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Figure 1: Interface of KNOWLEDGEDRIFT. Analysts first navigate to a particular task by checking the performance overview (A, B). Then,
for the selected task, the system first generates the model drift view (C) and label drift view (D), and further provides in-depth analyses to
interactively inspect the individual forgotten data (E) and the filter-wise knowledge drift (F).

Abstract
Task-incremental learning (Task-IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learn-
ing tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years,
with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to
completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten
during the incremental learning process still remains under-explored. In this paper, we propose KnowledgeDrift, a visual ana-
lytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the
past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new
model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by track-
ing the task performance under the incremental learning process and then provides in-depth inspections of drifted information
via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of
network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted
in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.

CCS Concepts
• Computing methodologies → Visual analytics; • Theory of computation → Continual learning;
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1. Introduction

Modern machine learning approaches have achieved remarkable
performance in a variety of applications [DCLT18, BHB∗18,
HZRS16, HLP∗19, HGDG17]. On the long-standing visual recog-
nition problem [RDS∗15], convolutional neural networks can even
achieve human-level accuracy [HZRS16,HLP∗19]. Whereas, there
exist large differences between how humans learn one skill and how
machines learn one particular task. In general, traditional machine
learning algorithms aim to learn from a stationary probability dis-
tribution. However, the real-world learning system often requires
the model to continuously adapt to a stream of data distributions,
which refers to the concept of continual learning, i.e., also called
incremental learning. As one of the most fundamental scenarios in
continual learning problem [Rin98, SF86], task-incremental learn-
ing [VdVT19] requires a single neural network to learn a stream
of tasks in a sequential manner and the final model is expected to
perform well on all learning tasks. Nevertheless, as the network
continuously updates its parameters upon learning new tasks, it
tends to catastrophically forget what has been learned in the past
[AR97, AR00, GMX∗13].

Despite numerous studies being proposed to address the catas-
trophic forgetting problem, most of them focus on developing new
techniques to alleviate the phenomenon of performance degrada-
tion, and the evaluation of forgetting is solely represented by the
decrease in accuracy. However, diagnosing how the model behav-
iors lead to knowledge drift and visualizing what has been forgot-
ten is difficult. In particular, we first need to determine what data
to collect and what information to extract from the sequentially up-
dated model in order to uncover the forgetting phenomenon. With
a proper definition of knowledge, to track the drift over time, we
need to convert the collected information into a format that can
represent an incremental change with respect to the given old task.
Furthermore, the visual representations should be able to facilitate
the model developers to analyze network forgetting over a sequence
of updated models.

To address the aforementioned challenges, we propose a visual
analytics framework, KNOWLEDGEDRIFT, to interpret and diag-
nose the network forgetting under the task-incremental learning
scenario. Specifically, five visualization components are developed
to allow users first to identify the learning stage when catastrophic
forgetting has occurred and then navigate to one particular task for
further investigations. Then, to support in-depth analysis, we cap-
ture the relationships between the original model (i.e., obtained
immediately after training that task) and the ones updated upon
training the subsequent new tasks, extract the patterns hidden in-
side the forgotten data over time, and diagnose the drift of detected
image features. In addition, we define the task-specific knowledge
at the filter level and visualize the change of relevance between
the feature maps and the ground-truth labels using mutual informa-
tion [WLK∗19] estimation.

The KNOWLEDGEDRIFT leverages multiple levels of data
granularity, such as data instances, visual features, and network
parameters, to generate visual explanations that shed light on
the phenomenon of catastrophic forgetting. To demonstrate the
effectiveness of our framework, we conducted three case studies
to show that our approach can provide valuable insights into the

dynamics of learning and forgetting in Task-IL scenarios and
support effective comparisons among different learning strategies.
Our main contributions include:

• A model-agnostic visual analytics framework for tracking, inter-
preting, and diagnosing the effect of catastrophic forgetting in
task-incremental learning.

• A workflow that guides users to dissect how knowledge is for-
gotten via instance-, feature-, and parameter-level analyses.

• An approach based on Rényi mutual information [WLK∗19] to
quantify and track the knowledge drift at the parameter level.

2. Related Work

2.1. Dissecting Catastrophic Forgetting in Continual Learning

Continual learning (CL) or incremental learning (IL) aims to learn
multiple tasks in a sequential manner. Whereas the key to suc-
cess lies in how to update the model according to the current
task while retaining the knowledge acquired from the previous
tasks. This is particularly challenging when the consecutive tasks
have dramatic differences in data distributions. Numerous CL al-
gorithms have been developed to address catastrophic forgetting
[DLAM∗21, YL∗21], but none of them fully resolves this problem.

Besides a number of learning strategies proposed to alleviate
catastrophic forgetting in continual learning, there are also a few
studies focusing on dissecting this fundamental problem. For in-
stance, one study formulates the forgetting measures through the
geometrical properties of the loss landscape [MFPG20]. The goal
is to find out how the optimizations settings and regularization ap-
proaches can affect the performance in continual learning. Another
study [NAL∗19] also associates the catastrophic forgetting prob-
lems with the relationships among the task sequence. However,
it only performs a correlation analysis between the task sequence
properties and the amount of forgetting measured during the ex-
periments. It is insufficient to explain the forgetting dynamics and
generalize their observations to other studies. Moreover, inspired
by the forgetting issue that happens during the sequential training
of multiple tasks, one work performs [TSC∗18] an empirical study
to understand the phenomenon in training individual visual recog-
nition tasks. While it redefines the tasks to be the batches within
one dataset, it still provides useful insights that can be extended to
analyze the forgetting problems caused by larger distribution shifts
across multiple tasks.

