
Eurographics Conference on Visualization (EuroVis) 2023
D. Archambault, R. Bujack, and T. Schreck
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 3

xOpat: eXplainable Open Pathology Analysis Tool

J. Horák1, , K. Furmanová1 , B. Kozlíková1 , T. Brázdil1 , P. Holub2 , M. Kačenga1, M. Gallo1 ,
R. Nenutil3 , J. Byška1,4 , and V. Rusňák2

1Masaryk University, Faculty of Informatics, Brno, Czech Republic
2Masaryk University, Institute of Computer Science, Brno, Czech Republic

3Department of Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
4University of Bergen, Department of Informatics, Bergen, Norway

Abstract

Histopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However,
existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of
new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browser-
based WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists’
annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers,
their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and
extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between
research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer
of AI algorithms for image segmentation and two with a research pathologist.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Scientific visualization;

1. Introduction

Whole slide imaging (WSI), also known as virtual microscopy, refers
to a cost-effective method to digitize whole glass slides containing,
for example, stained tissue samples. The technology emerged in the
late 1990s and is considered a disruptive technology that enabled
new diagnostic, educational, and research methods [PFP15] in digi-
tal pathology [GEMF13; HPS20]. WSI scanners produce gigapixel
resolution scans (thereof referred to as images) that are typically
stored in pyramidal formats [AAB*84]. The main tasks performed
by pathologists on these images are their inspection and annotation,
i.e., the pathologists search for and annotate anomalies and other
regions of interest in a tissue (e.g., cancer cells) using specialized
WSI viewers.

Recent advances in artificial intelligence (AI) methods
for segmentation [HMP*22], feature detection, and classifica-
tion [HMK*17] show promising ways to speed up and support
pathologists in their work. However, the development of these tech-
niques and their adoption into broader practice is hindered by limited
options for collaboration between researchers and clinical practition-
ers. While this is a nontrivial problem, it is partially caused by a lack
of easily configurable WSI viewers that could work with various
data formats and would be suitable for both research and clinical en-
vironments. Developing new algorithms requires expert pathologists’
feedback to validate the results. At the same time, clinical practi-

tioners need opportunities to try new methods without complicated
setups to integrate them into their workflows. The research-oriented
viewers, such as QuPath [BLF*17] or Cytomine [MRS*16], provide
many tools for analyzing the images and thus suit the exploratory
use cases and prototyping of new workflows. However, their integra-
tion into existing infrastructure is often tedious or even impossible,
as they typically require specific back-end services or databases. On
the other hand, clinicians typically use viewers integrated into ex-
pensive commercial ecosystems such as Tribun [Hea] that are rigid
with limited support for adding custom functionality (e.g., the latest
AI algorithms). As a result, researchers and clinicians often use
several WSI viewers, which complicates their collaboration when
developing new algorithms or testing new methods in practice.

In this paper, we take the first steps to alleviate these issues. Our
primary contribution is the design and open-source implementation
(muni.cz/go/xopat-repo) of a modular and protocol-agnostic
WSI viewer that we call xOpat. Due to its adaptability to various
data inputs (including non-image data) provided by multiple servers,
xOpat can be integrated into different environments without chang-
ing existing infrastructure. Additionally, custom plugins can extend
xOpat’s functionality, for example, by modifying the incoming data
before displaying them in the viewer. This benefits both researchers,
who can quickly test various workflows, and clinicians, who can
utilize the new functionality as soon as it is ready and approved.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1111/cgf.14812

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0002-5527-4095
https://orcid.org/0000-0003-2805-8784
https://orcid.org/0000-0003-0045-0872
https://orcid.org/0000-0002-4547-3261
https://orcid.org/0000-0002-5358-616X
https://orcid.org/0000-0002-1119-1792
https://orcid.org/0000-0003-0068-9760
https://orcid.org/0000-0001-9483-7562
https://orcid.org/0000-0003-1493-2194
https://muni.cz/go/xopat-repo
https://doi.org/10.1111/cgf.14812

J. Horák et al. / xOpat

Furthermore, as xOpat runs in a web browser, it allows an easy
exchange of information and findings between pathologists and re-
searchers through a unified user interface. To further strengthen this
exchange, we have implemented a plugin that supports creating nar-
rated presentations of image analysis workflow and findings. Thus,
the main contributions of xOpat are:

• Image server independence and protocol-agnostic architecture
that enables easy integration into different environments (Sec-
tion 4 and Section 6).

• Flexible handling and rendering of multilayer data (Section 5.2
and Section 6).

• Support for collaboration and communication via viewer session
sharing and data-based storytelling (Section 5.5).

