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Figure 1: DASS interactive model building for head/neck cancer. A) Control panel for changing cluster parameters and outcomes. B) Additive
Effect panel showing the effect of changing cluster features. C) Intra-cluster dose distribution plot. D) Outcome plot showing the symptom
ratings of patients over time within each cluster. E) Stylized scatterplot showing cohort projections. F) Rule builder view, showing a rule-
based mimic model that predicts patients in the selected cluster.

Abstract
Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for
example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS,
to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities
related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology
and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain
knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification mod-
els and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Machine learning; • Applied
computing → Life and medical sciences;

1 Introduction

Precision radiotherapy (RT) is a medical paradigm that seeks to
personalize cancer RT and care for an individual patient, based
on data from cohorts of similar patients. Because for many site-
specific cancers, the treatment depends on the location and spread
of the disease, modern approaches to precision RT aim to leverage

spatial patient-specific information such as anatomical data drawn
from CT scans [WHL∗19,WHvD∗20]. In conjunction with the co-
hort data, this information can then be used to improve patient out-
comes such as survival or quality of life after treatment.

In this context, machine learning (ML) models are powerful
tools for stratifying the cohort data in meaningful ways, for exam-
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ple into patient groups at high-risk versus low-risk of developing
treatment-related symptoms. However, developing applicable clini-
cal ML models for patient stratification is difficult when the data in-
cludes spatial information, for example, radiation dose distributions
across adjacent organs at risk. In addition, while ML approaches of-
ten work well with large oncology data, automated model-building
approaches using smaller cohorts often perform poorly when de-
ployed in practice [MK22]. Furthermore, prediction using treat-
ment plans and qualitative outcomes such as symptom ratings is
particularly difficult. This results in simpler models that may un-
derperform or complex models that are very likely to overfit. With
advancements in explainable AI techniques, we can better probe
models and iteratively find ways of improving models that prop-
erly leverage domain knowledge, helping us avoid issues with poor
generalization and overfitting, while improving on standard statis-
tical approaches. These combined issues make RT cohort modeling
well-suited for a human-machine mixed-initiative system.

In this work, we present a visual steering approach for creat-
ing patient stratifications of head and neck cancer (HNC) patients
based on 3-dimensional dose distributions to organs-at-risk, to sep-
arate patients at high risk of experiencing long-term side effects.
Unlike the current state of the art, our approach supports interac-
tively exploring and visualizing high-dimensional spatial dose dis-
tributions, the temporal analysis of RT cohort data, access to both
individual patient data and patient distribution within a cluster, con-
structing unsupervised rule models to help explain the clusters, and
iteratively refining and exploring parameters to create actionable
stratifications. We implement this approach in Dose Analytics and
Symptom Stratifier (DASS), a visual computing system designed to
allow for the development and exploration of patient stratifications
according to different symptoms of interest. We describe two case
studies of applying DASS and show how it has been used to im-
prove existing outcome models. Finally, we provide design lessons
gained through this collaborative visual steering design.

2 Background

Head and neck oncology has seen large increases in patient sur-
vival due to a shift from smoking-driven tumors to less aggres-
sive HPV-driven tumors. This increase in survival has resulted in
a shift in priorities towards increasing the quality of life of pa-
tients: radiation to organs near the primary tumor during treat-
ment can lead to tissue damage, resulting in long-term side ef-
fects [LDVdL∗08, ELB∗91]. Predicting when symptoms driven by
spatial tissue damage occur is thus an understudied area of interest
to oncologists, as it can help identify better treatment guidelines.

When performing the initial diagnosis, oncologists rely on pa-
tient history and clinical staging that rank the size and spread of
the tumor [OHS∗16] to determine the method of treatment to opti-
mize patient survival. However, after the treatment methodology is
established, predictive models are needed to identify patients that
may need preventative treatment for serious side effects. A diagram
of the clinical workflow is available in the supplementary material
(Figure A1).

In particular, predicting tissue damage from radiation therapy in
head and neck cancer (HNC) patients is a challenge due to the high
number of treatment parameters and high number of organs that
may factor into side effects. For example, drymouth is often caused

by radiation damage to a subset of the salivary glands. Identifying
when failure may occur is a difficult modeling task, in which one
needs to consider the glands as a spatially interrelated system, as
some may compensate for damage to other glands. Additionally,
each organ may have a separate non-linear response to the radiation
dose over time, and symptom severity varies throughout treatment.
Furthermore, the large numbers of HNC patients in a cohort and
the dimensionality of the data pose a challenge in terms of visual
analysis. Finally, human modelers also require access to individual
patient data, as well as to the patient distribution within a cluster to
make informed inferences about patient outcomes.

3 Related Work

3.1 Visual Analysis of Cohort Data

Several applications of visual analysis have focused on dif-
ferent algorithmic approaches for clustering patients [MKKW12,
MAM20, WHvD∗20]. Visualization tools often extend these ap-
proaches by allowing human-in-the-loop analysis to identify sub-
cohorts [ZGP15, KPS16, BSM∗15]. Other systems have focused
on comparison of cohorts to discover differences in disease pro-
gression [MDM∗15], genetics [GGC∗17], cancer treatment dispar-
ities [STA∗22], but, unlike our work, these systems do not focus on
model building.

Many systems use clustering [MV15] and dimensionality re-
duction [ODH∗07, ENBD08] on key features to guide explo-
rations over high-dimensionality data. Some tools have looked
at visual analytics for creating clusters with unstructured health
data [KEV∗17, CD18, GNDV∗17], while other systems incorpo-
rate temporal clustering methods [ZMP∗21, ZMW∗20a, FNB∗21,
WMH∗21,GXZ∗17]. However, these systems do not attempt to in-
corporate spatial information in their clustering models, as we do.
Additionally, none of these systems link detailed treatment plans to
qualitative patient outcomes in the cohorts, as we do.

