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Abstract
Most real-world networks are both dynamic and multivariate in nature, meaning that the network is associated with various
attributes and both the network structure and attributes evolve over time. Visualizing dynamic multivariate networks is of great
significance to the visualization community because of their wide applications across multiple domains. However, it remains
challenging because the techniques should focus on representing the network structure, attributes and their evolution concur-
rently. Many real-world network analysis tasks require the concurrent usage of the three aspects of the dynamic multivariate
networks. In this paper, we analyze current techniques and present a taxonomy to classify the existing visualization techniques
based on three aspects: temporal encoding, topology encoding, and attribute encoding. Finally, we survey application areas
and evaluation methods; and discuss challenges for future research.

CCS Concepts
• Human-centered computing → Graph drawings;

1. Introduction

Networks are important data structures for showing relationships in
complex datasets. Networks are commonly used for modeling and
solving many real-world problems across various domains (e.g., bi-
ology, business, transportation, communication, and security). A
network, also known as a graph, consists of nodes (vertices) and
edges (links). Nodes can represent real-world entities (e.g., people,
organizations, and locations), and edges represent the relationships
among these entities. Oftentimes, the nodes and edges of a network
are also associated with various types of attributes. The primary
challenge of visualizing such a network, called a multivariate net-
work, is to consider the structure of the network while encoding
the associated attributes. However, most real-world networks are
both dynamic and multivariate in nature, which means their nodes,
edges, and associated attributes are evolving with time. We refer to
these networks as dynamic multivariate networks (DMVNs). Tech-
niques for visualizing DMVNs must handle the grand challenge
of visually showing the network structure and associated attributes
along with the changes in the structure and/or attributes over time.

Firstly, visualizing a multivariate network is a challenging task
because of the visual clutter that arises when representing the net-
work structure and associated attributes together. The dynamic na-
ture of a DMVN introduces yet another set of challenges for re-
searchers due to its evolving topology and attributes. Available
techniques for visualizing DMVNs use one of two approaches: en-
coding all the dynamics within the same view or using multiple
coordinated views. Either way, the challenge is in choosing an effi-

cient encoding scheme such that the techniques used for visualizing
the network structure, attributes, and their temporal changes do not
interfere with one another. For instance, when using color on nodes
and edges to emphasize the addition or removal of nodes and edges
with time, a designer should compromise on using color to encode
categorical features on nodes and edges. Conversely, using colors
to encode attributes on nodes restricts the designer in using color
for emphasizing the structural changes with time.

DMNVs require understanding of network structure, node and
edge attributes, and how these will change with time. Each of these
topics have been studied extensively by visualization researchers.
For example, graph drawing is an area of computer science and
mathematics that deals with producing optimal graph layouts using
different node placement strategies. Researchers in this field study
the network structure and design novel and effective network lay-
out algorithms. Multivariate networks discusses techniques for vi-
sualizing both network structure and associated attributes. Dynamic
networks deals with studying changes in graph layouts with time.
However, addressing the dynamic nature of both network structure
and attributes at the same time is not well studied and remains an
open research problem.

In this paper, we conduct a comprehensive survey and intend to
report the state of the art in visualizing DMVNs. Our key contribu-
tions include a new taxonomy of DMVN visualization techniques
and a comprehensive discussion of recommendations, challenges,
and future directions.

We start with a brief introduction to the related surveys (Section

© 2023 UChicago Argonne, LLC, Operator of Argonne National Laboratory and The Authors.
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14856

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3653-228X
https://orcid.org/0000-0002-0990-2620
https://orcid.org/0000-0002-6418-5767
https://doi.org/10.1111/cgf.14856


Bharat Kale & Maoyuan Sun & Michael E. Papka / The State of the Art in Visualizing Dynamic Multivariate Networks

2) and provide definitions that are central to the understanding of
the DMVNs, their characteristics (Section 3), followed by various
tasks that users try to accomplish using DMVNs (Section 4). Later
we discuss our methodology for conducting this survey (Section
5). Based on our survey of the collected literature, we introduce
a new taxonomy for DMVN visualization techniques (Section 6).
A supplementary website provides the overview of our taxonomy
along with an interactive tool to filter publications at intersections
of categories in the taxonomy. We also discuss common application
areas (Section 7) and strategies for evaluating DMVN techniques
(Section 8). Finally, we discuss the challenges, identified through
this survey, for future research (Section 10).

2. Background

Existing literature on network visualization techniques is rich and
constantly growing. There are several surveys and taxonomies on
different variants of networks and their visualization techniques
(see Table 1), such as the design space of temporal graph visualiza-
tion [KKC14] and State-of-the-Art Reports (STARs) on dynamic
graphs [BBDW17] and multivariate graphs [NMSL19]. While the
prior works are exhaustive, they focus on studying either the dy-
namic or multivariate nature of the networks rather than analyzing
the challenges posed when both characteristics are present. Most
relevant to DMVNs is the survey on temporal multivariate networks
by Archambault et al. [AAK∗14]. The work focused on visualizing
DMVNs with node-link diagrams, and surveyed their applications
in software engineering, but did not cover matrix- and list-based vi-
sualization techniques, or emphasize techniques for visualizing the
evolution of attributes. With this paper, we aim to fill this gap by
describing the design space of visualization techniques that simul-
taneously encode the dynamic and multivariate characteristics of a
network, and systematically categorize them.

Besides the surveys and taxonomies on network visualizations,
approaches to visual comparisons by Gleicher et al. [GAW∗11]
and the design space of composite visualizations by Javed and
Elmqvist [JE12] are of particular interest to our work. We draw
on their generic categorization of visual approaches for organizing
multiple coordinated views to categorize techniques in our corpus.

3. Dynamic and Multivariate Nature of Networks

Before going into the survey, we introduce the definition of a net-
work and its variants that are related to the topic of this research.

Definition 3.1 A network (or graph), represented as G := (N,E),
is composed of a set of objects called nodes (or vertices) N, and
relationships between the nodes called edges E: E ⊆ N ×N. This
type of network is also called a static network, because the nodes
and edges of the network do not change.

A network is a mathematical structure, meaning that there is no
inherent spatial position associated with nodes to arrange them in
an n-dimensional space. However, in order to visualize networks,
we need a strategy to place nodes in a given space and represent re-
lationships. Node-link diagrams are one of the heavily studied net-
work representations. Layout algorithms are well studied in the lit-
erature to generate readable network visualizations. Other common

Table 1: Related State-of-the-Art Reports.

Reference Description Key difference

[HS12] Reviewed the applications of dynamic networks
across different fields Focused only on the

dynamic nature of
network structure

.

[KKC14] Consolidated the design space of dynamic network
visualization techniques.

[KKC15] Derived a task taxonomy to explain various analysis
tasks with dynamic networks.

[BBDW17] Surveyed visualization techniques for dynamic
networks and derived a taxonomy.

[WEF∗14]
Discusses interaction techniques for multivariate
graph visualizations and provides guidelines for
novel designs.

Focused only on the
encoding of attributes
and structure of static
networks simultaneously[NMSL19]

Surveyed visualization techniques for multivariate
networks and proposed typologies for tasks and
visualization techniques.

[AAK∗14]
Studied node-link diagrams for dynamic
multivariate networks and surveyed their
applications in software engineering.

Focused on both
dynamic & multivariate
nature but only covered
node-link visualization
techniques[HSS15]

Created a generic multi-facet graph visualization
framework by unifying taxonomies that focus on
single facet at a time but did not cover matrix-based
and hybrid visualizations.

(a) Node-link diagram

(force directed) (b) Matrix (c) Adjacency list (d) List view

Figure 1: Visual representations of a network topology.

approaches include matrix visualizations and list-based representa-
tions. Figure 1 shows an example of different network representa-
tions. Von Landesberger et al. [VLKS∗11] conducted an extensive
survey on visual analysis of large graphs to discuss visualization
techniques for various types of networks.

Definition 3.2 A dynamic network is defined as a network whose
nodes and edges can change over time.
A dynamic network is denoted as T := (G1,G2,G3, ...,Gn), where
Gi ∀ i ∈ {1,2, ...,n} is a static graph and i indicates a time step.

Different from static networks, structure evolves over time in dy-
namic networks. Capturing these structural changes is the key as-
pect of dynamic network visualization techniques. Multiple com-
prehensive surveys have been conducted to study dynamic net-
works, regarding task taxonomy [KKC15] and visualization tech-
nique taxonomy [BBDW17]. Figure 2 gives an example of visualiz-
ing dynamic nature: all three time steps are juxtaposed as node-link
diagrams. We can see the differences in the network structure as we
move from one time step to the next.

