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Abstract

Interior design is the core step of interior decoration, and it determines the overall layout and style of furniture. Traditional
interior design is usually laborious and time-consuming work carried out by professional designers and cannot always meet
clients’ personalized requirements. With the development of computer graphics, computer vision and machine learning, com-
puter scientists have carried out much fruitful research work in computer-aided personalized interior design (PID). In general,
personalization research in interior design mainly focuses on furniture selection and floor plan preparation. In terms of the
former, personalized furniture selection is achieved by selecting furniture that matches the resident’s preference and style, while
the latter allows the resident to personalize their floor plan design and planning. Finally, the automatic furniture layout task
generates a stylistically matched and functionally complete furniture layout result based on the selected furniture and prepared
floor plan. Therefore, the main challenge for PID is meeting residents’ personalized requirements in terms of both furniture and
floor plans. This paper answers the above question by reviewing recent progress in five separate but correlated areas, including
Sfurniture style analysis, furniture compatibility prediction, floor plan design, floor plan analysis and automatic furniture layout.
For each topic, we review representative methods and compare and discuss their strengths and shortcomings. In addition, we

collect and summarize public datasets related to PID and finally discuss its future research directions.

Keywords: Methods and Applications
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1. Introduction

Home is not only a place for people to live but also a medium in
which people express their personalities and tastes. Therefore, the
interior decoration should not only meet residents’ practical func-
tional needs but also reflect their pursuit of aesthetics and person-
ality. This aims means that personalization has become an impor-
tant factor that merits serious consideration in modern interior de-
sign. Personalized interior design (PID) is a technology used to
create a reasonable, comfortable and graceful interior environment
to meet people’s functional needs and aesthetic intent according
to their personalized requirements for the furniture and floor plan.
Personalization in PID consists of two main aspects, that is, furni-
ture selection and floor plan preparation, and is ultimately reflected
in a stylistically matched and functionally complete interior layout
result.

On the one hand, furniture selection reflects people’s subjective
personalization in their aesthetic pursuits. The two most important
attributes of furniture are function and style. On the basis of meeting
functional requirements, personalized furniture selection should be
as close as possible to the preferences of residents. The selection of
furniture should not only focus on their style preferences but also
consider whether the styles of furniture are compatible with each
other; for example, Baroque furniture and Modernist furniture are
obviously not compatible. Therefore, it is meaningful to conduct
furniture style analysis, which can guide residents to select furniture
with matching styles according to their individual preferences.

On the other hand, floor plan preparation also reflects the objec-
tive personalization embodied in floor plan design and planning.
There are usually two cases in practical applications. When resi-
dents do not have a floor plan, they can design personalized and
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Figure 1: PID pipeline.

reasonable floor plans according to their needs while meeting func-
tional requirements such as room function. If the resident already
has a floor plan, which is usually in the format of a raster image
provided by the developers, it is necessary to identify its structural
elements, including walls, doors and windows, and room functions;
these factors guide the realization of automatic furniture layout.
For example, cabinets should be placed against the wall, and a bed
should not be present in the kitchen. This step is challenging be-
cause it requires joint optimization of various functional and spatial
constraints within a limited interior space.

Overall pipeline

The input to the PID is divided into two aspects: the style prefer-
ence for the furniture (European, Rococo) and the house boundary
or floor plan. The PID output is a style-matching and well-laid-out
interior furniture layout result. Based on the above discussion, this
paper reviews the research progress of PID from two perspectives, as
shown in Figure 1, that is, furniture selection and floor plan prepara-
tion. The former reflects people’s subjective personalization in their
aesthetic pursuits, while the latter reflects the objective personal-
ization embodied in floor plan design and planning. The furniture
selection step contains two tasks, that is, furniture style analysis
and furniture compatibility prediction. These two tasks are serially
related. The former determines the style of the furniture and furni-
ture design, while the latter analyses how well the furniture matches
each other. The floor plan preparation step eventually aims to ob-
tain a well-defined and structured floor plan. There are two cases in
which the input is the house boundary or the original floor plan, cor-

responding to two tasks: floor plan design and floor plan analysis.
The inputs to the automatic furniture layout task are the results of
the furniture selection step and floor plan preparation step. The fur-
niture selection step helps residents select style-matching furniture
according to their personalized preferences; the floor plan prepa-
ration step identifies structural elements and room functions that
constrain the furniture layout. Finally, the automatic furniture lay-
out task generates a stylistically matched and functionally complete
furniture layout result based on the selected furniture and prepared
floor plan. Representative methods of each task in PID are listed in
Table 1. Overall, the contributions of our work can be summarized
as follows:

¢ For the computer-aided interior design problem, we propose to
organize the existing work into a PID pipeline from two aspects
of personalization, that is, furniture selection and floor plan prepa-
ration.

* We split the PID pipeline into five tasks and discuss the ideas, ad-
vantages and disadvantages of previous work and the connection
between tasks.

¢ We collected relevant datasets in PID and compared and summa-
rized them from the perspective of their form, scale and applica-
tion.

¢ We discuss current applications of PID, current limitations of PID
research and possible directions for future efforts.

This survey is organized as follows: Sections 2 and 3 review rep-
resentative methods in furniture style analysis and furniture com-
patibility prediction. Sections 4 and 5 discuss recent literature on
floor plan design and floor plan analysis. Section 6 reviews the work
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Table 1: Personalized interior design algorithm overview.
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Tasks Methods

References (Year)

Furniture style classification

Hu et al. [HWL*17] (2017), Hu et al. [HLK*17] (2017), Yu et al. [YZX*18]
(2018), Ting et al. [TTKYHQ19] (2019), Schwartz et al. [SWACC21]
(2021)

Furniture style analysis

Furniture style transfer

Xu et al. [XLZ*10] (2010), Li et al. [LZW*13] (2013), Ma et al. [MHS*14]
(2014), Han et al. [HLHB15] (2015) , Lun et al. [LKWS16] (2016),
Berkiten et al. [BHS*17] (2017), Segu et al. [SGST20] (2020)

Binary group-based methods

Bell et al. [BB15] (2015), Aggarwal et al. [AVSY 18] (2018), Weiss et al.
[WYA*20] (2020)

Furniture compatibility

prediction Triple group-based methods

Liu et al. [LHLF15] (2015), Lun et al. [LKS15] (2015), Dev et al. [DL15]
(2015), Lim et al. [LGK16] (2016), Pan et al. [PDTH17] (2017), Pan et al.
[PDHC19], Liu et al. [LTR19] (2019)

Multivariate group-based methods

Polania et al. [PFNL20] (2020)

Boundary-constrained floor plan
design

Bahrehmand et al. [BBM*17] (2017), Wu et al. [WFLW18] (2018), Wu et al.
[WFT*19] (2019), Wang et al. [WZC*21] (2021), He et al. [HHW22]
(2022), Sun et al. [SWL*22] (2022)

Floor plan design

Graph-constrained floor plan design

Nauata et al. [NCC*20] (2020), Chen et al. [CWT*20] (2020), Hu et al.
[HHT*20] (2020), Nauata et al. [NHC*21] (2021), Xu et al. [XXR*21]
(2021), Wang et al. [WXL*21] (2021), Para et al. [PGK*21] (2021)

Structural element identification

Floor plan analysis

Mace et al. [MLVT10] (2010), Ahmed et al. [ALWD11] (2011), Dodge et al.
[DXS17] (2017), Ziran et al. [ZM18] (2018), Surikov et al. [SNBS20]
(2020), Wu et al. [WSC*21] (2021), Song et al. [SY21] (2021),

Room function prediction

Liu et al. [LWKF17] (2017), Huang et al. [HZ18] (2018), Zeng et al.
[ZLYF19] (2019), Lu et al. [LWG*21] (2021), Lv et al. [LZYZ21] (2021)

Case reasoning-based methods

Akase et al. [AO13] (2013), Xu et al. [XCF*13] (2013), Song et al. [SZJ17]
(2017), Fu et al. [FFY*20] (2020)

Rule constraint-based methods

Automatic furniture

Xu et al. [XSF02] (2002), Sanchez et al. [SLRLGO03] (2003), Yu et al.
[YYT*11] (2011), Merrell et al. [MSL*11] (2011), Kan et al. [KK18]
(2018), Vitsas et al. [VPGV20]

layout

Deep learning-based methods

Wang et al. [WSCR18] (2018), Ritchie et al. [RWL19] (2019), Yang et al.
[YLS*19] (2019), Zhou et al. [ZWK19] (2019), Wang et al. [WLW*19]
(2019), Zhang et al. [ZYM*20] (2020), Luo et al. [LZWT20] (2020), Wang
et al. [WLY?20] (2020), Wang et al. [WYN21] (2021), Paschalidou et al.
[PKS*21] (2021), Ostonov et al. [OWM?22] (2022)

related to automatic furniture layout, and Section 7 introduces sev-
eral tasks that are included in PID but that have been studied less.
Section 8 compares relevant public datasets in PID. Future research
directions and conclusions are discussed in Sections 9 and 10.

