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Abstract
Retrieving charts from a large corpus is a fundamental task that can benefit numerous applications such as visualization rec-
ommendations. The retrieved results are expected to conform to both explicit visual attributes (e.g., chart type, colormap) and
implicit user intents (e.g., design style, context information) that vary upon application scenarios. However, existing example-
based chart retrieval methods are built upon non-decoupled and low-level visual features that are hard to interpret, while
definition-based ones are constrained to pre-defined attributes that are hard to extend. In this work, we propose a new frame-
work, namely WYTIWYR (What-You-Think-Is-What-You-Retrieve), that integrates user intents into the chart retrieval pro-
cess. The framework consists of two stages: first, the Annotation stage disentangles the visual attributes within the query chart;
and second, the Retrieval stage embeds the user’s intent with customized text prompt as well as bitmap query chart, to recall tar-
geted retrieval result. We develop a prototype WYTIWYR system leveraging a contrastive language-image pre-training (CLIP)
model to achieve zero-shot classification as well as multi-modal input encoding, and test the prototype on a large corpus with
charts crawled from the Internet. Quantitative experiments, case studies, and qualitative interviews are conducted. The results
demonstrate the usability and effectiveness of our proposed framework.

CCS Concepts
• Human-centered computing → Visualization; • Information systems → Query intent; • Computing methodologies →
Artificial intelligence;

1. Introduction

Data visualization can empower users’ understanding of data and
facilitate communication. Therefore, enormous charts are flour-
ishing on the Internet. Designing an appropriate chart is a time-
consuming and labor-intensive process that needs to consider vari-
ous visual attributes (e.g., chart type, color) [Shn96], as well as the
design style (e.g., context information, 2D/3D effect) [MTW∗12].
Therefore, designing based on existing examples, rather than start-
ing with sketches, is a more preferred approach [BFW21, PSP21].
Chart retrieval, as an approach to return the ranked examples with
respect to the corresponding query, has gained much interest in both
industry and academia [LWW∗22, HA19, SHL∗16].

However, existing works mainly focus on improving the sim-
ilarity between query charts and retrieval results while neglect-
ing implicit user intent. As illustrated in Figure 1, existing
chart retrieval frameworks might be divided into two categories:
example-based (Figure 1 (left-top)) and definition-based (Figure 1
(left-bottom)) approaches. Example-based methods (e.g., [SSK06,

† Wei Zeng is the corresponding author. Email: weizeng@ust.hk

Figure 1: Comparison of pipelines of existing and our proposed
chart retrieval frameworks: example-based retrieval (left-top),
definition-based retrieval (left-bottom), and our proposed intent-
aware retrieval (right).

DW14, BBK∗18]) characterize the relevance criteria by the visual
similarity of charts, whilst definition-based methods (e.g., [CCA15,
HA19]) measure similarity based on attributes extracted from the
input charts. However, these methods may suffer from both in-
put and target shifts problems. First, many existing works take
only specific formats (e.g., scalable vector graphics (SVG) [HA19,
LWW∗22]) of visualization as inputs, which are often synthesized
with monotonous data distributions and limited chart types that in-
curs overfitting problem of models embedded in the framework.
In contrast, most online charts are generally in bitmap formats,
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and they are highly diverse in terms of chart types and visual
styles [BDM∗18]. In addition, online charts contain noisy and re-
dundant information, putting higher demands on generalizability
and robustness of the retrieval framework. Second, example-based
methods would indiscriminately recall pixel-wise visual similarity
in the input chart, while definition-based methods consider only a
small number of pre-defined and fixed chart attributes. Such rigid
similarity measurements would return unwanted target charts. Fur-
thermore, it may tend to limited the retrieval to a specific chart
attribute, a specific combination of chart attributes, or even chart
attributes that are not necessarily enclosed by the query chart.

To mitigate such shifts, we propose a novel chart retrieval frame-
work named WYTIWYR. It explicitly extracts visual attributes for
the query chart, and offers a set of target charts through a cus-
tomized retrieval procedure that considers flexible combinations of
the visual attributes and users’ intents. As Figure 1 (right) illus-
trates, our method tears down the query chart flexibly with cus-
tomizable attributes and actively injects user intent as auxiliary in-
puts to seek better chart retrieval outputs.

Our intent-aware framework consists of two essential stages, the
first stage is Annotation, which highlights explicitly disentangling
the visual attributes for query charts. The disentangled attributes
would enable the flexibly for users to combine the attributes rep-
resenting their intent. Because these attributes differ amongst chart
visualizations, we performed preliminary research with 18 visual-
ization categories to establish the branching of each attribute and
what users would anticipate when retrieving charts. Based on the
study, we utilize deep neural networks to train several indepen-
dent attribute classifiers tailored to four primary visual attributes,
namely {Type, Trend, Color, Layout}. To enable the resilience to
user intent, we leverage the state-of-the-art contrastive language-
image pretraining (CLIP) [RKH∗21] model famous for zero-shot
classification. The model allows users for their own creation of
the attribute classifier to identify the extended attributes. These at-
tributes are excluded from our preliminary set of classifiers but are
still within the query process.

The second stage is Retrieval, which highlights the role of
human-in-the-loop through intent attributes as prompts. The intent
attributes would condition intent-aware filter, narrow the search
scope from a huge collection of charts, and finally generate mul-
tiple candidate charts. The multi-modal encoder fuses context in-
formation from both the query chart and user intent prompt into
a joint representation. After that, similarity modeling is conducted
between such joint representation and candidate charts. Ultimately,
we rank the similarity scores in decreasing order and output the top-
K results as the target charts. In summary, our main contributions
are summarized as follows:

• Intent-aware Retrieval. We propose a novel framework inte-
grating user intent into chart retrieval process. The Annotation
stage disentangles attributes and enables a flexible combination
of attributes. The Retrieval stage digests both query chart and
user intent as multi-modal inputs to get target retrieval results.

