
Eurographics Conference on Visualization (EuroVis) 2023
D. Archambault, R. Bujack, and T. Schreck
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 3

ParaDime: A Framework for Parametric Dimensionality Reduction

Andreas Hinterreiter1 , Christina Humer1 , Bernhard Kainz2,3 , and Marc Streit1

1Johannes Kepler University Linz, Austria
2Friedrich-Alexander-University Erlangen-Nuremberg, Germany

3Imperial College London, UK

Figure 1: ParaDime is a framework for parametric dimensionality reduction. Left: Data flow in a single training phase of a ParaDime
routine. Right: Parametric t-SNE trained on a subset of 5000 images from the MNIST dataset [LeC05] and applied to 15,000 unseen images.

Abstract
ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to
embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the
idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides
a common interface for specifying these relations and transformations and for defining how they are used within the losses
that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric
MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process. We show how this ease of customization
makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and
supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.

CCS Concepts
• Computing methodologies → Neural networks; Learning latent representations; • Human-centered computing → Visual-
ization systems and tools; Information visualization;

1. Introduction

Dimensionality reduction (DR) is one of the standard strategies
for visualizing high-dimensional data. The general concepts of DR
have been known and applied for over a century [AW10] in the form
of linear techniques such as principal component analysis (PCA).
In recent decades, however, nonlinear DR techniques have gained
popularity. The most prominent modern techniques are t-distributed
stochastic neighbor embedding (t-SNE) [vdMH08] and uniform
manifold approximation and projection (UMAP) [MHM18]. Both
t-SNE and UMAP rely on pairwise inter-item relationship informa-
tion from high-dimensional data to construct embeddings in a low-

dimensional space, with the goal of preserving key “structures” of
the original data.

One shortcoming of such relationship-based DR techniques is
that new items cannot readily be added to existing embeddings
without recomputing all pairwise relationships. To address this
shortcoming, researchers have developed parametric DR tech-
niques. In parametric DR, embeddings are created by parameter-
ized functions (e.g., neural networks) that are trained on high-
dimensional data. While several implementations of parametric DR
are available, most of them are tailor-made variations of existing
techniques, and they are often difficult to customize or extend. This
“scattered” nature of existing parametric DR techniques is surpris-

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14834

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4101-5180
https://orcid.org/0000-0002-0249-4062
https://orcid.org/0000-0002-7813-5023
https://orcid.org/0000-0001-9186-2092
https://doi.org/10.1111/cgf.14834

A. Hinterreiter et al. / ParaDime

ing, considering the strong conceptual similarities between various
nonlinear DR approaches [BBK22]. In particular, the loss in many
DR techniques is based on the comparison of (transformed) pair-
wise distances between data points.

We believe that the potential of parametric DR is underexplored,
and that both the visualization and the machine learning commu-
nities could benefit from a framework that makes it easy to ex-
periment with such techniques. For this purpose, we introduce
ParaDime, a unifying framework for parametric DR. Our contri-
bution with ParaDime is threefold:

• We introduce a generalizing grammar which formalizes all the
steps and building blocks necessary to specify a parametric DR
routine.

• We show how this grammar can be used not only to create para-
metric versions of existing DR techniques, but also to experiment
with new ideas.

• We present an implementation of the grammar with a focus on
usability and customization.

Our paper is structured as follows: In Section 2 we summarize
the historical development of DR, focusing on parametric tech-
niques; in Section 3 we explain how similarities between these
techniques give rise to a grammar of parametric DR, and how
ParaDime implements this grammar; we then show how ParaDime
can be used to create parametric versions of existing DR techniques
(Section 4) and how it facilitates experimentation with new ideas
(Section 5); in Section 6 we discuss design choices, ease of use,
limitations, and future work; Section 7 concludes the paper.

2. Related Work

DR can be categorized broadly into linear and nonlinear techniques.
The oldest linear technique, PCA, has been known for over a cen-
tury [Pea01; AW10]. The survey by Cunningham and Ghahra-
mani [CG15] provides an excellent overview of the many linear
techniques that have been developed since PCA was introduced.
Among these, multidimensional scaling (MDS) [Tor52] is most
pertinent to our work. Classic MDS is an eigenvalue problem with a
close relationship to PCA [Wil02; CC08]. In contrast, metric MDS
is a more general approach that aims to find a low-dimensional con-
figuration of points whose pairwise distances best match those of
the high-dimensional data.

Metric MDS, with its principle of comparing pairwise distances,
is the intellectual predecessor of many modern nonlinear tech-
niques, such as Isomap [Ten00], SNE [HR02], t-SNE [vdMH08],
and UMAP [MHM18]. Isomap tries to find a low-dimensional con-
figuration based on geodesic (i.e., shortest-path) distances com-
puted on a high-dimensional neighbor graph [Ten00]. In SNE,
Gaussian kernels are used to transform pairwise distances into
neighborhood probability distributions for both the high- and low-
dimensional data. These probability distributions are then com-
pared using the Kullback–Leibler (KL) divergence [HR02]. To
avoid the so-called crowding problem in the resultant embeddings,
t-SNE computes the probabilities in the low-dimensional space
using the more fat-tailed Student’s t-distribution [vdMH08]. Fi-
nally, UMAP replaces the t-distribution with a modified Cauchy

distribution and uses a cross entropy loss instead of the KL di-
vergence [MHM18; SMG21]. The conceptual similarities of these
(and several more) nonlinear DR techniques were highlighted in
various contexts by Bengio et al. [BDR*04], Böhm et al. [BBK22],
and Agrawal et al. [AAB21]. Recently, the relationship between t-
SNE and UMAP has been the subject of intense debate [BMH*19;
KL21; DH21; DBHK22].

Aside from their conceptual similarities, many nonlinear DR
techniques share a practical limitation: they involve the calculation
of pairwise distances. Adding new points to existing embeddings—
a problem known as out-of-sample extension—usually requires
recomputing the whole embedding. This drawback has been ad-
dressed by approximating embeddings with parametric functions,
using (i) kernel-based approaches [BDR*04; GMH12; GSH15],
(ii) mixture models and data imputation [dBMVL19], or (iii) neu-
ral networks [vdMaa09; MvdMY*10; SMG21; LKL*22]. Para-
metric versions of t-SNE and UMAP are examples of manifold
learning [BCV13], a subfield of representation learning. The gen-
eral idea of using neural networks to reduce data dimensionality,
in particular with autoencoders, predates these extensions [HZ93;
Hin06]. Additionally, parametric nonlinear DR techniques based on
neighborhood information are related to metric learning [Kul12],
where representations are determined by learning a distance func-
tion.

Minimum distortion embeddings (MDEs) [AAB21] and the
matrix optimization framework by Cunningham and Ghahra-
mani [CG15] are closely related to our work in that they aim to
unify several existing techniques in a common framework. Cun-
ningham and Ghahramani view DR as a matrix optimization prob-
lem with varying objectives [CG15]. By choosing the right ob-
jective and/or matrix constraints, a wide variety of techniques
can be expressed in their framework—albeit only linear ones.
MDEs use formalized distortions and penalty functions to gener-
alize non-linear embeddings [AAB21]. However, MDEs are non-
parametric and support out-of-sample-extension only via a com-
bination of anchoring constraints and solving a new MDE sub-
problem [AAB21]. In addition, MDEs are phrased in a way that
makes it challenging to map them to existing techniques (see, e.g.,
the comparison of t-SNE and UMAP by Sainburg et al. [SMG21]
vs. how Agarwal et al. relate penalties to UMAP [AAB21]).
ParaDime focuses instead on (potentially transformed) pairwise
relations between data items, which allows several existing tech-
niques to be directly “translated” into its framework.

Furthermore, ParaDime uses neural networks to compute em-
beddings. As a result, well-established loss functions from other
tasks, such as classification and reconstruction, can be readily
included in ParaDime DR routines. This relates ParaDime to
other techniques that add constraints to dimensionality reduc-
tion [VBF22]. In summary, ParaDime combines ideas from uni-
fying nonlinear DR [BBK22; AAB21] with parametric DR [vd-
Maa09; SMG21], and provides flexibility to include alternative
learning paradigms.