2. Furniture Style Analysis

Furniture style analysis is one of the key tasks in PID and the basis
of furniture selection. Furniture style analysis includes two parts:
furniture style classification and furniture style transfer. The former
can identify the style of the input furniture image or shape, such
as European or Victorian. Meanwhile, the latter allows residents to
create new furniture according to style, providing more possibilities
for PID furniture selection. In this section, we start with a style clas-

sification study for a single piece of furniture, and then discuss the
style transfer between two pieces of furniture. Table 2 summarizes
various furniture styles involved in previous studies.

2.1. Furniture style classification

Furniture style classification aims to predict the style category of
furniture, such as European court or Chinese classical. In practice,
there are significant appearance differences between furniture with
the same style but different functions (as shown in Figure 2a),
and the boundaries between different styles of the same function
may be vague or overlap (as shown in Figure 2b). This objective
factor makes accurate classification of furniture styles difficult.
This section introduces three furniture style classification methods:
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Table 2: Categories of furniture styles introduced in various papers.
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Reference Venue

Furniture style

American, Baroque, Empire, Gothic, Renaissance, Rococo, Chinese Ming,

Hu et al. [HWL*17] TIST 2017 Chinese Qing, Neo-Classicism, Mediterranean, Rural, Modern French,
Japanese, Modern Chinese, Southeast Asia, Modernist

Hu et al. [HLK*17] TOG 2017 Children, European, Japanese, Ming

Ting et al. [TTKYHQI] ICSAI 2019 Europeap, Baquth, Royal, Gothlc, Neaclassicism, Rococo, Simplicity,
Classical, Rustic, Japanese, Literary

Schwartz et al. [SWACC21] CDNA 2021 Modern, Coastal, Traditional, Cottage

e
= (
(
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Figure 2: Difficulties of the furniture style classification task. (a)
Ming. (b) Baroque and Rococo.

deep neural networks (learning high-level style features) and
style-defining elements (mining low-level elements features).

2.1.1. Deep neural network based methods

With the development of artificial intelligence, deep neural net-
works have also been applied to furniture style classification.
Thanks to their excellent feature extraction ability, they perform
well in the furniture style classification task.

The first study on furniture style classification [HWL*17] real-
ized a classification of 16 common furniture styles. They concate-
nated hand-crafted features with convolutional features extracted by
AlexNet and input the mixed features into a SVM to train a furni-
ture style classifier. Inspired by the human eye’s attention mecha-
nism, Ting et al. [TTKYHQ19] combine interest factors and CNN
features to achieve furniture style classification, which effectively
suppresses the influence of less visually pleasing areas. They cal-
culated interest factors based on colour, brightness and contour fea-
tures, compensating for the shortcomings of traditional CNNs with
a single feature. Schwartz et al. [SWACC21] utilized deep neural
networks to achieve end-to-end learning without using explicit fea-
ture extraction steps. They used a siamese network with VGG16 as
the backbone, which avoids the complex hand-crafted feature ex-
traction steps.

2.1.2. Style-defining element-based methods

A furniture style-defining element set refers to the collection of all
of the elements that distinguish a furniture style. For example, the
colour area in Figure 3 represents the extracted style-defining el-
ements used to determine the furniture style, namely, the tubular

(a)

Figure 3: Examples of furniture style definition elements
[HLK*17]. (a) European. (b) Ming.

structure and relief decorative elements of furniture in the Ming
style and curved lines in the European style.

As shown in Figure 4, Hu et al. [HLK*17] proposed a method
for co-locating style-defining elements on a set of 3D shapes. They
collected an initial set of elements from the shape and obtained the
style-defining elements by sampling and combining the elements.
Then, they detected the style-defining elements for a new furniture
image and classified furniture styles using a simple classifier. Sim-
ilarly, Yu et al. [YZX*18] proposed a semi-supervised co-analysis
method. They learned the style of 3D furniture models from pro-
jected feature lines and used weak supervision to achieve style patch
(style-defining elements) localization; then, they extracted the style
patches on the 3D furniture model by back projection to analyse
furniture styles.

These methods can improve the accuracy of style classification
and localization of style elements, but they have a limitation in that
the style-defining elements they extract are local. They focus on lo-
cal elements and analyse furniture styles based on local structure;
for example, they classify furniture styles based on details that ap-
pear in the type and shape of chair legs. Their analysis does not ac-
count for structural features and more global characteristics, which
are also important factors that influence furniture style.

2.2. Furniture style transfer

Personalized furniture customization is a furniture synthesis pro-
cess based on the premise of preserving furniture function while
achieving style transfer. According to the specific implementation
methods, we divide the existing furniture synthesis methods based
on style transfer into two categories: methods based on style content
separation and methods based on analogy.
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Figure 4: Extract style-defining elements of the furniture style analysis [HLK*17].
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Figure 5: Furniture style transfer result (the image in the box is the
original image) [XLZ*10].

2.2.1. Style content separation-based methods

Furniture generation based on style transfer generates new furni-
ture with a specific style while ensuring that the furniture’s function
is not affected. Existing methods attempt to analyse the style and
content (functional structure) of furniture independently and then
achieve style transfer of the retained content.

Xu et al. [XLZ*10] proposed a style content separation algo-
rithm for 3D furniture models and realized furniture synthesis based
on style transfer. They obtained the inter-style and intra-style part
correspondence through style classification and co-segmentation.
Based on the part correspondence, they deformed the components to
achieve furniture synthesis of style transfer. The result of furniture
synthesis in Figure 5 shows that this method generates new shapes
based on scale transformation only, with no significant change in
shape structure and lack of diversity. Later, Han et al. [HLHB15]
also proposed a similar method to achieve 3D model style transfer.
Since some complex shapes are difficult to segment, they implement
style-content separation without semantic segmentation.

Li et al. [LZW*13] proposed an unsupervised algorithm to iden-
tify a curve’s style and separate its style and content by analysing the
feature-shape association matrix. They then synthesized the new 2D
shape by replicating the feature curve. However, this approach fails

when the segment-level resolution is too coarse to capture source-
to-target relationships. Lun et al. [LKWS16] transferred the exem-
plar style to the target through a series of element-level operations;
they progressively updated the target shape with compatible opera-
tions, increasing its stylistic similarity to the example while strictly
maintaining its functionality at each step.

Previous methods based on style-content separation have obvious
limitations. First, it is difficult to establish dense correspondence be-
tween shapes with large geometric changes because the shape com-
parison strategy of these methods is based on dense correspondence.
Second, when generating a new model, the recombination of two
adjacent parts often leads to the problem of connecting parts, and
improper connections often result in an unnatural model.

Recently, Segu et al. [SGST20] proposed the first learning-
based method to achieve style transfer of 3D objects, 3DSNet.
3DSNet uses a shared content encoder and two domain-specific
style encoders, both of which were implemented based on Point-
Net [QSMG17] to implicitly separate the style and content in the
feature space. The decoder is used to reconstruct 3D objects from
the selected content and style encoding. However, 3DSNet inherits
the limitations of the 3D reconstruction method, and some signif-
icant details are lost in the reconstructed shapes; this loss may be
due to the loss of high-frequency feature components caused by the
maximum pool layer in the PointNet encoder.

2.2.2. Shape analogy-based methods

Different from the method based on style content separation, furni-
ture style transfer based on the shape analogy method calculates the
analogical relationship between a source model and a target model
and applies it to the exemplar model to synthesize a new furniture
model according to the exemplar style.