• Prototype Construction. We implement a prototype system
combining CLIP model with visual interface to support intent-
aware retrieval. Dataset, code, pretrained model are released at
https://github.com/SerendipitysX/WYTIWYR.

• Extensive Evaluation. We conduct extensive quantitative exper-
iments, case studies as well as expert interviews to validate the
effectiveness of our approach.

2. Related Works

Chart Attributes. Visualization is the process of mapping data
to images. The data can be encoded in different ways, yielding
various types of chart attributes that can be categorized in sev-
eral levels. Low-level visual stimuli of charts include color, po-
sition, and shape [RTOT06], while high-level taxonomy includes
consideration of the object of study, data, design model, and user
model [TM04]. The importance of choosing appropriate chart
attributes has been highlighted. Recent studies (e.g., [MMA18,
KRS∗21, LCF∗15, SLC∗23]) stress the effects of chart attributes
on users’ comprehension and cognitive loads. Specifically, Li et
al. [LCF∗15] point out that two charts of the same data but with
different layouts can cause perceptional imbalance, even though
they are informatively equivalent. Despite the importance, the de-
sign space of chart attributes is too large for designers to choose
from, resulting in various types of charts in designers’ own style
[SLC∗23]. Most of these works follow a coarse-to-fine strategy to
first identify chart types and then extract visual marks and chan-
nels [SKC∗11, JKS∗17, PMH17, YZF∗22].

Existing methods often mix visual attributes as global style for
similarity estimation [MTW∗18, SHL∗16, JKS∗17], in which not
all attributes are of interest to users [LWW∗22]. To fill the gap, the
Annotation stage of the proposed WYTIWYR framework allows
users to disentangle attributes in a given chart.

Chart Retrieval. The core for effective retrieval is to delineate
the similarity between the query input and retrieval candidates
in the database. Based on the object of similarity measurement
in the retrieval process, existing chart retrieval strategies can be
mainly categorized into two classes: definition- and example-based
approaches. Definition-based approaches (e.g., [CCA15, SHL∗16,
HA19, ZDCC21, ZFF22, LWW∗22]) characterize the criteria of
similarity by explicit chart attributes, making it preferable for well-
configured chart formats, including SVG-style and Vega-Lite gram-
mars. For instance, Hoque and Agrawala [HA19] developed a
search engine for D3 visualizations by using a JSON-like configu-
ration that dictates query visual encoding. Moreover, some studies
(e.g., [HMSA08,SGP∗18]) further use user interaction records and
visualization states represented in a provenance graph to match the
previous exploration states. Recent example-based methods regard
visualization charts as images and leverage deep learning mod-
els [MTW∗18,ZFC∗23,SHL∗16,JKS∗17,YHZ23] to automatically
extract visual features via an end-to-end manner. A set of implicit
low-level features are leveraged to estimate the global similarity.
However, definition-based approaches only consider partially pre-
determined visual attributes, while example-based approaches tend
to match the query with all indiscriminate attributes.

Our proposed WYTIWYR framework combines the advantages
of example-based approaches in terms of their capability of cap-
turing implicit attributes and also definition-based approaches that
leverage explicit attributes with high interpretability. Moreover, the
Retrieval stage enables a flexible combination of these attributes
with respect to user intent.
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Figure 2: Results of our preliminary study. Type, color, trend, and
layout are voted by most participants and identified as primary at-
tributes, whilst the others are categorized as extended attributes.

Vision-Language Pretraining. Large-scale pretrained models
have shown promising performance in both natural language pro-
cessing and vision tasks these years, such as BERT [DCLT18],
RoBerTa [LOG∗19], and GPT series [BMR∗20, RNS∗18,
RWC∗19]. Following the paradigm of pretrain and finetune, many
downstream tasks [GKSS∗19, XBK∗15, LGR∗20] transfer the
knowledge from the pretrained model without training a new model
from scratch by utilizing it. Prompt, a text sequence in the form of
natural language, links the pretrained model and downstream tasks
as a bridge. Strobelt et al. [SWS∗22] develops a visual interface
to provide a promising prompt evaluation. Combined with a high-
capacity text encoder and visual encoder, contrastive language-
image pretraining (CLIP) [RKH∗21] learns heterogeneous multi-
modality representations from 400 million image-text pairs by re-
sorting to semantic supervision from the embedding space of CLIP.
Several studies [PWS∗21, GPM∗21, GLKC22] extend its applica-
bility in a zero-shot manner, which means the model can predict
samples whose class is not observed during training.

In this work, we take advantage of vision-language pretraining
models, to encode user intents as a prompt to collaborate with the
decisive process of retrieval. The CLIP-driven model is leveraged
to align user intent with corresponding visual attributes in both An-
notation and Retrieval stages. In this way, we can offer highly cus-
tomizable attributes for chart annotation and multi-modal represen-
tation extraction for chart retrieval.

3. WYTIWYR Framework

To build the WYTIWYR framework, we first formulate chart at-
tributes based on a preliminary study (Sec. 3.1), then present an
overview of the WYTIWYR framework (Sec. 3.2).

3.1. Attribute Formulation

There are two categories of chart attributes for chart retrieval: 1)
primary attributes that are generally considered for chart retrieval,
and 2) extended attributes that meet the specific needs of different
users. To better understand user intents, we conducted a compre-
hensive study to categorize chart attributes.