3. The ParaDime Grammar of Parametric DR

The similarities between the various neighbor- and distance-based
DR techniques outlined above inspired us to develop a unifying

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

338

A. Hinterreiter et al. / ParaDime

interface for specifying parametric dimensionality reduction rou-
tines. In ParaDime, routines are complete data processing pipelines
that include all the specifications necessary to generate a trained
parametric DR model from a given dataset. In this section, we
describe how routines can be specified with the ParaDime gram-
mar of parametric DR. This approach follows the tradition of
grammars and grammar-like structures in the visualization com-
munity, such as Vega [SRHH16], Vega-Lite [SMWH17] and En-
codable [Won20] for general visualizations, Atom [PDFE18] for
unit visualizations, Gosling [LWLG22] for genome visualizations,
and Neo [GHM*22] for confusion matrices.

3.1. Overview

ParaDime generalizes parametric DR by breaking it down into sev-
eral steps, as outlined in the data-flow graph in Figure 1. First, re-
lations between all items in a given dataset are computed. Then, a
batch of data is sampled in a training loop. The data batch is pro-
cessed with a machine learning model, and new relations between
all items in the processed batch are computed. The batch-wise re-
lations are compared with an appropriate subset of the overall re-
lations to compute an embedding loss. Additional losses may be
added to the embedding loss. Finally, the losses are used to opti-
mize the machine learning model.

The ParaDime grammar defines how the building blocks for each
of these steps are specified. We use YAML for these specifications
due to its focus on readability [dNMP*21]. A ParaDime specifi-
cation requires the three base-level entries relations, losses, and
training phases. Additionally, the derived data field may be used
to specify how extra data should be computed from the dataset or
the relations. In the following subsections, we explain each of these
fields in detail. The model and dataset are not part of the specifi-
cations. They are provided separately by the user, as explained in
Section 3.6.

3.2. Relations

The relations entry of a ParaDime specification lists “recipes”
for computing mutual relations between data items. Each relation
recipe is specified either globally or at the batch level. ParaDime
computes global relations between all items in the dataset before
any training begins; these are typically relations between the orig-
inal, high-dimensional data points. In contrast, the computation of
batch-wise relations is deferred to the training-loop stage of the
routine. The batch-wise relations are computed between items in a
batch of data that has been processed by the model (i.e., between
the low-dimensional data points).

A relation’s type specifies how relations are computed; sup-
ported types are, for instance, exact pairwise distances (pdist)
and approximate neighbor-based distances (neighbor). A relation’s
data field specifies which part of the dataset to use to compute re-
lations. ParaDime assumes that individual parts of a dataset can be
accessed via keys, which are used as values for the data field. For
example, a dataset might have its main data tensor and associated
class labels stored under two different keys. Relations typically ac-
cept a set of options. For instance, distance-based relations allow
users to specify the exact distance function to be used (e.g., metric:

euclidean). Other relations allow algorithm-specific settings, such
as the number of nearest neighbors for neighbor-based relations.

Finally, a list of transforms can be applied to the relations.
Transforms can be used, for instance, to convert pairwise dis-
tances into perplexity-based probabilities of neighborhood as in t-
SNE [vdMH08] (see Section 4.2). The complete relations speci-
fication has the following structure:

relations:

- name: <rel name>

level: global | batch

type: <rel type>

data: <data field to use>

options: { ... }

transforms:

- type: <transform type>

options: { ... }

- ...

- ...

Note that a routine can have any number of global or batch-wise
relations. Each relation has a name so that it can be referenced by
the losses or in derived data.

3.3. Losses

Once ParaDime knows how to compute relations between data
items, these relations can be used within losses to construct objec-
tive functions that govern the training process. A ParaDime speci-
fication of a routine’s losses has the following structure:

losses:

- name: <loss name>

type: <loss type>

func: <loss function >

keys:

data: [<data attr name>, ...]

rels: [<rel name>, ...]

methods: [<model method >, ...]

- ...

Each loss has a type, which defines how it behaves dur-
ing training. Supported loss types are relation, classification,
reconstruction, and position. A loss of type relation compares
a subset of precomputed global relations to relations computed
from a processed batch of data. A classification loss compares
the model output for a data batch to labels within the dataset.
A reconstruction loss compares the original input batch to an en-
coded and decoded version of the batch. Finally, a position loss
compares the low-dimensional output to a given set of coordinates.
To retain flexibility, each loss includes a specification of the keys

that should be used to access the relevant model methods, attributes
of the data, and/or the relations. Losses can be combined during
training to form weighted compound losses, as explained in the fol-
lowing subsection.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

339

A. Hinterreiter et al. / ParaDime

3.4. Training Phases

In ParaDime, the training of a routine is organized into training

phases. Each training phase consists of sampling and optimizer

specifications, a number of epochs, and a loss specification:

training phases:

- epochs: <number of epochs >

sampling:

type: item | edge

options: { ... }

loss:

components: [<loss name>, ...]

weights: [<weight >, ...]

optimizer:

type: <optim type>

options: { ... }

- ...

The sampling type can be either item (simple sampling of
batches of items) or edge (sampling of items based on rela-
tions between them). The edge-based sampling option enables
ParaDime specifications of techniques that are based on negative-
edge sampling [MSC*13; TLZM16; MHM18] or triplets [CSSB10]
(see example in Section 5.2). As already mentioned above, the
loss in each training phase is a weighted compound loss, whose
components are specified with the names of the losses defined ear-
lier. Finally, the optimizer entry specifies which optimization tech-
nique to use (e.g., sgd [Bot10] and adam [KB17]), along with op-
tions such as the learning rate or the momentum [SMDH13].

A ParaDime routine can have any number of training phases. Or-
ganizing the training into phases enables the pre-training of models,
which can replace the initialization of low-dimensional positions
used in non-parametric embeddings. It also allows multi-stage op-
timization schemes such as the early exaggeration often used in
t-SNE [vdMH08].

3.5. Derived Data

As mentioned earlier, an optional derived data field in a ParaDime
specification allows new dataset attributes that are populated right
before training to be defined based on other data attributes or on
global relations. They are specified as follows:

derived data:

- name: <attr name>

data func: <data function >

keys: [[data | rels , <key>], ...]

- ...

Here, the keys field allows users to specify which parts of the
data or the relations are passed as arguments to the data func that
computes the derived data. A simple use case for the derived data

field would be the calculation of PCA for initialization purposes
(see, e.g., the t-SNE example in Section 4.2). Our rephrasing of
parametric UMAP in terms of ParaDime in Section 4.3 shows how
derived entries can be used to set up initialization schemes based
on transformed global relations.

3.6. Using the Grammar

ParaDime gives users two options for creating parametric DR rou-
tines. The first option is to parse YAML specifications as described
above. In this case, users instantiate a ParaDime routine by loading
a specification file and additionally passing a PyTorch [PGM*19]
module as the model (i.e., neural network). ParaDime then parses
the specification and sets up Python objects corresponding to the
components specified. For each key in a specification, ParaDime
allows only specific values that correspond to implemented classes
or functions. If users want to parse specifications with custom val-
ues, these values and the corresponding implementations need to
be registered beforehand (using ParaDime’s registration methods).
The second option is to set up the objects manually, using the
ParaDime API rather than specification files. In this case, custom
objects and functions can be used directly. Once users have instan-
tiated a ParaDime routine, they can call its training method, pass-
ing the training data as an argument. Since PyTorch modules are
typically initialized randomly, most ParaDime routines constitute
random embeddings until the training method is called.

We provide a detailed documentation with examples and a less
technical introduction of the building blocks of ParaDime routines
online [Hin23a]. Paradime is pip-installable, and the code is avail-
able on GitHub [Hin23b].

4. Framing Existing Techniques in Terms of ParaDime

In this section, we show how (parametric extensions of) existing
techniques can be specified in terms of the ParaDime grammar.
Note that we omit the weights list in all cases, as all examples use
only a single loss component per training phase.