Figure 6 illustrates the analogy-driven style transfer method
framework [MHS*14]. Given three input shapes: a source S, a tar-
get T, and an exemplar £, the model synthesized an output model
Q. They first restore the transformation relationship M and .A. The
example-to-output transformation relationship A* is approximated
as MAM ™" and then refined further using simultaneous align-
ment and deformation processes to obtain the desired output shape.
Berkiten et al. [BHS*17] attempted to implement transferring model
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Figure 6: (a) Style transfer example. (b) Analogy model [MHS*14].

details, for example, textures and shapes. They performed the anal-
ysis entirely in the source model and creatively used metric learning
to optimize the feature representation. The learned metrics are then
used to guide the output model’s texture synthesis.

Compared with the style transfer method based on style content
separation, shape-analog-based approaches can capture fine hierar-
chical styles features such as part shapes or geometric textures and
process source and target models with different structures. Style
transfer is achieved by calculating source-to-target analogies, which
define structural differences between models in geometric terms.
However, the per-patch transformations used to assemble the analo-
gies are restricted to rigid similarity transformations, and there is
still a significant gap between the more complex, free-form organic
shape deformation effect that is achieved manually.

Discussion. Style is the main attribute that needs to be considered
when selecting furniture, and the current furniture style classifica-
tion method has been able to accurately judge furniture style, but,
furniture design is still a field that has been studied less. Although
the furniture style transfer method introduced in this section is also
a furniture design method, it relies on the existing furniture and has
considerable limitations. Future work could employ cross-modal
learning, for example, to generate 3D furniture models based on the
resident’s textual description of the furniture to better reflect ‘per-
sonalization’.

3. Furniture Compatibility Prediction

A natural requirement of interior design is finding style-matching
furniture. As furniture style studies have advanced, researchers have
gradually transitioned from single furniture style classification to
quantitative descriptions of matching relationships between furni-
ture. Furniture compatibility prediction specifically refers to the cal-
culation of compatibility scores for multiple furniture images or
models to determine their degree of style matching. Furniture com-
patibility prediction is mostly based on metric learning, which mea-
sures the similarity between two or more pieces of furniture and de-
termines their compatibility. Depending on the form of the data used
during learning, methods based on binary group, triple group and
multivariate group are discussed in this section. For ease of under-
standing, it is specified that A, B, C represent furniture and x,, xp, Xc
represent their style feature embeddings.

3.1. Binary group-based methods

Binary group data are commonly used in siamese networks for fur-
niture compatibility prediction. Bell et al. [BB15] inferred furniture
compatibility based on visual similarity, trained siamese network
models using contrast loss, and applied them to furniture retrieval.
Aggarwal et al. [AVSY 18] trained a siamese network based on bi-
nary groups (A, B, Y), where A and B represent two pieces of furni-
ture, respectively; Y € {0, 1} is the compatible label, where ¥ = 1
represents a positive compatible pair and ¥ = 0 represents a nega-
tive one. They trained a CNN model to learn furniture style embed-
dings by applying the following contrast loss:

L(xa, x5, Y) =Y - D(xa, x3)" + (1 = ¥) - max [0, m — D(xa, x)*

(D
where D(x,, xp) is a measure of the distance between furniture A and
B such that the obtained embedding brings the matched furniture
closer and pushes the mismatched furniture further away, and m is
the margin hyperparameter.

In contrast, the binary group in [WYA*20] can be expressed in the
form (A, B, 1, y|, 5)). where y{, , is a comparison label. A value of
1 indicates that furniture A is more inclined to style / than furniture
B, and a value of —1 indicates the opposite. They used VGG16 as
the backbone network and trained the siamese network to predict
whether the first image depicts more style-specific characteristics
than the second image.

3.2. Triple group-based methods

The methods in this section typically use triplet loss to analyse
style compatibility between different categories of furniture based
on triplet data [LGK16, PDHC19, PDTH17, LTR19]. They obtained
the triplets (A, B, C), which indicate that A and B are more stylisti-
cally matched than A and C. VGG16 is used as the backbone net-
work, and the following triplet loss function is used during training:

L(xa, xg, Xc) = max (D(x4, xg) — D(xa, xc) +m,0)  (2)

where D(x,, xp) indicates the distance between two furniture em-
beddings and m is an edge hyperparameter.

Other methods propose more innovative approaches to feature ex-
traction or style similarity measurement. Liu et al. [LHLF15] calcu-
late the consistent partitioning of all 3D objects in the same furniture
type. Then the geometric features of the parts and the whole are con-
catenated as a feature representation of the object. They also learned
separate projection matrices W 4, and W, for classes c(A) and
¢(B) to calculate the asymmetric embedding distance and learned
furniture compatibility measures using triple groups (Figure 7).

dasymm(xA7 xXp) = ||VV1:(A)XA - VV(:(B) xgl2 3)

This method addresses the problem of furniture feature represen-
tation across categories. However, it ignores the attributes that af-
fect the style compatibility of the furniture’s 3D model such as
colour and structure. Lun et al. [LKS15] used a weighted com-
bination of feature descriptor distances as a stylistic measure of
the 3D model based on the significance, geometric similarity, and
prevalence of patches extracted from the object’s surface. Then,
they introduced triplet supervised data to learn the weights of the

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 8: Furniture compatibility prediction model based on the
GNN [PFNL20].

significance terms and the similarity terms. However, because these
methods rely on partially aware geometric features, they require
consistent partial segmentation of 3D models within the object
classes, which is a challenging step that often requires manual seg-
mentation. To solve the problem that only geometric features are
considered in [LHLF15, LKS15], Dev et al. [DL15] added color and
texture features to improve the 3D models’s style similarity learn-
ing.

3.3. Multivariate group-based methods

The approach based on multivariate groups means that the model’s
input comprises multiple pieces of furniture, but the number is vari-
able. Polania et al. [PFNL20] represented furniture in a matching
group as an interconnected graph (Figure 8). They used the CNN
feature vector as the initial state of the furniture represented by the
GNN nodes and then iteratively updated the nodes’ hidden state with
a GRU by using the neighbouring nodes’ information. Finally, they
used the node states to calculate the compatibility score between the
furniture. This method takes advantage of the GNN model’s excel-
lent feature aggregation capability to simultaneously consider the
interactions between multiple pieces of furniture in the scene, in-
stead of considering pairs of data separately.
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Figure 9: Implementing a floor plan design based on graph con-
straints or boundary constraints.

Discussion. The purpose of this section is to guide residents in the
selection of furniture. However, there is still a gap between current
compatibility prediction methods and human perception of style
collocation, as they rarely consider human factors. One possible ap-
proach idea is to introduce human-computer interaction in terms of
determining furniture compatibility to generate a judgment result
that matches human intuition.

4. Floor Plan Design

The first two sections mainly focus on various innovative methods
that help residents select personalized furniture. PID personalization
is also reflected in the floor plan, and the furniture layout is usually
planned according to the floor plan. In this problem, residents ex-
pect to design personalized and reasonable floor plans according
to their preferences while meeting requirements such as room di-
vision. Depending on the input constraints, this section introduces
the floor plan design based on both boundary constraints and graph
constraints (Figure 9). We compare the similarities and differences
of these methods in Table 3.