Study design. Our preliminary study was conducted online and
involved 40 participants whose ages ranged from 20 to 52 (mean
= 24.3). Before the study, we first introduced the background and
purpose of the experiment to the participants. Then we tested their
knowledge on the chart through a set of verification questions. Only
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Figure 3: Illustration of attribute options of primary attributes for
several chart types. Some options may not be available for certain
chart types, such as Layout for the point chart.

the participants who could identify typical charts, such as bar and
pie charts, were allowed to participate in the study. Fortunately, all
participants were familiar with charts since their popularity on so-
cial media. Next, the participants were shown multiple real-world
charts and asked to indicate what attributes were of interest. To
eliminate any potential subjective bias during the chart selection
process for testing, a random sample of five images (three in the
Beagle dataset [BDM∗18], two in other real-world examples) was
taken for 18 type of chart from the collected data. The testing charts
were carefully chosen according to chart type taxonomy as in the
study by Borkin et al. [BVB∗13]. The detail of sampled testing
chart can be seen at supplementary material. Their answers were
recorded in text and summarized in different perspectives after the
experiments. The perspectives were cross-validated by two of our
co-authors to ensure correctness.

Result. As shown in Figure 2, we identify a total of eight per-
spectives of attributes are of interest from the feedback, which are
also consistent with previous studies [BVB∗13,LWW∗22]. Among
them, Type, Color, Trend, and Layout are the four attributes mostly
frequently mentioned by the participants and can be applied to most
types of charts. Although the Form attribute was also frequently
mentioned by participants, it is primarily associated with line charts
and less frequently mentioned in the other chart types. Therefore,
to ensure generalization and expressivity, we decided not to com-
bine Form with the other four attributes. We dub primary attributes
as Tp := {Type, Color, Trend, Layout}. In addition, the partici-
pants also brought up some other chart attributes, including form,
background, context, and 2D/3D, which we dubbed as extended
attributes Te that includes the other attributes. For these chart at-
tributes, the variation between different users is large, making it
difficult to be comprehensively enumerated.

Moreover, the study also revealed a set of design options for each
chart attribute. Specifically, we choose 10 primary categories and
18 subcategories of chart types from the visualization taxonomy
[BVB∗13]. Figure 3 illustrates the options in the attribute type of
{color, trend, layout} for several chart types including bar, line,
and point charts. Notice that some chart types may not have all
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Figure 4: Overall pipeline of attributes-aware retrieval. The pipeline consists of two stages: Annotation for extracting the attributes and
Retrieval for modeling the similarity between query charts and charts in the database.

options mentioned above. For example, layout for point charts are
not available, and maps only have color options.

3.2. Overall Pipeline

The workflow of our proposed WYTIWYR framework is depicted
in Figure 4. For the Annotation stage, we employ several classi-
fiers based on robust neural network architecture to disentangle
{Tp,Te} ∈ T embedded in the query chart Q. After that, users can
select the disentangled attributes IA as their intents based on their
needs. Also, IA would condition the components of the filter in the
retrieval stage. For the Retrieval stage, we take a dual-path simi-
larity modeling between the query feature and the candidate info
with the guidance of intent attributes to yield the return charts. For
the path of the query feature, bitmap query chart Q with user intent
text prompt IP is fed into a multi-modal encoder to obtain the joint
representation. For the candidate info path, the feature is produced
by charts in the database filtered by the intent-aware filter built by
IA. Throughout the overall pipeline, user intent can be injected and
guide the chart retrieval process by the following three ways:

• Classifier Customization. Users can tailor the usage of classi-
fiers depending on their needs in order to determine the presence
of an attribute in the query chart.

• Disentangled Attributes Selection. The attributes adopted in
the Retrieval stage can be selected and combined by the users.

• User Prompt Tuning. Users can add specific implicit intent as
the text prompt to guide the retrieval process, which is indepen-
dent of the query chart.

4. WYTIWYR Prototype System

4.1. Stage1: Annotation

As shown in Figure 5, the task of the Annotation stage is to dis-
entangle and generate the visual attributes T adhered to the given
query chart Q. For the primary attributes Tp, we adopt four clas-
sifiers for separate extraction in a supervised learning manner. For
the extended attributes Te, as they are absent from our training, we
conduct the extraction process in the fashion of zero-shot learning.

4.1.1. Annotation for Primary Attributes

Redundant Information Removal. Several practical scenario-
based raw data are shown in Figure 6 (a), including fancy deco-
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Figure 5: The Annotation stage of our pipeline. To disentangle
various attributes in the query chart, four classifiers are built for
primary attributes. In addition, one CLIP-based classifier is em-
ployed to optionally annotate the extended attribute via user cus-
tomization.

ration, text information, background, and legends. This work fo-
cuses on the intrinsic attributes of Q instead of this redundant in-
formation. Hence we remove the redundant information using IS-
Net [QDH∗22], a segmentation network with pretrained weights.

Nevertheless, there exists context beyond the segmentation ca-
pability of ISNet, such as the emojis in the left-most example in
Figure 6 (a) & (b). The redundant emojis in red and yellow colors
would degrade the performance of colormap classification. Instead
of being categorized as categorical colormap, the chart would be
mistakenly recognized to diverging colormap. To mitigate such is-
sue, we ignore the colors that share less than 10% pixels of non-
transparent regions of the image after segmentation.