Definition 3.3 A multivariate network is a network whose nodes
or edges, or both, have attributes associated with them.
A multivariate network is denoted as G := (N,E,ρ), where

N represents nodes,
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Table 2: DMVN tasks at various levels of granularity categorized (rows) into three categories (columns). Domain-specific examples from the
literature are listed for each combination of level of granularity and task category.

Granularity Change-oriented Tasks Search-oriented Tasks Comparison-oriented Tasks

Network

Describe the evolution of whole network
with time

- How do inter-academic collaborations
evolve from early to later stages of the
timeline? [PTLZ18]

- Which software revision introduced the
most substantial changes? [VBW15]

Find nodes associated with a given attribute
pattern for at least n time steps

- Identify which author used the word
“visualization” in the longest span of
consecutive years [GGK∗11]

- In 1996, who co-authored with the
largest number of people? [GGK∗11]

Compare the temporal trends in node/edge
attributes of network

- What are the attribute similarities over
time for the top 7 spatially-close authors
in the network? [LZH∗17]

- How are merchants with similar
attributes connected in time? [BBS∗20]

Subnetwork

Describe the evolution of a selected cluster
with time

- What is the trend of the red group? Does
it grow, shrink, remain stable, or become
unstable? [BPF13]

- In what year is the red group the
largest? [BPF13]

Find the groups over which a specified
pattern occurs for at least n time steps

- Identify which venue keeps the strongest
relationship with IEEE TVCG over
time [LZH∗17]

Compare the evolutionary patterns of
selected clusters in terms of attributes and
relationships

- How different is the venue group
“journal of visualization” compared to
“IEEE TVCG” in terms of number of
authors and stable
relationships? [LZH∗17]

Individual

Describe the evolution of ego network and
attribute trend of a selected node

- Did the overall network size of an ego
increase or decrease in
year1–year2? [ZGC∗16]

- How is the discussion on bird flu in 2013
on Sina Weibo influenced by
celebrities? [LHS∗15]

Find the alters with a specified pattern for at
least n time steps

- How many people had relationships with
the ego for n+ years? [ZGC∗16]

- How many alters of Kwan-Liu Ma
collaborated in more than 1 paper
consecutively? [HZL∗16]

Compare the evolutionary patterns of ego
networks and domain attributes of selected
egos

- Compare ego networks of ENRON CEOs
Jeffrey Skilling and Kenneth
Lay [FMW∗21]

- Ego network of Daniel A. Keim vs.
Kwan-Liu Ma [PTLZ18]

Figure 2: Small multiples arrangement of node-link diagrams from
consecutive time steps.

E = (E
′

1,E
′

2, ...,E
′

k) : E
′

j represents a set of all edges with jth

attribute value ∀ j ∈ {1,2, ...,k}, and
ρ represents a function that returns an attribute vector for any
node n ∈ N

Multivariate visualization techniques are used to analyze net-
work structure and node and edge attributes together. Nobre et
al. [NMSL19] introduced new typologies to study tasks and tech-
niques for visualizing multivariate networks.

Definition 3.4 A dynamic multivariate network is defined as a
network whose nodes, edges, and attributes can change over time. It
is denoted as T := (G1,G2,G3, ...,Gn), where Gi ∀ i ∈ {1,2, ...,n}
is a multivariate graph and i indicates a time step.

Archambault et al. [AAK∗14] studied the modeling of time and
attributes in DMVNs using node-link diagrams in detail, but did
not introduce a taxonomy to classify existing techniques.

4. Dynamic Multivariate Network Tasks

Understanding the tasks that users need to address is an important
aspect of designing and evaluating useful visualization techniques.
Here we review related task taxonomies and discuss the tasks, along
with domain-specific examples for DMVNs at various levels of
granularity. A majority of visualizations focus on static networks;
hence, many task taxonomies were proposed to meet the growing
demand for visualizing dynamic networks, yet only a few include
the dynamic nature of both topology and attributes of networks.

Ahn et al.’s [APS13] task taxonomy focuses on tasks for study-
ing network evolution. They arranged the tasks along three dimen-
sions: entities, properties, and temporal features. Though the prop-
erties dimension considers both structural and domain properties,
their taxonomy as a whole does not focus on tasks that rely on
temporal changes in both topology and domain attributes. Bach
et al. [BPF13] tried to simplify the taxonomy with an alterna-
tive proposal that categorizes tasks as temporal, topological, and
behavioral. The behavioral tasks consider the dynamics in struc-
tural properties computed using network algorithms but not domain
properties in the data. Later, Kerracher et al. [KKC15] proposed a
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more generic taxonomy to improve the task coverage by consider-
ing the full picture. They included tasks that depend on temporal
dynamics in both the network topology and attributes.

In the context of networks, the primary targets of analysis tasks
are topological structures ranging from a whole network to a single
element. We distinguish between three levels of granularity, sim-
ilar to Ahn et al. [APS13]: network, subnetwork, and individual
levels. Network-level tasks focus on temporal changes in topology
and attributes of the entire network. Subnetwork-level tasks focus
on the evolution of groups, such as clusters or paths, and the tem-
poral changes in their attributes. Individual-level tasks focus on
a single node or edge in the network. Table 2 gives examples of
DMVN analysis tasks across the different levels of network gran-
ularity along with domain-specific examples from the literature.
At each level of granularity, we categorized tasks into three cate-
gories: change-oriented tasks, search-oriented tasks, and compari-
son-oriented tasks. Change-oriented tasks focus on tasks studying
evolution of the topological structures. Search-oriented tasks focus
on finding topological structures based on certain attribute and tem-
poral patterns. Comparison-oriented tasks focus on tasks compar-
ing topological structures based on attributes or comparing attribute
trend of a topological structure across time steps.

5. Methodology

Our focus is on techniques for visualizing DMVNs. We followed a
systematic approach and retrieved the techniques from an identified
list of references. We started by defining the scope of our study and
then compiled a corpus by manually searching the relevant jour-
nals and conference proceedings as well as references cited in the
collected publications. Next, we analyzed the collected references
by tagging each reference according to the publication type, appli-
cation area, evaluation method, and techniques used for encoding
time, network structure, and attributes.

5.1. Scope

The scope of this study is on the techniques that specifically aim
to visualize both the dynamic and multivariate nature of networks.
We also consider techniques that focus on simplifying the network
structure before visualizing it, through mechanisms such as aggre-
gation and clustering, if they include the techniques for visualizing
the evolution of simplified network structures. There are certain vi-
sualization techniques that address special cases of DMVN visual-
izations (e.g., dynamic tree comparison problems [GGPPS13] and
dynamic graph comparison problems [YDK∗18]). Such specializa-
tions are not in the scope of this study.

5.2. Corpus

We began our data collection process by identifying candidate pa-
pers from the journals and conference proceedings shown in Table
3. We collected all the papers published in the past decade (2011–
2021), by manually scanning the title and abstract of each publi-
cation. This process led to an initial collection of 78 papers. Next,
we filtered out the papers that focused on either dynamic networks
or multivariate networks alone, which generated a new set of 52

Table 3: List of Journals and Conferences used for collecting our
corpus.

Type Name

Journals
Computer Graphics Forum
IEEE Transactions on Visualization and Computer Graphics
Information Visualization

Conferences

ACM Conference on Human Factors in Computing Systems (CHI)
Eurographics Conference on Visualization (EuroVis)
IEEE Visualization Conference (VIS)
IEEE Pacific Visualization Symposium (PacificVis)
International Conference on Advanced Visual Interfaces (AVI)

Figure 3: Number of publications on DMVNs per year in our cor-
pus. White bars indicate total number of publications per year and
colored bars represent the counts by type.

papers. We then expanded our corpus using the references cited in
the candidate papers and the publications that cited the candidate
papers according to Google Scholar. The final step resulted in a
corpus of 104 papers.

5.3. Data Analysis

Our data analysis had two rounds of codings to organize the litera-
ture, as described by Nobre et al. [NMSL19]. In the first round, we
focused on the general characteristics of papers — publication year,
application area, and evaluation type. Evaluation type was coded
using a fixed set of tags (see Table 4) whereas application area was
left more open-ended. In the second round, we focused on paper
type and the visual encodings used in the proposed techniques, and
focused primarily on tagging instead of strict categories so that we
could flexibly assign multiple tags to each paper. Here, we only
used a subset of publications to derive a reasonable number of tags.
Next, we consolidated the tags by merging the similar ones to get a
final set of tags to use for the rest of the publications, and grouped
the tags into meaningful categories. Finally, we used the categories
to organize the design space and present the overview.