4.1. Boundary-constrained floor plan design

Floor plan design based on boundary restrictions achieves a rea-
sonable structural design and room division within the boundaries.
Early floor plan generation algorithms [BBM*17] build objective
functions based on architectural quality metrics and resident prefer-
ences, starting with an initial random floor plan that is iteratively
optimized using evolutionary algorithms. Wu et al. [WFLW18]
adopted high-level constraints as inputs and generated building in-
teriors based on a mixed integer quadratic programming (MIQP)
formulation. The integer variables are used to account for different
room configurations. Both approaches consider the generation of
floor plans to be a system based on constraints (such as room size
and adjacency). However, these constraints rely on professional de-
signers. Wu et al. [WFT*19] simulated the human design process by
first locating rooms and then walls while adapting the input building
boundaries to generate floor plan designs with high-level require-
ments. He also used a living room first strategy to predict room lo-
cations to improve the reasonableness of the generated floor plans.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Table 3: Comparison of floor plan design methods.
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Reference Venue Methods Input Door&Window Output

Bahrehmand et al. [BBM*17] GM 2017 Genetic algorithm Boundary v 3D floor plan
Wau et al. [WFLW 18] CGF 2018 MIQP Boundary v 3D floor plan
Wu et al. [WFT*19] TOG 2019 Encoder-Decoder Boundary v 2D floor plan
Hu et al. [HHT*20] TOG 2020 GNN, CNN Boundary, Graph v 2D floor plan
Nauata et al. [NCC*20] ECCV 2020 GAN Graph X 2D floor plan
Chen et al. [CWT*20] CVPR 2020 GCN, GAN Graph v 3D floor plan
Wang et al. [WZC*21] TVCG 2021 GAN Boundary v 2D floor plan
Wang et al. [WXL*21] CGF 2021 CNN Graph X 3D floor plan
Para et al. [PGK*21] ICCV 2021 Transformer Boundary, Graph v 2D floor plan
Nauata et al. [NHC*21] CVPR 2021 GAN Graph v 2D floor plan
Xu et al. [XXR*21] ICCV 2021 VAE Graph X 2D floor plan
He et al. [HHW22] CVPR 2022 Markov chain Boundary v 2D floor plan
Sun et al. [SWL*22] TOG 2022 Graph generation Boundary v 2D floor plan

The previous approach required complex problem modelling, and
Wang et al. [WZC*21] proposed a simpler human-centred approach
to floor plan design. In the first stage, they used a human activity
map to guide the generation of floor plans from input boundaries.
During the second stage, they converted the pixelwise predictions
into vectorized floor plans for convenient usage by architects. Their
experiments show that incorporating human activity maps into the
guided learning process yields more accurate network predictions.
Although the current floor plan design work can be fully automated,
design is essentially a procedural process, and this lack of designer
interaction may cause the floor plan design to deviate from the orig-
inal concept. Therefore He et al. [HHW22] proposed a new human-
in-the-loop generative model, iPLAN, that automatically generates
layouts but also interacts with the designer throughout the process.
They decomposed the design procedure into three steps: acquiring
the room types, locating rooms and finalizing room partitions. This
process allows the model to accept input from the designer at any
stage to generate a floor plan that matches the resident’s preferences.
Sun et al. [SWL*22] designed a wall-oriented approach, WallPlan,
which innovatively uses two modules to predict a floor plan’s wall
and room functions separately. The two modules then alternate to
generate partial floor plans until no new walls can be generated.
WallPlan can produce high-quality floor plans without postprocess-
ing.

4.2. Graph-constrained floor plan design

Graph-constrained floor plan designs typically represent residents’
requirements as relational graphs, using nodes to represent rooms
and edges to represent adjacencies. Based on the sparse design con-
straints provided by the resident, Hu et al. [HHT*20] used genera-
tive networks to learn room relationships and automatically generate
floor plans. They employed a layout graph to represent these con-
straints and then input the graph into a deep neural network-based
learning framework, Graph2Plan, to generate rough floor plans. Fi-
nally, postprocessing is performed to obtain a fine-grained, vec-
torized floor plan. Based on independent room data from a large
3D scene dataset, Wang et al. [WXL*21] generated new 3D floor
plans by stitching together existing 3D rooms based on a relation

graph. Many previous methods require heuristic postprocessing to
improve the quality of floor plans, but that process is not based on
the data and may generate unrealistic results. Para et al. [PGK*21]
proposed a floor plan generation model using constraint graphs. The
nodes of the constraint graph represent the layout elements, and the
edges represent the constraints between the elements. Constraint
optimization is then used to solve for the final layout. They used
a transformer-based architecture to generate the floor plan without
resident input.

The GAN, as a generative algorithm, performs well on a variety of
image generation tasks, and there are also many GAN-based meth-
ods that can generate a wide variety of floor plans. Nauata et al.
[NCC#*20] used the bubble diagram as input to generate a set of
reasonable floor layouts. The nodes of the bubble diagram encode
room types, and the edges encode adjacency. For the floor layout
design, they proposed a graph-constrained relation generation ad-
versarial network, House-GAN, which includs a relation generator
and a discriminator. Nauata et al. [NHC*21] then integrated a graph-
constrained relational GAN and a conditional GAN that accepts the
previously generated model as the next input constraint to achieve
iterative layout refinement. They also extended the previous appli-
cation to handle nonrectangular room shapes and generated doors or
entrances. Chen et al. [CWT*20] proposed the House Plan Genera-
tive Model (HPGM), a creative implementation of text-to-3D house
plan conversion. They first designed a Graph Conditioned Layout
Prediction Network (GC-LPN), which encodes graphs as feature
representations and predicts room layouts using bounding box re-
gression. Then, a Language Conditioned Texture GAN (LCT-GAN)
was designed to generate room textures using the encoded text rep-
resentations as input. Finally, after rendering, a 3D house plan can be
generated. Xu et al. [XXR*21] designed a city modelling algorithm
based on the variational autoencoder (VAE), which is a generative
model. It can also be used to generate floor plans.

Discussion. The floor plan design reflects another aspect of per-
sonalization in PID. Some current approaches [PGK*21] can ac-
count more for residents’ requirements while meeting boundary
constraints such as two bedrooms and one bathroom. This addi-
tional consideration of the resident’s idea for the floor plan design
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Table 4: Comparison of floor plan structural element identification methods.
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Reference Venue Methods Structural elements

Mace et al. [MLVTI10] TAPRW 2010 Hough transform wall, door, room

Ahmed et al. [ALWDI11] ICDAR 2011 SURF wall, door, room, window

Dodge et al. [DXS17] MVA 2017 FCN, Faster R-CNN wall, sliding door, kitchen oven, door, bath tubs, sink, toilet
Ziran et al. [ZM18] TAPRW 2018 Faster R-CNN door, window, furniture

Surikov et al. [SNBS20] COMS?2 2020 UNet wall, door, window

Wu et al. [WSC*21] TJGIS 2021 Mask R-CNN wall, door, window, room, staircase

Song et al. [SY21] ISPRS 2021 GNN wall, door, window, room, staircase, lift, hallway

makes considerable sense. There are also some innovative works
[CWT#*20] that used residents’ text descriptions as the only input
to guide floor plan generation, which highlights a new direction for
subsequent research.

5. Floor Plan Analysis

The floor plan affects the furniture layout, and both structural ele-
ments and room function influence the final furniture layout. Specif-
ically, the structural elements influence the position of the furni-
ture, for example, cabinets should be placed against the wall. The
room function also limits the type of furniture; for example, a bed
should not be present in the kitchen. Therefore, it is necessary to
analyse the structural elements and room function in the floor plan
to guide the subsequent automatic furniture layout. Based on these
two factors, this section discusses structural element identification
and room function prediction in floor plan analysis.

5.1. Structural element identification

Structural elements include doors, walls and rooms, which play im-
portant roles in dividing rooms and influencing the furniture layout.
The representative approaches are summarized in Table 4. As seen
from the table, researchers typically use methods such as object de-
tection and semantic segmentation to detect elements such as walls,
doors and rooms in floor plans.

Early methods usually use line detection and edge detection to
extract walls and then, analyse other structures such as doors, win-
dows and rooms. Mace et al. [MLVT10] used a line detection al-
gorithm based on a combination of the classical Hough transform
and image vectorization to achieve wall detection. Door detection is
achieved by extracting arcs. Then, the hypothetical extraction results
for the walls and doors are logically analysed to detect the rooms in
the floor plan. Ahmed et al. [ALWD11] extracted lines of differ-
ent thicknesses from floor plans, extracted walls from thicker lines,
and then segmented the rooms using geometric reasoning. However,
these heuristic methods [MLVT10, ALWD11] depend on the data
of specific standard floor plans and cannot be applied to different
floor plans.

