlap regions themselves (including the regions where only a single brick is active and there is no overlap), however, implicitly form a space decomposition as well. The authors call these the brick overlap regions. Brick overlap regions can form the equivalents of what in 2D would be T- or L-shapes and hence are not amenable to efficient rendering on GPUs.

ExaBricks builds yet another k-d tree to prepare the brick overlap regions for rendering, this time to split the overlap regions into convex, axis-aligned boxes called the active brick regions (ABRs). Again, the k-d tree hierarchy is dropped, and the framework keeps just the resulting ABRs. The resulting ABR data structure consists of a linear list of all brick IDs indexing into the brick list generated during preprocessing. The ABRs are defined by their offset and length into this ABR leaf list. In addition, the ABRs also store an axis-aligned bounding box generated by the k-d tree splitter. A renderer can traverse the ABRs using that data structure. When a ray hits an ABR, it uses the offset and length to retrieve the IDs of the bricks covered by the ABR. This process adds another level of indirection (from ABRs to bricks) on top of Kähler et al.’s [KSH03] original data structure, but allows the renderer to perform basis function interpolation inside the region covered by the ABR.

To traverse the ABRs, Wald et al. [WBUK17] use hardware-
accelerated ray tracing with RTX by building an OptiX BVH over the ABR bounding boxes. This BVH replaces the k-d tree, which could also be used to traverse the ABRs on architectures without hardware ray tracing. To support empty space skipping and adaptive sampling, Wald et al. also store the min/max data values for the ABRs. During ABR construction, the authors carefully compute the actual cell’s min/max values, not bricks, that constitute the ABRs. Would they use the bricks’ min/max values instead, the space-skipping data structure would be of much lower quality, as later reported by Zellmann et al. [ZWS+22a]. This approach allows them to classify and deactivate empty ABRs whenever the transfer function changes, similar to the min/max trees by Knoll et al. [KWH06]. When that happens, the OptiX BVH is rebuilt interactively. Zellmann et al. [ZWS+22a] later proposed to use BVH refitting to accelerate this further and showed that the resulting BVHs allow for equivalent sampling performance. The resulting data structure allows for empty space skipping because a ray traversing the ABR BVH will never report an intersection with an empty ABR, as it is not even present in the BVH. Once an ABR’s bounding box is intersected, the OptiX intersection program reports a hit, and the ABR is processed using a ray marcher. The stepsize of the ray marcher is proportional to the ABR’s finest cell size.

The ExaBricks data structure was later used by various works, including Zellmann et al. who extended the data structure to support RTX-accelerated flow visualization [ZSM∗22] and fast streaming updates [ZWS+22a]. In a recent pre-print [ZWS+22b], the authors extend ExaBricks to support volumetric path tracing with delta caching (cf. Algorithm 3 in Appendix A). Here, the sampler is no longer coherent: in the typical case, only a single or very few samples are taken from the traversed ABR. This preliminary work suggests that for Monte Carlo path tracing and other incoherent workloads, ABRs form a viable sampling data structure but not necessarily a data structure that is optimal for (incoherent) traversal. Alternative data structures and interpolation schemes based on dual cells were later proposed by Wang et al. [WMU∗20] but were limited to tree-based AMR.

5. Rendering Unstructured Volume Data

Unstructured meshes that are, e.g., produced by finite elements or finite volume codes can be thought of as the ultimate way of refining the data to adapt to regions of interest. Some codes output tetrahedra only, while others produce meshes with different types of polyhedra such as tetrahedra, hexahedra, pyramids, wedges, or high order [NLKH12], twisted and bent elements. Unlike structured volumes that can be directly sampled in texture space, volume visualization of unstructured grids requires managing the topology, geometry, and scalar field to locate and render these polyhedral cells.

The fundamental question of how to render such data has long been solved by seminal works. A common object-order approach also implemented by standard software like [AGL05], for example, is the cell/tetrahedra projection [ST90], which involves a costly sorting per viewpoint update to bring the cells into visibility order. Garrity [Gar90] was the first to propose ray casting for unstructured volumes, and Weiler et al. [WKME03] were the first to propose a parallel GPU implementation. Silva et al. [SCCB05] reviewed early GPU-based approaches for volume rendering of unstructured grids.

However, in times of ExaScale computing, the data management aspects rather than rendering pose significant challenges. Traversal and sampling through ray casting techniques, unanimously used today, has to cope with the complexity and ever-increasing size of the unstructured volumes. At the same time, advancements in hardware technology have led to heterogeneous systems with complex, potentially distributed memory hierarchies that the visualization algorithms must adapt to.

This section discusses recent trends in traversing and sampling unstructured volumes (see Fig. 6). We discuss how these methods compress and augment the data with auxiliary structures. We will first discuss element marching approaches that locate the cells via connectivity information [MHDH07, MHDG11, SDM∗21]. While the advantage of these approaches is that they do not require large auxiliary traversal and sampling data structures, their flexibility is limited because they always require to completely march from the entry to the exit point of the ray/volume segment traversed (cf. Fig. 6a). Alternative approaches like that by Binyahib et al. [BPL∗19] use a fixed sampling pattern (cf. Fig. 6b), which can be helpful when targeting distributed memory systems. Another family of techniques we discuss use point ray sampling (cf. Fig. 6c) by traversing rays with length zero into a ray tracing acceleration structure and locating the cell by determining if the origin falls inside. Here we focus on the papers by Morrical et al. [MWUP22] and by Wald et al. [WMZ21] who proposed efficient implementations using OptiX and RTX.