Despite significant efforts in investigating forgetting from vari-
ous perspectives, the aforementioned studies do not provide enough
in-depth analysis to allow model users to interpret the internal
mechanism. Nevertheless, some of the theoretic studies [TSC∗18,
MCY∗22, KGKY21] can still guide us in extracting useful infor-
mation for visually analyzing the continual learning process. By
combining analytical approaches with multi-level visualization, we
are able to provide more insightful explanations.

2.2. Visual Analysis for Model Interpretation

As deep learning techniques have made impressive achievements
in solving numerous real-world problems, the demand for inter-
pretability of training deep learning models keeps increasing in re-
cent years. A variety of visual analytics frameworks are proposed
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to interpret the deep learning models [HHC17, NQ17, RFFT16] or
analyze a particular deep learning approach [NQ17, WCX∗22]. In
general, visualizing the hidden representations and analyzing the
learning dynamics of the neural network is important for interpret-
ing the current performance and model behaviors. Further, when
the model or the learning scenario is complex, it often requires
incorporating multiple types of information to analyze the train-
ing process [MFH∗20, LLS∗18]. For example, the visual analyt-
ics framework proposed for transfer learning [MFH∗20] focuses
on helping the users to understand how knowledge is transferred
between the source and the target models. To visualize the rela-
tionships between the models and uncover the knowledge shared in
between, it leveraged both parameter-level and instance-level infor-
mation. In our work, we focus on interpreting the change of knowl-
edge learned by the neural network across a sequence of models.
To provide sufficient explanations, we also leverage multiple lev-
els of data granularity, and each of the views is designed to capture
particular types of information.

2.3. Visual Analysis for Model Diagnosis

The goal of this type of work is not solely to uncover the in-
formation learned by the current model but also to pinpoint the
underlying reasons for the performance degradation. Data-driven
analysis is one of the most common approaches. For example, In-
stanceFlow [PHS20] and ModelTracker [ACD∗15] aim to facilitate
the instance-level visual diagnosis, and ConfusionFlow [HRS∗20]
interprets the class-level performance across the training epochs.
OoDAnalyzer [CYL∗20] proposed a grid-based visualization to
analyze two types of out-of-distribution data in both local and
global contexts. However, when the learning model is complex,
only tracking and visualizing the example-level information is in-
sufficient. Therefore, model-driven analysis employs the informa-
tion extracted from model parameters or learned representations to
probe the potential issues. For example, DQNVis [WGSY18] helps
domain experts to inspect and diagnose the behaviors of Deep Q-
Network agents. To analyze the CNN pruning process and itera-
tively refine the model performance, CNNPruner [LWS∗20] pro-
poses two metrics to evaluate the sensitivity and instability of the
convolutional filters and visualize them to assist users to make
pruning decisions. Moreover, to identify the data heterogeneity in
Federated learning models, HetVis [WCX∗22] visualizes the paths
of model parameters formed by both server and local clients in a
2D space. However, none of the work can be directly applied to
our problem. In task-incremental learning, the model continuously
evolves as new data becomes available, which results in a highly
complex model. Both analytical methods and visual designs should
take this challenge into account. Thus, in this work, we propose
KNOWLEDGEDRIFT to better probe and diagnose the forgetting is-
sues in the context of evolving input datasets and models.

3. Background and Concepts

3.1. Incremental Learning

Continual learning (CL), incremental learning (IL), and lifelong
learning (LL) share similar fundamental learning structures. While
LL is a broader concept that emphasizes more on how to better
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Figure 2: The split CIFAR-10 task protocol. To simulate the Task-
IL setup, the entire dataset is divided into five binary recognition
tasks. Each task retains its own classifier head.

learn new tasks [Liu20]. The concept of IL and CL often refers to a
learning system that incrementally learns from new datasets which
share similar structures with the ones it has learned in the past.
While the data streams are similar, the learning objectives can be
largely different. For example, training an object detection system
for autonomous cars requires the system to gradually recognize a
range of objects. At first, the system is trained on a dataset contain-
ing images of traffic signs, pedestrians, and all types of vehicles.
However, after the car has been driven to a different environment,
new objects appear and the system should be able to accurately rec-
ognize both new objects and the ones it has seen before. Without
effective learning strategies, it can easily forget how to distinguish
previously seen objects.

3.2. Task-Incremental Learning Setup

As one of the most essential scenarios in CL, task-incremental
learning (Task-IL) incrementally learns a series of tasks without
degrading the performance of tasks learned in the past. The for-
mal definition of this problem considers a set of learning tasks
T = {T1,T2, ...,T|T|}, and its objective is to minimize the loss:

T

∑
i=1

E(XTi ,YTi)
[ℓ(θ ;(XTi ,YTi))] , (1)

where (XTi ,YTi) denotes the training data of task Ti, ℓ is the loss
function, and θ represents the parameters of the neural network.
In this work, as we focus on the image classification tasks, (X ,Y )
refers to the image dataset.

Under the Task-IL scenario, every time a new task comes, the
network updates its parameters according to the new data distribu-
tion. During training, each task holds its own classifier, and the task
identities are always provided during inference time. An example
task protocol is demonstrated in Fig. 2. The Split CIFAR-10 is a
standard CL benchmark [VdVT19], in which the entire CIFAR-10
dataset is split into five binary recognition tasks for simulating an
incremental learning scenario. In this case, the five tasks will be
trained sequentially, and the final model is expected to achieve ac-
ceptable performance on all five binary recognition tasks.