Due to the robustness of CNN models in terms of floor plan noise
[SY21], recent studies have typically used deep learning-based al-
gorithms to realize floor plan element recognition. Dodge et al.
[DXS17] used wall segmentation, object detection, and optical char-
acter recognition (OCR) to analyse floor plans in a step-by-step
manner. They also estimated the area of the house by using a combi-

nation of OCR and object detection. Similarly, Ziran et al. [ZM18§]
used a Faster R-CNN model based on ResNet-50 to detect elements
in floor plans, thus realizing information analysis of floor plans. Wu
et al. [WSC*21] transformed floor plan images into indoor maps
and models; they first used Mask R-CNN to vectorize the architec-
tural elements in the floor plan, performed consistent topology opti-
mization, and finally generated rooms, maps, and models. Similarly,
Surikov et al. [SNBS20] used the UNet and DeepLabv3+ models to
achieve segmentation of floor plans and added morphological filter-
ing, component filtering, contour extraction and contour simplifica-
tion to optimize the segmentation results and identify structural el-
ements. However, these pixel-level segmentation methods [DXS17,
ZM18, WSC*21, SNBS20] have difficulty capturing the exact shape
of interior elements, and some of their postprocessing steps may
lead to the loss of the original interior elements. In contrast, Song
et al. [SY21] innovatively proposed a GNN-based interior element
recognition framework. They abstracted the interior elements into
polygons and represented them as nodes in the GNN. The nodes are
classified by analyzing their inherent features and the relationships
between them to achieve recognition of interior structural elements.

5.2. Room function prediction

As we all know, beds should not appear in the kitchen, and sofas
are usually placed in the living room. Room function is crucial for
furniture layout in practical applications, and it is necessary to anal-
yse the room function in the floor plan. Room function prediction
tasks usually use semantic segmentation to divide rooms with vari-
ous functions [LZYZ21] or use a generative adversarial network to
generate room function prediction results [HZ18]. Some algorithms
have also introduced the idea of multitask learning to improve the
model effect [ZLYF19, LWG*21].

Liu et al. [LWKF17] trained a CNN to detect the connection
points in a floor plan, such as the corners, and then applied inte-
ger programming to encode the high-level constraints to analyse the
floor plan and predict the room function. However, because they
rely on the Manhattan world assumption and the wall thickness
uniformity, the method cannot handle irregular layouts. Lv et al.
[LZYZ21] used YOLOvV4 as the basic detection model for the re-
gion of interest (ROI) detection module. Then, the segmentation al-
gorithm is used to predict the functions of each room. However, it
often incorrectly predicts the room function in an open kitchen, and
it also cannot identify curved walls.
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Figure 10: Results of floor plan analysis [HZ18].

Zeng et al. [ZLYF19] introduced the multitask learning idea and
attention mechanism module to improve the floor plan analysis per-
formance. The following two tasks are learned simultaneously: pre-
diction of the room boundaries’ pixels and prediction of the room
function pixels. They used the attention mechanism guided by room
boundaries to construct spatial context modules to maximize the fea-
ture integration for room function prediction. However, the method
still fails to correctly address some special room structures (such as
long and curved corridors). Lu et al. [LWG*21] also used multitask-
ing learning. Two branches are connected after the VGG16 encoder,
a UNet decoder that predicts the room boundaries, and a fast single
shot detector (SSD) that detects room-function text. Huang et al.
[HZ18] innovatively used the GANs for element recognition and
room function prediction of floor plans by using different RGB val-
ues to label different regions. This method can achieve the results
shown in Figure 10.

Discussion. Floor plan analysis is the basis of automatic furniture
layout. Researchers usually use methods such as semantic segmen-
tation or object detection to achieve recognition of structural ele-
ments and room function. There are also innovative approaches that
use GANs to generate analysis results directly. These approaches
have performed well in most scenarios but have difficulty address-
ing some rare structures, such as open kitchens and curved walls.
Some methods calculate both the area and dimensions of a room,
and this information is also useful when constructing the subsequent
automatic furniture layout.

6. Automatic Furniture Layout

After the furniture style analysis, we can annotate furniture with
suitable style labels such as Classical Chinese and European court.
This process effectively limits the scope of furniture selection in
the automatic furniture layout task, which guarantees a stylistically
matched and functionally complete furniture layout result. The floor
plan preparation step identifies structural elements and room func-
tions that constrain the furniture layout. Based on the furniture selec-
tion results and floor plan preparation, this section introduces the au-
tomatic furniture layout algorithm to obtain a stylistically matched
and functionally complete interior layout result.

A good furniture layout balances functionality and aesthetics.
Mitton et al. [MN21] noted the importance of accessibility of furni-
ture placement when decorating a room, Ching et al. [CB18] showed
how the walkway to the door influenced the furniture layout and
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interior decoration, and Ballast et al. [BFN*13] and OShea et al.
[OGL13] also provided wealth of aesthetic, ergonomic and func-
tional rules for interior design. These studies are the basis of au-
tomatic furniture layout research in PID. This section divides the
related work on automatic furniture layouts into three categories:
automatic layout methods based on case reasoning, rule constraints
and deep learning. Table 5 summarizes and compares the automatic
furniture layout methods.

6.1. Case reasoning-based methods

Case reasoning uses the idea of “borrowing” to solve interior design
problems by using information from existing layouts. This method
usually collects large-scale indoor scene layout data first, conducts
learning and training, and then applies the training results to the
furniture scene to be determined.

Akase et al. [AO13] used prior information stored in a seman-
tic database and resident preferences to optimize furniture layouts.
The system introduced human-computer interaction to update the
layout results several times until the resident was satisfied. Xu
et al. [XCF*13] calculated the exact positions of all objects in the
sketches in 3D space, searched the 3D models corresponding to each
object in the model library, and formed 3D scenes. The system only
considers small groups of objects, such as a desk scene, rather than
the layout of the entire room. Song et al. [SZJ17] decomposed the
scene layout problem into a combination of several layout modes
(coupling mode, matrix mode and enclosed mode) and solved them
separately. This method is fast and can meet the system’s real-time
response requirements. Fu ef al. [FFY*20] quantitatively assessed
the layout quality of certain objects through human-centred metrics
(HCMs) to guide the layout of objects in 3D scenes. The introduc-
tion of HCMs makes the furniture layout results more ergonomic
and personalized.

6.2. Rule constraint-based methods

The automatic layout method based on rule constraints constructs
the energy function or cost function of the overall layout by consid-
ering the constraint relationship between layout objects and rooms.
Then, various optimization algorithms are used to find the global op-
timal solution to the energy function or cost function to determine
the location of the layout object.

The furniture to be laid out is represented as a cube with attributes
such as direction, size, and coordinates in [XSF02]. These objects
integrate various layout constraints, such as physical constraints and
non-interpenetration of objects, and use semantic database informa-
tion to automatically place each object in a room. Sanchez et al.
[SLRLGO3] used cost functions to model principles used in profes-
sional interior design practices, optimizing cost functions through
genetic algorithms to generate optimal solutions that meet these de-
sign principles. Yu et al. [YYT*11] extracted the hierarchical and
spatial relations of various furniture objects from a large number of
examples of interior scenes as prior knowledge. The cost function
was then constructed and solved using a simulated annealing algo-
rithm. However, their approach is based on the assumption that the
perimeter of the room is sufficiently large. Violating this assumption
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Table 5: Comparison of automatic furniture layout methods.
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Reference Venue Methods Vertical Space Constraints Data Representation Output

Sanchez et al. [SLRLGO3] CGAI 2003 Rule constraint v Unordered set 3D rooms
Yuetal. [YYT*11] SIGGRAPH 2011 Rule constraint v Unordered set 3D rooms
Merrell et al. [MSL*11] TOG 2011 Rule constraint X Unordered set 3D rooms
Akase et al. [AO13] CISIS 2013 Case reasoning X Unordered set 3D rooms
Xu et al. [XCF*13] TOG 2013 Case reasoning v Unordered set 3D rooms
Kan et al. [KK18] VR 2018 Rule constraint X Unordered set 3D rooms
Wang et al. [WSCR18] TOG 2018 Deep learning X Object sequence 3D rooms
Ritchie et al. [RWL19] CVPR 2019 Deep learning X Object sequence 3D rooms
Yang et al. [YLS*19] CW 2019 Deep learning X Rectangle set 2D rooms
Wang et al. [WLW*19] TOG 2019 Deep learning v Relation graph 3D rooms
Zhou et al. [ZWK19] ICCV 2019 Deep learning v Relation graph 3D rooms
Fu et al. [FFY*20] GM 2020 Case reasoning X Unordered set 3D rooms
Vitsas et al. [VPGV20] CGF 2020 Rule constraint v Unordered set 3D rooms
Zhang et al. [ZYM*20] TOG 2020 Deep learning v Unordered set 3D rooms
Wang et al. [WLY?20] TOG 2020 Deep learning X Matrices set 2D rooms
Luo et al. [LZWT20] CVPR 2020 Deep learning v Relation graph 3D rooms
Wang et al. [WYN21] 3DV 2021 Deep learning X Object sequence 3D rooms
Paschalidou et al. [PKS*21] NIPS 2021 Deep learning X Unordered set 3D rooms
Ostonov et al. [OWM?22] WACYV 2022 Deep learning X Object sequence 2D rooms
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Figure 11: Automatic furniture layouts based on the CNN [WSCRI18].