Table 4 shows the categories, final set of tags used in each cat-
egory, and their descriptions. The publication type is mainly used
for differentiating the collected publications. We distinguish among
3 types: Technique papers are the basis for our taxonomy as they
form the set of novel visualization approaches. Publications tagged
as application are used to give the overview of the DMVN appli-
cations (Section 7). Publications tagged as evaluation are used to
discuss the evaluation approaches employed for DMVN techniques
(Section 8). Figure 3 shows the breakdown of the corpus by publi-
cation year with color coded by publication type.
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Table 4: Categories and tags used for analyzing the corpus along
with the descriptions.

Category Description

Ye
ar year publication year of the paper

Ty
pe

application application of a DMVN visualization to a specific scenario
evaluation evaluation of DMVN visualization techniques through studies
technique novel visualization technique

A
pp

lic
at

io
n

A
re

a

biology biological applications, e.g., protein interactions
business applications using business data, e.g., transactions and stocks

communication applications of communication networks
document collections applications, e.g., interactions between text documents

security security network applications, e.g., hacking networks
social networks social network applications, e.g., collaboration networks

software engineering applications studying evolution of software components
sports applications analyzing sports data

transportation transportation networks, e.g., flight routes
other all other applications including generalized approaches

E
va

lu
at

io
n

Ty
pe

use case informal demonstration of usage with examples
case study evaluation involving domain experts’ usage and feedback
user study formal study with users, reports quantitative results

survey special report on broad survey of related field

theoretical
arguments based on visualization principles and comparisons with
similar and popular tools

algorithmic using algorithmic metrics, e.g., performance

To
po

lo
gy

node-link structure encoded using node-link diagrams
matrix structure encoded using adjacency matrices

list view structure encoded using adjacency lists or list views
hybrid structure encoded using combination of node-link, matrix, and list

Te
m

po
ra

l

one time slice sequentially presenting one time step after the other
multiple time slices presenting multiple time steps by mapping time to space
embedded timeline embedding the timeline into the structure of the network

A
tt

ri
bu

te
s

juxtaposed marks juxtaposing attributes in a separate view from the network structure
nested marks encoding attributes on the visual elements of the network

attribute-driven layouts integrating attributes in to the network structure to create the layout

6. Design Space of Dynamic Multivariate Networks

There are many techniques for visualizing DMVNs. Specifically,
our corpus has 76 publications that proposed DMVN visualiza-
tion techniques. To structurally organize the techniques, we classify
them along three dimensions: temporal encoding that deals with
encoding the temporal changes; topology encoding that regards en-
coding the network structure; and attribute encoding that considers
encoding the attributes of nodes and/or edges in the network.

Each technique discussed in this section can be described by se-
lecting at least one approach from each of the three dimensions.
Hence, we first provide a brief description of each dimension, along
with their associated subcategories. Then, we present the taxonomy
by classifying the works that are at the intersection of approaches
from the three dimensions.

6.1. Temporal Encoding

Temporal encoding is the key aspect of DMVN visualization tech-
niques. While there are other aspects (i.e., topology and attributes),
encoding temporal changes is the distinguishing characteristic of
DMVN visualizations compared to static network visualizations.
Temporal changes can be encoded by mapping time to time or
to space. Beck et al. [BBDW17] categorized techniques that map

(a) Single time step (b) Multiple time steps (c) Embedded timeline

Figure 4: Temporal encoding approaches.

time to time visually as animation-based techniques and those that
map time to space as timeline-based techniques. The timeline-based
techniques are more generic and can be further subclassified based
on whether the timeline is clearly separated or completely embed-
ded into the network structure. Hence, we classify the temporal en-
coding dimension into three subcategories: single time step, multi-
ple time steps, and embedded timeline. Figure 4 shows an illustra-
tion of them. Single time step approaches present users with only
one time step at a time. They primarily use transition techniques
(e.g., animations and interpolations) to allow users to follow the
changes between time steps. Multiple time steps approaches present
users with multiple time steps arranged in a readable manner. The
approaches in the embedded timeline embed the time dimension
into the network structure and present one single aggregated net-
work visualization. Thus, encoding temporal changes in this cate-
gory is tightly coupled with technique used for topology encoding.
More detailed discussion is provided in Section 6.4.3.

6.2. Topology Encoding

The key challenge of topology encoding is how to show the rela-
tions among nodes in a readable manner. The underlying network
structure is the primary deciding factor in choosing the encoding
technique [VLKS∗11]. We distinguish among three approaches for
encoding topology: node-link diagrams, matrices, and list views.
As shown in Figure 1, node-link diagrams represent entities in the
network using nodes and relationships using links; matrices use
rows and columns to show entities and cells to encode relationships
(i.e., bipartite relations [SNR14,FSB∗13]); list views use nodes and
links but arrange nodes along parallel axes. Topology encoding is
a major research focus in static graph visualizations. In the litera-
ture, list view based representations (Figure 1d) are considered as
node-link diagrams, but we categorized them separately because
they are independent of the layout algorithms, structurally organize
the space for nodes and edges, and support more granular tasks.

6.3. Attribute Encoding

The key challenge of attribute encoding is how to show attributes
associated with nodes and/or edges of the network. This can be con-
sidered as designing related multiple-view visualizations [SNK∗21,
SSAZ21, SKAS22]. Javed and Elmqvist [JE12] proposed generic
approaches for organizing multiple coordinated views, which have
five categories: juxtaposition, superimposition, overloading, nest-
ing, and integration. In the context of DMVNs and based on the
tags in our corpus, we distinguish between three approaches for
encoding attributes: juxtaposed marks, nested marks, and attribute-
driven layouts.

Juxtaposed marks (Figure 5a) use a separate view to show at-
tribute data of the network. Nested marks (Figure 5b) use the
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Table 5: Overview of the taxonomy of DMVN visualization techniques along with illustrations of the categories.

Single time step Multiple time steps Embedded timeline

Juxtaposed marks Nested marks Juxtaposed marks Nested marks Attribute-driven layouts Nested marks Attribute-driven layouts

Node-Link

Matrix

List view

(a) Juxtaposed marks (b) Nested marks (c) Attribute-driven layout

Figure 5: Attribute encoding approaches.

on-node/on-edge encoding approach discussed by Nobre et al.
[NMSL19]. In this approach, the visual appearance of the nodes
and/or edges are modified either by using visual channels (e.g., size
and color), or by embedding glyphs. In the last approach, attribute-
driven layouts (Figure 5c), attributes may not be visualized explic-
itly but they are implicitly used to compute the network layout. For
instance, node positions in the network layout may be calculated
based on attribute similarity, or nodes with similar attributes may
be grouped to reduce the network size.

6.4. Taxonomy

We present a hierarchical taxonomy, with three levels, to organize
the categories. The first level, using Roman numerals, shows sub-
categories in temporal encoding techniques; the second level, rep-
resented by lower case alphabets, shows topology encoding tech-
niques; and the third level, represented by numbers, shows attribute
encoding techniques. Table 5 gives an overview of the categories in
the proposed taxonomy along with illustrations. For the reminder
of this section, we provide a description of the categories and tech-
niques at the intersection of the subcategories for each dimension.

6.4.1. I. Single time step

In this category, time steps in the data are
mapped to time in the visualization (i.e., time
steps are dynamically presented by replacing
the current time step with the next one in se-
quence). These techniques allow users to see a snapshot of the

(a) automated (b) interactive

Figure 6: Navigation mechanisms in ‘single time step’ approaches.

network at one time step only, at any given point of time. Figure
6 shows two time navigation mechanisms employed by the ap-
proaches in this category: automated navigation and interactive se-
lection. Automated navigation mechanisms use play/pause buttons
to start/stop the animation between the time steps while allowing
the transitions by one time step at a time. On the other hand, in-
teractive selection mechanisms give more finer control to users by
allowing them to quickly move to a time step of interest.

6.4.1.1. I.a Node-link diagrams: Node-link diagrams provide in-
tuitive layouts for visualizing networks. However, special care must
be given to readability and to computational aspects of the lay-
outs, as these can, and do, become unstable when the structure of
the network changes. If the changes are not minimal during tran-
sitions, maintaining a user’s mental model becomes difficult (i.e.,
requires the user to remember previous time steps rather than focus
on the transitions). Hence, existing works to date focus on complex
computations involved in developing layouts that can adapt to the
network structure with minimal changes during time step transi-
tions. The first network layout adaption algorithm was introduced
by Misue et al. [MELS95]. Later, Frishman and Tal [FT08] im-
proved adaptive-force-directed layouts by using a fast, GPU-based
algorithm. Another set of approaches tried to preserve node po-
sitions across the whole timeline [DGK00] or define initial node
placement strategy to minimize transitions [HMHU13]. Sorger et
al. [SWKA19] explored ad hoc immersive visual analytics ap-
proaches for dynamic networks using 3D force-directed layouts in
virtual reality headsets.
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(a)

(b)

Figure 7: Examples of encoding network structure and attributes
with a single time step approach. (a) Segue uses interactive timeline
to choose a time step and multiple juxtaposed views for network
structure and attributes [LWB18]. (b) Encoding few attributes on
nodes and edges using color and size visual channels [ABPdO12].