5.1. Marching with element connectivity

Ray tracing-based volume traversal requires one to find ray segments $[t_{\text{min}}, t_{\text{max}}]$ to take samples from (cf. Section 2). While with structured volumes, this is often as simple as testing the ray for an intersection with the axis-aligned bounding box of the grid, with unstructured data, the volume boundary is usually non-convex and defined by an arbitrary surface mesh. The papers we review in this section propose traversing the spatial partitions by finding entry and exit points and marching from cell to cell (“element marching”). When the spatial partition we are in is left, we need to check if we actually exited the volume, or just the current local partition, in which case we need to find the next pair of entry/exit points (cf. Fig. 6a). Early work by Muigg et al. [MHDH07] proposed a hybrid approach for volume traversal that first decomposes the unstructured grid into bricks using a k-d tree. That allowed them to traverse the (convex) brick boundaries, not the boundary mesh.

Follow-up work by Muigg et al. [MHDH07] implemented the traversal step using rasterization and depth peeling [BCPS06]. The boundary mesh is rendered using the standard rasterization pipeline with back-face culling turned on to fill the depth buffer. Then the mesh is rendered again, but with front-face culling active to find the exit face for the entry face that is now in the depth buffer. Ray/element marching is implemented in a fragment shader. After that, the layer is “peeled off,” and the process is repeated until the whole volume is traversed. This is a multistep approach: the host program initiates rendering passes whenever a layer is peeled off, and the volume is not fully rendered. The authors also proposed a very compact data structure to store the connectivity information without redundancy through a list of faces and without explicitly
representing cells. They achieve this by separating the number and indices of the vertices that make up a face from the mesh topology. Both papers by Muigg et al. [MHDH07, MHDG11] employ interpolation with a combination of simple barycentric coordinates at the ray/face intersections and mean value coordinates [Flo03] for the cell’s interior, distributing the samples equally along the ray segment within it. Additional samples can then be computed between the positions of the already computed samples by linearly interpolating between them.

More recently, Sahistan et al. [SDM*21] proposed to leverage hardware-accelerated ray tracing for element marching by using an OptiX triangle BVH to find entry and exit points. The BVH is built over what the authors call the shell—the same boundary mesh also traversed by Muigg et al. [MHDG11] defined by the unconnected faces of the boundary elements of the data set. The method supports tetrahedra only. The authors compress the data by what they call XOR compaction, an alternative to Muigg et al.’s to store the element connectivity. Using a ray tracing API to traverse from one spatial partition to another allows the authors to use secondary rays for ambient occlusion or shadows, which is more challenging to achieve with rasterization-based frameworks. The authors also need to find entry faces for the secondary rays to initialize sampling via element marching. For that, they first trace a ray from the current position inside the volume backward against the shell and then march from the shell intersection until they pass by the current position to only then start computing transmission. In contrast to the BVH sampling techniques we summarize below in Section 5.3, this approach’s memory consumption is very competitive, both through compression and because the BVH is only built over the shell, which accounts for a fraction of the actual elements. A direct comparison between Sahistan et al.’s and Muigg et al.’s techniques in terms of runtime and memory performance was unfortunately not provided.

5.2. Parallel and distributed rendering

Binyahib et al. [BPL*19] propose a scalable unstructured volume rendering algorithm that extends the one in VisIt [CBW*12] and is based on prior work by Childs et al. [CDM06]. Binyahib’s algorithm proceeds in three phases. It first classifies the input cells/unstructured elements as small or large by estimating the number of samples a viewing ray will take, given a fixed-width sampling as in Fig. 6b. As a rule of thumb, a cell that a ray crossing samples only once would be considered small, but the framework exposes a threshold value that allows the user to control this.

The three-phase algorithm first processes the small cells in an object-order fashion. Then, processors exchange their generated samples’ results for only the small cells, as well as the remaining large cells directly. Each processor then generates a sub-image from its share of what the authors call partial composites—i.e., the partially composited pixel results for the small cells—and the remaining large cells in an image-order fashion.

The sampling pattern incurs a view frustum-aligned uniform grid (cf. Fig. 6b) for which a shared buffer is pre-allocated. Typical sample counts are $1K^3$ for a $1K^3$ samples in image space and $1K$ in the z-direction). For modern workloads, the sample count increases proportionally to the number of cells to sample at the Shannon-Nyquist limit. This approach, which was also employed by Childs et al. [CDM06], has a prohibitive memory footprint.

During the first phase of the algorithm, the processors evaluate their samples in object order, and the threads per processor fill the pre-allocated grid buffer in parallel (i.e., parallelism over cells). Then, in an image-parallel process, consecutive samples from that buffer are post-classified with the RGBα transfer function and partially composited to form partial composites. We propose to also refer to those partial composites as fragments that are associated not with samples directly but instead are the composited and associated with the (locally convex) ray segments (cf. the center ray in Fig. 6b). Each fragment carries RGB, opacity, and depth information. To compute these, the authors use over compositing [PD84]. The lighting model used is “absorption plus emission” (cf. Algorithm 1 in Appendix A). After this process, the fragments of a single pixel are potentially distributed across several processors.

During the second phase, the processors exchange the fragments/partial composites and the remaining large cells. In preparation for the next phase, the algorithm now transitions from object to image order processing and hence partitions the image into tiles distributed equally across the processors. The processors exchange the data (fragments and large cells) using direct-send [Hua93], real-}

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Figure 6: Unstructured data ray-casting. (a) Element marching using connectivity information: Muigg et al. [MHDH07, MHDG11], Sahistan et al. [SDM*21, SDW*22]. (b) Fixed-width sampling: Binyahib et al. [BPL*19] (c) Empty space skipping and adaptive sampling with RTX-BVH traversal: Morrical et al. [MUWP19] and Morrical et al. [MSG*22]
The framework can enforce object- or image-order processing only by using the threshold to classify cells into small/large. All cells are considered large if the threshold is set to 1, so no work is performed during the first phase. Conversely, if the threshold goes to infinity, all cells are small, and during the third phase, only fragments but no large cells are processed. In that case, the rendering algorithm becomes object-order only.