3.2 Visualization of Medical Image Data

Work in visual computing with medical imaging often focuses on
linking spatial features to external variables to support exploration
for domain experts. Early work focused on visualizing spatial imag-
ing data with open source tools (MITK [WVW∗04]) and introduced
integration of spatial and non-spatial linked views [GRW∗00].

Specialized approaches have been developed to explore co-
hort features in other domains such as tissue imaging [FYTL18,
JKW∗22, WKN∗12], neuroscience [JBB∗08, JBF∗20, ASO∗16,
MPL∗18], and lumbar spine features [CLL∗21, KOJL∗14].

Focusing on cohorts of RT data, BladderRunner [RCMA∗18]
visualized cohorts of prostate cancer patients which used a mix-
ture of T-SNE and Gaussian mean-shift clustering to group patients
based on bladder shape. VAPOR [FGM∗20] extended their work to
consider RT-induced treatment toxicity. Other work has extended
these results to explore uncertainty in RT data for visual anal-
ysis [GCMM∗19, RPHL14] and predictive models [FMCM∗21].
However, these approaches do not deal with HNC oncology treat-
ment, which has more complex treatment and symptom patterns but
lower temporal variability.

Previous HNC work has used spatial data to cluster patients
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based on tumor spread to lymph nodes [LWE∗20]. Many tech-
niques rely on simplified representations of anatomical data to
allow for better analysis of high-dimensional data [WCVD∗20,
WHL∗19, KOJL∗14, RCMA∗18]. While these works often deal
with feature engineering, none of them focus on directly altering
the model in parallel with the visual analysis, as we do. Addition-
ally, we uniquely provide tools for validating the feasibility of the
underlying model’s logic and embedding anatomical data directly
into the system.

3.3 Visual Steering and Interactive Machine Learning

In the medical domain, several projects have developed visual-
ization systems around the workflows of clinical model builders
and biostatisticians with a focus on regression models [DvVH∗19].
Raidou et. al [RvdHD∗15, RCMM∗16] proposed a tool for visual
analysis of regression-based Tissue Complication Probability mod-
els, with a focus on uncertainty. However, these approaches do not
focus on clustering or stratification models, as we do.

Other work has focused on actionable explanations for pre-
built models for clinicians, such as normal tissue complication
models [ZHT∗13], binary classifiers [CMQ20], case-based reason-
ing [MMB∗18, MXC∗19], and black box models [CLD∗21]. For
explainable AI, DrugExplorer [WHC∗22] proposed a model for
user-centered XAI alongside a system for exploring graph-neural-
networks for drug repurposing. However, none of these approaches
tackle iterative probing and model development, or capturing spa-
tial information in their data, as we do.

Additionally, our work uses interactive rule mining to help ex-
plain the clusters. Many systems have worked on aggregated vi-
sualization of rules [SMS∗22, TM03b, TM03a, vdEvW11, MP13,
XSFM11, YNB21], and used interactive rule mining to approxi-
mate more complex models [MQB18]. Our approach differs from
these in that we include a novel rule mining algorithm focused on
matching clinical use cases, along with a novel visual encoding that
allows for interactive parameter tuning.

4 Methods

The DASS design is rooted in our earlier experience with clini-
cal stratification models that relied on forward search for feature
selection for clustering [WHvD∗20]. Fully automated parameter
searches yielded models that performed well on a single perfor-
mance metric. However, when the clusters were inspected by clini-
cal collaborators, they would often find issues with the organs used,
such as organs that are completely unrelated to the outcome, or
smaller organs that they felt should be included. Thus, we intro-
duced a human-in-the-loop forward search directly into our front-
end alongside model explanations to help improve the process of
iterating on our clusters.

User-guided search has two additional benefits. First, our clini-
cian collaborators wished to specify desired characteristics of the
models, which led to a need to explore multiple alternative out-
comes or starting points based on these desired characteristics. Sec-
ond, collaborator input is required when balancing model perfor-
mance, the feasibility of the organs considered, and the number
of organs considered. For example, we found that in one model,
including both the soft and hard palate had identical effects on

the outcome. Thus, the decision came down to the clinicians, who
helped us identify which one was of more clinical importance.

Furthermore, in previous work, we attempted to find clusters
through hyperparameter search or using predefined cluster fea-
tures. However, we found that neither approach performed well.
Automatic feature selection led to clusters that focus on organs
that served as positional indicator features, such as the oral cav-
ity [WHvD∗20], but are not causally linked to outcomes and re-
sulted in model explanations that are not well-received. Notably,
we found that the brainstem and brachial plexus nerves often ap-
peared as predictors, despite clinicians noting that neither can be
associated with any of the outcomes being predicted. Such mod-
els work well, but lack causal plausibility which hinders adoption
and cannot be generalized to treatment guidelines. The DASS de-
sign specifically addresses these problems through its back-end and
front-end.

4.1 Data

Data were collected from a cohort of 349 HNC patients treated at
the MD Anderson Cancer Center using Radiation Therapy, with or
without chemotherapy, using a 7-week treatment course. We con-
sider three types of data: spatial dosimetric data taken from the
patient’s treatment plan; unstructured clinical data taken from the
patient’s health record; and temporal information on the patient’s
self-reported side effects taken during and after treatment. All val-
ues are positive ordinal values. Symptom ratings for individuals are
discrete, while dose values are continuous.

Diagnostic images were taken at the time of diagnosis, and 40
organs of interest were segmented from these images and consid-
ered in the treatment plan. Dose treatment plans were extracted for
each organ of each patient. We include 3-dimensional information
on the cumulative dose received by each organ during treatment.
We use the notation “VX” to denote the maximum dose that pen-
etrates X% of the organ. For each organ, we consider the V5-V95
range in increments of 5, as well as the mean and maximum dose.