I.a.1 Juxtaposed marks (Single time step
+ Node-link): Encoding of topology and
temporal changes in DMVNs restrict the pos-
sibilities for showing attributes using visual
channels on nodes and links in network layouts. Using a juxtaposed
view for attributes and employing mechanisms to coordinate inter-
actions between the views offers a good alternative approach. Ahn
et al. [ATMS∗11] created NodeXL as an extension to spreadsheet
software, supporting dedicated views for dynamic network topol-
ogy and node attributes. Law et al. [LWB18] studied spatial layouts
and created Seque (Figure 7a) where attributes representing differ-
ent events in the whole sequence are presented in a juxtaposed view.

I.a.2 Nested marks (Single time step
+ Node-link): In this category, typical ap-
proaches to encode attributes use available vi-
sual channels on nodes and/or links. As it is
already difficult to follow the changes in topology due to the anima-
tion, encoding diverse attributes using complex markers on nodes
and/or edges increases the user’s cognitive load and makes the visu-
alization more challenging to understand. For nodes, using shapes
for categorical attributes, size for numerical attributes, and color

for both numerical and categorical attributes are common practices.
Feng et al. [FWSL11] use color to encode node importance, Alen-
car et al.’s Time-Aware visualization [ABPdO12] technique uses
color to encode temporal attributes on nodes in the supergraph (Fig-
ure 7b), and Portenoy & West [PW16] use both color and size of
nodes to encode domain specific attributes on nodes. For edges, us-
ing width for numerical attributes, and color for numerical and cat-
egorical attributes are common choices. Hurter et al. [HEF∗13] use
color to encode dynamics in the numerical attributes on edge bun-
dles. Few works use markers to embed more attribute information
on nodes. For example, Abello et al. [AHSS13] designed marks
to encode both size and density of a subnetwork and embedded it
in aggregated nodes to represent the overview of the corresponding
subnetworks. Extra care must be taken in designing approaches that
use visual channels to emphasize topology changes. For instance,
color is used during transitions to highlight the new nodes/edges
being added to the network and existing nodes/edges being deleted
from the network [FT08, HMHU13, CSW21].

6.4.1.2. I.b Matrices: While always theoretically possible, using
matrix diagrams for laying out network topology in conjunction
with animated transitions is a relatively recent practice. Rufiange
& Melançon [RM14] created AniMatrix by animating matrix rep-
resentations of network snapshots in time. They studied software
evolution by using staged transitions that show changes related to
various types of entities and relationships in a certain order that
help in preserving a user’s mental map.

I.b.1 Nested marks (Single time step
+ Matrix): Color coding matrix cells, row
headers, and column headers is heavily used
by Rufiange & Melançon [RM14] in the An-
iMatrix. Temporal changes in topology such as addition (progress-
ing from gray to green) and deletion (progressing from gray to red)
of relationships are emphasized using color transitions in matrix
cells. Domain-specific attribute information (e.g., software compo-
nent types) is encoded on row and column headers.

6.4.1.3. I.c List views: A list view is another type of node-link
diagram but the arrangement of the nodes and links are more sys-
tematic than traditional layouts (e.g., a force-directed layout). Typ-
ically, in a list view, all the partitions of nodes in the network are
arranged along one axis and the nodes in each partition along an-
other axis. This organized layout helps in improving the readabil-
ity of dynamics in the network structure by easily maintaining the
node positions during transitions [SMNR15, ZSCC20]. List views
have become increasingly popular in network visualization com-
pared to other layout approaches. Clyde et al. [CKS∗21] created
ChemoGraph using list views for visualizing chemical networks.
In ChemoGraph, the transitions are triggered by user actions, lead-
ing to the dynamic expansion of the network by adding new nodes
and edges.

I.c.1 Nested marks (Single time step +
List view): List views has the ability to seg-
regate space for visualizing nodes and edges
in the network. This arrangement eliminates
occlusion from overlapping nodes and also reduces clutter due to
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(a) small multiples (b) Radial (c) New dimension (d) Integration

Figure 8: Approaches for arranging multiple time steps.

edges crossing over nodes, thus allowing the usage of marks to en-
code both complex and more attributes, especially on nodes. In
ChemoGraph [CKS∗21], the glyph design facilitates encoding of
chemical structure of a compound along with various numerical at-
tributes on a node in the network.

6.4.2. II. Multiple time steps

In this category, time steps are mapped to space (i.e., multiple time
steps are statically presented together by arranging them in a read-
able manner). Hence, these techniques offer better overviews of the
temporal changes and help in comparing different time steps. How-
ever, due to the limited space for each time step, visual scalability
is the main challenge to multiple time steps approaches. Figure 8
illustrates four common approaches used in the existing works for
arranging time steps along a timeline.

6.4.2.1. II.a Node-link diagrams: A simple approach presented
by Ahmed et al. [AFH∗09] uses a radial layout (Figure 8b) for jux-
taposing time steps. Node-link diagrams suffer from clutter even
with networks of moderate size. Using domain-specific informa-
tion in designing node-link layouts help in such scenarios. Cere-
bral [BMGK08] follows a small-multiples approach (Figure 8a)
where each snapshot uses an optimized node-link layout by using
vertical position to facet nodes as per the positions of their mem-
branes. Liu et al. [LHS∗15] created a fast and constrained graph
layout algorithm to simplify the topology in each time step. In Mo-
bilityGraphs [VLBR∗15], Von Landesberger et al. uses a calendar
view for juxtaposing node-link diagrams where representation of
each time step is optimized by using graph-based spatial clustering
to control the visual clutter. Bach et al. [BKH∗16] created graph
comics, combining comics and node-link diagrams, to present tem-
poral changes in networks. Their studies prove that graph comics
are useful for reaching wider audiences due to their expressiveness.
Pham et al. [PND∗20] use force-directed layout for each time step
while restricting horizontal position to represent time. This force-
directed layout arranges nodes in the vertical orientation resulting
in a compact view that visually highlights temporal trends.

Itoh & Akaishi [IA12] follow a 3D approach (Figure 8c) by visu-
alizing each time step as a node-link diagram on a 2D plane while
the 2D planes are placed along a third dimension. Users can inter-
actively drag the 2D plane along the time dimension to visualize the
changes in the network. Gohnert et al. [GZD∗15] followed a similar
approach but instead of interactively allowing a user to drag the 2D
plane to present the structure in the time step, all the time steps are
presented statically while maintaining the node positions across the
time steps. Gohnert et al. also used straight lines to connect nodes
along the time dimension to easily track a node’s lifeline.

Integrating time using explicit links across time steps (Figure

(a)

(b)

Figure 9: Examples of juxtaposed attribute views on multiple time
steps of node-link diagrams. (a) Cerebral using domain informa-
tion to drive the layout in each time step with a juxtaposed parallel
coordinates view for attributes [BMGK08]. (b) Juxtaposed pixel
display to encode temporal changes in attributes [BBS∗20].

8d) is also studied in the existing works. Cui et al. [CWL∗10] em-
ployed a summarizing approach where they used information en-
tropy measures to estimate each time step and plot it on a time-
series line plot. Time steps of interest can be visualized in detail us-
ing an optimized force-directed layout in the form of a word cloud.
EgoSlider [WPZ∗15] and DyEgoVis [FMW∗21] visualize projec-
tions of ego networks in each time step and integrate them to study
the distribution and evolution of similar ego networks.

II.a.1 Juxtaposed marks (Multiple time
steps + Node-link): Multiple time step ap-
proaches already use a majority of the avail-
able space for encoding time step sequences.
On top of that, juxtaposing attributes in separate coordinated views
is highly challenging and add to existing visual scalability issues.
Prior works show that combining a small-multiples arrangement
of time steps with juxtaposed attributes works well with a limited
number of time steps and compact visualizations for attribute en-
coding. Cerebral [BMGK08] (Figure 9a) uses a juxtaposed parallel-
coordinates view to show associated attributes. Boz et al. [BBS∗20]
(Figure 9b) use a juxtaposed pixel display to present both domain
and network attributes. Fu et al. [FMW∗21] use multiple juxta-
posed views to emphasize various network attributes of ego net-
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Figure 10: Examples of nested attributes on multiple time steps of
node-link diagrams. (a) Time steps are arranged along a third di-
mension and attributes are encoded with color and size visual chan-
nels on nodes and edges [GZD∗15]. (b) [HZL∗16] & (c) [LHS∗15]
Simple markers are embedded on nodes to encode attributes.

works and their evolution. One juxtaposed view encodes similari-
ties between ego networks per time step and another encodes evo-
lution states of an ego network. Cui et al. [CWL∗10] represents
each time step using a word cloud, where color is used to encode
the appearing behavior and importance of words.