A potential source of the inflexibility of this algorithm is the large pre-allocated sample buffer, which needs to scale better with growing data resolution and when sampling at the Shannon-Nyquist limit is desired. At the same time, the sampling pattern is not adaptive. With adaptive sampling, one could design an algorithm that takes fewer samples from the large than from the small cells and thus would not require a hybrid phase with separate phases for small and large cells at all. Algorithms that can adapt the sampling rate to the local frequency and naturally skip over empty space are the subject of section 5.3.

The framework by Sahistan et al.’s [SDM* 21] was later also adapted to support large, non-convexly shaped distributed data as Binyahib et al. [BPL* 19] does. The extension was first published by Zellmann et al. [ZWB* 22], but is explained in more detail in the pre-print by Sahistan et al. [SDW* 22]. The authors extended Sahistan’s element marcher with a deep compositing algorithm. Instead of employing IceT [MKPH 11] for compositing, which is the state of the art in most parallel distributed renderers [CBW* 12, AGL05], the authors allocate fragment buffers to hold partially composited samples per MPI rank and data partition. The fragments are later exchanged via direct send and finally composited by the processor responsible for the pixel. Conceptually, this is similar to Binyahib’s partial composites (cf. Section 5.2). However, the method is not restricted to fixed sample positions, nor does it require allocating large sample buffers. The deep compositing approach is also not restricted to element marching but can easily be combined, e.g., with BVH sampling (see below). As such, it represents a general traversal routine (cf. Section 2) where the ray segments for the spatial partitions are processed in parallel by different processors.

5.3. Cell location with hierarchical data structures

The previously presented methods implement sampling either by marching to the sample position using element connectivity [MHDH07, MHDG11] or by placing samples at fixed positions and using object space methods [BPL* 19]. An alternative technique first established by Rathke et al. [RWCBI5] performs the necessary cell location to obtain the samples via point queries. To this end, a hierarchical acceleration structure (e.g., BVH or k-d tree) is used. With a software implementation, the acceleration structure is traversed. At each hierarchy level, the sample position is tested for point containment inside the domain bounds, or half-space, until finally arriving at the leaves, where the individual elements are tested for containing the point. Point containment tests are often much cheaper than ray/element intersection tests. In the case of unstructured elements with planar faces, this can be implemented by simple tests for the signed volume that the point forms with each face. This approach is conceptually similar to the rasterization test performed by GPUs [Pin88].

5.3.1. Cell location with RT cores

On modern GPUs with ray tracing hardware, the point-in-element test can be implemented by clever use of RT cores. The accelerator of choice is a BVH, and instead of a point, one traverses a ray with zero length ($t_{\text{min}} = t_{\text{max}} = 0$), originating at the sample position, and with an arbitrary direction vector, through the hierarchy. In the simplest case, the point containment test is implemented using user geometry. This method of using an acceleration structure to perform cell location has the significant advantage that sampling can be decoupled from traversal. While it is perfectly viable also to use the BVH for traversal, additional (often simpler) data structures can be used to skip over empty space, or to adapt the local sampling rate, e.g., based on the frequency or density majorants (cf. Section 2), RTX-accelerated versions of this algorithm were first presented by Wald et al. [WUM* 19] and by Morrical et al. [MWUP22], who proposed extensions to support higher order elements with non-planar faces. Conceptually, the method is illustrated in Fig. 6c.

Efficient implementations must make several design choices that can affect memory consumption and sampling performance. For example, one way to represent unstructured elements chosen by Morrical et al. [MWU22] is to allocate eight indices per element into the shared vertex array, regardless of the element type stored. Elements with fewer indices, such as tetrahedra and pyramids, have their excess indices padded using an invalid value (e.g., −1). That way, the elements can be represented in a single list. Alternative layouts (cf., e.g., [MSG* 22]) store offsets into an index list sorted by element ID, which allows representing the elements more compactly and may also be more efficient in terms of thread group divergence on the GPU. While planar elements can be efficiently tested with the aforementioned rasterization techniques, non-planar elements are tested with Newton Raphson refinement using the plane distance as an initial approximation for the root [MWUP22].

User geometry intersection programs suffer from the back and forth between shader and RT cores mentioned in Section 2.2. To overcome this issue, Morrical et al. [MWU22] also propose a point query that uses ray/triangle intersection tests exclusively and can thus be performed entirely in hardware. For that, they tesselate the faces of the elements into triangles and quads and duplicate the shared faces of adjacent elements. In contrast to the user geometry-based method, this one uses the fact that when tracing a non-infinite ray with a sufficiently set t_{max} originating inside an element will have the closest intersection with one of the element’s faces. By duplicating the shared faces, using backface culling, and using the convention that face normals belonging to the element point inwards, the corresponding element ID can be obtained. The choice of the ray’s t_{max} parameter can influence the performance of this method. If t_{max} is too small, it will potentially not hit the element boundary at all, while a t_{max} that is too high results in unnecessary (yet hardware-accelerated and generally cheap) ray/triangle intersection tests before finding the closest intersection. Although the authors propose regrouping the elements in an (expensive) pre-process, which allowed them to eventually get rid of the duplicate faces, this method is rather expensive regarding memory consumption. The authors report that in contrast to the user geometry-based method, the triangle-based one, on average, uses twice as much memory.
5.3.2. Space skipping and adaptive sampling