For outcomes, patients were asked to fill out an MD Anderson
Symptom Inventory (MDASI) questionnaire [RMC∗07]. This in-
ventory includes self-reported symptoms for 28 different items,
such as drymouth and pain on a scale of 1-10. We also include
secondary variables that may be used as confounders in the patient
outcomes taken from electronic health record data, which we gen-
erally treat as binary confounding variables.

4.2 Collaboration

Our work was done as part of an ongoing collaboration between
data scientists and research oncologists at three US sites. DASS
was commissioned to serve first and foremost the needs of the
model builders, but to also facilitate clinician input and feedback
on the models. Remote meetings were held weekly, during which
we would get feedback on designs, and update project goals based
on feedback and current results. Examples of prototypes during this
phase are included in the supplement Appendix B.

We followed an Activity-Centered Design (ACD) pro-
cess [Mar17], which is a methodology conceived to better
support designing for domain experts by focusing on existing
user workflows and activities. The approach has higher success
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rates in interdisciplinary settings than Human-Centered Design
(63% versus 25%) [Mar17]. We focused on the workflows around
the development of clinically applicable models, as well as the
associated data analysis and verification required to validate and
publish the results.

4.3 Task Analysis

Modeling Requirements The goal of our project was to aid in the
development of an interpretable decision-support tool for clinicians
to help identify HNC patients at high risk of long-term severe (self-
reported rating > 4 on a 10-point scale) side effects due to radiation
damage. We focus on HNC patients as the sensitivity of organs in
the head and neck makes detection of quality of life measures in
survivors a difficult, under-explored application. Our collaborators
were specifically interested in a model that could improve on ex-
isting clinical systems by incorporating sets of related organs that
together support specific functions, and thus should be treated as a
system.

Our system was designed to be used for asymmetric collabora-
tive analysis, which would be handled by model-builders with ex-
pertise in the underlying algorithms, with clinicians providing input
and feedback. Therefore, we identified requirements for the models
themselves, as well as the steps needed to create and validate each
model. For our models, we derived the following requirements:

Actionable: Usable in a practical setting. In a typical workflow,
clinicians use risk stratifications that rank a patient’s risk of sur-
vival, which are then integrated into a holistic treatment plan. As
such, we require that our models output a simple ranking for each
patient, as well as insights that are usable without access to the
models. Access to individual patient data, as well as the patient
distribution in each cluster, in terms of both doses and symptoms,
was necessary.

Plausible: Generalize well to a real-world setting. The underly-
ing features that lead to a patient being classified as high-risk must
be easy to understand in their spatial context. The models must also
place patients in the high-risk group because they received a high
dose to a specific set of organs, and the set of organs considered
must be mechanistically linked to the the outcome of interest.

Transparent: Be easily probed, assess the plausibility of the
models, and identify edge cases in the models. We also needed to
be able to demonstrate the plausibility of the models and explain its
internal logic to readers with a clinical background.

Based on these requirements, we designed a dose-based strati-
fication methodology that clustered 2D dose distributions to a set
of organs and used the resulting patient clusters as a proxy for pa-
tient risk. Our visual front-end is designed around visual steering,
which uses information scent and visual cues to guide our team
through the process of selecting, validating, and refining the range
of potential parameters for the models to balance different perfor-
mance metrics and model plausibility. Because this task requires
significant knowledge of the models when adjusting parameters,
our interactive system is designed to be used directly by models
builders and visual computer experts, with encodings designed to
allow model builders to communicate intermediate results to clini-
cians and domain experts.

Through a series of iterative sessions where we developed mod-
els and discussed them with our collaborators, we identified the
following Activities and Tasks for our visual interface:

• A1 - Given a symptom, find optimal cluster parameters
– T1 Find organs causally related to the symptom of interest.
– T2 Identify a window in the dose-volume histogram that best

stratifies the cohort.
– T3 Validate a choice of clustering algorithm and parameters

• A2 - Validate that the logic of a model is causal and plausible
– T4 Examine the dose distribution of each cluster and where

the doses differ.
– T5 Verify if the cluster with the highest symptom risk also

has higher doses to the organs used in the clustering.
– T6 Identify confounders that may impact risk prediction.
– T7 Validate the predictive accuracy of the clusters.

• A3 - Examine and explain individual clusters
– T8 Identify the organ doses that most distinguish each cluster.
– T9 Evaluate differences in symptom trajectory between clus-

ters over time.

A1 deals with the development of a models, while activities A2
and A3 help to quantify the models and provide feedback to im-
prove the parameters in A1. A2 is a requirement for clinical pub-
lishable findings, while A3 is important for identifying any insights
that can be drawn from the final model. For example, once a model
is validated, finding that the high-risk cluster for taste dysfunction
tends to have a very high maximum dose to the tongue may indi-
cate that future work should investigate the effect of tongue dose
on outcomes in more detail.

4.4 Back-end Algorithms

Modeling. DASS allows selecting from a range of clustering algo-
rithms: K-nearest-neighbors, Hierarchical clustering, spectral clus-
tering, and a Gaussian Mixture Model. After several iterations, we
converged to a Bayesian variant of a Gaussian mixture model for
all cluster outcomes. Once a set of organs and a dose-volume his-
togram (DVH) is identified, these features are encoded as a vector
for each patient of size #organs * window-size. Patient vectors are
clustered, which are ranked based on the sum of the mean doses
to each organ included in the cluster. Ideally, this will result in the
highest rank cluster (high dose) being the most correlated with the
outcome.

To evaluate the resulting models, we also need to specify a symp-
tom and time point to use as the outcome of interest. We then con-
vert ratings to a binary outcome using a severity threshold. After
discussion with our collaborators, the default was a symptom rat-
ing above 4 out of 10 at 6 months after treatment.