4.1. Metric MDS

Metric multidimensional scaling aims to find a configuration of
points in low-dimensional space such that the pairwise distances
match those of the high-dimensional data [CG15]. This can be
specified with ParaDime through Euclidean pairwise distance re-
lations and a mean square error loss between the two relations:

relations:

- name: dists hd

level: global

type: pairwise

options:

metric: euclidean

- name: dists ld

level: batch

type: pairwise

options:

metric: euclidean

losses:

- name: mds

type: relation

func: mse

keys:

rels:

- dists hd

- dists ld

training phases:

- loss:

components: mds

Figure 2 shows the normalized stresses [EMK*19] for sev-
eral ParaDime routines with different models and the specifica-
tion above trained on a 10-dimensional diabetes dataset [EHJT04].
The linear model was a simple matrix multiplication to map the
10-dimensional vectors to a 2-dimensional embeddings space. The
nonlinear models were fully connected neural networks with hid-
den layer dimensions as indicated, an additional bias, and soft-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

340

A. Hinterreiter et al. / ParaDime

0.055 0.060 0.065 0.070 0.075 0.080
Normalized loss

Linear (10, 2)

Non-linear (10, 2)

Non-linear (10, 5, 2)

Direct

SMACOF

Batch size
10
50
100
221
442

Figure 2: Normalized stress [EMK*19] for parametric versions of
metric MDS compared with the non-parametric SMACOF imple-
mentation of scikit-learn [PVG*11]. The non-linear models were
fully connected neural networks with hidden layer dimensions as
indicated. The routine labeled “Direct” is a non-parametric rou-
tine using a batch-wise optimization which mimics that of the para-
metric ones. All models were trained on a 10-dimensional diabetes
dataset with 442 items [EHJT04].

plus as activation function. The routine labeled Direct was a non-
parametric routine implemented with ParaDime by replacing the
model function with with a matrix that directly holds the embed-
ding coordinates. All ParaDime routines used the same optimizer
(Adam [KB17]), learning rate (0.01) and number of epochs (500).
The losses of the ParaDime routines are compared with that of the
non-parametric scikit-learn implementation using the SMACOF al-
gorithm [Kru64]. Note how the routines with linear and nonlinear
models of size 10 × 2 performed almost identically. Adding an-
other hidden layer of dimension five reduced the loss substantially,
especially for smaller batch sizes. The average loss for a batch size
of ten was less than 12 % greater than the average of the SMA-
COF baseline, despite the simplicity of the model and the absence
of hyperparameter tuning. Interestingly, for the two models of size
10×2, smaller batch sizes led to higher losses. The non-parametric
implementation had losses similar to the SMACOF baseline. These
results reveal the importance of model and hyperparameter selec-
tion, which we discuss in Section 6.4.

4.2. t-SNE

The t-SNE algorithm begins with calculating pairwise distances
that are transformed into normalized and symmetrized probabili-
ties of high-dimensional neighborhood based on a perplexity hyper-
parameter [vdMH08]. In low-dimensional space, probabilities of
neighborhood are calculated by transforming Euclidean distances
with a Student’s t-distribution [vdMH08]. Defining these two re-
lations in ParaDime using transforms is straightforward. Note
that the global relation specification contains neighbor rather than
pdist as type, which tells ParaDime to use approximate nearest-
neighbor-based distances. This is an optimization that is used in
modern t-SNE implementations [PSZ19]. The two probability ma-
trices are compared using the KL divergence.

Before this step, most t-SNE implementations perform an ini-
tialization of the embedding with PCA coordinates. The embed-
ding coordinates, however, cannot be initialized directly in a para-
metric DR routine, because the coordinates are outputs of a neural

network. Instead, the model weights have to be set in such a way
that the model mimics a PCA transformation. In ParaDime, this is
achieved by pre-training the model in a separate training phase. The
derived data specification makes the required PCA coordinates
available during training. This results in the following ParaDime
specification for parametric t-SNE:

derived data:

- name: pca

data func: pca

keys: [[data , main]]

relations:

- name: p

level: global

type: neighbor

data: main

options:

metric: euclidean

transforms:

- type: perplexity

options:

perplexity: <p>

- type: symmetrize

- type: normalize

- name: q

level: batch

type: pairwise

data: main

options:

metric: euclidean

transforms:

- type: t-dist

options:

alpha: 1.

- type: normalize

losses:

- name: init

type: position

func: mse

keys:

data: [main , pca]

- name: emb

type: relation

func: kl div

keys:

rels: [p, q]

training phases:

pca initialization

- loss:

components: [init]

sampling:

type: item

main embedding

- loss:

components: [emb]

sampling:

type: item

Parametric t-SNE as specified above does not feature early ex-
aggeration [vdMH08]. However, this can easily be implemented by
adding a training phase between the pre-training and embedding
phases, making use of a simple multiplicative transform. In con-
trast to the parametric version of t-SNE recently introduced by Lai
et al. [LKL*22], ParaDime currently does not use gradient clipping.
In future version, gradient clipping could be included as an option
in the loss specification.

An example of a parametric t-SNE routine implemented with
ParaDime is shown in the right part of Figure 1. It was trained on
a subset of 5000 images of the MNIST dataset of handwritten dig-
its [LeC05] with a perplexity of 100 and a learning rate of 0.001.
The model had hidden layer dimensions of 1024, 512, 256, 128
and used softplus for all activation functions. This model architec-
ture is the same as the one used by Lai et al. [LKL*22], but our
experiments suggest that models with far fewer parameters (e.g.,
hidden layer dimensions of 100 and 50) work reasonably well in
many cases. Figure 1 also shows the result of applying the trained
model to 15,000 unseen data instances.

4.3. UMAP

As discussed in Section 2, UMAP has several conceptual similari-
ties to t-SNE. Its ParaDime specification therefore reads relatively
similar to that of t-SNE. In the following, we omitted fields that are
the same as in the specification for parametric t-SNE.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

341

A. Hinterreiter et al. / ParaDime

derived data:

- ...

- name: spectral

data func: spectral

keys: [[rels , p]]

relations:

- ...

transforms:

- type: connect

options:

neighbors: <n>

- type: symmetrize

options:

sub prod: true

- type: normalize

- ...

transforms:

- type: cauchy

options:

spread: <s>

min dist: <md>

losses:

- name: init

type: position

func: mse

keys:

data:

- main

- spectral

- name: emb

type: relation

func: cross entropy

keys:

rels: [p, q]

training phases:

spectral init

- ...

main embedding

- loss:

components: [emb]

sampling:

type: edge

Sainburg et al. [SMG21] outlined the main differences of UMAP
from t-SNE. In contrast to t-SNE, UMAP:

• initializes coordinates with a spectral embedding based on
global relations, instead of applying PCA;

• transforms distances to probabilities with kernels whose widths
depend on connectivity instead of perplexity;

• transforms batch-wise relations with a modified cauchy distribu-
tion instead of a Student’s t-distribution;

• uses cross entropy as loss instead of KL divergence; and
• uses negative-edge sampling instead of item-based sampling.

ParaDime uses an implementation of negative-edge sampling
which does not ensure that each item is sampled at least once.
This may lead to slightly smaller repulsive forces in ParaDime
embeddings compared to an existing parametric UMAP ver-
sion [SMG21].

The bottom four scatterplots in Figure 3 give an indication
of how parametric UMAP embeddings look for the MNIST
dataset [LeC05]. Note, however, that these embeddings come from
routines with an additional loss term, as explained in Section 5.1.

4.4. Additional Neighbor-based Techniques

ParaDime includes implementations of all relations, transforms,
and data func methods specified in the examples above. With
these methods, it is also possible to specify LargeVis [TLZM16],
which basically combines t-SNE’s high-dimensional relations with
negative-edge sampling. LargeVis is not restricted to a specific
transform for the low-dimensional (i.e., batch-wise) relations; the
authors state that “many probabilistic functions can be used” in-
stead [TLZM16]. This aligns well with ParaDime’s flexible concept
of transforms.