Using RT cores, cell location with point queries can use hardware acceleration. Their flexibility in sample position placement makes them a viable alternative to marching- and shared-face-based solutions. As the cell location procedure does not require face connectivity, this method is less prone to sampling issues due to degenerate geometry. Still, performing a complete BVH traversal per sample position, even in hardware, can be costly, mainly when the model is large. As discussed in Section 3.1, like in the structured case, careful sample placement can significantly improve performance. This is even more relevant in the case of BVH cell location, where the individual sample is expensive compared to, e.g., simple trilinear interpolation in a 3D array. In the case of structured data, the spatial arrangement depends on the density and the alpha value from the RGBα TF but not on the shape of the volume (which is trivially just a box). Unstructured meshes, in general, have non-convex boundaries so that empty space is defined by both the boundary mesh as well as the RGBα TF. Furthermore, adaptive sampling is even more critical in this case because individual elements can vary significantly in size, whereas structured voxels, though potentially spanning multiple level sets, usually vary less in local resolution.

With point query-based sampling, it is *per se* possible to adapt the local sampling rate according to some criterion arbitrarily. For that, a traversal data structure accompanies the BVH used for sampling. Morrical et al. [MUWP19] propose to base the traversal data structure of a k-d tree partitioning computed in a pre-process. The resulting domain boxes, though presenting a space partitioning, can still be traversed using OptiX and RTX, and the fact that the domains do not overlap allows for efficient traversal and min-max tree-based empty space skipping (cf. Section 3.1.1). To adapt the sampling rate, the authors compute the variance of the post-classified density values inside the domain boxes, roughly representing the local frequency after TF application. Morrical et al. use absorption plus emission-style ray marching (cf. Algorithm 1 in Appendix A). They use opacity correction to account for the adapted sample rate, so the resulting RGBα color roughly matches the result obtained with a fixed marching step size.

5.3.3. Mesh data and acceleration structure compression

Compared to BVH-based cell location, element marchers (cf. Section 5.1) have the primary advantage of only requiring face connectivity, which can also be compressed significantly. In contrast, the BVH and complete vertex index lists required by the above approaches can come at very high memory costs. Apart from pragmatic solutions using distributed memory computing [ZWB’22], research has also focused on compressing both the unstructured mesh and the sampling acceleration data structure. Two alternative approaches that optimize for different objectives were proposed by Wald et al. [WMZ21], and later by Morrical et al. [MSG’22].

These compression algorithms build on research on surface mesh compression. Solutions in this field include multiresolution decomposition [PDP*19], and compression of face index arrays [FFMW20, FWDF21]. The framework by Wald et al. [WMZ21] borrows from these concepts. The authors use a meshlet decomposition, which allows them to reorganize the mesh’s vertices so their indices can form small groups. Inside each group, the indices can be represented with lower resolution (16 bits instead of 32 bits) or flattened altogether, resulting in even lower memory consumption with a careful meshlet generation scheme. Other minor optimizations include grouping neighboring tetrahedra to pairs ("tet-pairs"), similar to how production ray tracers sometimes group triangle pairs to quads so they can lower the storage requirement to four instead of six vertices. With tet-pairs as an extra element type, they rearrange the element list so that elements of the same type are stored next to each other, allowing for an even more compact representation.

At the center of this method is a (software) BVH compression scheme building off an unoptimized reference implementation taken from OSPRay [WJA*17]. The authors, step by step, extend this reference. They transform the reference to become an eight-wide BVH and use quantization [YKL17, BWWA18] with 16-bit precision for the domain boxes of the subtree nodes. By carefully rearranging the nodes and primitives, the authors do not require to store any indices, but instead, node and primitive lists directly. Another optimization to the sampling BVH that the authors propose is to (bottom-up) collapse up to eight leaf nodes to form what they call multi-leaves. These multi-leaves can be traversed linearly; however, the authors evaluated building small OptiX BVHs over each, which proved superior to linear traversal in software. In this case, the software and OptiX BVH form a two-level acceleration structure, with the top level realized in software and the bottom level realized with OptiX.

While Wald et al. [WMZ21] propose to use extreme compression for the sampling acceleration structure and element indices, which eventually allows them to visualize the 2.9 billion elements NASA Mars lander [Nat21] on a single GPU, they do not compress vertices, which renders this compression method lossless.

While resulting in extreme compression with highly superior peak and total memory performance, building the acceleration structure can take up to several hours for the largest of data sets used by Wald et al. [WMZ21]. The method by Morrical et al. [MSG’22] seeks to overcome this issue by implementing compression based on a lazy sorting and clustering scheme resulting in much lower pre-processing times. The authors first sort the elements on a Hilbert curve and let \(N \in \{4, 8, 16, \ldots \} \) adjacent elements on the space-filling curve form a cluster. Those clusters are, of course, much less optimized than the exact BVH heuristic by Wald et al. [WMZ21] can achieve. The authors combine that with similar measures also taken by Wald et al., such as meshlets to reduce the element index precision or element sorting to group elements of the same type together. In contrast to Wald’s OptiX-accelerated multi-leaves, Morrical et al. traverses the \(N \)-sized clusters linearly, resulting in better memory yet lower sampling performance. Compared to Wald et al.’s method, this method trades sampling performance for pre-processing times.