Unified Classifiers. For annotation of the primary attributes, we
employ ResNet50 [HZRS16] architecture as the backbone for
all four attribute classifiers. Thanks to the residual connection
among the convolution layers, the network is both lightweight and
performance-guaranteed. During the training process, the network
will learn the complex features under the supervision of given at-
tributes. In the reference process, the trained classifier would iden-
tify the corresponding attribute in the query chart, as in Figure 5.

The only difference in the four classifiers is the number of output
channels in the last fully connection layer. For instance, the number
of Type classifiers is set to 18 since there are 18 types of charts
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Figure 6: Redundant information removal and main color ex-
traction. (a) Raw images. (b) The chart after removing redundant
information. (c) The extracted color after filtering redundant col-
ors.

under consideration. Similarly, based on the specific task, we set
this number to 3 for the Layout, Trend, and Color classifiers with
the respect to their attribute options; see Figure 3 for detail. Note
that Q may not have the coverage of all attributes included in the
classifiers. For instance, Tp of a heatmap chart is {Type, Color}
while {Trend, Layout} attributes are absent.

Loss Function. There are two challenges to overcome when for-
mulating the loss function: 1) imbalanced samples in each class of
the dataset (see Table 1), and 2) the existence of noisy samples that
are hard to classify. In order to improve the accuracy for Tp an-
notation, we introduce Focal Loss [LGG∗17], which modifies the
standard cross entropy loss to overcome the above-mentioned chal-
lenges. The Focal Loss is defined as:

LFL(pt) =−αt(1− pt)
γ log(pt), (1)

where pt ∈ [0,1] represents the estimated probability of class t, αt
represents the scaling factor, and γ represents the modulating factor.
Among them, αt is set by inverse class frequency, thus learning
parameters tend to contribute to classes with fewer samples, and γ

assists in up-weight the loss assigned to poor-classified examples,
avoiding the possibility that the training process is dominated by
the amount of well-classified samples.

4.1.2. Annotation for Extended Attributes

Since the primary attributes only consider the general needs in chart
retrieval, we offer an optional classifier manipulated by the users
to distinguish Te in this query chart, as shown in Figure 5. The
input of Te classifier requires the user to provide several labels of
the attribute apart from Q (e.g., style). We denote these labels as
{t1, t2, . . . , tm} ∈ T . As these labels are out of our dataset, a task
of zero-shot classification is naturally formed. In the following, we
will briefly introduce the mechanism of the CLIP model at a general
level with a toy example as in Figure 5, where the user sets the text
labels as [“3D style”, “Flat style”, “Sketch style”].

The CLIP model aligns T embeddings with Q embeddings in a
multi-modality embedding space in a contrastive manner. Specifi-
cally, in the embedding space of the example in Figure 5, the dis-
tance of Q and “3D style” would be less than the other two irrel-
evant labels. As such, the query results tend to be “3D style” bar
charts. The CLIP model balances well between the performance
and computational cost in the prototype system. Nevertheless, the
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Figure 7: The Retrieval stage consists of two branches. The intent-
aware filter branch (bottom) filters out charts based on intent at-
tributes selected by the user, generating multiple chart candidates.
The multi-modal encoder branch (top) produces the query feature
based on the multi-modal inputs. Similarity modeling is conducted
between results of these two branches.

model in our framework can be feasibly replaced with other ad-
vanced language-image models, e.g., [LLXH22,LSG∗21,ZZF∗22].

4.2. Stage2: Retrieval

As the Annotation stage completes the disentanglement of the at-
tributes T in the query chart, users in the Retrieval stage can se-
lect the intent attributes IA based on their intents. Depicted in Fig-
ure 7, there are two branches with different modules for our Re-
trieval stage, namely multi-modal encoder and intent-aware filter.
The intent-aware filter rules out charts whose attributes are beyond
the range of IA. The multi-modal encoder integrates Q and IP as
a joint representation. Then, similarity modeling is conducted be-
tween results of these two branches, yielding the final retrieval re-
sults based on the modeling score.

4.2.1. Multi-Modal Encoder

This branch would form a CLIP-generated query feature with in-
puts Q, IP. As introduced in Sec. 4.1.2, the CLIP embedding space
has heterogeneous aligned text and visual features from the multi-
modal input. Hence, Q and IP are encoded into features by their
respective CLIP encoders, and fused as a joint multi-modal feature
fM that can be denoted as:

fM =
Fθ(Q)+Gφ(IP)

2
, (2)

where Fθ and Gφ are denoted as the image encoder and text encoder
of the CLIP model, respectively.

4.2.2. Intent-Aware Filter

The branch of Intent-Aware Filter rules out irrelevant charts in
the database and forms the candidate feature. Previous works
(e.g., [HA19, MTW∗18]) on chart filtering primarily rely on fixed
settings of the model, which are coarse and neglect the user’s in-
tents. For this shortcoming, we propose an intent-aware filter con-
structed by IA, a set of disentangled attributes selected by the user.
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For example, with Q illustrated in Figure 7, a user may select the
[Type, Layout, Trend] as the target attributes for the retrieval, then
the filter retains n charts containing these target attributes in the
chart database. Then, the retained charts would serve as candi-
dates C := {c1,c2, · · · ,cn} that are encoded as candidate feature
fC := { fc1 , fc2 , · · · , fcn} by image encoder in the CLIP model.