Isomap is another neighbor-based technique, but it uses geodesic
distances instead of probabilities of neighborhood [Ten00]. Speci-
fying Isomap with ParaDime merely requires implementing either
a new relations type or a transform that converts Euclidean dis-
tances to geodesic distances.

4.5. Classifiers & Autoencoders

In addition to the relation-type loss used in all DR techniques dis-
cussed so far, ParaDime also provides losses for typical machine-
learning tasks that are not limited to DR. In particular, the
classification loss makes it straightforward to implement classi-
fication models. The following specification assumes that the main
data is accessible as main, and ground truth labels as labels.

losses:

- type: classification

func: cross entropy

keys:

data:

- main

- labels

Similarly, autoencoders can be concisely specified using the pre-
defined reconstruction loss. Graving and Couzin [GC20], and
Sainburg et al. [SMG21] have previously discussed the potential of
combining the reconstruction ability of autoencoders with relation-
based embedding losses.

5. Experimenting with Combined Techniques

In this section, we present several application ideas for ParaDime.
These examples show the versatility of the ParaDime specifica-
tions, and encourage experimentation with new ideas that emerge
from combining different losses.

5.1. Hybrid UMAP for Embedding and Classification

In Sections 4.3 and 4.5 we showed how to use ParaDime to specify
a parametric version of UMAP and a simple classification model,
respectively. In this section, we combine the two to create a hy-
brid embedding and classification routine which uses a shared la-
tent space for both tasks. We applied our multitask routine to the
MNIST dataset of handwritten digits [LeC05].

As a model, we used a fully connected network with hidden-
layer dimensions 100 and 50. The model has two output layers:
one of dimension ten that yields the logits used for classification,
and one of dimension two for the embedding. Both these output
layers are connected to the second hidden layer.

As explained above, UMAP uses edge-based sampling. When
edge-based sampling is specified in ParaDime, each batch contains
not only the pairs of vertices between the sampled edges, but also
a list of unique data items suitable for other tasks, such as clas-
sification. Therefore, losses that require item-based sampling can
readily be added to routines that use negative-edge sampling. The
specification below creates our hybrid classification and embedding
model, with previously defined losses and relations omitted.

relations: <UMAP relation specs>

losses: [<UMAP loss>, <classification loss>]

training phases:

- loss:

components: [umap , class]

weights: <w>

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

342

A. Hinterreiter et al. / ParaDime

Figure 3: Embeddings of hybrid embedding/classification routines for the MNIST dataset [LeC05] created with ParaDime. The relative
weight of the embedding loss component is indicated by wr,emb, and the weight of the classification component was 1−wr,emb. All embedding-
related specifications were the same as those of the ParaDime parametric UMAP routine. The routines were trained on a subset of 5000
randomly sampled MNIST images. Test accuracy was calculated on a different subset of 5000 images. Trustworthiness [VK01; EMK*19]
was calculated based on ten nearest neighbors.

Thanks to ParaDime’s specification interface, the losses above
can be simply reused as components in a compound loss. Figure 3
shows nine embeddings created with different weights for the loss
components. All routines were trained on the same subset of 5000
images from MNIST for 100 epochs and without any pre-training.
Figure 3 also includes plots of the classification accuracy and the
embedding trustworthiness (as defined by Venna and Kaski [VK01;
EMK*19]) as functions of the weight. The accuracy was calculated
using a non-overlapping test subset of 5000 random images. Note
that even a small weight on the embedding loss leads to a substan-
tial class separation in the scatterplots. At the same time, classifi-
cation accuracy is not affected by the additional embedding task.
The accuracy suffers only when the weight on the classification ap-
proaches zero. Weighting the embedding with values in the wide
range of 0.5 to 0.95 produces visually “sensible” embeddings with
relatively high trustworthiness and practically the same classifica-
tion accuracy as the pure classifier. In fact, some of our experiments
showed that the additional embedding loss can slightly improve
generalization of the classifier. This observation is in line with the
original motivation for multitask learning [Car97].

Such a hybrid embedding and classification model could form
the basis for a visualization tool in which users can add new points
to existing embeddings. The predicted class labels could be used to
visually encode the new data points and/or to inform users whether
a new point lies within a region of the embedding where other
points of the same class are located.

5.2. Supervised t-SNE with Triplet Loss

In this example, we combined a parametric version of t-SNE (see
Section 4.2) with a triplet loss [CSSB10] to learn several super-
vised embeddings for the forest covertype dataset [BD99]. This is
an example of an instance-level constraint as categorized by Vu et
al. [VBF22].

The forest covertype dataset consists of 581,012 records with 54
attributes each. Each item corresponds to a 30m× 30m cell of a
US region, and the attributes describe cartographic variables, such
as elevation, slope, and distance from the nearest roadway. Each
item is labeled with the ground truth value for the type of trees cov-
ering the cell (e.g., aspen, krummholz, and spruce/fir). The dataset
is strongly imbalanced, with the most prevalent class being more
than 100 times more frequent than the least. In this example, we
used the first ten numerical attributes and sampled an almost bal-
anced subset of 7000 items.

Supervising t-SNE with an additional term based on triplets can
be achieved easily thanks to the ParaDime interface: First, we use
negative-edge sampling to construct triplets. In negative-edge sam-
pling, rather than batches of individual items, batches of edges be-
tween items are sampled during training. In other applications of
this sampling strategy (e.g., UMAP [MHM18]), a positive edge is
sampled according to the probabilities of neighborhood of the two
points (i.e., vertices). A specified number of random negative edges
for one of the two vertices is then added. Negative edges are edges
between two vertices for which the probability of neighborhood
is zero. In this example, we instead created a probability matrix r
with ri j = 1 if gi = g j and 0 else, where gi are the ground truth

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

343

A. Hinterreiter et al. / ParaDime

Aspen

R = 10

Cottonwood/willow

Douglas-fir

Krummholz

Lodgepole pine

Ponderosa pine

Spruce/fir

R = 20 R = 50 R = 100 R = 200

R = 500 R = 1000 R = 2000 Parametric t-SNE (ParaDime) t-SNE (scikit-learn)

R = w(t-SNE) / w(Triplet)

Figure 4: Supervised embeddings of a subset of the forest covertype dataset [CSSB10]. All embeddings labeled with R are supervised versions
of parametric t-SNE, where supervision was included by means of a triplet loss based on the ground truth labels. R is the ratio of the weights
of the t-SNE loss and the triplet loss. For comparison, embeddings created with scikit-learn’s non-parametric t-SNE implementation and
with a plain ParaDime t-SNE version (using item-based sampling and no triplet loss) are shown. The perplexity was 200 in all cases, and a
class-balanced subset of 7000 items was used.

labels of the data. If we use this probability matrix for negative-
edge sampling with a negative sampling rate of one, we essentially
sample one pair of vertices (a,b) with equal labels and another pair
(a,c) with different labels. The set of vertices a,b,c constitutes a
triplet [CSSB10; BRPM16]. We can then simply add an additional
triplet loss. This results in the following ParaDime specification:

derived data: [<PCA>]

relations:

- <global t-SNE rel>

- <batch t-SNE rel>

- name: r

level: global

type: pairwise eq

losses:

- <PCA init loss>

- <t-SNE loss>

- name: triplet

type: triplet

func: margin

keys:

data: [main , data]

training phases:

- <PCA init>

- loss:

components:

- tsne

- triplet

weights: <w>

sampling:

type: edge

options:

rels: r

rate: 1

Here, pairwise eq stands for the global relation as defined by
ri j , and margin is the name of the following loss function that is
applied to the triplets [WSL*14; BRPM16]:

Ltriplet(a,b,c) = max(d(a,b)−d(a,c)+m,0), (1)

where m is the margin hyperparameter. We abridged the parts of the
specification that match that of t-SNE from Section 4.2.