3.3. Catastrophic Forgetting in Task-IL

Catastrophic forgetting refers to the situation where the model
performance evaluated on the previously learned tasks decreases
significantly when it is trained on new tasks. A model opti-
mized using conventional algorithms such as stochastic gradient
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descent (SGD) is prone to using all its capacity for the current
task, and in turn, forget what it has learned in the past. Catas-
trophic forgetting is arguably the major challenge to conquer in
CL studies [AR97, AR00, GMX∗13, MBB13]. Although various
techniques [PKP∗19] have been proposed to overcome this chal-
lenge from different perspectives, including regularized optimiza-
tion [KPR∗17, LKJ∗17, ZPG17, LH17], dynamic model expansion
[RRD∗16, YYLH17], and data replay [IC18, SLKK17], our goal in
this paper is to develop a model-agnostic framework for visually
analyzing the forgetting problems. In the following, we first intro-
duce two standard metrics for evaluating the final performance of
an incremental learning process [CDAT18, MFPG20]. We then de-
fine a few terms related to catastrophic forgetting but in terms of
different types of information.

Final mean accuracy defines the average inference accuracy ex-
amined after all T tasks in the sequence have been trained. Here, we
use the final model to test each of the task datasets. aMT ,Ti denotes
the inference accuracy of task Ti using the final model MT . Then,
the final mean accuracy is defined as:

Ā =
1
T

T

∑
i=1

aMT ,Ti (2)

Final mean forgetting defines how much the model perfor-
mance degraded after training all T tasks, where aMi,Ti and aMT ,Ti

represent the inference accuracy of task Ti using the i-th and the
final model respectively. The final mean forgetting is computed by
averaging the total decrease of accuracy over the past T −1 tasks:

F̄ =
1

T −1

T−1

∑
i=1

aMi,Ti −aMT ,Ti (3)

Forgotten data instances is defined as a set of data instances
of task Ti that are correctly classified by the original model Mi
but mispredicted by the current model. Once the neural network
is updated to fit the new dataset, model drift and label drift refer
to the change of model parameters and label predictions respec-
tively. Moreover, information drift or knowledge drift is defined
as the change of learned feature representations in the neural net-
work. After the model has adapted itself to the new tasks, its ability
to extract representative information with respect to the old task
has dropped. Furthermore, network forgetting is defined similarly
as catastrophic forgetting but it highlights the role of neural net-
works in performance degradation.

4. Requirements Analysis

To pinpoint the key challenges in analyzing catastrophic forget-
ting and meanwhile distill the corresponding design goals, we con-
ducted interviews with two domain experts (E1 and E2) who have
been working on Task-IL and general CL research for more than
three years. In general, both experts commented that most existing
studies focused on proposing new algorithms for mitigating the for-
getting issues. In terms of performance evaluation, they only report
values of mean accuracy or mean forgetting as defined in Sec. 3.3,
but few of them analyzed the exact forgotten contents or the internal
dynamics during model updates. E2 also mentioned that there are
a few studies trying to provide theoretical explanations behind the

forgetting phenomenon, while the work is neither suitable for non-
experts model analysts nor efficient in demonstrating the details in
terms of the forgotten data or feature representations. Besides dis-
cussing with two experts, we also reviewed survey [DLAM∗21] on
CL and other related literature on catastrophic forgetting. In sum-
mary, we identified the following three requirements:

• R1: Revealing when and where catastrophic forgetting hap-
pens. Prior to any in-depth analyses, it is crucial to have an over-
all understanding of how models perform in the current task-
incremental scenario. Based on the overview, it is easier for an-
alysts to identify when the updated model fails to achieve an
acceptable accuracy on the past datasets. To this end, the system
needs to track whether each task can still be recalled at each of
the following training stages, and support analysts to select one
particular task for further investigations.

• R2: Uncovering drifted information for the selected task.

– R2.1: Capturing the model digression from the original
task solution to the final training stage. During the incre-
mental learning process, the neural network updates its pa-
rameters upon fitting the new data distribution. The digres-
sion in the parameter space provides the most intuitive under-
standing of what information has been forgotten. However,
only visualizing the change of model parameters is insuffi-
cient to reflect the severity of forgetting. Thus, we should also
provide information that allows analysts to visually connect
the model drift with performance degradation.

– R2.2: Exploring the forgotten data instances and their un-
derlying patterns. Given the selected task and its subsequent
models, analysts want to know whether there exist any trends
or patterns hidden in the forgotten data instances. For exam-
ple, when the updated model misclassifies a set of data from
the same class, the analysts can check whether those images
are recognized as the same wrong labels. If the mispredic-
tions are diverse, then it implies that the feature representa-
tions learned in the past are seriously destroyed by training
the new tasks.

– R2.3: Connecting the hidden patterns with forgetting di-
agnosis. Visualizing the extracted patterns should help in
probing the forgetting phenomenon. In particular, clustering
the data instances with similar reasons for being forgotten can
facilitate the inspection process. If two forgotten instances
are diagnosed with similar issues, they should stay within the
same group.

• R3: Supporting analysis on why and how forgetting happens.
Uncovering the patterns in the forgotten data is insufficient for
explaining why and how forgetting occurs. Analysts need to un-
derstand what image features are unlearned by the model updates
and how network behaviors relate to the dynamics of drifting.

– R3.1: Identifying the important image features that are
impacted by the model drift. Intuitively, the data correctly
recognized by the original model was mispredicted by the
updated one because the network changed the parameters of
past feature detectors. In other words, it detects some new
features which confuse the model to make wrong predictions.
Identifying and highlighting those features helps analysts to
infer the relationships between datasets from different tasks.
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– R3.2: Tracking the knowledge drift in terms of the model
behaviors. For neural networks, the learned knowledge is re-
tained in the model parameters. Therefore, if we can track the
task-specific information forgotten or recalled upon learning
new tasks in terms of model parameters and visualize how
information fluctuates over time, then the analysts can effi-
ciently pinpoint the forgetting issues based on the model be-
haviors. The model performance can be further improved by
regularizing certain sets of parameters.