Once our clusters and outcomes are identified, we perform mul-
tivariate correlation analysis using a likelihood ratio test (LRT) to
assess the correlation between each cluster and the outcome of in-
terest, using a set of clinical confounders interactively specified.

From this, we can calculate an odds-ratio and statistical signifi-
cance p-value for each cluster, as well as the Bayesian Information
Change (BIC) [KK08]. BIC and AIC are estimates of the good-
ness of fit of a model that include a penalty for the number of
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variables considered, in order to prevent overfitting, where lower
scores indicate better fits [KK08]. For BIC, reductions in score
relative to a baseline model of at least 2 indicate reasonable evi-
dence, while reductions of at least 6 indicate "strong" evidence of
improvement [Raf95]. This provides a set of different metrics for
assessing the cluster quality in terms of stratifying the cohort.

In addition, to assessing the quality of the current clustering,
we provide a forward search in which we alter the existing clus-
ter parameters by adding or removing either a single organ or a
single feature from the dose-volume histogram window. We then
re-cluster the cohort, and evaluate the new p-value, AIC, and BIC
for the new clusters, relative to that of the existing cluster. These
metrics are used to provide information scent for users when per-
forming a forward search of the data.

Rule Mining. To help explain the clusters, we designed a con-
strained rule mining algorithm and used it to generate a set of dose
thresholds that work as a classifier. Our algorithm looks for splits
among all dose features in the dataset to find a set that maximizes
the mutual information between the splits and a binary outcome.
This algorithm is designed to approximate standard rule mining,
with the following additional constraints so that the results approx-
imate the rules used by clinicians when specifying dose thresholds:
1) Monotonicity – the high-probability subset for each split in the
data must either always be the group above or always in the group
below the threshold; 2) Minimalism – The algorithm can only use
one dose-feature for each organ; 3) Informative – each “rule” in the
ruleset must have a minimal predictive value (user-set) on its own.

Specifically, the algorithm works as follows: 1) we calculate the
mutual information gain between each feature split within each ROI
(e.g. V40 to the Tongue > 40) and the binary outcome of interest;
2) of the resulting splits, we select the k most important splits; 3)
for each of the k best rules, we test combinations of all other splits
in step 1 that do not share the same ROI, and calculate the new
mutual information gain of the combined rules. Rules are combined
using the AND operator (i.e. the patients must satisfy all rules); 4)
steps 2-3 are repeated until no improvement is seen in the mutual
information gain. To speed up the algorithm, pruning parameters
used to speed up the search can be adjusted in the interface.

Implementation All data pre-processing and modeling is done us-
ing Python with NumPy, Pandas, and Flask for the back-end. Clus-
tering and dimensionality reduction is performed using the scikit-
learn package while statistical tests use the statsmodels package.
Our system frontend is implemented using React and D3.js.

5 Front-end Design

The DASS front-end (Fig. 1) is composed of 6 panels: a cluster
dose view (Fig. 1-B) that shows the within-organ dose distribution
for each cluster (A2), an additive effects view (Fig. 1-C) that shows
the estimated impact of adding or removing features from the clus-
ter on the specified outcome (A1), an outcome view (Fig. 1-D) that
shows the different symptom ratings over time for each cluster (A2-
A3), a configurable scatterplot view (Sec. 1-E) that shows a 2D
projection of all the patients in either the dose or outcome space
(A2), a rule view (Fig. 1-F) that shows a set of dose thresholds
that best separates a cluster of interest (A1-A3), and a control panel
(Fig. 1-A) that allows users to specify the cluster parameters and

outcomes of interest. We arrived at this design following a parallel
prototyping process, with multiple design alternatives and repeated
feedback. This process is illustrated in the supplemental materials.

To better support the analytical workflow, we use a categorical
color scale for cluster membership. Analysts can select a specific
cluster, which is used to populate the temporal outcome and rule
views, and brush in all other linked views. By default, DASS auto-
matically selects for brushing the highest dose cluster, as this clus-
ter was typically of the most interest to our clinicians.

5.1 Visual Scaffolding

When dealing with organ data, understanding the relative posi-
tion of each organ is essential for analysis of the relationships be-
tween organs and side-effects. Specifically, dose values are corre-
lated with location, and it is important to identify situations where
organs may be linked to toxicities due to their centrality and prox-
imity to nearby organs rather than being directly causally linked.

In previous work, we represented the set of organs as a styl-
ized plot showing each organ as a plot in 3 dimensions [WHL∗19].
However, we felt that this representation was limited in its use-
fulness, as it is difficult to identify organs that may be smaller
and clustered together, but may be functionally important, such
as salivary glands and smaller organs in the neck. Previous work
has also shown that 2-dimensional maps of anatomical regions
work well, and work well with clinicians who are typically trained
to work with image slices and 2-dimensional anatomical draw-
ings [WCVD∗20]. Expanding on this, we created a 2-dimensional
representation of 45 organs used in our dataset based on existing
anatomical drawings [FH15].

We then divided up the organs in the head into unilateral or-
gans that sit along the mid-sagittal plane (e.g. tongue), and those
that exist as a pair of organs on each side of the mid-sagittal plane
(e.g. eyes), which are further subdivided into those on the same
side as the primary tumor (ipsilateral side) and those on the op-
posite side of the primary tumor (contralateral side). This gives us
three “groups” of organs along the center axis. For each region, we
took tracings around organs of interest using multiple anatomical
cross-sections. We then overlaid all drawings, added in missing re-
gions such as the spinal cord, and manually adjusted each contour
to avoid overlap and regularize the size of each region. Adjustments
were also made to ensure that regions were reasonably concave so
that color gradients were visible. A diagram of the final drawing
with all regions labeled is available in the supplementary materials.