4.2.3. Similarity Modeling

As the core of retrieval, similarity modeling is comprehensively
performed with triplets {Q, IA, fM}. Among them, Q provides
the global perception composed of implicit features. The explicit
intent attributes IA and implicit query feature fM that include user
intent prompt and query chart, work together to recall user-intended
examples throughout the retrieval process. The overall similarity
score S can be denoted as:

S = SQ · eνSIA+µSM , (3)

where SQ demotes the global perception at pixel level, and SIA

and SM denotes the similarity score of user-selected attributes and
the multi-modality feature, respectively. The scaling factors ν and µ
are empirically set as 1 and 5, respectively. All SQ, SIA and SM are
normalized with range of [0,1]. In the following, we will introduce
these similarity scores in detail.

Global Perception Score. Although salient attributes with respect
to user intent are disentangled and selected, a multitude of implicit
features are intertwined within the chart image, which forms the
concept of global perception. We adopt the classic cosine similarity
and compute it at the pixel level between Q and the feature of every
candidate fCi , i = 1,2, . . . ,n as follows:

SQ =
Fθ(Q) · fCi

∥Fθ(Q)∥∥ fCi∥
. (4)

Intent Attributes Score. Extended attribute Te contains a user’s
expected attributes of retrieval results charts apart from four pri-
mary attributes. Among the attributes, Type and Layout define core
properties of a chart, which is easy to distinguish from Q. There-
fore, we neglect them in the similarity crafting. The other attributes
serve as the miscellaneous variant, and the change of them can be
minuscule. This motivates us to build another score SIA to further
enhance the retrieval process. Therefore, we mainly consider the
following three attributes: Trend N , Color C and extended attribute
Te. SIA is formulated as:

SIA = SN +SC +STe . (5)

For SN , we build an extractor to extract the trend feature from the
query chart Q and the every candidate chart Ci, i = 1,2, . . . ,n. The
extractor shares the parameters with a trained trend classifier in the
Annotation stage except the last fully connected layer. Then, SN
can be estimated by cosine similarity between the extracted fea-
tures.

For SC , we follow the scheme in Figure 6 to transform Q into a
proportional color palette after the steps of background removal and
color extraction. Then the proportional color palette is transformed
into a 128-bin color histogram in all RGB channels and separately
stored in three vectors. We then concatenate these vectors to form

A B

C

B1

Figure 8: Interface of our prototype system. A) the Annotation
view decouples the properties of the query chart; B) the Retrieval
view allows users to select the primary and extended attributes, and
C) the Result view shows the top 5 retrieved charts.

the ultimate color vector V . Denote VQ, VCi , i = 1,2, . . . ,n as the
color vectors of Q, VCi , i = 1,2, . . . ,n, respectively, we then esti-
mate the cosine similarity between them.

For STe , since it is hard to quantify the similarity of intents,
we leverage the power of the CLIP model again to give an ac-
curate response. We feed the CLIP model with candidate chart
Ci, i = 1,2, . . . ,n and text labels in user intent ti, i = 1,2, . . . ,m. For
each chart, we would obtain m outputs {y1,y2, . . . ,ym}. Prior to the
computation, the user would select one text label indexed s as the
attribute that best represented their intent. Then, we denote STe for
a candidate chart as:

STe =
eys

∑m eym
. (6)

Feature Matching Score. Similarly, we match the closeness be-
tween the multi-modal feature and the candidate feature by the fol-
lowing equation:

SM =
fM · fCi

∥ fM∥∥ fCi∥
. (7)

4.3. System Interface

We design an interface for the prototype system that allows users
to retrieve a chart according to their intents.

Annotation View. In this view, users can upload a query chart and
get disentangled primary attributes, including Type, Color, Trend,
and Layout. As shown in Figure 8 (A), a bar chart is uploaded and
the automatically annotated attributes, “Barchart, Categorical Col-
ormap, Increasing Trend, Horizontal Layout” are presented.

Retrieval View. In this view (Figure 8 (B)), users can view and
choose both primary and extended attributes. The first tag in green
corresponds to the annotated attributes from the query chart, while
other options are also shown, allowing users to select the desired
attributes. If users feel that the default primary attributes are in-
sufficient or have other attributes of interest, they can add a new
classifier by clicking on the chart in the upper right corner, which
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reflects the philosophy of the proposed intent-aware design. In the
input box below, users can enter their intentions as intent prompts
for more customized queries. As shown in Figure 8 (B1), the user
selects “Bar chart” for the type attribute and enters “Fancy style
with icon” in the Retrieval view.

Result View. This view (Figure 8 (C)) shows top five query results,
arranged in decreasing order from left to right according to their
similarity scores.

5. Evaluation

5.1. Quantitative Experiment

Table 1: Our integrated dataset consists of 18 types of charts from
Beagle [BDM∗18] and manual collection.

Chart Type #Count Chart Type #Count

Bar chart 7269 Heatmap 352
Stacked Bar Chart 1159 Line Graph 11605
Circular Bar Chart 608 Star Plot 491
Donut Chart 2459 Choropleth Map 640
Pie Chart 2587 Scatter Plot 3000
Sankey Diagram 266 Word Cloud 406
Timeline 324 Dendrogram 298
Box Plot 571 Network 395
Histogram 695 Circular packing chart 139

Dataset. Previous works concentrate on retrieval of limited chart
types, e.g., single [MTW∗18] or a few type [CCA15, HBL∗19]
chart retrieval. Moreover, some of the literature coarsely consid-
ers the categorization of charts, by broadly grouping several chart
categories into one [LWW∗22]. Many datasets are synthesized with
simple composition and monotonous variation, making it difficult
to adapt to real-world scenarios that are much more complex. In
this work, we utilize the Beagle dataset [BDM∗18] with charts
in bitmap format, which offers visualization collections designed
by real-world users through multiple tools, including D3, Plotly,
Chartblocks, Fusion Charts, and Graphiq. To make our framework
more robust, we further add more difficult instances by manually
collecting 4k images from Pinterest, which supplements a large
number of stylized and irregular charts. We filter out charts whose
type is beyond our scope (e.g., scientific visualizations) and man-
ually label them with Tp. Finally, our dataset consists of 33,260
images in total. The detailed distribution is shown in Table 1.