Figure 4 shows eight versions of embeddings specified this way,
with different values for the loss weights. In all cases, the model
was a fully connected neural network with hidden layer dimen-
sions 100 and 50. Each embedding was initialized with a PCA-
based pre-training for ten epochs with item sampling and a batch
size of 500. As explained above, the main embedding phases used
negative-edge sampling, with 300 triplets being sampled in each
batch. For comparison, Figure 4 includes a parametric t-SNE with-
out the extra triplet loss and with regular item sampling. We also
show the result of scikit-learn’s non-parametric t-SNE. For all em-
beddings the perplexity value was set to 200.

For the triplet loss as defined above to be minimal, the distance
along negative edges (i.e., between a pair of items with different
labels) must be substantially larger than the distances along a pos-
itive edge. This pulls together items from the same class. Putting
too much weight onto the triplet loss causes all items to condense
along a single line, approximately sorted by their class labels. As
the weight of the triplet loss is reduced, the structure of the “pure”
t-SNE is increasingly preserved, while classes are well separated
(see, e.g., the embeddings for t-SNE/triplet loss weight ratios of
1000 in Figure 4). With vanishing weight on the triplet loss, the
embedding still differs noticeably from that which used item-based
sampling; here, the triplet sampling strategy might be disadvanta-
geous, as it favors certain batch configurations over others.

One potential application idea for such supervised embeddings
is an interactive visual interface for dataset exploration, that allows
users to switch between a purely attribute-driven visualization (e.g.,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

344

A. Hinterreiter et al. / ParaDime

pure t-SNE) and a supervised one with more pronounced class sep-
aration. In the former, users could explore similarities and differ-
ences between all data points as usual, while the latter would en-
able class-specific exploration without losing track of the overall
structure.

5.3. Attribute-guided Embeddings

In this example, we again look at embeddings of the covertype
dataset discussed in the previous section. This time, however, our
primary interest is not in the class distribution, but in using specific
attributes to guide the embeddings. In particular, we used ParaDime
to construct an embedding in which a specified direction correlates
with one of the high-dimensional attributes. To this end, we defined
a new type of loss:

Lcorr(a,b; i, j) = 1−
(

cov(ai,b j)

σai σb j

)2

. (2)

Here, a and b are two data matrices with the same number of rows,
and ai and b j refer to columns i and j, respectively; cov is the co-
variance, and σ is the standard deviation. This loss is equivalent to
one minus the squared Pearson’s correlation coefficient for the ith
column of a and the jth column of b. During the training of our rou-
tine, a will be a batch of high-dimensional data and b the processed
(i.e., embedded) 2-dimensional batch.

Having defined a loss corr that uses the function Lcorr (Eq. 2)
and applies it to the unprocessed and embedded versions of the
input batch, we can simply construct a compound loss analogously
to the other examples in this section. The loss components (t-SNE
loss and correlation loss) can be weighted, and the dimensions that
should correlate can be specified as options to the loss.

Figure 5 shows four examples of such attribute-guided embed-
dings with different weights. In all examples, i was set to eight and
j to one, which means that the Hillshade (noon) attribute of the
covertype dataset was constrained to correlate with the x-direction
of the embedding. In the embeddings in Figure 5, the points are
colored by the high-dimensional attribute value specified. With in-
creasing weight on the correlation loss, the embedding is distorted
such that the values decrease from left to right, while the remain-
ing structure is preserved to some extent. Within a certain range of
weights, the transition from unguided to strongly guided embed-
dings appears to be smooth, with the points “folding over” contin-
uously to satisfy the constraints.

Because ParaDime models are neural networks, we can apply
to them any existing explanation technique developed for neural
networks. In this example, we sought to verify that the attribute
we specified (feature eight, Hillshade (noon)) was actually of high
importance for the resulting x value. To this end, we applied a
“vanilla” version of integrated gradients [Mol22] to our model. The
resulting feature importance scores are shown in the bar chart in
Figure 5. Note that for the strongly guided embedding, feature eight
is indeed the most important for the x result by some margin, and it
does not contribute to y at all.

Attribute-guided embeddings are not only a showcase for how
easily new techniques can be constructed with ParaDime. They
might be useful in cases in which users want to transition from

purely unsupervised embeddings to ones where a specified attribute
is of particular interest to the analysis.

6. Discussion

In this section, we discuss some of the design choices related to
the structure of the ParaDime grammar and its implementation. We
also reflect on ParaDime’s ease of use, its customizability, limita-
tions, and future work.

6.1. Structure of the Grammer

The structure of the ParaDime grammar cannot be uniquely de-
rived from the necessary building blocks (dataset, relations, etc.),
but depends on a number of choices. For example, in an earlier ver-
sion of the specifications, losses were defined entirely within the
training phases, and their specification included a weight. However,
this strongly limited the reusabilty of losses across phases. We thus
opted for loss specifications at the base level, which required the
introduction of the components and weights entries, and the use of
loss names that could be referenced.

Furthermore, we initially planned different base-level entries for
lists of global and batch-wise relations. From a computational view,
they are typically used at different times in the routines, and only
the batch-wise relations must be differentiable. Nevertheless, we
ultimately chose a flat list of relations with individual level entries
to highlight the conceptual similarities between them.

Initially, we had also planned to include a model entry in the
ParaDime specifications. Our first draft included a nested structure
of (sub-)model specifications based closely on how PyTorch allows
arbitrarily nested modules. However, we soon realized that the cre-
ation of a general declarative grammar for neural networks went
well beyond the scope of this work. We thus decided to have users
pass their PyTorch module to ParaDime alongside a DR specifica-
tion. ParaDime can also construct a default, fully connected model
to help users to get started.

6.2. Implementation Choices

We considered PyTorch [PGM*19], TensorFlow [AAB*16], and
JAX [FJL18] as machine learning frameworks for ParaDime. Ul-
timately, we settled on PyTorch because it has become the most
popular framework for research purposes [OCo21].

While in this work we used YAML [dNMP*21] for the specifica-
tions in this paper due to its focus on readability, ParaDime is also
capable of parsing JSON specifications with the same structures. In
addition to construction by specifications (which facilitate sharing
and reproducibility) ParaDime allows an object-oriented construc-
tion of routines, as this is particularly suitable for adapting existing
routines or dynamically changing properties of routines.

6.3. Ease of Use and Customization

As outlined in Section 4.4, ParaDime can be readily used for
distance- and neighbor-based DR techniques. We asked an AI
Bachelor student with no prior deep learning experience to im-
plement a parametric version of Isomap using ParaDime. Without

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

345

A. Hinterreiter et al. / ParaDime

Figure 5: Attribute-guided embeddings of a subset of the forest covertype dataset [CSSB10]. Attribute guiding was implemented by combining
t-SNE with a correlation loss which orders the data points along the x-axis by the value of the eighth feature (hillshade at noon). The weights
for the embeddings shown are (wt-SNE,wcorr) = (1,0), (5000,1), (1000,1), and (100,1), respectively. The bar chart on the right shows,
based on integrated gradients, the feature importance scores for the learned embeddings.

ParaDime, the student would have had to write a sampling rou-
tine that correctly incorporates pairwise relations, set up the Py-
Torch module, write and correctly apply the embedding loss, and
set up the optimization loops. With ParaDime, the student only had
to wrap code for the geodesic distance computation (taken from
scikit-learn) in a ParaDime relations class. Because ParaDime al-
ready offers differentiable implementations of several batch-wise
relations, the student did not have to learn PyTorch at all.

For more obscure DR techniques, users must program custom
losses or batch-wise relations. Ensuring that all relevant parts re-
main differentiable requires some understanding of PyTorch. Cur-
rently, the sampling procedure is the most difficult part of the
routines to customize, since it is not directly accessible through
the ParaDime API. However, we believe that the built-in item-
and edge-based samplers should suffice for most cases. Even in
highly customized applications, ParaDime should reduce overhead
because it takes care of most of the data handling, facilitates the
combination of multiple losses, and/or sets up the training loops.