5.2 Additive Effects Panel

When working on model development (A1) our main task is to
identify a set of organs to cluster once our desired outcome has
been specified (Fig. 2). In this panel, we provide a forward search
to estimate the effect of adding (for features not in the current clus-
ters) or removing (for features in the current clusters) different or-
gans or features from the clustering space on model performance
(Sec. 4.4). We chose a beige-white-teal color scheme as we wanted
to de-emphasize uninteresting (negative) results while still captur-
ing the divergent nature of the results. Thus, we used beige as it has
lower perceptual salience than the rest of DASS.

Since model developers may be interested in balancing perfor-
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Figure 2: Additive Effects encoding showing a heat map of the or-
gans and dose-features used in clustering. Color encodes the good-
ness of fit effect of adding (no or teal outline) or removing (dark
black or brown outline) features to the clustering.

Figure 3: (Left) Plots showing the symptom ratings over time from
the start of treatment for the specified symptom of interest, broken
up by cluster. Circular markers encode the percentage of patients
that experience a symptom at each level and time point, and help us
estimate a patient’s relative risk. Line charts show average ratings
for each symptom. (Right) Bar chart showing the results of multi-
variate correlation tests for the clusters at different thresholds.

mance between multiple outcomes, we allow choosing which infor-
mation metric is used to encode color: BIC, AIC, or the t-statistic—
-which we report as a change in p-value, as well as the inputs to the
LRT test, and the threshold used to rank an outcome as “severe”.

Alternative designs relied on variations of heat-map and bar
charts with effect sizes. However, these were replaced with the vi-
sual mapping approach, as we found that it helped to cue users
about the approximate position and function of each organ when
deciding on clinical relevance. Our collaborators also found that
using similar layouts for the dose-cluster encoding and additive ef-
fects view reduced cognitive load and made the system more visu-
ally consistent.

5.3 Outcome Plot

To support validation and iterative model improvement, it was
important to show how outcomes vary within each cluster. This
is important when ensuring, for example, that the cluster with the
highest doses is actually capturing the high risk patients. To do this,
we provide two types of encodings that show patient outcomes for
each cluster: a temporal view of symptom ratings for the clusters,
and a statistical bar-chart view showing the results of the likelihood
ratio tests performed on each cluster for the outcome of interest.

Our temporal view uses a novel encoding (Fig. 3) to encode the

Figure 4: Per-organ dose distribution for a selected cluster. Color
gradients shows within-cluster distributions. (Left) A tooltip shows
the full dose-volume histogram for a brushed organ. Dotted area
shows the value (V55) currently being shown in the heat map.

trajectory of the symptom of interest across the entire treatment pe-
riod for the patient clusters. This encoding has two components:
a symbol grid, and a simple line chart. To reduce the complexity
of the encoding, we first group the symptom ratings and treatment
dates into bins (we selected five). In the symbol grid, we divide
the patients into those in the selected cluster, and those not in the
selected cluster (out of cluster). For each patient, we calculate the
highest rating for the symptom within the treatment dates before
aggregating by cluster. We then calculate the percentage of pa-
tients from the selected cluster that fall in each rating + date bin.
These percentages are encoded as circles on a grid, where the x-axis
shows each date bin, and the y-axis encodes the symptom ratings.
Size encodes the percentage of patients. Values for the in-cluster
patients are shown as a saturated marker, while the out-of-cluster
patients are shown as a black border marker. By comparing the
markers, we can approximate the odds ratio of a patient within the
selected cluster having a symptom of a given severity at each time
point.

In addition to the symbol grid, we overlay a line chart that shows
the mean symptom value over time for each cluster. The line charts
use cluster colors. A cluster chart can be clicked to select that clus-
ter for more details.

The statistical bar chart view encodes the results of the LRT test
(Sec. 4.4). This view is used for assessing how well a model per-
forms while accounting for the specific outcomes and confounders.
Cluster-outcome relationships that are statistically significant (p <
.05) are shown using their categorical cluster color, while relation-
ships that are not (p > .05) are shown in gray. The selected cluster
for the interface is highlighted using a bold black border between
the bars for that cluster.

5.4 Cluster Dose-Distribution Plots

Once a reasonable set of cluster features has been identified, our
first set of tasks involves investigating the dose distribution within
each cluster (A2 T5-6). This is useful for identifying when the clus-
ters are separating out patients with higher dose to other organs that
were not included in the cluster inputs. To do this, we calculate the
quartile ranges of a user-selected dose value within each cluster, for
each organ. These values are then shown as a gradient heatmap us-
ing our 2-dimensional organ diagram using a sequential red color
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Figure 5: Stylized scatterplot. Patients are represented by a custom
glyph that encodes the outcome of interest (late drymouth ratings)
as marks extending radially. Markers are colored by cluster mem-
bership, and a contour is shown around the currently selected clus-
ter. A tooltip (left) shows a heatmap of the dose applied.

scheme (Sec. 5.1), where the innermost color represents the top
quantile (80%) and the outer color represents the lower quantile
(20%), allowing us to visualize the inter-organ dose distribution for
each organ.

Interactions allow directly adding or removing organs from the
cluster queue, as well as selecting a cluster to be used for brushing
in other views. This facilitates the investigation of other aspects of
the cluster in more detail.

To anchor the visual heatmap in the clinician’s knowledge, we
add a tooltip for each organ that can show the dose-volume his-
togram for each quantile for the selected organ and cluster(Fig. 4).
This allows for a more detailed view of the entire histogram, while
highlighting the relationship between the novel heatmap, and the
standard dose-volume histogram that clinicians are familiar with.