5. Visual Analytics Framework: KnowledgeDrift

5.1. System Overview

To facilitate flexible and interactive explorations of all tasks in
the sequence, our framework contains three stages. First, once the
Task-IL process is complete, the KNOWLEDGEDRIFT extracts the
task dataset and output models generated at each training stage.
Then, our back-end starts to process the task sequence and model
parameters to obtain the analytical results. During the final stage,
the front-end takes in the processed outputs from the back-end
and generates all the visualization components as shown in Fig. 1.
To fulfill the above requirements, KNOWLEDGEDRIFT is designed
with two major analytical modules. The first module summarizes
the overall performance for each of the learning tasks (R1), guiding
users to choose a particular task for in-depth investigation. Then,
the second module coordinates multiple visualization panels to as-
sist analysts in understanding what has been forgotten and how for-
getting occurs (R2, R3). In the following sections, each of the vi-
sual components will be introduced in detail.

5.2. Performance Overview and Task Navigation

Tracking the Task-IL Performance. Statistical information of the
entire task sequence and the summary of task performance on the
test dataset at each training stage are shown in Fig. 1-A (R1). The
left panel provides a concise overview of the training configura-
tions, including details about the benchmark dataset, network ar-
chitecture, and average accuracy of the final model. The right panel
assists users to identify which task to examine by presenting per-
formance degradation for each task between its peak accuracy and
inference accuracy at each of the other training stages. Generally, a
learning task Tt achieves its maximum accuracy when its dataset is
evaluated using its own model obtained immediately after training
Tt . As shown in Fig. 1-A, the x-axis denotes each of the learning
tasks in sequential order. To accommodate a potential large task
sequence, we use dots along the y-axis to indicate the forgetting
rate of each task measured using each subsequent model. A gradi-
ent color scheme is employed to denote the order of models being
inferred. To highlight the performance at the final model stage, we
connect all the tasks using a dashed line. The alternative visual de-
sign is to use line charts or bar charts to encode the change in the
forgetting rate. However, when the task sequence is large, lines can
overlap with each other across different model stages and bars can
take much more space than using dots.
Task Navigation. The rightmost panel at the first row in Fig. 1 al-
lows users to choose one particular task based on the overview of
model performance, and the detailed configurations for the selected
task are displayed below the slider.

5.3. Model Drift Visualization

In Fig. 1-C, the model drift view demonstrates forgetting in terms
of how much the current model has digressed from the original so-
lution (R2.1). Tracking drift in the model parameter space provides
an intuitive way to understand how much has been forgotten upon
learning the new tasks. However, visualizing those model check-
points in the 2D space is challenging, as neural network parameters
are extremely high-dimensional [LXT∗18, GVS14]. To avoid pro-
ducing a misleading projection, it is important that the mapping
between high-dimensional and low-dimensional spaces preserves
the variation in the parameter space.

To generate the plots in Fig. 1-C, we first collect all model check-
points after training task T14 to T20. We then flatten all the param-
eters (i.e., weights and biases) to form a N ×P matrix M, where
N denotes the total number of model checkpoints and P represents
the total number of parameters in the neural network. To reflect the
degree of model drift with respect to T14, we rearrange the matrix
M to ensure the solution of T14 is the origin in the parameter space.
Then, we apply principal component analysis (PCA) on M to find
out the top two principle directions as the axes in the 2D space.

However, only visualizing all the model checkpoints in the 2D
subspace is not sufficient for users to fully interpret the degree of
forgetting. To reflect how much the training or testing loss is sensi-
tive to the change in the parameter space, we sample a regular grid
in the projected 2D parameter space, reproject the 2D coordinates
back to the original dimension, and evaluate the loss values at each
grid point using either training or testing dataset of T14. The result-
ing 2D scalar fields are rendered as contour plots shown in Fig. 1-C.
The contour lines in the plot represent areas where the loss function
has the same value. In addition, the blue star and the red dots repre-
sent the model state after training T14 and all the following states
after training each of the subsequent tasks. We use the size of dots
to indicate the order of model states. If the trajectory formed by
the subsequent models stays perpendicular to the contour lines and
moves towards areas with higher loss values, it indicates that the
model escapes rapidly from the original model state of T14 during
the subsequent training process.

5.4. Visual Analysis for the Forgotten Data

To facilitate the inspection of forgotten data instances, our system
incorporates three visual components. First, the Sankey diagram is
used to visualize the drift of predicted labels over time (Sec. 5.4.1).
Then, to reveal the patterns hidden in the forgotten instances, a scat-
ter plot (Sec. 5.4.4) is employed to show the embedding of individ-
ual data points (Sec. 5.4.2). Lastly, linked to the scatter plot, the
image feature view showcases the significant image features im-
pacted by the model drift (Sec. 5.4.3).

5.4.1. Visualization of the Label Drift

The view for tracking the drift of predicted labels consists of two
panels, the bar chart on the top and the Sankey diagram below,
which are aligned along the x-axis. In Fig. 1-D, the bar height
demonstrates the amount of forgotten data at each model stage. For
example, the value at model stage M18 is computed by counting
the total number of data instances that are correctly predicted by
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model M14 but mispredicted by model M18. The bar chart can
only provide an overall count of forgotten instances at individual
model stages. To interpret the relationships among various cate-
gories at different training stages, we need a visual representation
that can reveal the connections among the mispredicted labels and
also the underlying patterns over time. Therefore, the Sankey di-
agram is used to encode how the mispredictions change among
different classes across a sequence of model stages. The Sankey
diagram utilizes width to facilitate users to quickly identify the un-
derlying patterns or the significant changes at a certain stage.