6.4. Limitations & Future Work

One major limitation when moving from traditional DR techniques
to parametric embeddings is the increased number of hyperparam-
eters. Users must select a suitable model architecture and set batch
sizes, optimizers and learning rates such that the loss is properly
minimized. For the predefined ParaDime routines, we provide de-
faults based on our own experiments. With new routines, however,
finding suitable choices for hyperparameters can be challenging.
The same is true for weights in compound losses. Choosing suit-
able weights for the loss components is a long-standing problem
in multitask learning [GLS*19]. As a result, non-obvious weight
ratios have to be tried out, as seen in some of the examples dis-
cussed in Section 5. However, ParaDime’s focus on reusability and
ease of specification facilitates experiments with different weights.
ParaDime also features built-in plotting utilities, which allow users
to rapidly check the embeddings visually.

Another limitation related to batch-wise training is that certain
global constraints are difficult to implement. For example, global

density-based measures such as that used in densMAP [NBC21] are
challenging to reproduce from small batches. In principle, the batch
size in ParaDime can be set to the number of items in the dataset
to allow computation of global measures during training. However,
this might lead to problems with gradients for other losses. We plan
to experiment with such globally constrained techniques to provide
better ways of incorporating them.

Finally, we plan to include export utilities for the trained mod-
els so that they can easily be used elsewhere. It would be partic-
ularly desirable to export models in a format that could be used
directly within a web-browser. Visualizations implemented as web-
apps could thus make use of pre-trained ParaDime routines without
the need for a backend.

7. Conclusion

We have introduced ParaDime, a framework for parametric dimen-
sionality reduction. The ParaDime grammar allows users to specify
DR routines in a declarative way. We have shown how this approach
enables parametric extension of existing techniques and illustrated
how ParaDime facilitates experimentation with new ideas. We hope
that—due to our focus on flexibility and customization—ParaDime
will inspire further research into the potential of parametric dimen-
sionality reduction.

Acknowledgements

This work was supported by the State of Upper Austria and the
Austrian Federal Ministry of Education, Science and Research via
the Linz Institute of Technology (LIT-2019-7-SEE-117), the State
of Upper Austria (Human-Interpretable Machine Learning), the
Austrian Science Fund (FWF DFH 23–N), and the Austrian Re-
search Promotion Agency (FFG 881844). Pro2Future is funded
within the Austrian COMET Program under the auspices of the
Austrian Federal Ministry for Climate Action, Environment, En-
ergy, Mobility, Innovation and Technology, the Austrian Federal
Ministry for Digital and Economic Affairs, and of the States of Up-
per Austria and Styria. COMET is managed by the Austrian Re-
search Promotion Agency FFG.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

346

A. Hinterreiter et al. / ParaDime

References
[AAB*16] ABADI, M., AGARWAL, A., BARHAM, P., et al. “TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems”.
arXiv:1603.04467 [cs] (Mar. 14, 2016). DOI: 10.48550/arXiv.1603.
04467. arXiv: 1603.04467 9.

[AAB21] AGRAWAL, A., ALI, A., and BOYD, S. “Minimum-Distortion
Embedding”. Foundations and Trends in Machine Learning 14.3
(2021), 211–378. DOI: 10.1561/2200000090 2.

[AW10] ABDI, H. and WILLIAMS, L. J. “Principal component anal-
ysis”. Wiley Interdisciplinary Reviews: Computational Statistics 2.4
(2010), 433–459. DOI: 10.1002/wics.101 1, 2.

[BBK22] BÖHM, J. N., BERENS, P., and KOBAK, D. “Attraction-
Repulsion Spectrum in Neighbor Embeddings”. Journal of Machine
Learning Research 23.95 (2022), 1–32. URL: http://jmlr.org/papers/
v23/21-0055.html 2.

[BCV13] BENGIO, Y., COURVILLE, A., and VINCENT, P. “Representa-
tion Learning: A Review and New Perspectives”. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35.8 (Aug. 2013), 1798–
1828. DOI: 10.1109/TPAMI.2013.50 2.

[BD99] BLACKARD, J. A. and DEAN, D. J. “Comparative accuracies of
artificial neural networks and discriminant analysis in predicting forest
cover types from cartographic variables”. Computers and Electronics in
Agriculture 24.3 (Dec. 1999), 131–151. DOI: 10.1016/S0168-1699(99)
00046-0 7.

[BDR*04] BENGIO, Y., DELALLEAU, O., ROUX, N. L., et al. “Learn-
ing Eigenfunctions Links Spectral Embedding and Kernel PCA”. Neu-
ral Computation 16.10 (Oct. 1, 2004), 2197–2219. DOI: 10 . 1162 /
0899766041732396 2.

[BMH*19] BECHT, E., MCINNES, L., HEALY, J., et al. “Dimensionality
reduction for visualizing single-cell data using UMAP”. Nature Biotech-
nology 37.1 (Jan. 2019), 38–44. DOI: 10.1038/nbt.4314 2.

[Bot10] BOTTOU, L. “Large-Scale Machine Learning with Stochastic Gra-
dient Descent”. Proceedings of COMPSTAT’2010. Ed. by LECHEVAL-
LIER, Y. and SAPORTA, G. Heidelberg: Physica-Verlag HD, 2010, 177–
186. ISBN: 978-3-7908-2604-3. DOI: 10.1007/978-3-7908-2604-3_16 4.

[BRPM16] BALNTAS, V., RIBA, E., PONSA, D., and MIKOLAJCZYK,
K. “Learning local feature descriptors with triplets and shallow con-
volutional neural networks”. Procedings of the British Machine Vi-
sion Conference 2016. York, UK: British Machine Vision Association,
2016, 119.1–119.11. ISBN: 978-1-901725-59-9. DOI: 10.5244/C.30.
119 8.

[Car97] CARUANA, R. “Multitask Learning”. Machine Learning 28.1
(1997), 41–75. DOI: 10.1023/A:1007379606734 7.

[CC08] COX, M. A. A. and COX, T. F. “Multidimensional Scaling”.
CHEN, C.-H., HÄRDLE, W., and UNWIN, A. Handbook of Data Visual-
ization. Berlin, Heidelberg: Springer, 2008, 315–347. ISBN: 978-3-540-
33037-0. DOI: 10.1007/978-3-540-33037-0_14 2.

[CG15] CUNNINGHAM, J. P. and GHAHRAMANI, Z. “Linear Dimension-
ality Reduction: Survey, Insights, and Generalizations”. Journal of Ma-
chine Learning Research 16.1 (2015), 2859–2900 2, 4.

[CSSB10] CHECHIK, G., SHARMA, V., SHALIT, U., and BENGIO, S.
“Large Scale Online Learning of Image Similarity Through Ranking”.
Journal of Machine Learning Research 11.36 (2010), 1109–1135. URL:
https://www.jmlr.org/papers/v11/chechik10a.html 4, 7, 8, 10.

[DBHK22] DAMRICH, S., BÖHM, J. N., HAMPRECHT, F. A., and
KOBAK, D. “From t-SNE to UMAP with contrastive learning”.
arXiv:2206.01816 [cs.LG] (2022). DOI: 10.48550/arXiv.2206.01816 2.

[dBMVL19] De BODT, C., MULDERS, D., VERLEYSEN, M., and LEE,
J. A. “Nonlinear Dimensionality Reduction With Missing Data Using
Parametric Multiple Imputations”. IEEE Transactions on Neural Net-
works and Learning Systems 30.4 (Apr. 2019), 1166–1179. DOI: 10 .
1109/TNNLS.2018.2861891 2.

[DH21] DAMRICH, S. and HAMPRECHT, F. A. “On UMAP’s True Loss
Function”. Advances in Neural Information Processing Systems 34
(2021), 5798–5809. URL: https://proceedings.neurips.cc/paper/
2021/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html 2.

[dNMP*21] Döt NET, I., MÜLLER, T., PANTELIS, A., et al. YAML Ain’t
Markup Language (YAML™) version 1.2. Revision 1.2.2. YAML Lan-
guage Development Team, Oct. 1, 2021. URL: https://yaml.org/spec/
1.2.2 3, 9.

[EHJT04] EFRON, B., HASTIE, T., JOHNSTONE, I., and TIBSHIRANI, R.
“Least angle regression”. The Annals of Statistics 32.2 (Apr. 1, 2004).
DOI: 10.1214/009053604000000067 4, 5.