can result in local suboptimal layout or layout failure. Merrell et al.
[MSL*11] iteratively and randomly optimized the initial layout by
specifying the furniture participating in the layout and the initial lo-
cation of the furniture. They converted layout guidelines into a den-
sity function and generated layout recommendations using a Monte
Carlo sampler. Kan et al. [KK18] used greedy cost minimization to
achieve automated furniture layouts. The model generates layout re-
sults in one second in an order from large furniture to scene details.
However, the complex rule-based cost function modelling limits the
actual performance of this method. Vitsas et al. [VPGV20] innova-
tively introduced lighting constraints into interior furniture layouts,
modelled them as a cost function, and obtained reasonable layout
results through hierarchical optimization.

6.3. Deep learning-based methods

Most of the methods in this section use deep neural networks to
predict the type, location, and orientation of furniture to complete
the layout of indoor scenes in a step-by-step manner [WSCR18,
RWLI19]. Other methods model the relationship between lay-
out objects as graphs to predict the layout results [WLW*19,
ZWK19].

Wang et al. [WSCR18] synthesized indoor scenes based on con-
volutional neural networks, as shown in Figure 11. They first pre-
dicted whether the model should continue to add objects to the
scene. The second component selects the object class and the loca-
tion to be added. They finally instantiated and positioned a specific
object and generated the interior scene with a reasonable layout over
several iterations. This work is the first attempt to use deep learn-
ing to automatically generate furniture layouts, and it still has many
limitations. Specifically, it does not model object size, leading to
the problem of improperly sized furniture choices, and since hun-
dreds of deep CNN evaluations are used for each scene, it takes sev-
eral minutes to synthesize a scene, which is very time-consuming.
In [RWL19], the team processed the category and location of the
objects separately and used the category prediction module to glob-
ally infer the scene to solve the problem that the objects may be
repeatedly sampled, which was an issue in [WSCRI18]. They also
introduced the conditional variational autoencoder (CVAE) to opti-
mize the object orientation. Compared with [WSCR18], it reduces
the time needed to generate layout scenes from minutes to 2 s. Yang
etal. [YLS*19] trained a conditional generative adversarial network
(CGAN) model to divide the room into functional areas. Next, an
FCN model is used to place the furniture in the corresponding func-
tional areas.
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Due to the flexibility and diversity of furniture layouts, some re-
searchers have used graph models to solve this problem. Wang et al.
proposed PlanIT [WLW*19], which combines high-level graph rep-
resentation and spatial prior neural networks. It uses image-based
convolutional networks to instantiate a graph and generate furni-
ture layout results. This graph representation provides more mod-
elling flexibility and applicability, but its instantiation module can-
not model objects and spaces and may produce some layout results
that deviate from reality; it also relies heavily on the quality of the
training graph extracted from the input scene dataset and is not ro-
bust. However, these furniture layouts generated through iteration
are inherently suboptimal, so Zhang et al. [ZYM*20] used a GAN
structure that jointly optimizes all factors of 3D synthesis. They also
describe the scene space with 3D data but simultaneously use the
images to guide the network training, thus integrating the advan-
tages of 2D and 3D data. Other approaches model the relationship
between objects as a graph. In [ZWK19], the object to be predicted
is represented as a special ‘empty’ node. After message passing,
the MLP is used to predict the target probability distribution of the
special ‘empty’ nodes. Luo et al. [LZWT20] converted the ground
truth scene layout and scene graph into a distribution and then gener-
ated different scene layouts by sampling from the prior distribution.
To automatically transform furniture layouts, Wang et al. [WLY20]
proposed Scene Mover, which generates a plan containing a se-
quence of actions. They used a Monte Carlo tree search method
embedded in deep reinforcement learning to solve the problem of
planning action sequences.

Wang et al. [WYN21] used a transformer-based architecture to
generate rooms by automatically regressing the selection and place-
ment of objects in a scene. This model is flexible and can generate
complex scenes based on room or textual descriptions. However, us-
ing these processes [RWL19, WYN21] to generate scenes in order
of the furniture class frequency impose unnatural restrictions that
inhibit practical applications. To address these limitations, Paschali-
dou et al. [PKS*#21] treated scene synthesis as a disordered set gen-
eration problem and proposed ATISS, a new autoregressive trans-
former architecture for modelling this process. ATISS can quickly
predict a reasonable layout without any postprocessing. Ostonov
et al. [OWM22] presented RLSS, a deep reinforcement learning al-
gorithm for sequential scene generation that can generate a large
variety of scenes for the same floor plan while accounting for do-
main constraints.

Discussion. Early methods for automatic furniture layout were
usually based on case reasoning and rule constraints. However, col-
lecting layout cases and rules is a time-consuming task and re-
quires the skills of experienced artists. The latter approach improves
the generation speed by producing interior layouts through itera-
tive regression selection and objects placement, but this iterative
process imposes unnatural constraints that can lead to discordant
placements. Other methods use generative methods or reinforce-
ment learning to generate layouts quickly. In addition to satisfying
spatial requirements, future research should give more considera-
tion to generating stylistically consistent interior scenes, which are
needed for PID.

Y.T. Wang et al. / A Survey of Personalized Interior Design

7. Other Problems Related to PID

PID is a very large field. In this section, we introduce several tasks
that are included in PID but are less studied; they are also an essen-
tial part of the PID.

Lighting design. Lighting is one of the most important factors to
consider in 3D interior design. The quality of lighting can affect the
comfort and safety of residents. Gkaravelis et al. [GP16]generated
a hierarchy of light by clustering light sources that contribute sim-
ilarly to the environment. Based on the complementarity of light
contribution, the search space is effectively explored, and a high-
quality lighting configuration is quickly generated.

Furniture retrieval. Furniture retrieval can help residents quickly
obtain the furniture they want. Tautkute et al. [TMS*17] proposed a
multimodal search engine that could retrieve the corresponding fur-
niture using text. More importantly, the furniture it retrieves matches
the query visually or stylistically. Therefore, this search engine has
important significance for guiding PID. Pardhi et al. [PW17] ex-
tracted features from furniture images and realized similar furniture
retrieval based on feature similarity.

Wallpaper generation. Wallpapers is commonly used to decorate
walls in interior design, and the texture of the wallpaper influences
the overall style. However, designing wallpaper is a time-consuming
and laborious job, and wallpaper designers need to collect many
materials to create new wallpaper. Based on multilabel semantics,
using generative adversarial networks and perceptual feature regres-
sion, Gao et al. [GFZ*21] proposed a perception-driven wallpaper
texture generation model that can generate high-quality wallpaper
textures. This tool has significance for guiding the decoration of in-
terior walls in PID.

8. Interior Design Related Datasets

As the basis of PID research, datasets help researchers compare and
evaluate the performance of different algorithms and promote the
development of related research. In this section, we collect and sort
the different types of datasets involved in PID research and discuss
the benefits and drawbacks of each dataset. The dataset types in-
clude furniture datasets for furniture style analysis and compatibility
prediction and floor plan datasets for floor plan analysis and furni-
ture layout.

8.1. Furniture Datasets

Furniture datasets usually use various furniture as the main body and
mark furniture according to different tasks. This section introduces
two types of furniture datasets with different focuses.