Across each row, all nodes represent the same class, and each
node represents that class at a certain model stage. Between a
source and a target node, the width of the flow in between rep-
resents the count of samples that are misclassified as that target
category. As the example demonstrated in Fig. 1-D, after we have
selected task T14 for inspection, a Sankey diagram is generated to
show the label change of the forgotten data of T14 through model
stages M14 to M20. Starting from model stage M15, we see image
instances from all five categories can be misclassified as rabbit im-
ages (i.e., row 1). However, at the next model stage M16, among
all the images that are misclassified as rabbit, some of them are the
ones that are already misclassified as rabbits at the previous model
stage, whereas some of them are predicted as raccoon, ray, or road
at the previous model stage. The crossovers of the flow between
the two model stages imply that the features learned by the previ-
ous model have been changed significantly.

5.4.2. Diagnosis-Driven Instance Embedding

To provide instance-level analysis, previous works often utilize la-
tent features as the instance embedding [MFH∗20]. However, our
goal is not to visualize how the updated network performs on sep-
arating the old data in the feature space but to facilitate diagnosing
how forgetting happens. Therefore, to uncover the underlying pat-
tern in the forgotten data (R2.2), we aim to find an embedding space
where the data instances forgotten for similar reasons will be pro-
jected closely to each other. To investigate why a subset of task Tt is
correctly predicted under model Mt but misclassified by model Mt ′

(i.e., model updated for Tt ′ ), we first collect the forgotten data and
denote them as X f orget

Tt
. The relationship in the embedding space

needs to be connected with why the data instances are being mis-
classified by the current model (R2.3). Hence, to form an informa-
tive clustering of forgotten data, we adopt the idea of constructing
the parameter-space saliency profiles [LSB∗21]. Intuitively, catas-
trophic forgetting happens because network parameter drift leads
to feature detection malfunctions. In fact, when certain parame-
ters become malfunctioning, their gradients tend to be abnormally
large [LSB∗21, ALT∗19]. Therefore, we utilize the filter-wise gra-
dient information estimated using the current model to construct a
vectorial representation for each data instance.

To be specific, for each forgotten instance x f orget
Tt

, we compute
the gradient with respect to each parameter θi of model Mt ′ and
aggregate the absolute gradient values at each convolutional filter.
The output layer has to be replaced with the task-specific classifier
during loss computation. The process of computing the saliency
value at each filter fk can be formulated as:

vθi(x
f orget
Tt

) = |∇θiLθ (x
f orget
Tt

,yTt )|, (4)

v fk (x
f orget
Tt

) =
1
| fk| ∑

i∈ fk

vθi , (5)

where θi denotes each individual parameter associated with filter
fk and yTt represents the ground-true label of x f orget

Tt
. Moreover,

to better separate the abnormal filters from the benign ones, we
further normalize v(x f orget

Tt
) by mean µTt and standard deviation σTt

computed using all the data instances from task Tt , and then clip all
values below the mean. The final embedding vector v̂(x f orget

Tt
) is

computed as:

v̂(x f orget
Tt

) =
v(x f orget

Tt
)−µTt

σTt

. (6)

5.4.3. Capturing Forgetting in the Input-Space

After generating the instance embedding based on the approach in-
troduced in the previous section, we can project the vectorial repre-
sentations into 2D space where the images sharing similar reasons
for being forgotten will tend to form a cluster. Therefore, by in-
specting the image features within the same group, we expect to
understand what semantics shared by those images are associated
with the occurrence of forgetting (R3.1). To efficiently visualize the
features in the input space, we generate the forgetting-aware pixel
attribution based on the embedding vectors obtained using filter-
wise gradient information. Given vector v̂(x f orget) computed for a
forgotten instance x f orget , the magnitude of each element reflects
the degree of the anomaly at each convolutional filter. To highlight
the image pixels associated with each deviated filter, we consider
the mean vector in Equation 6 as a base embedding vector v0. The
base vector represents a special case that there exist no malfunc-
tioning filters and the current model can still recognize the image
x. To find the forgetting-aware image pixels, we consider apply-
ing the classic gradient-based attribution methods [SVZ13, ZF14].
Hence, we compute the gradients by taking the cosine similarity
between the base vector v0 and the embedding vector v̂(x f orget)
with respect to the input image x f orget . The final forgetting-aware
attribution map can be defined as:

W f orgetting = |
∂cos(v̂(x f orget),v0)

∂x f orget |. (7)

5.4.4. Visualization for the Data Instances

The forgotten instance view (Fig. 1-E) contains two panels. First,
users need to select one model stage to investigate from the drop-
down menu. Then, the system employs Uniform Manifold Approx-
imation and Projection (UMAP) [MHM18] to process all the for-
gotten data instances under the selected model stage, e.g., M18. The
resulting 2D scatter plot (E1) demonstrates the similarities among
the data instances based on the reasons for being forgotten where
the color represents their ground-true classes. However, if the data
instances that belong to the same category are distributed randomly,
it implies that learning the new task has significantly impacted the
knowledge acquired in the past. After the users have made se-
lections on the scatter plot, the corresponding images with their
forgetting-aware attribution maps are displayed on panel E2. For
each image, its ground-true label and the mispredicted label will be
displayed to the right.
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5.5. Filter-Level Information Drift

This section first introduces how to track knowledge drift using
filter-wise mutual information (Sec. 5.5.1). Then, it discusses how
to visualize the knowledge drift across a model sequence (Sec.
5.5.2) and how it assists users to discover hidden patterns.

5.5.1. Measuring Filter-Level Information Drift

To support in-depth analysis from the perspective of model behav-
iors, we need to extract information that is able to represent the
knowledge acquired in the past and also associated with the model
parameters (R3.2). Moreover, as our goal is to visualize how past
knowledge is interfered over time, the extracted information should
be comparable along the temporal dimension.