5.5 Scatterplot

To visualize the distribution of patients across each cluster, we
include a modified scatterplot panel that shows a 2-dimensional
plot of the patients across two interactively-selected dimensions
(Fig. 5). By default, we show the first two principal components
of the features used to cluster the patients, but allow choosing to
alternatively view higher order principal components, the principal
components of the symptoms, or individual clinical or symptom
ratings. Because we found that avoiding visual occlusion was more
important than a high-fidelity projection, we use a force directed
layout to remove overlap between glyphs.

Each patient in the scatterplot is encoded with a custom glyph
that encodes its cluster membership, and the rating for the symptom
of interest between 0 and 10. Each circular glyph is encoded with
ticks that extend in 32.7-degree intervals in a clockwise radial pat-
tern, where the number of ticks corresponds to the symptom rating.
Thus, a full “pinwheel” glyph represents a patient with a symp-
tom rating of 10, while an empty circle represents a patient that
does not experience the symptom. Because symptom ratings use
discrete ordinal (integer) values, we can encode the exact ratings.
We additionally scale the size of the glyph based on the symptom
rating to support visual identification of small or high dose values.

Finally, we color code the glyphs based on their cluster member-
ship. The selected cluster is brushed by giving the corresponding

Figure 6: Ruleset encoding in the rule mining view. A swarm plot of
the patients is shown for the feature used in each rule, with the first
and most informative rule on the right. A horizontal line shows the
cutoff thresholds used in the rule. Patients that pass a rule are then
plotted in a swarm plot in the next rule on the right. The section on
the right shows rule patients failed at, with patients that pass all
rules at the top (green area). Patients in each section are divided
to show the False Positives or False Negatives at each level. Lines
connect markers for a patient across each sub-plot.

glyphs a higher opacity, and drawing a contour around the convex
hull of the cluster in the scatterplot. By hovering the mouse over
a patient glyph, the user can view a tooltip showing a plot of the
given patient’s received dose, and ratings for all symptoms over
time. The dose to each organ is encoded for each patient using the
organ diagram heat map (Sec. 5.4).

Previous designs used alternative projection methods with alter-
native projections and glyph encodings. However, we found that
allowing inspection of individuals was more important than pre-
serving location with perfect fidelity. In contrast, T-SNE avoided
occlusion, but tended to produce visual clusters that did not cor-
respond to the desired clusters. For glyph design, we considered
alternative shapes (e.g. diamonds or circles) for different levels of
severity. However, collaborators found the use of color and shape
confusing, while the use of ticks + size was better received and we
were able to identify the patient of most interest (very high and very
low severity) fairly easily for further inspection.

5.6 Rule Builder

Once our clusters are built, one of our goals is to explain the
clusters in terms that are familiar to clinicians. To accomplish this,
we used a constrained rule mining algorithm (Sec. 4.4) to produce
a set of dose thresholds such that the group of patients that meet
these thresholds approximates the selected cluster. This approach
was chosen as clinicians often work with dose thresholds when
choosing treatment plans.

When a cluster of interest is selected, our algorithm finds a list of
rule-sets that optimize the mutual information between the patients
and the cluster of interest. We then generate a plot for each ruleset,
and show the top rules in a list to the user. We also show the number
of predicted positives, information gain, precision, recall, and f1 for
predicting the true class above each plot.

Our novel rule encoding is based on a mixture of swarm plots and
parallel coordinate plots that are modified to show the progressive
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filtering of each ruleset (Fig. 6). We encode each feature (e.g. V50
to the tongue) along the x-axis. We then map the y-axis to the dose
value in grays. Patients are plotted along the y-axis based on their
value for the given dose feature in the x-axis, and adjusted using
a force-directed layout to avoid overlap. A horizontal line is then
drawn at the threshold of the rule for the feature on each step of the
x-axis. Patient marks are color-coded based on the selected cluster,
while patients not in the selected cluster are gray.

To show the effect of additional rules, the features along the x-
axis are ordered from left to right by the maximum information
gain for its corresponding rule. In the first feature, we show all pa-
tients in the cohort. For additional features, we filter out all patients
that do not satisfy rules from all previous features. The rightmost
side of the encoding shows the patient groups stratified along the
y-axis based on when they were filtered out of the ruleset. The set
of patients that satisfy all rules is grouped at the top, while the set
of patients that do not satisfy the first rule is grouped at the bottom.
We further separate the final group by those in the true class (target
cluster) and those not in the true class, allowing us to visualize the
false positives and false negatives for each rule.

To provide a visual cue for how the rules are filtering the co-
hort along the x-axis, we provide lines that connect the undistorted
locations of patients between axes, equivalent to a parallel coor-
dinate plot with filtering. Once a patient is filtered out, we draw
a line from the corresponding rule to the group on the right side.
To prevent overlap, we only show the lines for the patients within
one stratum at time, which is changed by brushing a patient in the
given strata. By default, we brush the group of patients that satisfy
all rules (predicted positives).

6 Evaluation

The first and foremost value of DASS comes from its unique
functionality and its ability to support clinical model development,
which we illustrate via two case studies. These case studies, pre-
sented here in abbreviated form, illustrate the process of creating
models for practical use, based on real clinical data. The case stud-
ies were performed via Zoom meetings with desktop sharing, with
one of the data scientists piloting DASS and the group using the
think-aloud methodology with note-taking. We furthermore col-
lected and report qualitative feedback from clinical collaborators
during these case studies.

As further evidence of the DASS functional value, we provide in
the supplemental materials a quantitative evaluation of clusters gen-
erated with DASS against baseline ML clusters. The DASS clusters
improve performance for drymouth, choking, and swallowing is-
sues. Finally, with an eye towards the generalizability of DASS to
other modeling problems, we collected additional feedback where
eight data scientists rated the usefulness and usability of DASS.