Annotation Accuracy. We evaluate the performance of Tp annota-
tion using ResNet50 architectures with different losses. As Table 2
lists, the best result is achieved with the designated Focal Loss.

Retrieval Results. To evaluate the retrieval performance compre-
hensively, we examine both precisions and recall via the F1-score.
Denoting the classification result with true positive, true negative,
false positive, and false negative conditions as T P,T N,FP,FN, F1-
score can be formulated as:

F1-score =
2T P

2T P+FP+FN
. (8)

The retrieval performance with Tp is individually computed us-
ing F1-score in the top-K fashion, where K ∈ {3,5,10}. We devise

Table 2: Accuracy of Annotation results.

Method Type Trend Layout Color

ResNet50+MSE Loss 0.9518 0.8290 0.9537 0.7963
ResNet50+Focal Loss 0.9601 0.8424 0.9653 0.8019

Table 3: F1-scores of Retrieval results.

Top-K Method
F1-Score

Type Trend Layout Color

3
HOG 0.6199 0.6140 0.5449 0.6800
CNN 0.9154 0.8043 0.7095 0.7717
Ours 0.9549 0.8360 0.9280 0.8260

5
HOG 0.5067 0.4853 0.3857 0.6045
CNN 0.8872 0.7550 0.6324 0.7076
Ours 0.9364 0.7944 0.9118 0.7730

10
HOG 0.4124 0.4261 0.2741 0.5388
CNN 0.8607 0.7085 0.5527 0.6520
Ours 0.9091 0.7546 0.8812 0.7223

two settings of with and without user intent to fully evaluate our
approach. For the setting of the absence of user intent, similarity
estimation depends on the global perception SGlobal .

To demonstrate the effectiveness of our approach, we take two
other approaches as the counterpart: a conventional method (His-
togram of Oriented Gradients [DT05], denoted as HOG from
hereon), and a deep-learning-based method (ResNet50, denoted as
CNN from hereon). The quantitative results are displayed in Ta-
ble 3. The results reveal that our method significantly outperforms
the others. Furthermore, as K increases, our method keeps the per-
formance superiority while other methods degrade dramatically.
For the evaluation of user intent retrieval, as there are no ground-
truth labels to compute quantitative results, we visually compare
results generated by different methods for several typical retrieval
results. As shown in Figure 9, CNN outputs visually more similar
results than HOG. Our method also produces similar results with-
out user intent. Nevertheless, our method allows users to add their
intent by selecting the disentangled primary attributes Tp or adding
extra intent, which contributes to retrieving results of interest as
shown in the last two rows.

5.2. Case Study

During the process of visualization design, many inspirations may
arise, but bringing those inspirations to fruition can be time-
consuming. Retrieval is a fast way to validate those inspirations.
Inspired by [BLBL22], two usage scenarios of chart retrieval are
illustrated as a proof-of-concept of the WYTIWYR framework: 1)
extending the design space by explicit goals and 2) fuzzy retrieval
based on implicit user intent. For each scenario, we compare the
results generated by our intent-aware chart retrieval technique with
those generated by intent-free chart retrieval technique.

5.2.1. Design Space Extension by Explicit Goals

With the prototype system, users can customize retrieval inputs
based on disentangled attributes of the query chart and the user
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Figure 9: Visual comparison of chart retrieval by different methods. First row: Retrieval results by the conventional HOG method. Second
row: Retrieval results by the deep-learning-based CNN method. Third to fourth rows: Retrieval results of our WYTIWYR framework.

intent prompt. Moreover, beyond the four primary attribute clas-
sifiers, users can further add customized classifiers to extract ex-
tended attributes. In this scenario, we divide the disentangled at-
tribute operation into three categories: origin attribute change, new
attribute addition, and existing attribute deletion. In the end, we
show an interesting case of attribute transfer that combines these
operations. Figure 10 shows four cases of our study. In general, re-
trieval without user intent provides similar results as the input but
gives minimum design insights. Instead, with the guidance of user
intent, our framework retrieves more diverse results that are well-
accepted. The following lists more details for each case.

Original Attribute Change. The disentangled attributes are inde-
pendent of each other, thus, users can replace one of the attributes
while keeping others unchangeable. In Figure 10 (a), the color of
the choropleth map is changed to user prompt “pink”.

New Attribute Addition. Users can add new attributes, together
with the disentangled attributes, to better describe their specific
needs. In Figure 10 (b), users add “with a curve to indicate the
distribution”, and the results are changed to combinations of his-
tograms and line chart.

Existing Attribute Deletion. As the attributes can be disentangled
as users’ needs, they can remove some attributes of no interest. In
Figure 10 (c), the user dislikes dark background, then can discard
the attribute by adding a new classifier with labels of [“dark back-
ground”, “white background”].

Attribute Transfer. As in Figure 10 (d), given a circular pack-
ing chart as a query chart, the user gets the attribute annotation
as {Type: “Circular Packing Chart”, Color: “Sequential Col-
ormap”}. The user would like to get heatmaps with the same form
as the query chart but with more contrast colors. S/he can get the
desired results by changing Type and Color attributes to {Type:
“Heatmap”, Color: “Diverging Colormap”} in the retrieval stage.