Morrical et al. [MSG’22] also initiated what we think might become a trend—to use Woodcock tracking (cf. Algorithm 3 in Appendix A) instead of ray marching to compute transmission estimates. The authors do not use this unbiased sampling method to implement a full multi-scattering path tracer but instead evaluate a primary absorption and emission sample, plus an optional shadow ray towards a point light source. Apart from apparent trade-offs...
they do not localize precision, meaning they either preserve all bits for some values or a few bits for all. Hoang et al. [HSB+21] introduce a tree structure and data layout aiming to encode precision and multi-resolution simultaneously. There are other attempts to do so. Indeed, a combination of the two is also used by VAPOR [LJP+19], a domain-specific visualization package that targets the analysis of simulation data arising from Earth system science (ESS). It uses wavelets for compression in combination with precision levels predetermined during the compression stage. When accessing the data, the tool can select an increasing number of wavelet coefficients as the user increases the quality and/or resolution levels, thereby reducing I/O and computational costs. However, the quality levels correspond to the number of wavelet coefficients to be decoded and do not allow for direct control of the data precision. The fact that only a few, generally four, precision levels are supported limits control, which the authors of [HSB+21] propose to remedy.

[HSB+21] argues that considering precision (number of bits) and resolution (wavelet coefficients) together in a single unified tree structure allows navigating more freely in a two-dimensional data encoding space. This freedom permits improving the quality and time ratio for regions of interest (ROI) queries. An ROI query defines a spatial sub-part of the whole dataset, enhanced with precision error and level of resolution. The tree is built from a regular grid of points. Unlike other multi-resolution trees, it has the same number of nodes as points. Figure 7 illustrates this in a simple 4 × 4 2D case. First, a multi-resolution tree (see Figure 7-b) is built from the regular data (Figure 7-a) using the notion of Z index, which is formed by the bit interleaving of the point coordinates. The figure illustrates this through the numbering of points. The bits of the Z code are partitioned into prefix and suffix bits, from which a node index corresponding to a breadth-first tree traversal order, a node level, and the parent node index can be straightforwardly computed. This tree encodes data in a multi-resolution form, e.g., using CDF 5/3 wavelet coefficients. Floating point data values are expressed as a product between a power of two integer exponent and an integer quantized value. The bits of these integers are clustered into bitplanes, so the wavelet coefficients are also mapped into a fixed number of bitplanes. Each node of the previous tree is then extended by a linked list of bitplanes, used to control data precision, as shown in Figure 7-c. As for other multi-resolution tree structures, a query corresponds to a cut in the tree. Here, all nodes above the cut define an approximation.

Once constructed, the tree is stored in a way that optimizes minimal access time, storage costs, and transfer costs. Therefore, the tree is structured into blocks, bricks, chunks, and files are put into hierarchies of directories. Each brick is encoded independently into its own local tree to permit parallelism. Data dependencies among neighboring bricks, related to the wavelet coefficients, are managed using lifting-based linear extrapolation. The local trees are also merged into a single tree to reach any desired level of hierarchy. The bricks are then hierarchically structured using the same Z code for data points. A brick is composed of contiguous blocks, which are compressed. All data is stored on disk in files composed of chunks. Given some requested tree nodes, a function that maps a corresponding file ID using bit packing and the file path is applied iteratively over the corresponding levels and bit planes. The authors show that using this tree structure and disk layout achieves...
that can be incrementally updated using arbitrarily ordered data. It is also the first adaptive representation of piecewise multilinear scalar fields while generating, storing, and accessing data at a reduced resolution. AVMoM works, it seems relevant to try to exploit this approach to reduce the data size, which is what Lu et al. [LJLB21] propose to do. They introduce a learning-based method for compressing volumetric scalar fields. Their approach is based on exploiting neural networks that map a continuously-defined position from the simulation domain to a scalar value [PFS'19, MON’19]. Their motivation is that a neural network learning such a mapping function places no assumptions on the data characteristics. Placing assumptions on data is a disadvantage of transformation-based compressive representations (e.g., Fourier or Wavelet bases), whose assumptions may not be valid for other techniques (transmits complete coefficients) and values between 80 and 240 dB for precision stream (transmit bits of a coefficient separately). It also raises several questions regarding performance, most notably the stamping process for vertices that requires treepassings. It is the crucial bottleneck in further scaling and its use on sparse data.

6.2. Compression using neural networks

With the advent of learning techniques, mainly based on neural networks, it seems relevant to try to exploit this approach to reduce the data size, which is what Lu et al. [LJLB21] propose to do. They introduce a learning-based method for compressing volumetric scalar fields. Their approach is based on exploiting neural networks that map a continuously-defined position from the simulation domain to a scalar value [PFS'19, MON’19]. Their motivation is that a neural network learning such a mapping function places no assumptions on the data characteristics. Placing assumptions on data is a disadvantage of transformation-based compressive representations (e.g., Fourier or Wavelet bases), whose assumptions may not be valid for the volumetric scalar field under consideration.

They limit the network’s capacity so that the number of network weights is less than the volume resolution. This way, they obtain optimized compressive representations that approximate the scalar field at the sampled values. They build their neural network based on SIREN [SMB’20], which has fully-connected layers and sinusoids as periodic activation functions. They use residual (skip) connections to achieve the robustness of the network. The network weights are distributed so they can be quantized with a small number of bits.