Since the interactive model-building components are directly tar-
geted at modelers, An additional quantitative comparison of our
clusters against baseline ML clusters generated without DASS can
be found in the supplemental materials.

Our dataset consists of 349 patients treated with radiation ther-
apy for oropharyngeal cancer. These models have been generated
with the help of DASS by four data scientists in our group over
several months of remote collaboration. The models have shown

improvements over baseline models, and have been favorably eval-
uated by three clinical oncologists.

6.1 Case Study 1

Figure 7: Case 1. (A) Low-and high-dose clusters using starting
features. The low dose cluster includes several organs with high
variance in the dose distribution. (B) Initial model performance.
(C) Low- and high-dose clusters using the final model. Low dose
cluster has a much lower variance with only a few sets of outliers.
(D) Final model performance measures. High-risk cluster is corre-
lated with drymouth with a higher odds ratio than the initial clus-
ters.

Our group was interested in identifying patients at high risk of
developing drymouth at 6 months after treatment, a common side
effect in HNC patients. In particular, the clinician analysts in the
group wished to model the relationship between drymouth and the
radiation dose applied to the salivary glands. The medical literature
had established a few dose guidelines for parotid glands, but not for
other salivary glands.

The model building process started by setting the parame-
ters in the DASS control panel. Based on results from earlier
work [WHL∗19], the group set the initial clustering features to be
V40-V55 doses to the ipsilateral and contralateral Parotid glands.
Three clusters based on a Gaussian mixture model were investi-
gated. Inspecting the initial clusters in the outcome plot, the ana-
lysts noticed that, as expected, there was a higher rate of drymouth
in the highest dose cluster (Cluster 2 in Fig.Sec. 7), although the
correlation was not significant for the desired threshold of > 5.
Moving to the dose distribution plot, the group noted that the low
and medium dose clusters tended to have a high-variation in the
dose to certain organs, as indicated by the dark red inner contours
and light outer contours to several organs (Fig. 7-A), suggesting
that the model parameters did not differentiate the low dose patients
well. Moving to the additive effects view, the model was iteratively
adjusted to include the submandibular glands and soft palate, with
a larger dose window (V30-V55). After updating the model, the
group noticed the clusters in the scatterplot panel achieved much
better separation in the data (Fig. 7-D) compared to using just the
parotid glands (Fig. 7-B). Returning to the dose cluster plots, the
group also verified that the low dose cluster had a lower overall
variance in the doses (Fig. 7-C).

Once the group achieved a set of features, the analysts aimed to
verify the validity of the resulting model. Looking at the outcome
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panel, they noticed that while the high dose cluster was a strong
predictor of drymouth, the low dose cluster had a high odds ratio.
Moving back to the scatterplot, and with the help of the oncologists,
they inspected the patients in this low dose group, and noticed an
interesting pattern: a number of patients had very high symptom
ratings, and confirmed that none of their organs received notably
high doses. Pivoting to the temporal outcome panel, the analysts
further noted that this low-dose group had the highest incidence of
severe drymouth at the start of treatment. After further discussion
with the clinical collaborators, the group concluded that existing
treatment plans try to minimize dose to the parotid glands, but not
the submandibular glands, so the dose tends to be much lower in
severe cases. The team theorized that there is likely a minor, but not
full compensatory effect of the contralateral salivary glands when
one set of salivary glands fails that should be explored later when
investigating dose guidelines.

6.2 Case Study 2

Figure 8: Case 2. (A) Rule mining results for predicting severe
swallow dysfunction, which suggest using high doses to the pha-
ryngeal constrictors. (B) Scatterplot of the first principle compo-
nent of the cluster features vs swallow ratings. A tooltip highlights
a case with severe swallowing in a low-dose cluster. (C) Outcome
plot for the final clusters. High risk patients have similar ratings
during treatment, but swallowing issues increase between 6 weeks
and 6 months after treatment.

This second case study dealt with the identification of patients at
high risk of swallowing dysfunction, which is a less common out-
come that is theorized to be related to damage to muscles in the
mouth and throat. Swallowing disorders are also related to patients
that require a feeding tube and weight loss, and thus it is an im-
portant outcome to avoid. High-risk patients can also be assigned
prehabilitative therapy such as swallowing exercises as well.

To help identify a set of starting organs, the analysts inspected
the rule mining view and set the desired outcome to be severe late
swallowing using all available features (Fig. 8-A). By looking at
the resulting rules, the group was able to identify the organs and

dose features that best predicted severe swallowing, which allowed
selecting a set of starting features for the cluster. Among the best
splits were high dose depths (V55-V70) to the superior, medial,
and inferior pharyngeal constrictors, which are key muscles used
in swallowing, which were chosen as a starting point for the clus-
ters. After running the clustering, the analysts inspected the out-
come view and noticed that the initial clustering parameters were
effectively separating the high-risk patients: this highest dose clus-
ter had a significantly higher odds ratio of severe late swallowing
(2.56) than other clusters (Fig. 8-C). Inspecting the cluster dose
distribution view, it was noted that this high-dose cluster was no-
ticeably smaller (n = 35) than the drymouth cluster and that the
high-dose cluster tended to consistently have a much higher V55 to
the IPC than other clusters.

Moving to the scatterplot, the analysts changed the dimensions to
show the first principle component of the dose and swallowing rat-
ings, which allowed identifying all patients with high swallow dys-
function that were not in the cluster (Fig. 8-B). Using the tooltip,
the group found some of these patients had high doses to the base
of the tongue and upper larynx. The analysts then added the supra-
glottic larynx to the clustering parameters in hopes of capturing
this group. The group then moved to the additive effects view, it-
eratively changed the dose window to include only the V55-V65,
and added the esophagus, which is another major muscle used for
swallowing in the base of the throat. After finalizing the parameter
set, the analysts inspected the rule view to find the features that best
distinguished the high-risk cluster. This high-risk cluster was easily
distinguished using the V55 to the Inferior Pharyngeal Constrictor.
Our clinical collaborators noted that all the pharyngeal constrictor
muscles are located close together, and there exist guidelines for
the dose for all of these muscles. Thus, a high IPC dose is likely
a predictor of a high dose to all related organs. Additionally, the
group discussed the fact that the dose threshold for swallowing was
higher than drymouth, which may indicate that muscles are less
sensitive to radiation relative to salivary glands.