8.1.1. Furniture Style Datasets

Furniture data with style labels can be applied to furniture style anal-
ysis and furniture style matching. As shown in Table 6, the #Scenes
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Table 6: Summary of furniture datasets.
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Dataset Venue #Images #Scenes #Categories #Styles #Matchings
Singapore [HWL*17] TIST 2017 2,955 - 6 16 -
NCKU [PDTH17] Big Data 2017 22,960 - 7 - -
SZU [HLK*17] TOG 2017 618 - 5 4 -
Interior Items [TMS*17] FedCSIS 2017 2,193 298 9 - 298
Bonn [AVSY18] GCPR 2018 90,298 - 6 17 -
Target [PFNL20] CVPRW 2020 6,550 - 9 - 1,632
3D-FUTURE [FIG*21] 1ICV 2021 9,992 20,240 34 - 5,000

column records the number of scenes in the dataset, #Styles indi-
cates the number of furniture styles, and column #Matchings records
the number of matching sets.

Singapore (2017) [HWL*17]: This dataset is a collection of 2955
furniture images from different sources with both style and function
labels. The furniture styles are divided into the most popular 16 cat-
egories, and the furniture function labels include six types, that is,
bed, storage cabinet, chair, sofa, table and others.

NCKU (2017) [PDTH17]: This dataset includes 420 textured 3D
furniture models collected from ShapeNet [CFG*15]and comprises
seven types of furniture, that is, beds, bookshelves, lockers, chairs,
lamps, sofas and tables. Compatibility between furniture is assessed
through crowdsourcing.

SZU (2017) [HLK*17]: This dataset consists of five sub-datasets,
including Furniture, Furniture legs, Buildings, Cars and Drinking
vessels. The Furniture dataset includes 618 models classified into
four styles (Children, European, Japanese, and Ming) and five func-
tions (beds, cabinets, chairs, stools, and tables).

Bonn (2018) [AVSY18]: This dataset is a collection of 90,298
pure furniture images with 17 styles and six functional labels from
www.houzz.com. The dataset also provides the corresponding text
data for the image, including manufacturer, size, weight, material
and other information.

8.1.2. Furniture matching datasets

Unlike the previous furniture style datasets, furniture matching
datasets emphasize matching or compatibility relationships between
furniture. These datasets can be used not only in the field of furniture
classification but are also indispensable for furniture style match-
ing studies. They include multiple matching sets of furniture with
matching styles. Some of the datasets also provide indoor scene im-
ages. The statistics for the dataset are shown in Table 6.

Interior Items (2017) [TMS*17]: This dataset was published by
Tautkute et al. for cross-modal furniture style retrieval. The dataset
consists of 298 indoor scene images collected from ikea.com and
2193 furniture images and text descriptions from these scenes.

3D-FUTURE (2021) [FJG*21]: 3D-FUTURE is a high-quality
interior design research dataset launched by the Alibaba Tao Tech-
nology Department. 3D-FUTURE can support researchers in con-

ducting 3D shape retrieval, 3D reconstruction based on a single im-
age and instance segmentation tasks at the same time. The dataset
contains 20,240 indoor rendering scene images matched by profes-
sional designers and 9992 3D furniture models from the scenes as
well as their attribute labels and matching relationships.

Target Furniture Collections (2020) [PENL20]: This dataset
covers a variety of furniture categories and includes approximately
6550 furniture images. The items were arranged by furniture match-
ing experts into 1632 matching sets. The number of pieces in
each collection is between 2 and 20 (most collections have no
more than eight pieces). Although this dataset is small, it pro-
vides more important information about compatibility between
furniture.

8.2. Floor plan datasets

The floor plan is one of the important data necessary for interior de-
sign. It provides designers and residents with the house structure,
size, area and other information. Similarly, the design and analysis
of floor plans need considerable floor plan data, and the automatic
furniture layout is also completed based on the floor plan. A few
public floor plan datasets are introduced below, and a dataset sum-
mary is provided in Table 7.

CVC-FP (2015) [dIHTRS15]: CVC-FP is areal floor plan dataset
that includes four sub-datasets. The black dataset models the walls
in the floor plan as black lines and consists of 90 high-quality two-
dimensional floor plans. The textured dataset is composed of 10
low-quality grayscale images, which are computer drawings of floor
plans that contain structural symbols, furniture and text informa-
tion. The textured2 dataset consists of 18 images from a six-story
building. The parallel dataset only includes four binary images, and
each image includes wall identification depicted by parallel lines for
wall segmentation.

Rent3D (2015) [LSK*15]: Liu et al. collected the most popular
215 apartment data from an apartment rental website. The number of
photos for each apartment ranges from 2 to 30, and there are 1259
photos of the apartment. They also kept photos of the apartment
buildings or utilities in the buildings advertised for rent for a total
of 1570 images. This dataset annotates the actual layout and posture
of each room in the apartment.

R2V (2017) [LWKF17]: Liu et al. established a large-scale
dataset for vectorization of floor plans based on the LIFULL
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Table 7: Summary of floor plan datasets.
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Dataset Venue #Images #Rooms #Objects Resolution (pixels)
CVC-FP [dIHTRS15] IJDAR 2015 122 1,320 50 905-7,383
Rent3D [LSK*15] CVPR 2015 1,570 1,312 - -

R2V [LWKF17] ICCV 2017 870 7,466 27 96-1,920
CubiCasa5K [KYH*19] SCIA 2019 5,000 68,877 83 50-8,000
RPLAN [WFT*19] TOG 2019 80,000 - - 256
Structured3D [ZZL*20] ECCV 2020 3,500 21,835 - -

RFP [LZYZ21] CVPR 2021 7,000 - - -
RuralHomeData [LWG*21] IS 2021 800 - - -
3D-FRONT [FIG*21] 1ICV 2021 - 18,968 13,151 -

HOME'’S dataset [LIF], which contains 5 million floor plan raster
images. They randomly sampled images, annotated room struc-
tures and function and collected 870 floor plans with ground
truth.

CubiCasa5K (2019) [KYH*19]: This dataset consists of 5000
floor plans (with manual annotations) collected from 15,000 Finnish
floor plans. They are divided into three subcategories: high-quality
architecture, high-quality, and colourful, with 3732, 992 and 276
floor plans, respectively.

RPLAN (2019) [WFT*19]: RPLAN is a large-scale floor plan
dataset from residential buildings with pixel-level semantic anno-
tations. It contains more than 80K real-world floor plans, and each
floor plan contains 3 to 9 rooms and is saved as a 256 x 256 image.

Structured3D (2020) [ZZL*20]: Zheng et al. presented a large
synthetic dataset with rich annotations of 3D structures and pho-
torealistic 2D renderings of indoor man-made environments. This
dataset contains rich ground truth 3D structure annotations of
21,835 rooms in 3500 scenes and more than 196k photorealistic 2D
renderings of the rooms. They also introduced a unified ‘primitive
+ relationship’ representation for 3D structures.

RFP (2021) [LZYZ21]: Lv et al. obtained 7000 residential floor
plan (RFP) data from an internet search engine, and the data
mainly consist of residential floor plans of urban buildings in China.
They manually marked the starting point, the end point, and the
wall thickness. They also marked the doors, windows and room

types.

RuralHomeData (2021) [LWG*21]: Lu et al. provided a
new dataset for analysing rural residential floor plans in China.
Compared with previous datasets, there are a large number
of different types of rooms, hollow walls and curved win-
dows in the rural floor plans. They collected 800 rural house
floor plans converted from original CAD files and manually la-
belled basic architectural elements and 21 room types in the
images.

3D-FRONT (2021) [FCG*21]: Fu et al. collected a new, large-
scale, and comprehensive repository of synthetic indoor scenes with
professionally designed layouts and a large number of rooms pop-
ulated by high-quality textured 3D models with style compatibil-
ity. 3D-FRONT contains 13,151 furniture objects and 6813 CAD
houses, including 18,968 diverse rooms.

9. Discussion

The development of PID largely depends on the progress of the rel-
evant algorithms. The current research results have spawned some
emerging applications related to interior design. In this section, we
discuss the commercial application of computer-aided PID as well
as the existing limitations and prospects for future work.