II.a.2 Nested marks (Multiple time steps
+ Node-link): Multiple time steps with em-
bedded marks for encoding attributes is one
of the most highly used categories of DMVN
visualization techniques. Ahmed et al. [AFH∗09] encode images on
nodes to present the country the node represents, and size to encode
network attributes (e.g., centrality). Egonetcloud [LHS∗15] (Figure
10c) and MENA [HZL∗16] (Figure 10b) use a combination of vi-
sual properties and simple glyphs to represent various data and net-
work attributes. DualNetView [PND∗20] embed glyph inside nodes
to encode multiple data attributes. Itoh & Akaishi’s [IA12] and
Gohnert et al.’s [GZD∗15] (Figure 10a) 3D approach also encode
multiple attributes on nodes and edges using visual properties (e.g.,
color and size on nodes; and color, width, and length on edges).

II.a.3 Attribute-driven layouts (Multi-
ple time steps + Node-link): For large net-
works, traditional node-link layouts are not
effective due to visual clutter. To address such scalability issues,
aggregating nodes and links based on topology is a commonly used
approach. In DMVNs, attributes also play an important role. Hence,
aggregating nodes based on both structural and attribute similari-
ties [ZCY09] helps in designing effective layouts. Instead of using
raw attribute values to encode on nodes and edges, several stud-
ies proposed using them to drive the layout creation and simplify
the visual representation [VLBR∗15,SLC∗17]. Xu et al. [XTYL18]
proposed node embeddings to capture syntactic and semantic infor-
mation in large texts to represent nodes in a vector space.

6.4.2.2. II.b Matrices: Matrices offer more strict layouts and are
less flexible than node-link diagrams. However, due to their ad-
vantages in providing readable visualizations for dense and large
networks, prior works use them to design new visualization tech-
niques for DMVNs. A straightforward approach is to use a small-
multiples arrangement of time steps (Figure 8a) where each time
step is represented by a matrix [ZGC∗16, ZSCC19]. With the in-
crease in network size and number of time steps, this technique
quickly gets ineffective due to limited space. Hence, advanced tech-
niques to radially juxtapose the matrices (Figure 8b) are intro-
duced [BD08, BHW11, VBSW13]. Bach et al. [BPF14] proposed
a 3D approach and designed Matrix Cube. In Matrix Cube, each
time step is represented as an adjacency matrix and the matrices are
stacked along a third dimension (Figure 8c) to create a cube repre-
sentation. Following the same space-time cube metaphor, Schnei-
der et al. [STSB16] created CuboidMatrix. Another way to arrange
multiple time steps is to integrate multiple time steps with explicit
links to connect same entities across time steps (Figure 8d). Vehlow
et al. [VBW15] proposed a novel technique called matrix of adja-
cency matrices where the timeline of an entity is emphasized via
flow lines connecting time steps.

II.b.1 Juxtaposed marks (Multiple time
steps + Matrix): NetVisia [GGK∗11] uses
heat maps to display node attribute changes
over time. Instead of representing network
structure, each time step shows the distribution of attribute val-
ues (Figure 11a). The small-multiples view of multiple time steps
shows the changes in the distribution. To improve the readability
with large datasets, NetVisia uses attribute-based clustering to ag-
gregate similar entities. Juxtaposed tables from two different time
steps are used to compare time steps of interest.

II.b.2 Nested marks (Multiple time steps
+ Matrix): Small-multiples arrangements of
time steps limits the available space for em-
bedding enriched marks into matrix cells, so
encoding complex attributes is challenging. Existing approaches in
the corpus rely on color coding and hence are limited in the number
of attributes they can encode [BD08, BHW11, VBSW13, ZGC∗16]
(Figure 11b). Vehlow et al. [VBW15] integrated multiple time steps
while using different colors to highlight hierarchy among groups
of entities, changes in network structure, and similarity metrics be-
tween different groupings across time steps (Figure 11c). The cells
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Figure 11: Examples of attribute encoding on multiple time steps of
matrices. (a) Juxtaposed previews of attribute changes using com-
pact pixel displays [GGK∗11]. (b) Time Radar Trees with radial ar-
rangement of time steps while using color to encode edge attributes
inside cells [BD08]. (c) Integrating time steps using explicit flow
lines to track the timeline while matrix cells encode edge attributes
using color [VBW15].

in Matrix Cube [BPF14] and CuboidMatrix [STSB16] are 3D cubes
whose color and size are used to encode edge attributes in the data.

6.4.2.3. II.c List views: In a list view, nodes are placed along one
dimension. This makes small-multiples arrangements of time steps
(Figure 8a) easy and creates a compact visualization of a DMVN.
Burch et al. [BVB∗11] created parallel edge splatting as a scalable
technique for dynamic networks. Nodes are arranged vertically as
lists in parallel axes, and edges are splatted. Edges in each time step
are encoded between consecutive pairs of parallel axes. John et al.
[JSS∗13] also employed list views for chemical reaction networks.
The reactions are shown on a timeline and user-selected time steps
are represented as bipartite networks using list views. Linhares et
al. [LTPR17] studied approaches to visually highlight different as-
pects of network evolution—arranging nodes based on frequency of
connections in time and revealing node activity over time using a
temporal activity map. Their approaches align the nodes in the net-
work across time steps to follow their timelines easily. Valdivia et
al. [VBP∗19] created a visualization of dynamic hypergraphs based
on a novel approach called Parallel Aggregated Ordered Hyper-
graph, where nodes are represented using parallel horizontal bars
and hyperedges using vertical lines. Riegler et al. [RWDHP19] con-
ducted a study to evaluate effectiveness of list views for dynamic
networks using a small dynamic call graph.

List views are intuitive to integrate time (Figure 8d) using ex-
plicit links in the layout due to the linear arrangement of nodes.
This arrangement allows easy tracking of the lifetime of each entity,
so it is ideal for egocentric analysis tasks. Sven [AB14] and DM-
NEVis [PTLZ18] use list views to explicitly represent the timeline
of individual entities using horizontal lines. Reda et al. [RTJ∗11] in-
troduced a technique, applying a time series metaphor, where time

Figure 12: DMNEVis showing multiple juxtaposed views encoding
various domain and structural attributes. Node-link view shows su-
pergraph across all time steps while list views present ego networks
of selected egos. [PTLZ18].

is encoded along the horizontal axis and individual entities are po-
sitioned along the vertical axis. The vertical position of nodes is
based on the communities in each time step. This generates a com-
pact representation highlighting when communities are disbanding
and when new entities are joining a community. Van den Elzen
et al. [vdEHBvW13] proposed Extended Massive Sequence Views,
where nodes are put in vertical lists arranged along a timeline. Par-
allel vertical lines are used to reduce clutter while showing edges.
To make the visualization further compact, they extended the work
to create Circular Massive Sequence Views [vdEHBvW13]. Dang
et al.’s TimeArcs [DPF16] draws on force-directed layouts and adds
additional forces to maintain the same vertical position for entities
of the same type, pull vertices horizontally based on the time step,
and maintain close proximity vertically for nodes forming clusters.

II.c.1 Juxtaposed marks (Multiple time
steps + List view): Peng et al. [PTLZ18]
created DMNEVis to study evolution of ego
networks in DMVNs. DMNEVis supports
multiple juxtaposed views to encode attributes of interest and high-
light their temporal changes (Figure 12). Stoiber et al. [SRG∗19]
conducted a design study and created netflower focusing on under-
standing quantitative flows in dynamic networks. In netflower, a
sankey diagram is used to present the network structure at a given
time step, while the nodes are juxtaposed by visualizations that
highlight temporal changes in multiple node attributes.

II.c.2 Nested marks (Multiple time steps
+ List view): List views organize the space
into two parts, one for nodes and the other
for edges, so that it is possible to encode at-
tributes on both nodes and edges without worrying about overlap.
In parallel edge splatting [BVB∗11], edges are color coded with
attribute data. Many existing techniques depend on color to encode
node attributes [WCPB12, DPF16, LTPR17, VBP∗19, WSM∗18]
and edge attributes [RTJ∗11, AB14, ZGC∗16, PXN∗19, SKZ∗19].
Several techniques also use markers designed to encode more and
diverse attributes [WPZ∗15]. Nguyen et al. [NHC∗20] embed radar
charts on nodes in the network to encode 8 numerical attributes
(Figure 13b).
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(a)

(b)

Figure 13: Examples of nested attributes on multiple time steps
using list views. (a) SVEN uses story line visualizations with at-
tributes encoded by color [AB14]. (b) RadarViewer uses radar
charts to encode 8 numerical attributes on nodes in the list view
[NHC∗20].