(a)

(b)

[ Choropleth Map, Sequential Colormap, “pink” ]

[ Histogram, Stationary distribution, “with curve to indicate 

the distribution” ]

1
9

(c)

[ Donut Chart, White background]

(d)

[ Heatmap, Diverging Colormap]

Figure 10: Four cases for extending the design space by explicit
attributes. In each case, the first line presents results without user
intent, while the second line presents results with user intent.

5.2.2. Fuzzy Retrieval by User Intent

Designing an expressive visualization incurs a steep learning rate
for some novices, who may not have a specific design prior and
prefer to perform trial and error on the search engine to seek a de-
sirable design. Below, we list three scenarios to illustrate how our
method supports such retrieval. Similarly, we will compare the re-
sults of the intent-free and intent-aware retrieval.

Text Information Seeking. Keyword-based searching is popular,
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(a)

(b)

[  Scatter plot, Increase trend, “life expectancy” ]

[  Word Cloud, “about technology topic” ]

[  Word Cloud, “all words form a tree shape” ]

(c)

[  Timeline, “fancy style” ]

[ Timeline, Horizontal layout, “fancy style” ]

Figure 11: Three cases showing the comparison for intent-free and
intent-aware retrieval in the fuzzy retrieving scenario. Negative ex-
amples are highlighted with a red border.

but existing works approach this goal by storing text information in
advance [HA19, CCA15] or relying on OCR [SKC∗11], hindering
generalizability and robustness of the works. Instead, our method
allows to recognize text information based on knowledge trans-
ferred by the pretrained CLIP model. As shown in Figure 11 (a),
to generate a chart for visualizing “life expectancy”, the user keeps
the origin chart type Scatter plot and data trend Increase trend, and
adds the user intent as a text prompt “life expectancy”. The intent-
aware retrieval results imitate the famous design in Gapminder.

Relevant Topic Finding. Our method also has the capacity to
find chart examples related to a specific topic. Previous work used
word2vec [Chu17] to model the distances between words [HA19],
limiting the search scope within texts. We enhance the generaliz-
ability of matching text prompt with both text information and vi-
sual attributes. In Figure 11 (b), given a word cloud with the theme
of nature, the user can retrieve some examples with text prompt
as “about technology topic”. Our system returns examples with
content about technology. Moreover, with the text prompt of “all
words form a shape of a tree”, our system aligns the semantic
information of text with visual attributes, returning examples with
tree shapes instead of only containing the word “tree”.

Abstract Description Searching. In the process of retrieval, users
not having a clear search target tend to use ambiguous and abstract
descriptions. In Figure 11 (c), the user inputs a basic timeline di-
agram with “fancy style”, and gets several well-designed exam-
ples. To constrain the scope of vertical layout, the user adds such
attribute and performs targeted retrieval.

5.3. Qualitative Evaluation

To verify the usability of our proposed framework, we conducted
semi-structured interviews on our prototype system.

5.3.1. Study Design

Our study recruited seven participants (three women, four men)
with ages 22 to 26. To demonstrate that our framework is useful
for different levels of users, we enroll four experts, i.e., visualiza-
tion designers (E1 - E4), and three novices with only experience in
using visualizations in reports or courses (N1 - N3).

Before the experiment, we collected basic information from the
participants through a questionnaire and introduced them to the use
scenarios of chart retrieval. Then we instructed them to familiarize
themselves with the system workflow. We also showed some exam-
ples of using prompts to help participants understand the prompt
better and make a better choice of prompts. After understanding
the background, participants were allowed to freely explore and use
our system. They could upload a query chart and try to get a sat-
isfactory design in multiple iterations. If there was no satisfactory
design, they could also try combinations of attributes and prompts
to see if the retrieved chart has inspiring results. Throughout the
process, participants were encouraged to think aloud and give feed-
back whenever they wanted. After they felt it was sufficient, we
conducted interviews about the usability of our system. Three ques-
tions were included: 1) Whether our approach is effective in help-
ing them find the chart that meets their intents; 2) Whether our ap-
proach is efficient enough to avoid long waits; 3) Whether they are
satisfied with our system. The experiment lasted about 45 minutes.
The participants were not compensated with money but beverages
worthing about $5 dollars after the study.

5.3.2. Feedback

Effectiveness. In general, all users agreed that our system effec-
tively supported for retrieving the desired charts based on their
intents. Most participants (6 out of 7) thought that our setting of
the primary attribute was appropriate and comprehensive. E2 sug-
gested to extract the main hue used in the chart in the annota-
tion stage. Regarding the comprehensiveness and accuracy of the
prompts, all participants felt that their search needs were largely
met and the results were generally consistent with their intents. N1
spent a long time exploring the map as shown in Figure 10 (a).
He found it exciting when typing “India”, an India map was re-
trieved. Our system also effectively recognized his intents when he
searched for maps of various colors.

The participants pointed out some limitations as well. When the
prompt given by the user had multiple meanings, sometimes only
one or two of the search results were exactly what the user expects.
E4 tried to add a trend arrow on the bar chart. However, when he
only typed “with arrow”, some bar charts using arrow icons were
also retrieved. He said that sometimes it was required to go and
try several prompts to get the desired result. E3 encountered a sim-
ilar situation, and it might be due to our dataset only containing
limited charts that matched her specifications. Besides, sometimes
participants may want to adjust attributes in the query chart, such
as changing the white background to dark (N2), and changing the
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colorful design to black and white (E2). However, one or two of
the returned results still had the features that they would like to
change. “There are times when I want the query to focus more on
the prompt I give and less on the original chart,” said N2.