6.3 General Usefulness and Usability Feedback

In addition to the case studies, which illustrate the DASS unique
functionality, we collected qualitative and quantitative feedback
from both collaborators and from modelers not affiliated with the
project. All collaborators appreciated the functionality provided by
DASS, and are in the process of publishing the resulting clinical
models. Regarding the spatial cluster panel, our clinical collabora-
tors found it intuitive and useful for inspecting dose distributions of
organs of interest. Feedback on the rule mining algorithm was also
positive, with oncologists remarking that it was “very useful”, as it
could “translate our results into practical applications”. A data min-
ing expert responded similarly to the additive effects panel, saying
that it was a “nice, very nice way to explore the parameter space”.

Additionally, we asked, via an anonymous online questionnaire,
three senior data scientists in the group, who were not directly in-
volved in the DASS design but participated in walkthroughs of the
system, and five junior data scientists, who were not affiliated with
the project to rate the usefulness and usability of the whole system
and of each component of the system on a Likert scale from 1 to 5.
We specifically sought feedback from data scientists, with an eye
towards generalizability, as modelers are the intended users of the
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Figure 9: General DASS usability and usefulness.

interactive model-building components of the system. Results are
shown in Fig. 9.

Feedback was very positive, with most ratings between 4-5, in
particular for usefulness. Ratings for usability were slightly lower,
as expected: some of the group experts clarified the group’s narra-
tion during the model-building process was extremely useful, and
they wished for visual help buttons replicating that experience on
demand. Ratings from the junior data scientists not affiliated with
the project were occasionally lower, in particular for the composite
outcome marker plots and the dose cluster panel. Based on the qual-
itative feedback, the difference in these cases was directly related
to the visual scaffolding and domain expertise which collaborators
benefited from, as these plots were based on methods used in RT
planning and clinical biostatistics.

7 Discussion and Conclusion

Our design relies on three main principles for improving model
development: 1) information scent to guide model development
(A1); 2) visual scaffolding to support bridging the information gap
between what domain experts commonly deal with and what is
needed to reason about the data (A2); 3) model explanations aimed
at translating our novel approach to the types of simpler “models"
use in practice (A3). Our case studies show how the system was
effectively used to develop explainable models that outperformed
our previous attempts at developing clinical models.

Below, we distill the design lessons gathered from this project
when dealing with visual steering and explainable AI problems in
collaboration with domain experts.

L1. Explanation Scaffolding: We extend the concept of visual scaf-
folding – gradually building to more complex visualizations from
a more familiar one – to that of XAI-style model explanations.
Specifically, we argue that model explanations should aim to trans-
late more complex models into those that mimic how users com-

monly deal with the data. In our case, we used constrained rule min-
ing in conjunction with visualizing intra-cluster dose distributions
using a visual scaffolding approach. Other systems have used re-
gression models which are common in biostatistics. However clin-
icians do not often reason about such models directly, so they are
less useful in clinical practice.

L2. Keep Model Goals Flexible: When developing models, data
scientists may work solely to optimize the performance in terms
of easily measured outcomes [MWM∗19], which leads to issues
during collaboration with model end-users [ZMW20b]. In practice,
there is often a misalignment between what can easily be mea-
sured, and what makes a model useful in practice. In developing
our models, we found that it was important to allow users to inves-
tigate a mixture of outcomes, in addition to qualitative factors such
as model plausibility and complexity, which need to be leveraged
against each other when deciding on the final model.

L3. Encourage Skepticism: One motivation in the design of our sys-
tem was a recurring problem of designing models that performed
well, whereas further probing revealed internal logic that appeared
to be the result of biases and spurious correlations in the data. De-
spite this, our models were often received without skepticism when
these issues were not brought up. This issue with over-trusting er-
roneous explanations has been suggested in early empirical stud-
ies [KNJ∗20, XSHF19]. The communication gap between model
builders and experts may result in dramatically over-trusting the
models for both parties as they may be unable to identify issues in
the models on their own. When dealing with XAI, designers should
focus on promoting skepticism about the models by highlighting
potential issues in the models, such as outliers and confounders,
which can help highlight previously unknown issues in the models.

The main limitation of our system is the reliance on visualiza-
tions that require familiarity as well as knowledge of the underlying
models and data, which is made possible by the long-term nature
of our collaboration. While we use domain-specific designs for our
visual scaffolding approach and model designs, the design philos-
ophy can be generalized to other problems involving spatial data
where model outputs can be translated into discrete groups, such as
clustering and decision trees. In terms of scalability, our system re-
quires 5-15 seconds to update new results for each cluster, depend-
ing on the number of clusters and rules mining settings. Scaling
to larger datasets may increase the required time, although this is
still significantly faster than alternatives that do not use interactive
steering. Visualization of individual patients in the Scatterplot and
Rule view may also be difficult with very large cohorts.

In conclusion, we have presented an ML and visual steering sys-
tem for clinical oncology symptom modeling with spatial data. We
described the co-design of a clinical visual-steering system, and
demonstrated its ability to support the creation of interpretable ML
models for stratifying patients. Additionally, we presented a set of
lessons learned for model co-development and model explanations
for a hybrid, machine expert and human expert problem. We hope
that these findings will help future designers create better, and more
trustworthy models in high-stakes settings.
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