Centered Kernel Alignment (CKA) [KNLH19] has been used in
many studies as an indicator of forgetting. It measures the similar-
ity between two neural network representations. However, CKA
only estimates the correspondences between the activation map
extracted using the original model and the one extracted using
the current model. In this case, the similarity scores cannot indi-
cate whether the model update indeed boosts or hurts the knowl-
edge relevant to the old task. Therefore, to estimate the amount
of knowledge drifted at each convolutional filter, we compute the
mutual information (MI) between the filter-level activation maps
and the corresponding ground-true label for indicating how much
task-reverent information is still retained in the current model. To
estimate the MI, we adopt the matrix-based Rényi’s entropy esti-
mator [WLK∗19], which is designed to address the MI estimation
for high dimensional tensor-based variables. Then, given a convo-
lutional filter fk, we can measure the change of task-reverent infor-
mation as:

MI(A fk ;yc) = H(A fk )+H(yc)−H(A fk ,y
c), (8)

∆Ic
fk
= MI(A fk ;yc)−MI(A∗fk

;yc), (9)

where yc represents the ground-true label in one-hot encoding, A fk

and A∗fk
denote the filter-level activation extracted from the origi-

nal model and current model respectively. Detailed procedures on
how to track the information drift across the updated models are
described in Algorithm 1.

Algorithm 1 Estimating the knowledge drift over subsequent tasks.
Input: K selected filters, { f1, f2, ..., fK}; the data of task Tt in mini-
batches {b1,b2, ...,bn}; m models {Mt+1,Mt+2, ...,Mt+m} updated
for the m subsequent learning tasks
Output: 2D array S∆I recording the change of MI w.r.t. the task Tt

1: S∆I ← empty array
2: for i = 1 : m do
3: for k = 1 : K do
4: for j = 1 : n do
5: compute ∆I fk , j←MI(At

fk
;y)−MI(At+i

fk
;y)

6: end for
7: S∆Ii,k ←

1
n ∑ j ∆I fk , j

8: end for
9: end for

5.5.2. Information Drift Visualization

To prevent any confusion regarding the name of the framework,
the last panel is named as information drift view. The information
drift view is designed to facilitate the filter-level diagnosis of for-
getting (Fig. 1-F). To directly interpret how much information is
forgotten or remembered at each filter, we use the change of mu-
tual information with respect to the old task computed based on
Equation 9 instead of displaying the raw values. However, exam-
ining filters from all convolutional layers simultaneously is both
impractical and inefficient. Therefore, the top context panel pro-
vides a layer-wise summary and allows users to toggle between the
overview and the filter-specific detailed information presented on
the bottom.

Each box plot in Fig. 1-F1 reveals the distribution of ∆I from all
the subsequent models (i.e., M15 to M20) at that layer. The users
can slide to the layer of interest to further inspect the filter-wise es-
timations in detail. For the second panel F2, the x-axis denotes the
convolutional filter by index and the y-axis denotes all the subse-
quent models following the training order. The color of each cell
indicates how much knowledge relevant to the old task is discarded
(in red) or increased (in blue). By observing the values along the
y-axis, users are able to interpret the trend of knowledge drift over
time. Oftentimes, the network parameters tend to lose information
relevant to the old task after learning the following new tasks. Thus,
we expect to see that most cells are in red and their trend along
the y-axis aligns with the measures of performance drift over time.
However, in some cases, certain filters may relearn the task-relevant
knowledge which can be observed according to cells in light blue.
If there exist numerous cells colored in blue, users may need to
consider retraining the classifier for that old task, since it implies
that a few filters indeed still maintain the past knowledge but they
are incompatible with the old classifier.

6. Use Cases

6.1. Naive Task-incremental Learning

In the first study, we employ the Split MNIST dataset, a classic
incremental learning benchmark. Similar to the task setup in Fig-
ure 2, the original MNIST was divided into 5 binary digit recog-
nition tasks. The primary objective of this study is to demonstrate
an analytical scenario where an incremental learning strategy is not
utilized, leading to the forgetting of prior tasks as the model is sim-
ply fine-tuned with subsequent task datasets. The task sequence is
trained using a two-layer ConvNet. We start with inspecting the per-
formance overview panel. As shown in Fig. 3, task T2 encounters
the most serious forgetting among all five tasks and it reaches its
peak forgetting after the model has been updated for task T5. We
then want to understand why T2’s dataset has been dramatically
forgotten at the final model stage (M5).

To understand how the following models progressively deviate
from the original solution of T2, we check the model drift view
as shown in the left panel of Fig. 3. In contrast to the locations of
model M3 and M4 (i.e., two smaller red dots), model M5 signifi-
cantly deviates from the solution of T2, which aligns with the dra-
matic performance decrease indicated in the performance overview
chart (see Fig. 3). In the next step, want to further investigate
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Figure 3: Overview for the split MNIST experiment which helps the
analysts to navigate a specific task to analyze.

Figure 4: Forgetting-aware saliency maps for the split MNIST ex-
periment. The red color highlights the important features for ana-
lyzing the forgetting of task T1 at model stage M5.

why the neural network is confused by the visual features of T2’s
dataset. For the next step, we aim to further investigate why the
neural network is facing difficulty in accurately distinguishing the
visual features between the two classes of T2.

At the instance panel, we inspect individual forgotten instances
and their corresponding forgetting-aware attribution maps. Fig. 4
demonstrates the diagnosis-driven clustering result at model stage
M5. All the forgotten images are digit-2, which indicates that im-
ages of digit-2 can be easily misrecognized as digit-3 after the
model has been trained for task T5. Upon examining the scat-
ter plot, we observed numerous smaller clusters and selected sev-
eral image instances from three random clusters. Notably, images
within the same cluster share similar writing styles, but are distinct
from the ones in other clusters. By checking the attribution maps in
detail, we found that dissimilar handwriting features indeed lead to
varying reasons for being forgotten. For instance, the images from
the top left and the middle clusters are highlighted for similar visual
features i.e., ending points of the handwriting digit. The highlights
in red indicate the image features that are important for not being
recognized as digit-3 but overlooked by the updated model.