[EMK*19] ESPADOTO, M., MARTINS, R. M., KERREN, A., et al. “To-
ward a Quantitative Survey of Dimension Reduction Techniques”.
IEEE Transactions on Visualization and Computer Graphics 27 (3
2019), 2153–2173. DOI: 10.1109/TVCG.2019.2944182 4, 5, 7.

[FJL18] FROSTIG, R., JOHNSON, M. J., and LEARY, C. “Compiling ma-
chine learning programs via high-level tracing”. SysML Conference.
2018, 3. URL: https : / / mlsys . org / Conferences / 2019 / doc / 2018 /
146.pdf 9.

[GC20] GRAVING, J. M. and COUZIN, I. D. “VAE-SNE: a deep gener-
ative model for simultaneous dimensionality reduction and clustering”.
bioRxiv (2020). DOI: 10.1101/2020.07.17.207993 6.

[GHM*22] GÖRTLER, J., HOHMAN, F., MORITZ, D., et al. “Neo: Gener-
alizing Confusion Matrix Visualization to Hierarchical and Multi-Output
Labels”. CHI Conference on Human Factors in Computing Systems. New
Orleans LA USA: ACM, Apr. 29, 2022, 1–13. ISBN: 978-1-4503-9157-
3. DOI: 10.1145/3491102.3501823 3.

[GLS*19] GONG, T., LEE, T., STEPHENSON, C., et al. “A Comparison of
Loss Weighting Strategies for Multi task Learning in Deep Neural Net-
works”. IEEE Access 7 (2019), 141627–141632. DOI: 10.1109/ACCESS.
2019.2943604 10.

[GMH12] GISBRECHT, A., MOKBEL, B., and HAMMER, B. “Linear
basis-function t-SNE for fast nonlinear dimensionality reduction”. Inter-
national Joint Conference on Neural Networks (IJCNN 2012). Brisbane,
Australia: IEEE, June 2012, 1–8. DOI: 10.1109/IJCNN.2012.6252809 2.

[GSH15] GISBRECHT, A., SCHULZ, A., and HAMMER, B. “Parametric
nonlinear dimensionality reduction using kernel t-SNE”. Neurocomput-
ing 147 (Jan. 2015), 71–82. DOI: 10.1016/j.neucom.2013.11.045 2.

[Hin06] HINTON, G. E. “Reducing the Dimensionality of Data with Neu-
ral Networks”. Science 313.5786 (July 28, 2006), 504–507. DOI: 10 .
1126/science.1127647 2.

[Hin23a] HINTERREITER, A. ParaDime: A Framework for Parametric
Dimensionality Reduction. Documentation. 2023. URL: https : / /
paradime.readthedocs.io/en/latest/ 4.

[Hin23b] HINTERREITER, A. ParaDime: A Framework for Parametric
Dimensionality Reduction. GitHub repository. 2023. URL: https : / /
github.com/jku-vds-lab/paradime 4.

[HR02] HINTON, G. E. and ROWEIS, S. T. “Stochastic Neighbor Embed-
ding”. Advances in Neural Information Processing Systems 15 (2002), 8.
URL: https : / / proceedings . neurips . cc / paper / 2002 / hash /
6150ccc6069bea6b5716254057a194ef-Abstract.html 2.

[HZ93] HINTON, G. E. and ZEMEL, R. S. “Autoencoders, minimum de-
scription length and Helmholtz free energy”. Proceedings of the 6th
International Conference on Neural Information Processing Systems
(NIPS ’93). 1993, 3–10. DOI: 10.5555/2987189.2987190 2.

[KB17] KINGMA, D. P. and BA, J. “Adam: A Method for Stochastic Opti-
mization”. arXiv:1412.6980 [cs] (Jan. 29, 2017). DOI: 10.48550/arXiv.
1412.6980. arXiv: 1412.6980 4, 5.

[KL21] KOBAK, D. and LINDERMAN, G. C. “Initialization is critical for
preserving global data structure in both t-SNE and UMAP”. Nature
Biotechnology 39.2 (Feb. 2021), 156–157. DOI: 10.1038/s41587-020-
00809-z 2.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

347

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://arxiv.org/abs/1603.04467
https://doi.org/10.1561/2200000090
https://doi.org/10.1002/wics.101
http://jmlr.org/papers/v23/21-0055.html
http://jmlr.org/papers/v23/21-0055.html
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1016/S0168-1699(99)00046-0
https://doi.org/10.1016/S0168-1699(99)00046-0
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.5244/C.30.119
https://doi.org/10.5244/C.30.119
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/978-3-540-33037-0_14
https://www.jmlr.org/papers/v11/chechik10a.html
https://doi.org/10.48550/arXiv.2206.01816
https://doi.org/10.1109/TNNLS.2018.2861891
https://doi.org/10.1109/TNNLS.2018.2861891
https://proceedings.neurips.cc/paper/2021/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://yaml.org/spec/1.2.2
https://yaml.org/spec/1.2.2
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1109/TVCG.2019.2944182
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://doi.org/10.1101/2020.07.17.207993
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.1109/ACCESS.2019.2943604
https://doi.org/10.1109/ACCESS.2019.2943604
https://doi.org/10.1109/IJCNN.2012.6252809
https://doi.org/10.1016/j.neucom.2013.11.045
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://paradime.readthedocs.io/en/latest/
https://paradime.readthedocs.io/en/latest/
https://github.com/jku-vds-lab/paradime
https://github.com/jku-vds-lab/paradime
https://proceedings.neurips.cc/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html
https://proceedings.neurips.cc/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html
https://doi.org/10.5555/2987189.2987190
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1038/s41587-020-00809-z

A. Hinterreiter et al. / ParaDime

[Kru64] KRUSKAL, J. B. “Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis”. Psychometrika 29.1 (Mar.
1964), 1–27. DOI: 10.1007/BF02289565 5.

[Kul12] KULIS, B. “Metric learning: A survey”. Foundations and Trends
in Machine Learning 5.4 (2012), 287–364. DOI: 10.1561/2200000019 2.

[LeC05] LECUN, Y. The MNIST database of handwritten digits. 2005.
URL: http://yann.lecun.com/exdb/mnist/ (visited on 09/10/2022) 1,
5–7.

[LKL*22] LAI, C.-H., KUO, M.-F., LIEN, Y.-H., et al. “Parametric Di-
mension Reduction by Preserving Local Structure”. 2022 IEEE Visu-
alization Conference – Short Papers. 2022, 75–79. DOI: 10 . 1109 /
VIS54862.2022.00024 2, 5.

[LWLG22] L’YI, S., WANG, Q., LEKSCHAS, F., and GEHLENBORG, N.
“Gosling: A Grammar-based Toolkit for Scalable and Interactive Ge-
nomics Data Visualization”. IEEE Transactions on Visualization and
Computer Graphics 28.1 (Jan. 2022), 140–150. DOI: 10 . 1109 / TVCG .
2021.3114876 3.

[MHM18] MCINNES, L., HEALY, J., and MELVILLE, J. “UMAP: Uni-
form Manifold Approximation and Projection for Dimension Reduc-
tion”. arXiv:1802.03426 [cs, stat] (2018). DOI: 10.48550/arXiv.1802.
03426 1, 2, 4, 7.

[Mol22] MOLNAR, C. Interpretable Machine Learning: A Guide for Mak-
ing Black Box Models Explainable. 2nd ed. 2022. URL: christophm .
github.io/interpretable-ml-book/ 9.

[MSC*13] MIKOLOV, T., SUTSKEVER, I., CHEN, K., et al. “Distributed
Representations of Words and Phrases and their Compositionality”.
Advances in Neural Information Processing Systems. Vol. 26. 2013.
URL: https : / / proceedings . neurips . cc / paper / 2013 / hash /
9aa42b31882ec039965f3c4923ce901b-Abstract.html 4.