6.4.3. III. Embedded timeline

In the embedded timeline category, ap-
proaches embed the temporal changes within
the existing visual elements used for the net-
work structure. This makes them rely heav-

ily on the topology encoding techniques. For instance, small time-
series charts or other marks can be designed to track temporal
changes and encode them on the network elements (e.g., cells in
case of matrices, nodes and edges in case of node-link diagrams
and list views). Thus, techniques in this category focus on showing
a timeline of individual entities and their relations in a DMVN.

6.4.3.1. III.a Node-link diagrams: The existing approaches to
embed temporal changes in the structure using node-link diagrams
include embedding representative marks on the visual elements of
the network. Multiple encodings have been designed by customiz-
ing these marks for some specific data types and tasks to address
the challenges in showing changes in structure and attributes to-

(a) on-node encoding (b) on-edge encoding

Figure 14: Techniques for embedding temporal changes in node-
link diagrams.

(a) (b)

Figure 15: Embedding temporal changes into the network struc-
ture. (a) Kiviat graph of 7 components in the Mozilla web browser
across 7 versions where each component encodes 20 metrics per
version [PGFL05]. (b) Link segmentation algorithm to divide an
edge into segments based on time steps while each segment encodes
multiple edge attributes [LL16].

gether. Figure 14 shows two common approaches: On-node encod-
ing [PGFL05, APBG19] and On-edge encoding [LL16].

III.a.1 Nested marks (Embedded time-
line + Node-link): The key challenge of this
category of approaches is resolving the con-
flicts between embedded encodings used for
capturing changes in both the network structure and attributes.
Prinzger et al. [PGFL05] introduced the Kiviat graph (Figure 15a)
inspired by the design of radar charts. Kiviat graphs can encode
multiple attributes on nodes while integrating multiple releases of
software into a single compact visualization. Li & Liao’s [LL16]
representation uses edges in the network to embed both the struc-
tural and attribute changes with time (Figure 15b). Each edge is
divided into k segments, where k is the number of time steps. Each
segment is further divided to encode categorical or numerical at-
tributes of the relation. If an edge is not present in a time step ti, the
ith segment of the edge will be grayed out. Alexandru et al.’s Evo-
Clocks [APBG19] also uses a glyph to embed multiple attributes on
nodes in the DMVN representing evolution of a project software.

III.a.2 Attribute driven layouts (Embed-
ded timeline + Node-link): Hadlak et al.
[HSCW13] use trends in temporal attributes
of nodes in the network to group the entities
with similar trends and visualize large DMVNs. Each group in the
aggregated network is revealed as a node and edges reflect the con-
nections between the groups. Each node is also embedded with a
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(a) Bar chart (b) Gestalt lines (c) Pixel-based (d) Time series

Figure 16: Techniques for embedding temporal changes in matrix
cells.

(a) (b)

Figure 17: Embedding temporal changes into the network struc-
ture. (a) Gestaltmatrix shows evolution of group structures and
rankings over 15 time steps [BN11]. (b) Time aligned edge plots
presents the dynamics in a software call graph of an open source
Java software using a link segmentation algorithm [ALHW20].

small time-series chart highlighting the temporal trend of the group.
Alexandru et al. [APBG19] use hierarchies present in the software
components to drive the node positions in the network layout.

6.4.3.2. III.b Matrices: With a structured layout, matrices offer
better ways to embed the timelines of both structure and attributes
inside the cells. Existing approaches include bar charts (Figure
16a), gestalt lines (Figure 16b), pixel-oriented visualizations (Fig-
ure 16c), and time-series plots (Figure 16d). The marks along the
diagonal reveal temporal changes in a node attribute, and the marks
in remaining cells represent temporal changes in the relationships
between the corresponding entities.

III.b.1 Nested marks (Embedded timeline +
Matrix): Stein et al. investigated pixel-oriented
visualizations to embed timelines into matrix cells
[SWS10]. TimeMatrix [YEL10] and Burch et al.’s
[BSW13] techniques use bar charts in matrix cells.
TimeMatrix allows dynamic aggregation of nodes to show aggre-
gated timelines and improves the readability of overviews. Brandes
& Nick [BN11] designed gestaltmatrix (Figure 17a), where each
matrix cell is encoded using gestaltlines. Gestaltlines are created
by combining Tufte’s Sparklines [Tuf06] with Gestalt principles;
and they can encode attributes using visual channels such as color,
orientation, length, and thickness.

6.4.3.3. III.c List views: List views can also embed timelines
on edges using link-segmentation-based algorithms, while this has
only been tried recently. Similar to edge-based encodings in node-
link diagrams, time-aligned edge plots [ALHW20] use a time- and

edge-scalable visualization technique to segment each edge for en-
coding temporal changes.

III.c.1 Nested marks (Embedded time-
line + List view): In time-aligned edge plots
[ALHW20] (Figure 17b), the relationship be-
tween two nodes over a period of time is en-
coded on a single line using segments. Each segment is color coded
to show an edge attribute during the corresponding time step. Each
segment can be further divided to encode multiple edge attributes.

7. Applications

DMVN applications span across diverse domains. Our corpus in-
clude areas such as document collections [WSL∗18], transporta-
tion [KAW∗14, SGB19], and security [HL12], but the majority are
from social networks, biology, and software engineering (Figure
18). In this section, we briefly discuss DMVN visualizations across
three major application domains using examples from the collected
literature. We do not claim that our work is a comprehensive review
of the domains and applications of DMVNs, as the range of con-
ferences and journals covering representative examples from the
published work is too broad for the scope of this paper.

7.1. Social Networks

Social network data is prevalent in today’s world due to the increas-
ing popularity of digital communications and social media. The in-
creasing availability and popularity of the digital world makes so-
cial network data highly dynamic. An important aspect of social
network analysis (SNA) is to analyze the structural properties and
attributes of the network to identify the interaction patterns among
actors [WF∗94, CM11]. The challenge in the case of DMVNs is
that the visualization techniques should capture the network struc-
ture and attributes as well as the dynamics. Initial applications of
DMVN visualizations leverage transition techniques to encode dy-
namic nature using node-link diagrams [MMBd05, BdM06]. Sev-
eral applications of DMVNs in social networks that were studied in
the literature include visualizing dynamics in online communities
[ATMS∗11], evolving collaborations in co-authorship networks
[BCD∗10, LZH∗17, ZSC∗21], and co-citation networks [Che06].
Due to the large number of attributes (i.e., attributes in the data and
those derived from SNA algorithms), DMVN visualizations often
combine juxtaposed marks and nested marks. For instance, TMN-
Vis [LZH∗17] uses multiple coordinated views for showing differ-
ent aspects of the network, where the main view reveals the network
topology with nested attributes and others present different sets of
attributes using juxtaposed marks.

Several systems leverage matrix visualizations to explore large,
locally dense and highly connected DMVNs [SWS10, YEL10]. In
both applications, the network is displayed as an adjacency matrix,
while temporal changes are embedded into cells and headers us-
ing pixel-oriented visualizations in PixelMatrix [SWS10] and bar
charts in TimeMatrix [YEL10]. To support users in exploring the
temporal patterns, they offer interactive features such as semantic
zooming, hierarchical aggregation, and dynamic filters. Due to the
trade-offs between intuitively showing topology using node-link di-
agrams and reducing clutter using matrices for SNA visualizations,
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Figure 18: Number of publications by application area in our cor-
pus.

several DMVN visualizations implemented both approaches and
conducted comparative studies [LAN19, BTBC∗21, NWHL20].

List views partition the space based on the time steps and follow
a flow metaphor to link nodes across time steps using a time line.
This makes it easy to follow the timeline of a node, so they are well-
suited for egocentric network analysis tasks [LZH∗17, PTLZ18].
Nested marks are used to encode the multivariate nature directly on
nodes and edges.

7.2. Physical & Life Sciences

Physical sciences study natural but non-living objects that include
physics, chemistry, and astronomy; while life sciences study living
organisms that include biology and medicine fields. This is another
vast area for DMVNs. Gehlenborg et al. surveyed the applications
in systems biology [GOB∗10] and concluded that node-link dia-
grams dominate visualizations in this field because of their ability
to easily perform path-related tasks while encoding dynamic rela-
tionships. Common examples of applications in this space include
biological networks [SDMW09], evolution of metabolic pathways
[RUK∗10], protein interactions [WPPW14, FH21], and chemical
reaction networks [GV20]. Complex attributes on both nodes and
edges is a common characteristic of these networks, which are typ-
ically encoded using either juxtaposed or nested marks.