Figure 7: Unified tree [HSR’21] example for a 4 × 4 dataset (a); (b) the wavelet coefficient tree using the Z index; (c) extension by a linked list of bitplanes to encode precision.
They use a PSNR quality metric to justify their choices throughout the article. They also provide a quality comparison against TTHRESH on single time step grids and time-varying datasets using PSNR quality metric over several compression ratios. The comparison shows that the neural network method is overall an improvement over TTHRESH, except for one dataset when low compression ratios are applied. The method produces compressed representations approximately half the size of TTHRESH and provides smoother scalar fields. The authors also report that they obtain larger gains in performance the higher the compression ratio. This suggests that the method remains robust and can still obtain good approximations of scalar fields, even when a few parameters are kept in the network.

In addition to the approaches mentioned above, some other notable studies on compressed and neural representations are as follows. Pan et al. [PZGY19] describe an adaptive deep learning-based approach for compressing time-varying volumetric data using an autoencoder-based neural network with quantization and adaptation. Weiss et al. [WHW22] propose using GPU tensor cores to design scene representation networks. They integrate the reconstruction process into on-chip raytracing kernels. Jain et al. [JGG*17] use a deep convolutional autoencoder network to achieve a data-driven representation for volumetric data by learning high-level hierarchical features. Quan et al. [QCJJ18] introduce a learning-based voxel classification technique for volume rendering. Their approach uses hierarchical multi-scale 3D convolutional sparse coding to learn dictionary-based features from the input data. Mensmann et al. [MRH10] exploit the CUDA computing architecture for a hybrid CPU/GPU scheme for lossless compression and data streaming of time-varying volumetric data. Their approach utilizes temporal coherence and variable-length coding with a fast block compression algorithm. Weiss and Navab [WN21] integrate deep neural networks into direct volume rendering. Instead of designing features explicitly and manually crafting transfer functions, they learn mappings for these processes by representing the rendering process in a latent color space.

Because this is a fast-growing field and many new developments are on the way, we convey the reader to the survey of Wang and Han [WHss] on deep learning-based approaches for scientific visualization for extensive coverage.

7. Tools for Volume Rendering

In addition to the recent works on large-scale volume visualization, we also review the common visualization tools and libraries (APIs) for these data types. Table 2 summarizes the visualization tools’ and APIs’ support for various data types. The following sections review and discuss how tools and APIs support the data types and large-scale visualization techniques discussed in this survey.

7.1. Large-scale visualization APIs

OSPRay [WJA+17] is a CPU-based ray tracing framework for scientific visualization. It is a scene-description library where developers describe the scene using **OSPRay** procedures rather than specifying the rendering process. Since it uses ray tracing, it supports shading effects, such as ambient occlusion and shadows. In addition, **OSPRay** contains an MPI module for distributed volume rendering with a sort-last compositor to render large-volume data across HPC clusters. The **OSPRay** framework relies on high-performance Open Volume Kernel Library (OpenVKL) [Int22] for rendering. OpenVKL is a collection of high-performance volume computation kernels that provides point sampling, volume traversal, and isosurface hit kernels for structured, unstructured, and block-structured AMR meshes. OpenVKL accelerates the spatial queries using Embree [WWB*14] ray tracing kernels and provides current, finest, octant reconstruction methods for AMR volume. The octant reconstruction method allows to reconstruct crack-free isosurfaces with smooth boundaries for block-structured AMR meshes. OpenVKL also supports OpenVDB [Mus21] meshes, an open-source library composed of a hierarchical data structure and a set of tools to store and manipulate sparse volumetric data discretized on 3D grids. OpenVDB was developed by DreamWorks Animation and is currently maintained by the Academy Software Foundation (ASWF).

Khronos’ **ANARI** [SGA+22] is a high-level scientific visualization API designed to connect low-level renderers like **OSPRay** and **VisRTX** [Ams19] with front-end visualization tools like **VisIt** [CBW+12] and **ParaView** [AGL05]. Inspired by **OSPRay**, **ANARI** is a scene description library. Renderers implementing the **ANARI** specification provide high-level scene description procedures for developers to let them build cross-platform visualization tools that use rasterization or ray tracing. **ANARI** makes it easier for developers to implement visualization tools. By using **ANARI** specification, visualization tools can use different scientific renderers without implementing different renderer bindings or their own low-level rendering engines. Any visualization tool using **ANARI** can use **OSPRay** and **VisRTX**. **VisRTX** [Ams19] is an implementation of the **ANARI** specification targeted for RTX-enabled NVIDIA GPUs. Moreover, by providing new implementations to **ANARI**, researchers can easily incorporate their state-of-the-art visualization techniques into any existing visualization tool that supports **ANARI**. The interested reader may refer to [SGA+22] for an excellent overview of the 3D **ANARI** API Standard and its positioning concerning visualization applications, frameworks, and tools, such as **ParaView** [AGL05], **VisIT** [CBW+12], and **VTK** [Kit22], render-
ParaView uses client-server architecture, similar to VisIt-OSPRay, ParaView uses sort-last compositing library, IceT, to composite the individually rendered partial images. For structured volumes, ParaView uses three renderers: ray casting-based CPU and GPU renderers and OSPRay renderer. VTK-m [MSU16, Mor23] is a complementary tool to ParaView and VTK that provides additional support for developing parallel scientific visualization algorithms. VTK-m makes it easier to create scientific visualization algorithms that run in parallel by offering a range of supportive tools and features. VTK-m provides efficient data transfer and processing tools on various parallel architectures, including multi-core CPUs, GPUs, and distributed computing clusters. Additionally, it provides a lightweight rendering module. However, it is important to note that the rendering package in VTK-m is not meant to function as a complete rendering system or library [Mor23]. Some of the VTK-m features have been integrated into VTK and ParaView, making it easier for users to take advantage of VTK-m’s capabilities within these popular visualization tools.