Efficiency and Satisfaction. All participants agreed that our sys-
tem was responsive and provided a good user experience. They
were satisfied with our retrieving framework, and they pointed out
some possible improvements. They found it very helpful to decou-
ple the chart into attributes and have a selective query. N2 stated,
“It saved me the time of checking a lot of examples and found the
desired design directly”. N3 appreciated the function of adding a
new classifier since it can be used to explore new types of visual-
izations. “It is convenient for novices who do not understand the
type and content of the chart at first,” he gave the reason. E1, a par-
ticipant with a design background, said our results were inspiring.
She was willing to see more results, even if they did not exactly
match the search intents. “This could inspire me to come up with
new ideas,” she added.

6. Discussion

To adapt to more complicated real-world data and diverse types of
charts, we propose WYTIWYR−an intent-aware framework that
offers users a flexible approach to chart retrieval by using both
query chart and user intent. Thereby, WYTIWYR can address var-
ious issues related to traditional chart retrieval and expedite the de-
sign process. In conventional retrieval, not all chart attributes may
be relevant to users’ intents, whilst some preferred attributes may
even be absent from the chart. Instead, our system disentangles and
combines attributes to ensure that the retrieved results encompass
all attributes of user’s intents. There are also several limitations in
our current methods and avenues for future work.

6.1. Limitation

User Intent or Query Chart. The input of our method consists of a
query chart and user intent. The composition of two factors affects
the retrieval results. As shown in Figure 10 (b), users have a strong
intent of charts that have a curve, and our system would tend to
return the results meeting such intents. However, the perception of
global distribution may be lost. The priority between user intents
as text and global distribution in the input chart is hard to tackle
due to the usage scenarios. Furthermore, within the user intent, the
weights of selected attributes and text prompts are hard to set in the
similarity modeling. A dynamic adjustment of the priority between
the user intent and query chart is demanded in this scenario.

Prompt Sensibility. Text prompt is integrated with query chart as
joint input for retrieval in our work. However, designing effec-
tive prompts is challenging due to the significant impact of even
slight wording changes on performance [ZYLL22]. In our frame-
work, prompt design is limited by the CLIP pretrained model,
which is trained mainly on natural images, not visualization charts.
This makes it difficult to accurately interpret expert expressions,
such as using “pillow” instead of “bar” to depict a bar chart.
The CLIP model also struggles to identify rare or novel ob-
jects in both natural images and visualization charts. Fine-tuning
the CLIP model or using advanced language-image models (e.g.,

[LLXH22, LSG∗21, ZZF∗22]) are promising. Obtaining enough
chart-description pairs for training is also necessary, even the pro-
cess is time-consuming and resource-intensive.

Dataset. Despite collecting a large number of real-world charts,
our database remains limited in meeting vast user needs. In Fig-
ure 11 (b), only the first three charts are tree-shaped since we only
have these charts that meet the user’s intent in our database. The
unbalanced dataset may adversely affect retrieval performance, as
the attribute classifier training could become biased towards classes
with larger volumes. We alleviate this limitation by using focal loss,
and will add more less common chart types to balance the dataset.

Chart Attributes. In the preliminary study, we employed several
chart types to determine the chart attributes that users tend to con-
centrate on. We randomly chose samples from both synthesized
datasets and real-world collections to diversify the chart attributes.
Nevertheless, the attributes may not fully cover user intents. A more
comprehensive survey will be conducted to address the issue.

6.2. Future Work

Trade-off Control. To balance between user intent and query chart,
we plan to add a slider equipped with dynamic weight control to let
the user manage this trade-off by themselves in the near future.

Text Prompt Auto-completion. Previous works [SHKC20,
WHS∗22] utilize auto-completion as a hint to assist users in the ap-
plication process, which is also helpful for our system to alleviate
the interpretability shift between the user side and the model side.
Specifically, we aim to build a mapping table to store the relation-
ship between appropriate prompts and common user text expres-
sions. Then, when a user completes the input, the keywords of it
will be extracted by the named entity recognition technique [NS07].
Finally, the corresponding optimal prompt would be automatically
completed by the search in the mapping table.

Text-only retrieval. Our system currently supports chart-only re-
trieval and chart-text retrieval. To offer a more generalized retrieval
framework, we plan to add a text-only query, allowing users to ob-
tain their retrieval by only providing text input.The text-only re-
trieval is beneficial to users who do not have any reference chart.
To this end, we aim to prepare several basic charts with primary
attributes in advance to serve as temporary query charts, which can
be replaced by a more reliable chart from returned results by re-
trieval. The process can be regarded as an iteration of desirable
results, with a clearer search goal and narrowed search scope.

7. Conclusion

In this paper, we propose a user intent-aware chart retrieval frame-
work, which leverages multi-modal input to fuse explicit visual
attributes and implicit user intent into the retrieval process. This
pipeline consists of two core stages, namely Annotation, and Re-
trieval. The Annotation stage disentangles visual attributes in the
query chart to ensure a flexible combination of user intent attributes
used in retrieval. The Retrieval stage allows users to integrate the
text prompt with the query chart to achieve more customized re-
trieval. Quantitative experiments prove the superior performance
of our method compared with previous methods. Furthermore, we
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conduct two case studies containing two common retrieval strate-
gies and interviews to demonstrate the effectiveness and usability.
As an initial step to fuse user prompt in chart retrieval, we hope to
enhance the prompt capacity to better meets users’ growing needs
and various usage scenarios. Dataset, code, pretrained model have
been released to promote future research in this direction.
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