Cerebral [BMGK08] uses small-multiples to show the network
at multiple time steps, while attributes are revealed on nodes
with a juxtaposed parallel coordinates plot. Rohrschneider et al.
[RUK∗10] analyze the structure and attributes of dynamic path-
ways by visualizing all time steps in a single view using a node-link
diagram. The nodes are color coded based on their first appearance.
Despite the heavy reliance on node-link layouts, few works also
leveraged matrices. Burch and Diehl [BD08] study the evolution
of dependencies in gene sequences using a radial arrangement to
stack time steps in the data. In MultiPiles, Bach et al. [BHRD∗15]
investigate brain connectivity networks by piling hundreds of time
steps using matrix representation.

7.3. Software Engineering

Dynamic network visualizations were applied to software-related
data to visualize the complex dependencies among software com-
ponents [KLRZ94]. Dynamic call graphs [TV08,BMR∗12], which

describe the dynamics in the control-flow between subroutines in a
program, is one of the main applications in this field. These graphs
comprise many static and dynamic attributes (i.e., component types
and various software quality metrics). For instance, annotated se-
mantic graphs for C++ programs [TV08] use node-link diagrams
and juxtaposed attribute views containing more than 100 different
attribute types.

A software typically involves multiple versions and releases. In
this context, a more generic application is studying the evolution
of software by visualizing the dynamics in the relationships be-
tween modules across different versions. Rufiange and Melancon
[RM14] combined matrix visualization and animations to study the
evolution patterns in software design. There are also other works
that combine node-link diagrams and matrix visualizations. For in-
stance, Burch proposed dynamic graph wall [Bur17] to study the
evolution of call graphs from an open source software system, that
uses multiple visual metaphors. The visualization of a snapshot of
network in time using a suitable representation is based on the spar-
sity of the snapshot. The survey by Archambault et al. [AAK∗14]
gives an overview of DMVN applications in software engineering.

8. Evaluation

The tags used for identifying evaluation techniques that researchers
employ are summarized in Table 4. We tagged all the papers in
our corpus for the evaluation methods using the listed closed set
of tags. We identified that most of the papers are evaluated us-
ing up to two approaches in various scenarios with use cases be-
ing one of them. Overall, our analysis found that use cases (58%)
is a highly employed evaluation method, followed by user studies
(24%), case studies (10%), surveys (8%), algorithmic evaluations
(6%), and theoretical evaluations (4%). While most papers perform
some type of evaluation, some papers focus only on the evaluation
aspect. Our corpus also has few such papers identified using pa-
per type tag (see ‘Evaluation’ category in Figure 3). In this section,
we discuss insights gained from understanding what is being eval-
uated across multiple evaluation studies. In the current literature on
DMVNs, evaluation studies are mainly focused on node-link dia-
grams [AP12,FM16,LAN20], while very few studied matrix-based
visualizations [VABK20] and compared both techniques [FAM21].
List views are not yet evaluated for their effectiveness in visual ex-
ploration and analysis of DMVNs.

8.1. Use cases

Use cases are considered a lightweight evaluation technique. Pa-
pers in our corpus mainly used them for walking through exam-
ples on how a visualization technique or a tool can be used. When
a novel technique is introduced, it is easy to explain the useful-
ness of the technique with the help of well-known datasets in the
visualization community such as interactions between characters
in Les Miserables, movies and their actors, and collaboration and
co-citation networks from popular conferences. Also, these readily
available datasets do not require extensive domain knowledge. In
our corpus, 73% percent of application papers and 66% of tech-
nique papers rely on use cases for the evaluation. We believe their
heavy usage is likely due to the simplicity and easy management in
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conducting the studies using existing real-world datasets. A major
disadvantage with use cases is the identification of proper datasets
that can demonstrate the diverse applicability, complexity, and scal-
ability of the technique.

8.2. User studies

While different evaluation methods provide different insights into
the proposed techniques and tools, evaluation of the usability re-
quires users. User studies allow researchers to formulate specific
research questions and recruit users from diverse backgrounds to
use the tool and understand from their experience. These studies
help in quantitative assessment of the proposed technique either by
comparing it with existing techniques or by changing the parame-
ters to study different aspects of a single technique. While conduct-
ing user studies is complex, they are popular because of their ability
to bring diverse perspectives into the evaluation and usually result
in quantitative metrics. We observed that completion time and error
rate are the most widely used metrics for quantitative assessment.

Preserving mental map is considered the most important factor
for the techniques under Single time step category. Many studies
were conducted to study the importance of mental map preservation
on task performance [AP12]. They categorized the tasks in these
studies into readability tasks (i.e., reading the structural information
in a graph) and memorability tasks (i.e., remembering the structural
dynamics in a graph). Interestingly, among the two studies con-
ducted by Archambault and Purchase, one did not find significance
of mental map preservation on task performance [AP12], while the
other claims that preserving mental map resulted in a significantly
faster and accurate response for path-related tasks [AP13]. This in-
dicates that the aspect of mental map relies on the tasks used for
a study. Also, these studies focused only on temporal and topol-
ogy aspects of DMVNs. Specifically, they studied effectiveness of
node-link visualizations for showing dynamics in topology without
considering alternative layouts and multivariate nature of networks.

Another key idea driving the majority of the evaluation studies is
comparing different techniques for performing the same tasks, such
as comparing node-link diagrams with matrices [OJK18, FAM21]
and comparing single time step (e.g., animating time steps) with
multiple time steps (e.g., small-multiples arrangements of time
steps) [FM16, LAN20]. While multiple studies proved that node-
link diagrams are preferred for topology-related tasks [OJK18],
Filipov et al. [FAM21] argue that matrix visualizations are pre-
ferred for temporal navigation tasks in terms of completion time, er-
ror rate, and participant preference of technique. When comparing
animation with small multiples, Bach et al. [BPF13] showed that
staged animations reduce the error rate significantly with a slight
increase in time, especially for tasks related to searching nodes and
edges. Another study by Lee et al. [LAN20] claims that animation-
based approaches are better for comparing consecutive time steps
whereas small multiples are better for analyzing distant time steps.

Several specific approaches are also evaluated using user studies.
Zhao et al. [ZGC∗16], evaluated their adjacency matrix approach
with a integrated timeline for egocentric tasks against node-link di-
agrams. They found their approach works better for both temporal
and topology tasks, and for tasks involving focus on an individual

node. Other studies [WPZ∗15, WCB16] show that list-view-based
visualizations with integrated timelines work better than node-link
visualizations regarding completion time and error rate for ex-
ploratory tasks, but no significant difference for navigation tasks.

8.3. Case studies

When a visualization system is designed to address some specific
problem in a scientific domain, collaboration with domain experts
is critical. These systems are generally complex and unique. Case
studies are used in these scenarios to solicit feedback from the do-
main experts as background knowledge in the domain is important
to use these systems. Sometimes these studies generate quantita-
tive metrics but interviewing the experts is the most common pro-
cedure used [SWKA19, SRG∗19, FAS∗20]. For instance, Bach et
al. [BHRD∗15] evaluated their technique of piling matrices in time
in the context of studying brain connectivity data from people with
Parkinson’s disease. The medical experts used the tool for several
days in close collaboration with the authors where various param-
eters in the visualization system are statistically studied for their
practical use.

8.4. Algorithmic evaluations

This is the most technical method for evaluating systems, especially
when novel algorithms are proposed. In case of DMVNs, these are
heavily used for evaluating layout algorithms in node-link visual-
izations [FT08, FWSL11, HMHU13, CSW21] and reordering algo-
rithms in matrix visualizations [CSJ∗20]. Feng et al. [FWSL11]
used GPU implementation of the proposed force-directed layout
algorithm for visualizing dynamic networks and studied various as-
pects of layout stabilization during temporal navigation. Cheong et
al. [CSW21] compared their proposed variant of a force-direct lay-
out to the existing variants for studying different aesthetic criteria
of the resulting node-link visualizations. They showed that the pro-
posed initial positioning method is most effective when visualizing
structural dynamics in the networks.

8.5. Theoretical evaluations

Theoretical evaluations are the most uncommon and challenging
type of evaluation method mainly for two reasons: 1) they require
deep theoretical background in visualization principles; and 2) con-
vincing readers with theoretical arguments is difficult. Hence this
method is usually accompanied by another approach such as a use
case [HEF∗13,SLC∗17]. For instance, Hurter et al. [HEF∗13] stud-
ied the effectiveness of edge bundling in encoding dynamics in rela-
tionships while giving theoretical arguments and practical use cases
using real-world datasets across multiple domains.