IndeX® [NVI09a] is a 3D volumetric interactive visualization software development kit that exploits GPU clusters. IndeX provides functionality to visualize structured and unstructured meshes. IndeX also provides a plug-in that brings scalable visualization capabilities to ParaView [NV120].

7.2.2. Tools for AMR data

ParaView resamples and converts the AMR volume into a structured grid to render the volume. This method allows AMR data to be rendered without using a different rendering algorithm. While resampling, ParaView allows the user to select the grid size. If the grid size is too small, some features will be undersampled. On the other hand, increasing the grid size requires more memory. AMR sampling in ParaView does not address the T-junction problem: The resulting isosurface might not be smooth and crack-free.

VisIt use Weber et al.’s parallel “stitching” algorithm [WCM12] (cf. Section 4) for visualizing AMR data. Weber et al.’s “stitching” algorithm converts the AMR data into an unstructured mesh. After the stitching, these tools use their unstructured rendering algorithms to visualize the AMR meshes. Weber et al.’s stitching algorithm generates crack-free, smooth isosurfaces when only transitions of one level between neighboring cells exist. With stitching VisIt supports crack-free, smooth surfaces at the cost of increasing the memory footprint.

Additionally, VisIt and ParaView can use OSPRay’s rendering capabilities to render the block-structured AMR mesh. Since OSPRay’s octant reconstruction method does not convert the AMR mesh into an unstructured grid, it requires less memory than the “stitching” method.

7.2.3. Tools for unstructured data

VisIt uses the same algorithms (splatting, 3D texture, compositing, SLIVR, VisIt-OSPRay) for structured and unstructured meshes. Splatting, compositing and SLIVR algorithms utilize cell/tetrahedron projection technique. 3D texture method converts the data into a structured mesh. Then the converted mesh is rendered with a structured grid rendering method. Projected

Table 3: Supported file types of visualization tools.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Data Type</th>
<th>Supported File Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisIt</td>
<td>Structured</td>
<td>.hov, .conduit, .cosmos, .pvt, .pvr, .pvs, .silo, .visit, .vtk, .vtr, .vts, .xdmf</td>
</tr>
<tr>
<td></td>
<td>AMR</td>
<td>.conduit, .cosmos, .silo, .visit</td>
</tr>
<tr>
<td></td>
<td>Unstructured</td>
<td>.conduit, .cosmos, .pvt, .silo, .visit, .vtk, .vtr, .vts, .windblade, .xdmf</td>
</tr>
<tr>
<td>ParaView</td>
<td>Structured</td>
<td>.dem, .dicom, .inp, .mrc, .netcdf, .pvd, .pvt, .pvr, .raw, .trecplot, .vki, .vtr, .vts, .windblade, .xdmf</td>
</tr>
<tr>
<td></td>
<td>AMR</td>
<td>.enseight, .enco, .flash, .openfoam</td>
</tr>
<tr>
<td></td>
<td>Unstructured</td>
<td>.exodus, .fluents, .mfix, .netcdf, .prestar, .pvd, .pvtu, . TecPlot, .vtk, .vtr, .vts, .xdmf</td>
</tr>
</tbody>
</table>

© 2023 The Authors.

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
Table 4: Comparison of volume visualization techniques for structured (●), AMR (○) and unstructured (◇) data, and compression and neural representation methods (▲). Volume traversal technique is expressed according to whether it is based on hardware acceleration or on software solution. Hierarchical sampling indicates that this step relies on traversing a hierarchical data structure, whereas direct/linear methods do not.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Architecture</th>
<th>Traversal</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>GPU</td>
<td>in-core</td>
<td>out-of-core</td>
</tr>
<tr>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Discussion and Comparison of the Surveyed Approaches

The algorithms and techniques we surveyed fall into different camps depending on the volume data type, as reflected by the overall outline of this state-of-the-art report. Most papers these days focus on general-purpose ray tracing techniques that can trace individual rays through the volume density without using a rasterization API. This allows for fine-grained control over the path taken by those individual rays, largely independent of the behavior of neighboring rays. Such a fine-grained way of scheduling rays naturally allows for space-skipping optimizations—hence we orthogonally classify the techniques based on their focus on traversal or sampling. We also survey trends on techniques to cope with very large data. Standard measures one can take in that case is out-of-core visualization, where a lower level of the memory hierarchy is integrated into the system to asynchronously serve data pages required by the rendering subsystem, as well as massive parallelism. We broadly classify the surveyed papers according to these axes and present our findings in Table 4.

We observe several trends. Naturally, sampling involving the location of individual cells in the volume is a more complex operation the more unstructured the data is. Sampling is a much more complex operation the more unstructured the data is. Sampling is a trivial operation inside a 3D texture or similar, directly addressable memory segments as they are involved when rendering structured, regular volumes (cf. Section 3). This, however, changes as soon as the memory hierarchy gets involved, as in papers by Hadwiger et al. [HAAB*18], Beyer et al. [BMA*19], Wang et al. [WWW*19], or Sarton et al. [SCRL20], concentrating on out-of-core techniques. In that case, sampling can still become a dominating operation.