6.2. Task-incremental Learning with Algorithm

For the second case study, we evaluate our framework on a more
complex incremental learning benchmark, Split CIFAR-100, which
contains 20 5-class recognition tasks. During the incremental train-
ing process, an advanced incremental learning algorithm, Averaged
Gradient Episodic Memory (A-GEM) [CRRE18], was employed to
alleviate the forgetting problem.

As observed from Fig. 1-A, the performance of task T14 stays
relatively the same starting from the model stage M16. To further
investigate whether there is any internal change during that training
period, we first check on the model drift view as shown in Fig. 1-C.

The model dynamics in the testing loss landscape are indeed differ-
ent from the ones in the training loss landscape. By analyzing how
the path of subsequent models interacts with the loss contours, we
know that during training the model does keep deviating from the
solution of T14. However, when we evaluate the same dynamics us-
ing testing data, we observed that the last three models roughly stay
along the same contour line with a loss value of 0.012, which helps
explain why the performance stays relatively the same through the
last few model stages. While the forgetting rate stays relatively sta-
ble during the last five model stages, to better understand whether
there is any change in the forgotten data instances, we decide to
inspect the label drift view as shown in Fig. 1-D.

By interpreting the overall trend in the Sankey diagram, we ob-
served that most of the forgotten instances are mispredicted to the
first three categories (i.e., rabbit, raccoon, and ray). Even though the
numbers of forgotten data are very similar from model stage M17
to M19 based on the bar chart above, the distribution of the mis-
predicted labels indeed changes dramatically. In particular, many
instances are mispredicted as rabbits at model stage M18 but their
previous predictions come from various classes. We see many lines
of flow exchanging among the first three categories, which also im-
plies that the feature representations learned for the three animal
classes have been seriously interfered during the sequential model
updates. To mitigate this problem, we can adjust the training im-
ages for those three categories. Furthermore, we also noticed that a
large amount of flow stays parallel between the same class across
different model stages. It is possible that many instances are con-
stantly biased towards a certain category. Our hypothesis has been
confirmed by checking the images from the scatter plot.

6.3. Comparing the Efficiency of Task-IL Algorithms

In the final case study, we present a comparative analysis us-
ing three different learning strategies with the split CIFAR-10
benchmark containing five binary recognition tasks. To illustrate
how the KNOWLEDGEDRIFT conveys meaningful comparisons
among different IL strategies, we ran a baseline method (i.e., fine-
tuning using SGD), and two state-of-the-art algorithms (i.e., A-
GEM [CRRE18] and ERRingBuffer [CRE∗19]) with a fixed ran-
dom seed. Our goal is to compare the effectiveness of all three al-
gorithms and identify similarities and differences among them.

We first compare the overall performance of all three algorithms
as shown in Fig. 5. At the final model stage, the mean accuracy
for SGD, A-GEM, and ERRingBuffer are 74.65%, 84.24%, and
83.18%, respectively. Notably, the baseline method achieved the
worst performance since it did not employ any strategy to reduce
catastrophic forgetting. While A-GEM and ERRingBuffer attain
comparable final mean accuracy, their performances are very dif-
ferent across individual training stages. All methods share the same
final solution after learning the first task T1 since the forgetting-
reducing mechanism only comes into play from the second task
onwards. Therefore, to ensure a fair comparison, we choose to in-
vestigate the forgetting of task T1 for each of the three strategies.

Fig. 6 shows the corresponding three model drift views. We ob-
served that even though all solutions of T1 (indicated by the blue
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SGD

A-GEM

ERRingBuffer

Figure 5: The performance overview of the three incremental
learning strategies for the Split CIFAR10 experiment. A-GEM and
ERRingBuffer reach similar final mean accuracy but their perfor-
mances are different at individual training stages.

SGD A-GEM ERRingBuffer

Figure 6: The model space views of three Task-IL strategies.

star) reach the same position in the loss scalar field, the paths
formed by the subsequent models (represented by red dots) diverge
in very different directions in the model parameter space. Com-
pared to the baseline approach, A-GEM effectively guides the in-
cremental training process towards a flatter region where the loss
value changes very little with respect to small changes in the model
parameters. Furthermore, based on the comparison of contour den-
sities among the three approaches, we observe that while the objec-
tive of the ERRingBuffer algorithm is not to drive the model to a
flat region, it does aim to slow down the rate of model digression.

Next, we further explore why the three strategies lead to such
distinct learning dynamics. In particular, we examine whether there
exist any filter-level patterns that can uncover their underlying
mechanisms. After exploring the information drift view for each
method, we see that overall they share the same trend: deeper lay-
ers tend to experience more severe forgetting compared to the lay-
ers closer to inputs. In Fig. 7, the heatmaps present the values of ∆I
at layers L1, L5, L13, and L19, arranged from top to bottom. The
darker shade of red indicates a higher degree of forgetting occur-
ring in that particular layer. To identify the differences among the
algorithms at a layer suffering from significant forgetting, we select
a deeper layer, layer4.1.conv1, for comparison as shown in Fig. 8.

In general, we noticed that for each method the general trend of
∆I variation along the y-axis is aligned with the performance of

Figure 7: The visualization of filter-wise mutual information
change with respect to the first task at four different layers. From
top to bottom, figures are arranged from shallow layers to deep lay-
ers. The darker shade of red indicates a higher degree of forgetting.