[MvdMY*10] MIN, M. R., van der MAATEN, L., YUAN, Z., et al. “Deep
Supervised t-Distributed Embedding”. Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10). 2010. URL: https:
//icml.cc/Conferences/2010/papers/149.pdf 2.

[NBC21] NARAYAN, A., BERGER, B., and CHO, H. “Assessing single-
cell transcriptomic variability through density-preserving data visualiza-
tion”. Nature Biotechnology 39.6 (June 2021), 765–774. DOI: 10.1038/
s41587-020-00801-7 10.

[OCo21] O’CONNOR, R. PyTorch vs TensorFlow in 2022. AssemblyAI
Blog. 2021. URL: https://www.assemblyai.com/blog/pytorch- vs-
tensorflow-in-2022/ (visited on 09/29/2022) 9.

[PDFE18] PARK, D., DRUCKER, S. M., FERNANDEZ, R., and
ELMQVIST, N. “Atom: A Grammar for Unit Visualizations”.
IEEE Transactions on Visualization and Computer Graphics 24.12
(2018), 3032–3043. DOI: 10.1109/TVCG.2017.2785807 3.

[Pea01] PEARSON, K. “On lines and planes of closest fit to systems of
points in space”. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2.11 (Nov. 1901), 559–572. DOI: 10.
1080/14786440109462720 2.

[PGM*19] PASZKE, A., GROSS, S., MASSA, F., et al. “PyTorch: An Im-
perative Style, High-Performance Deep Learning Library”. Advances in
Neural Information Processing Systems 32 (2019), 12. URL: https :
/ / papers . nips . cc / paper _ files / paper / 2019 / hash /
bdbca288fee7f92f2bfa9f7012727740-Abstract.html 4, 9.

[PSZ19] POLIČAR, P. G., STRAŽAR, M., and ZUPAN, B. “openTSNE: a
modular Python library for t-SNE dimensionality reduction and embed-
ding”. bioRxiv (2019). DOI: 10.1101/731877 5.

[PVG*11] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al.
“Scikit-learn: Machine Learning in Python”. Journal of Machine Learn-
ing Research 12 (2011), 2825–2830. URL: https://dl.acm.org/doi/
10.5555/1953048.2078195 5.

[SMDH13] SUTSKEVER, I., MARTENS, J., DAHL, G., and HINTON, G.
“On the importance of initialization and momentum in deep learning”.
Proceedings of the 30th International Conference on Machine Learning.
Vol. 28. 2013, 1139–1147. URL: https://proceedings.mlr.press/v28/
sutskever13.html 4.

[SMG21] SAINBURG, T., MCINNES, L., and GENTNER, T. Q. “Paramet-
ric UMAP Embeddings for Representation and Semisupervised Learn-
ing”. Neural Computation 33.11 (Oct. 12, 2021), 2881–2907. DOI: 10.
1162/neco_a_01434 2, 6.

[SMWH17] SATYANARAYAN, A., MORITZ, D., WONGSUPHASAWAT,
K., and HEER, J. “Vega-Lite: A Grammar of Interactive Graphics”. IEEE
Transactions on Visualization and Computer Graphics 23.1 (2017), 341–
350. DOI: 10.1109/TVCG.2016.2599030 3.

[SRHH16] SATYANARAYAN, A., RUSSELL, R., HOFFSWELL, J., and
HEER, J. “Reactive Vega: A Streaming Dataflow Architecture for
Declarative Interactive Visualization”. IEEE Transactions on Visualiza-
tion and Computer Graphics 22.1 (Jan. 31, 2016), 659–668. DOI: 10.
1109/TVCG.2015.2467091 3.

[Ten00] TENENBAUM, J. B. “A Global Geometric Framework for
Nonlinear Dimensionality Reduction”. Science 290.5500 (Dec. 22,
2000), 2319–2323. DOI: 10.1126/science.290.5500.2319 2, 6.

[TLZM16] TANG, J., LIU, J., ZHANG, M., and MEI, Q. “Visualizing
Large-scale and High-dimensional Data”. Proceedings of the 25th In-
ternational Conference on World Wide Web. WWW ’16. Geneva: Inter-
national World Wide Web Conferences Steering Committee, Apr. 11,
2016, 287–297. ISBN: 978-1-4503-4143-1. DOI: 10 . 1145 / 2872427 .
2883041 4, 6.

[Tor52] TORGERSON, W. S. “Multidimensional Scaling: I. Theory and
Method”. Psychometrika 17.4 (Dec. 1952), 401–419. DOI: 10 . 1007 /
BF02288916. URL: http : / / www . galileoco . com / literature /
Torgerson52.pdf 2.

[VBF22] VU, V. M., BIBAL, A., and FRENAY, B. “Integrating Constraints
into Dimensionality Reduction for Visualization: a Survey”. IEEE Trans-
actions on Artificial Intelligence (2022), 1–19. DOI: 10.1109/TAI.2022.
3204734 2, 7.

[vdMaa09] Van der MAATEN, L. “Learning a Parametric Embedding by
Preserving Local Structure”. Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics. Vol. 5. Proceed-
ings of Machine Learning Research. 2009, 384–391. URL: http : / /
proceedings.mlr.press/v5/maaten09a.html 2.

[vdMH08] Van der MAATEN, L. and HINTON, G. “Visualizing Data using
t-SNE”. Journal of Machine Learning Research 9 (2008), 2579–2605.
URL: https://jmlr.org/papers/v9/vandermaaten08a.html 1–5.

[VK01] VENNA, J. and KASKI, S. “Neighborhood Preservation in Non-
linear Projection Methods: An Experimental Study”. Artificial Neural
Networks — ICANN 2001. Ed. by DORFFNER, G., BISCHOF, H., and
HORNIK, K. Red. by GOOS, G., HARTMANIS, J., and van LEEUWEN,
J. Vol. 2130. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, 485–491. ISBN: 978-3-
540-42486-4. DOI: 10.1007/3-540-44668-0_68 7.

[Wil02] WILLIAMS, C. K. “On a Connection between Kernel PCA and
Metric Multidimensional Scaling”. Machine Learning 46 (2002), 11–19.
DOI: 10.1023/A:1012485807823 2.

[Won20] WONGSUPHASAWAT, K. “Encodable: Configurable Gram-
mar for Visualization Components”. IEEE Visualization Conference
(VIS’20). IEEE Visualization Conference (VIS’20). IEEE, 2020, 131–
135. ISBN: 978-1-72818-014-4. DOI: 10.1109/VIS47514.2020.00033 3.

[WSL*14] WANG, J., SONG, Y., LEUNG, T., et al. “Learning Fine-
Grained Image Similarity with Deep Ranking”. 2014 IEEE Conference
on Computer Vision and Pattern Recognition. Columbus, OH, USA:
IEEE, June 2014, 1386–1393. ISBN: 978-1-4799-5118-5. DOI: 10.1109/
CVPR.2014.180 8.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

348

https://doi.org/10.1007/BF02289565
https://doi.org/10.1561/2200000019
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/VIS54862.2022.00024
https://doi.org/10.1109/VIS54862.2022.00024
https://doi.org/10.1109/TVCG.2021.3114876
https://doi.org/10.1109/TVCG.2021.3114876
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
christophm.github.io/interpretable-ml-book/
christophm.github.io/interpretable-ml-book/
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://icml.cc/Conferences/2010/papers/149.pdf
https://icml.cc/Conferences/2010/papers/149.pdf
https://doi.org/10.1038/s41587-020-00801-7
https://doi.org/10.1038/s41587-020-00801-7
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1101/731877
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1007/BF02288916
https://doi.org/10.1007/BF02288916
http://www.galileoco.com/literature/Torgerson52.pdf
http://www.galileoco.com/literature/Torgerson52.pdf
https://doi.org/10.1109/TAI.2022.3204734
https://doi.org/10.1109/TAI.2022.3204734
http://proceedings.mlr.press/v5/maaten09a.html
http://proceedings.mlr.press/v5/maaten09a.html
https://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/3-540-44668-0_68
https://doi.org/10.1023/A:1012485807823
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/CVPR.2014.180
https://doi.org/10.1109/CVPR.2014.180