9.1. Application

The previous sections introduced some PID-related algorithms,
some of which have been applied to furniture matching, intelligent
interior design, and interior model generation. Some websites sup-
port these functions, which will greatly lower the threshold for or-
dinary people to participate in interior design. Table 8 summarizes
the services offered by several interior design websites.

IKEA (www.ikea.com): IKEA provides a wide variety of furni-
ture products in terms of function and style. IKEA’s ‘Inspiration’
section provides a large number of sample furniture matching sce-
narios, and residents can choose furniture in sample scenarios. ‘3D
Exhibition Room’ allows residents to view the room from different
directions and see the layout and more details online.

Houzz (www.houzz.com): Houzz is a community and photo
gallery for indoor and outdoor design enthusiasts. Houzz provides
a keyword-based furniture search and several matching sample sce-
narios. In addition, the resident can implement image-based furni-
ture retrieval in the sample scene.

Planner 5D (planner5d.com): Planner 5D is a simulation tool
that helps residents design home decoration effects. It vectorizes
resident-uploaded floor plans and then allows residents to imple-
ment PID. Residents can add and place furniture, windows, doors
or other structures to the floor plan and render them to obtain 3D
interior scenes.

HOMESTYLER (www.homestyler.com): HOMESTYLER pro-
vides free professional tools and rendering services such as Plan-
ner 5D for ordinary residents and home designers. What is more
interesting is that the design tool provides a one-click design ‘Au-
tostyler’ function. Residents can upload a floor plan and select a
sample room, and the tool will realize the furniture layout, ceiling
design, carpet laying, and painting based on the sample room style;
finally, they can obtain a perfect 3D interior design rendering (see
Figure 12).
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Table 8: Summary of interior design website.
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Services Provided IKEA Houzz Planner 5D HOMESTYLER Kujiale AiHouse
Furniture matching v v v v v v
Furniture retrieval v v v v v v
Floor plan analysis v v v v
Automatic furniture layout v v v
Online interior design v v v v
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Figure 12: PID on the HOMESTYLER's website (www.homestyler.com).

Kujiale (www.kujiale.com): Kujiale is a professional and effi-
cient online 3D intelligent cloud design platform that provides res-
idents with many 3D interior design plan effects, floor plans, 3D
model materials, and 3D/2D design template materials. It also al-
lows residents to perform online interior design and supports model
upload and CAD import and export.

AiHouse (www.aihouse.com): AiHouse can also convert
resident-uploaded floor plans into vector graphics and allows
residents to use them to construct an online interior design. Res-
idents can retrieve and select their favourite furniture models
from the furniture library and arrange the furniture by dragging
and dropping, and it also allows for a basic furniture automation
layout.

9.2. Existing limitations

Limited open source code. In contrast to other computer graph-
ics tasks, only some of the PID-related algorithms have published
source code. Due to the limitation of manuscript lengths, it is diffi-
cult for new researchers to understand an algorithm’s implementa-
tion details and reproduce the results. This limitation is inconvenient

for researchers in terms of understanding the status of research and
uniform measurement and limits the development of PID research
to some extent.

Connection problem between tasks in PID. PID as described in
this paper is a theoretical pipeline in interior design. There may be
some problems in practical applications, especially in terms of the
connection between tasks. For example, the data used in furniture
style analysis and furniture compatibility prediction include both 2D
furniture images and 3D furniture models, while the automatic fur-
niture layout mainly uses 3D furniture models. Similarly, most floor
plan designs generate 2D floor plans, while automatic furniture lay-
outs based on 3D models require the floor plan’s spatial information.
Therefore, the connection between tasks in practical applications is
still worth studying.

Lack of datasets for PID. We still lack large-scale interior
design-related datasets with accurate annotation, including fur-
niture datasets and floor plan datasets. In particular, furniture-
matching data and furniture layout datasets with compatibility
labels or matching information are important resources for study-
ing furniture-matching recommendations and automatic furniture
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layout. The 3D-FUTURE [FJG*21] dataset recently launched
by the Alibaba Tao Technology Department based on the data
from home decoration and home design platforms can support
researchers in conducting 3D shape retrieval, 3D reconstruction
based on a single image and instance segmentation tasks at the
same time. It is a high-quality interior design research dataset.
We expect more of these multilabel, furniture-matched, multitask
datasets, which will be a strong driver for PID research.

The gap between furniture style analysis and the human per-
ception of style compatibility. Although a series of furniture style
studies based on deep neural networks has recently achieved rel-
atively excellent performance, there is still a certain gap between
the algorithm and the human definition of style compatibility, es-
pecially in terms of the analysis of style compatibility between dif-
ferent types of furniture with significant differences in appearance.
In addition, the existing style compatibility research work usually
only focuses on the geometric characteristics of furniture, and ig-
nores other rich characteristics such as colour, texture, and struc-
ture [LHLF15]. The GNN-based furniture compatibility prediction
method [PFNL20] proposed by Polania et al. provides us with a new
idea. It is an innovative method for modelling furniture compatibil-
ity by combining the excellent feature extraction ability of the CNN
and the feature aggregation ability of the GNN.

9.3. Future work

At present, researchers have carried out preliminary exploration and
research in the field of PID, and many excellent results have been
produced. However, there are some urgent problems to be solved,
and they may be important research directions in the future.

Personalized furniture design. The current ‘personalization’ in
PID mainly regards the choice of furniture. A higher level of per-
sonalization should include automatic furniture design according to
the intentions of the resident or designer. The ‘Furniture style trans-
fer’ section introduces some of the relevant content, but the methods
in this section rely on existing furniture styles and furniture entities
and lack more imagination and creativity. Personalized furniture de-
sign should be as close as possible to the ideas and preferences of
the residents, and methods to achieve this outcome include design-
ing furniture according to the resident’s requirements for material,
texture, style and size, thus improving the quality of PID.

Automatic layout of 3D furniture. At present, automatic layouts
for furniture are usually based on a 2D floor plan, and the spatial re-
lationship and support relationship between furniture in automatic
layouts is rarely considered (e.g., the lamp on the table), while 3D
layouts for furniture are closer to reality. Therefore, modelling spa-
tial constraints and the optimization of 3D furniture layouts in addi-
tion to realizing more complex 3D automatic furniture layouts will
be a research direction in the future. Li et al. [LPX*19] layered the
interior scene using encoders to encode the spatial attributes and
structural relations of the objects and then used decoders to gener-
ate a hierarchical 3D layout. This work is a meaningful attempt at
3D furniture layout.

Y.T. Wang et al. / A Survey of Personalized Interior Design

Style-matching furniture layouts. Current automatic furniture
layout methods typically model furniture sets as unordered sets
or sequences of furniture. The layout is guided by optimization
algorithms or by introducing human-computer interaction. How-
ever, most algorithms consider only the size, type, orientation and
other constraints in furniture layout and ignore the problem of style
matching among furniture. This limitation may lead to layout results
with reasonable locations but mismatched styles. Future work could
consider the effect of style compatibility between furniture on lay-
out effects and use furniture compatibility as a constraint to guide
automated furniture layout.

End-to-end PID model. This survey divided the PID pipeline into
five tasks to guide personalized interior design from the two aspects
of furniture selection and floor plan preparation and finally obtained
an indoor scene layout result. This process is complex and difficult,
and no researchers have modelled it as an end-to-end problem. The
purpose of PID is to plan a reasonable furniture collocation and in-
door scene layout for residents based on their requirements and pref-
erences, including furniture style preferences and floor plan con-
straints. This direction should guide researchers in the future. An
end-to-end PID model will greatly simplify the process of resident
interior design and reduce its cost.

10. Conclusion

This paper reviews and summarizes current research progress in the
field of PID. From two aspects of personalization, that is, furniture
selection and floor plan preparation, we introduce related research
regarding furniture style analysis, furniture compatibility predic-
tion, floor plan design, floor plan analysis and automatic furniture
layout. We also compare and discuss relevant furniture and floor
plan datasets. This paper also discusses the industry application, cur-
rent limitations and possible future research directions for person-
alized interior design. Related applications have realized furniture
recommendation, floor plan analysis and automatic layout in PID,
promoting the digitalization and intelligence of interior design. Fu-
ture work should pay more attention to the coordination of furniture
styles and floor plan styles, personalized furniture design, and the
layout of 3D furniture.
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