T1. As in Fig. 5, all charts show that the model was able to retrieve
some past information during the last training stage, resulting in
a decrease in forgetting. Moreover, the dark red color in the SGD
heatmap indicates the most significant drift of knowledge, confirm-
ing the limitations of this approach. In contrast, A-GEM demon-
strates the least amount of forgetting, with some cells in light blue
color even showing an increase in T1-related information at layer
layer4.1.conv1. Lastly, we found the general trends of SGD and
ERRingBuffer across model stages M2 to M5 are similar except
that ERRingBuffer has much smaller measures of forgetting.

7. Discussion

7.1. Feedback from the Domain Experts

To collect sufficient feedback regarding our framework, we con-
ducted interviews with three continual learning experts (E1, E2,
and E3). During each discussion, we first introduced the pipeline
and the functionality of each panel. We then invited the domain
experts to freely interact with the system.

In general, experts agreed that the designs of KNOWL-
EDGEDRIFT well suited their analysis workflow. By observing the
explorations conducted by each expert, we found that typically they
preferred to check the model drift view immediately after they had
selected a particular task to inspect. Both E1 and E3 commented
that visualizing the subsequent model checkpoints on the loss land-
scape allows them to easily interpret how the later model diverged
from the original solution. In addition, E3 liked the idea of show-
casing the loss landscapes of both training and test datasets side by
side. This design would allow for a more comprehensive analysis
since it was possible that forgetting may become severe only for
the test dataset. E3 also commented that when there existed a large
number of subsequent tasks, the representations on the projected
parameter space were even easier to follow than checking the for-
getting rate from the chart in the overview.
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SGD

A-GEM

ERRingBuffer

Figure 8: The information drift views for the three incremental
learning strategies. Even though the baseline approach (SGD) en-
counters the severest forgetting among the three strategies, it shares
similar patterns with the ERRingBuffer at layer layer4.1.conv1.

For the instance-level analysis, E2 first commented that if the
learning only involved a few tasks, he would directly inspect the
label-drift view to see whether the data instances were constantly
being mispredicted to a certain label, and then investigated the cor-
responding images at particular model stages. However, both E2
and E3 mentioned that it took some time to fully understand how
to interpret the encoding of the Sankey diagram. E3 suggested that
it would be very useful if the design could track the status of all
the data instances at each model checkpoint and trace their true la-
bels. Furthermore, all experts agreed that it is effective to use filter-
wise gradient information to embed the forgotten data since the data
clusters facilitated users to diagnose the issues by groups. Typically,
they would visualize the misclassified instances by solely project-
ing their features extracted from the last hidden layer. However, E1
pointed out that the connection between the label drift view and the
scatter plot was weak, as the Sankey diagram did not provide any
information on the true labels which made it difficult to associate
the diagram with individual image instances in the scatter plot.

E1 comments that the model drift view is very beneficial for
having a general understanding of the forgetting process. In addi-
tion, as shown in the algorithm comparison study, it is impressive
to see the information drift view indeed can uncover many useful
insights. Both E1 and E2 acknowledge that the label drift view and
the diagnosis-driven clustering of the forgotten instances are able
to efficiently reveal the hidden patterns over time. Particularly, the
data clustering approach facilitates the exploration by each group,
which has not been considered in any previous studies. Similar to
our findings in the third case study, all experts agreed that our in-

formation drift view could efficiently reveal the trend over layers. If
catastrophic forgetting only happened in the last hidden layers, it is
worth trying to freeze those layers or retrain the linear classifier to
reduce forgetting. In general, all three experts commented that the
KNOWLEDGEDRIFT was presented in a good way especially when
the users already made hypotheses on why forgetting happened for
a particular task, and the interactive system could help verify and
consolidate their understanding.

7.2. Limitations and Future Work

Scalability. As our analytical algorithms mainly rely on neural net-
works and their parameters, the computational cost depends on the
choice of neural network and the size of the task sequence. For ex-
ample, for the Split CIFAR-10 benchmark with ResNet-18, it takes
around 4 and 4.5 hours respectively to produce the diagnosis-driven
embedding and compute the Rényi mutual information as both of
them involve massive computation at the filter level. Thus, to en-
sure a smooth analysis process, we pre-processed most of the anal-
ysis offline. In terms of the visual design, the Sankey diagram in
the label drift view and the heatmap in the information drift view
can be affected by the size of the task sequence. Besides limiting
the total number of tasks to be displayed on the panels, we plan
to improve the two visual components to better handle real-world
scenarios where the number of tasks can be unbounded.
Generalizability. While our main focus is to analyze sequences
of image classification tasks, the analytical approaches we propose
can be adapted to other types of learning tasks. However, it requires
some adjustments to the instance-level visualization. Currently, our
system only supports visual analysis for learning tasks trained with
Convolutional Neural Networks (CNNs). In the future, we consider
extending our framework to accommodate other network architec-
tures, such as the Vision Transformer (ViT). Furthermore, during
the interview, one expert suggested that our work could be extended
to analyze class-incremental learning which is more challenging
than Task-IL. This can be valuable for future work.

8. Conclusion

We developed a visual analytics framework to assist analysts to
interpret and diagnose catastrophic forgetting in task-incremental
learning. Our framework provides comprehensive explanations via
two visual analytical modules. The first module offers a model
performance summary that enables analysts to navigate to a spe-
cific task for inspection. The second module coordinates five vi-
sual components to facilitate a thorough task-driven analysis. To
enable the investigation and visualization of forgotten information
at various data granularity levels, we propose a diagnosis-driven
clustering approach to analyze the forgotten data, a saliency map to
capture the forgetting of image features and a knowledge drift mea-
surement at the model parameter level. We also demonstrate that
KNOWLEDGEDRIFT provides valuable insights into the strengths
and weaknesses of various incremental learning algorithms.
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