In the case of semi-structured, cell-centric AMR data (cf. Section 4), smooth sampling at level boundaries was not possible until recently for large data sets. Stitching [ME11] was the agreed-upon solution for smooth reconstruction at level boundaries. However, it proved too memory intensive because the hierarchical aspect of the data was abandoned, and the AMR cells were converted to individual unstructured cells. Papers re-investigating the problem of high-quality reconstruction on the original and not the dual AMR grids thus naturally focused on sampling, which, as opposed to structured volume rendering, now requires complete hierarchy (e.g., k-d tree, BVH) traversal to locate individual cells. Approaches presented treat reconstruction as weighted average computations [WBUK17] and require all the cells in a given neighborhood to be located. More complex algorithms such as the one by Wang et al. [WWW*19] focus on sampling with a rectilinear filter. This approach involves an even more complex operation, where an octant space decomposition of the neighborhood is recursively found, involving cell location and implicit sorting of dual cells based on that space decomposition. With these methods established, follow-up papers identified the problem that AMR sampling is expensive. Then they proposed to use more intricate traversal schemes to allow for space skipping and adaptive sampling [WZU*21, ZWS*22a, ZWS*22b].
and connectivity relations are entirely missing from the data, as in the case of unstructured meshes. In that case, two orthogonal approaches exist. One way to sample the data is to reconstruct the connectivity information and transform the data to support fast one-ring neighborhood queries [MHDG11, SDM1b21]. Another notable approach builds a hierarchical acceleration structure over the data that allows for fast point-in-cell queries; it can be more memory intensive but has seen recent popularity due to the introduction of hardware ray tracing cores [MUWP19, MWUP22]. Our survey reveals that hardware ray tracing is limited if the data gets large. Compression schemes such as the one proposed by Wald et al. [WMZ21] require more control over the data layout of the internal nodes of the acceleration structure so that complete hardware-accelerated sampling is no longer possible.

A trend we observe is that data sampling workloads become increasingly incoherent. General-purpose ray tracing techniques allow one to trace secondary shadow or scattering rays into the volume [SDM1b21]. Representations optimized for volume rendering are sometimes also used for arbitrary sampling, e.g., to compute flow visualizations [ZSM1b22], which involves more divergent memory access patterns. Finally, we observe a recent trend that path tracing is adopted by the sci-vis community [MSG1b22]. Algorithms make ample use of that, so that storing BVHs along with the volume is becoming a commodity. These hardware features help with flexibility, as it is now easier to traverse individual rays and implement more complex lighting models. At the same time, using them poses challenges in terms of memory consumption and interactive changes to the data or transfer functions, as these become more costly in the presence of data structures like BVHs that need to be rebuilt each frame.

9. Conclusion

In this state-of-the-art report, we have focused on recent developments in direct volume rendering techniques for efficient interactive visualization of large-scale volume data. We established a classification of the papers based on their volume data type. Sampling is the primary operation of reconstructing values at discrete positions and generally becomes more costly the less regular the data is. In that case, intricate traversal data structures are used to adapt the sampling rate or skip over empty space. We generally observe that data structures adapt more aggressively to how much the data frequency varies during simulation or data acquisition. That results in hierarchical and less structured volume data. While reducing the memory overhead by avoiding to represent the data with empty or homogeneous cells, visualization algorithms need to be implemented carefully to not add in memory what was gained, by introducing additional auxiliary data structures for sampling and traversal. Another trend we observe is the availability of GPUs with hardware-accelerated ray tracing. Algorithms make ample use of that, so that storing BVHs along with the volume is becoming a commodity. These hardware features help with flexibility, as it is now easier to traverse individual rays and implement more complex lighting models. At the same time, using them poses challenges in terms of memory consumption and interactive changes to the data or transfer functions, as these become more costly in the presence of data structures like BVHs that need to be rebuilt each frame.

Acknowledgments

We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—grant no. 456842964, and the French National Agency with LUM-Vis project—ANR-21-CE46-0005.

© 2023 The Authors
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

YHGT10 Yang J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-time concurrent linked list construction on the GPU. Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
Algorithm 1 presents a classic ray marching loop to compute absorption and emission [Max95] inside the volumetric partition; the result is a alpha-composited color using over [PD84]. Algorithm 2 implicitly computes an iso-surfaces defined by the ISO value γ; the result is the distance t from the ray origin where (and if) the iso-surface was found. Algorithm 3 estimates transmission coefficients using Woodcock (delta tracking) free-flight distance sampling used for volumetric path tracing.

Algorithm 1: Absorption plus emission DVR ray marcher.

```plaintext
1: function RAYMARCHINGDVR(α, ω, t_{\text{min}}, t_{\text{max}})
2:  C_{\text{dst}} = 0
3:  for t = t_{\text{min}} \ldots t_{\text{max}} do
4:      C_{\text{dst}} = \text{OVER}(C_{\text{dst}}, C_{\text{src}}(α + t \times ω))
5:  end for
6:  return C_{\text{dst}}
7: end function
```

Algorithm 2: Implicit ISO-surface extraction.

```plaintext
1: function RAYMARCHINGISO(α, ω, t_{\text{min}}, t_{\text{max}}, γ)
2:  for t = t_{\text{min}} + \frac{1}{12} \ldots t_{\text{max}} - \frac{1}{12} do
3:      s_1 = μ(α + (t - \frac{1}{2}) \times ω)
4:      s_2 = μ(α + (t + \frac{1}{2}) \times ω)
5:      if MIN\((s_1, s_2) ≤ γ ≤ MAX\((s_1, s_2)\) then
6:          return t
7:  end if
8: end for
9: end function
```

Algorithm 3: Woodcock free-flight distance sampling.

```plaintext
1: function WOODCOCK(α, ω, t_{\text{min}}, t_{\text{max}}, β)
2:  t = t_{\text{min}}
3:  do
4:      ζ = \text{RAND}()
5:  t = t - \frac{\text{log}(1-ζ)}{β}
6:  if t ≥ t_{\text{max}} then
7:      break
8:  end if
9:  ζ = \text{RAND}()
10:  while ζ > \frac{α(1+ω)}{β}
11:  return t
12: end function
```