9. Recommendations

Here, we present recommendations while designing DMVN visual-
izations. Table 6 summarizes pros and cons with respect to different
categories along each of the three dimensions in our taxonomy.

Our corpus indicates that the multiple time steps category is the
most popular for visualizing DMVNs (Figure 19). This is mainly
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Table 6: Summary of pros and cons corresponding to the techniques along each of the three dimensions in our taxonomy.

Taxonomy Category Pros Cons

Single time step
1. Ideal for comparing consecutive time steps.
2. Good for eye catching presentations.

1. Preserving mental map is challenging
2. Less suitable for exploratory tasks.

Multiple time steps
1. Ideal for comparing distant time steps.
2. Provides whole summary of the dataset.
3. Ideal for exploratory tasks.

1. Visual scalability is a major concern.
2. Difficult to see rate of change across time steps.

Embedded timeline
1. Ideal for generating most compact summary visualizations.
2. Temporal trends between connected entities is evident.

1. Visualizations quickly become overwhelming.

Node-link
1. Highly intuitive for network representation.
2. Effective for path tracing tasks.

1. Unstable layouts.
2. Visual clutter hinders readability.

Matrix 1. Ideal for dense and highly connected networks. 1. Not intuitive for path tracing tasks.

List view
1. Stable layout.
2. Intuitive for tracking timeline of a node across time steps.

1.Poor visual scalability.

Juxtaposed marks
1. Scale well for large networks with many and heterogenous
attribute types.

1. Not ideal for tasks that require focusing on topology and
attributes simultaneously.

Nested marks
1. Easy to understand network for both topology and attributes.
2. Working well for sparse networks.

1. Working only for limited number of attributes.

Attribute driven
layouts

1. Good for presenting attribute trend in the structure.
2. Helps in managing large networks.

1. Using multiple attributes to drive the layout is difficult with
out going into high dimensional techniques.

because of their ability to show multiple time steps at a time while
supporting exploration and analysis via interaction techniques. This
approach suits well if the user tasks involve comparisons across
time steps, especially the ones that are distant in time. Techniques
in single time step category require users to rely on their memory.
This results in navigating back and forth between time steps which
incurs interaction cost [APP10]. However, for comparing consecu-
tive time steps, single time step techniques are preferred as gradual
transitions easily highlight changes. Embedded timeline techniques
are ideal for creating compact visualizations that summarize dy-
namics in a single view.

Static networks are studied extensively for techniques to present
topology, especially node-link and matrices. For DMVNs, node-
link diagrams are most intuitive but the stability of their layouts
pose challenges in understanding the temporal changes, while ma-
trices are still preferred for dense and highly connected networks.
List-view-based visualizations offer both intuitive and highly struc-
tured layouts for networks. Existing studies so far treated list-view-
based network visualizations as node-link diagrams. We catego-
rized them separately because of their ability to be independent of
layout algorithms and better support micro-level tasks that involve
focusing on an individual node, its neighborhood, and timeline.

In general, visualization techniques for DMVNs do not scale
well to large networks. Using attribute driven layouts can be helpful
to either reduce the network size by grouping entities with similar
attributes [HSCW13, VLBR∗15] or by removing visual represen-
tation of attributes and integrating them into the layout [SLC∗17].
Regarding techniques for showing attributes, juxtaposed attributes
scale well to many heterogeneous attributes, but they lack integra-
tion between topology and attributes due to separate views. Nested

attributes help with such integrated tasks, but they do not scale well
due to the availability of limited space.

Overall, multiple time steps techniques using node-link diagrams
or list- view-based visualizations with nested attributes is the most
popular combination used in the literature (Figure 19). While se-
lecting a suitable visualization technique depends on analysis tasks,
the summarized pros and cons of encoding techniques help visual-
ization practitioners identify suitable technique along each dimen-
sion and create usable DMVN visualization tools.

10. Challenges and Future Directions

While significant progress has been made in designing visualiza-
tions for DMVNs, there are still several research challenges to in-
vestigate. Our taxonomy allow us to see the areas that were studied
in detail and those that are still in early stages (Figure 19). Here
we discuss five important open challenges identified based on the
surveyed literature. The challenges and future directions reflect our
opinions, and they partly overlap with prior studies [AAK∗14].

10.1. Visual Scalability

The amount of data displayed should not affect the readability of
the visualizations. One of the key challenges with DMVNs is scal-
ing of the techniques to a large number of time steps and attributes.
Filtering and aggregation are commonly used approaches in this
scenario. Alternatively, this limitation can be avoided by design-
ing visualizations tailored for large displays, which can take advan-
tage of distributed layouts. Designing sophisticated graph layouts
has been a major area of study in static graph visualizations and it
will continue. Researchers created distributed graph visualization
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Figure 19: Number of publications at the intersection of techniques
along the three dimensions in our DMVN taxonomy.

algorithms [MGL06,ADLM18], layouts specialized for visualizing
large-scale networks. Employing these sophisticated techniques for
designing DMVN visualizations is a promising future direction for
improving the scalability.

Prior studies to evaluate scalability of techniques discuss static
and multivariate networks in depth. For instance, node-link and
matrix diagrams are compared extensively for static networks
[OJK18, NWHL20]. Beck et al. [BBD09] argue that for dynamic
networks, number of time steps is crucial for studying scalability.
For DMVNs, we also need to consider the number of attributes to
be encoded as an important factor. To our knowledge, there is still
lack of studies investigating existing DMVN techniques for their
scalability towards number of time steps and attributes.

10.2. Attribute Dimensionality

Existing visualizations can encode a few attributes using visual
properties (e.g., size, shape, and color), while well-designed glyphs
can increase the number. However, DMVNs in many domains have
large number of attributes to encode, especially in software en-
gineering and biology. Using dimensionality reduction techniques
and attribute-based aggregations help in reducing the attribute di-
mensions, but existing techniques still lack the ability to correlate
network structure and attributes while capturing dynamics in both.

10.3. Interactive Visualizations

Interaction is a pervasive element in visualization techniques. Es-
pecially with large DMVNs, it is important to navigate the time di-
mension, manage the network size, and modify the attribute encod-
ings for performing exploratory tasks effectively. Existing systems
apply the interactions available for static and multivariate networks
that allow exploration along utmost two dimensions to DMVNs.
However, DMVNs require focusing on three dimensions, structure,
attributes, and dynamics, simultaneously. This calls for research in
designing advanced interactions that use both structural and tem-
poral properties during navigation.

10.4. Evaluation Studies

User studies measuring accuracy and completion time of user tasks
dominated the literature on DMVNs. Another common measure we
encountered is cognitive load on the user, especially when anima-
tion is involved. These quantitative studies are based on a few low

level user tasks for the specific technique/system being evaluated.
However, in general, the evaluation is still lacking in the context of
generic tasks for DMVNs.

The majority of evaluation approaches focus on node-link visu-
alizations, while a few study matrix visualizations. The suitability
of different DMVN visualization techniques for different tasks still
remains unanswered formally. We need elaborate studies for visu-
alization techniques, interaction, qualitative measures, and bench-
marks for comparison, such as a well-designed study for comparing
node-link diagrams, matrices, and list views, especially for tasks,
which explore temporal dynamics in both topology and attributes.

10.5. Collaborative Analysis

For applying analysis techniques to large-scale datasets across var-
ious domains and solving complex problems, expert collaboration
is necessary [Kee06]. However, DMVN visualizations were not in-
vestigated in the context of collaborative analysis even though their
applications span across diverse domains. Hence studying integra-
tion of collaborative systems and DMVN datasets would be benefi-
cial. In particular, specifics in collaboratively exploring graphs and
the temporal changes in them needs to be addressed.

11. Conclusions

In this paper, we present the state of the art in visualizing DMVNs
and provide a taxonomy of techniques for visualizing this com-
plex type of data. The taxonomy was generated from a systematic
analysis of 104 papers collected from different areas of visualiza-
tion research and accompanied by a companion website to interac-
tively filter publications at different intersections of the categories
in our taxonomy. Moreover, we discuss tasks specific to DMVNs
along with examples from different domains. We also provide an
overview of common application areas and the evaluation methods
used in these published techniques.

Dynamic multivariate data is becoming ubiquitous across diverse
domains, and thus the demand for efficient visualizations is grow-
ing. While node-link diagrams dominated the field initially, orga-
nized layouts like matrices and list views have gained more popu-
larity recently. Designing complex glyphs to embed on visual ele-
ments of the network or making use of coordinated views to cre-
ate separate visualizations still remains the two most popular tech-
niques for encoding attributes. We believe this review makes it easy
for visualization practitioners to compare techniques by using our
taxonomy and for choosing an appropriate technique for their tasks.
We also hope this review will help researchers to identify future di-
rections and areas that require further research.
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