We demonstrate how xOpat can assist in developing and verifying
AI algorithms and integrating them into practice in three case studies
with an AI algorithm developer and a research pathologist.

2. Related Work

Existing WSI viewers offer similar core functionalities such as
image rendering and support for manual annotations. Additionally,
some offer features focusing on specific tasks or incorporate AI com-
putational capabilities to support image analysis (e.g., segmentation
and classification). Our goal is a general versatile viewer. Therefore,
rather than focusing on specific feature sets of each viewer, we will
structure this section according to key properties that set these view-
ers apart in terms of their general applicability and versatility. These
include compatibility and integrability with existing environments,
flexible data handling of multiple data sources (e.g., computational
analysis results), and collaborative capabilities simplifying the in-
formation sharing among users. We provide a detailed comparison
of individual viewers in Table 1 of the supplementary material.

Compatibility and integrability: Older desktop viewers usually
worked with the data stored locally [Com]. With the availability of
high-speed network connection, image viewers shifted to a client-
server model with images stored on servers in the network. We
identified three broad categories of server dependency. Commer-
cial viewers such as Aperio ImageScope [Ape], HALO [Ind], or
Sectra [Sec] are part of the vendor’s ecosystem, also comprising
the server. The open-source projects either have their own imple-
mentations (e.g., Minerva [HRM*20] or Cytomine [MRS*16]) or
rely on OMERO [ABM*12], developed under the Open Microscopy
Environment consortium [SGBP03]. Orbit [SSV20] offers an inter-
face for integrating almost arbitrary image servers at the expense
of implementing complex connectors and services such as authenti-
cation. We strive to offer a fully server-independent solution based
on a protocol-agnostic approach that unifies data access via a single
flexible interface and promotes communication scheme adjustments.

Data handling: The development and integration of AI meth-
ods for segmentation poses new demands on support for retrieving
data from various sources (potentially in different formats) and the
ability to map the data into layers having the appropriate visual
representations. Most viewers that support automated analysis using
AI algorithms only provide a fixed configuration of layers, possibly
adjusting attributes such as color, hue, or thresholding [PAA*23;

RL21]. A certain degree of flexibility is provided by, e.g., Image-
Pro [Med], QuPath [BLF*17], and Scope2Screen [JKW*22], which
encode data into individual image channels and allow user cus-
tomization. The flexibility of working with layers can also be imple-
mented programmatically [SLN*22], but such an approach poses
demands on the user. Support for truly arbitrary layering from multi-
ple sources is, therefore, still minimal. In xOpat, we address this by
promoting synchronous data access and versatile rendering options.

Collaboration support: In the context of collaborative image anal-
ysis, the key features are mainly the export and sharing of analysis
sessions with other users. The analytical workflows are traditionally
based on asynchronous collaboration, where only one user interacts
with the system at a time. While case management systems allow
concurrent access to the files, a session-sharing capability delivers
more context. Typically, the session is shared as a JSON file or as a
parametric URIs [RL21; HRM*20; Gle; PAA*23]. These contain
specific tool configurations, view positions, or zoom levels, allow-
ing users to work in a "you see what I see" manner. Synchronous
collaboration mode where the content is shared and dynamically
synchronized between multiple users is supported less often [RL21;
MRS*16; JSH*13; PZD*19]. Some tools also support storytelling
by storing annotated view positions with text descriptions [HRM*20;
Med; JKW*22]. These capabilities improve sharing insights and effi-
cient navigation compared to plain session sharing. The xOpat takes
inspiration from existing approaches and addresses both session-
sharing and storytelling features to facilitate user collaboration.

xOpat focuses on three key features that we consider to be crucial
for a truly versatile viewer: a) independence from the chosen image
server, data, and metadata format; b) efficient manipulation and map-
ping of heterogeneous data sources that are rendered as additional
image layers; c) supporting collaborations between users. Although
many existing viewers partially support these features, particularly
in the area of collaboration, none of the existing tools address all of
them comprehensively.

3. Requirement Analysis

xOpat was developed by an interdisciplinary research team com-
posed of visualization researchers, clinical pathologists, and devel-
opers of AI algorithms for the analysis of histopathology data. The
system was designed in an iterative process, during which we re-
fined users’ needs, shaped the design, and continuously collected
feedback on the implemented features. Based on experiences and
discussions with team members, we identified workflows and tasks
of potential user groups of our system, which we subsequently an-
alyzed to elicit a set of requirements for a flexible visual analysis
system for digital pathology.

3.1. Users

We have identified three main user groups that could benefit from a
system for the visual exploration of histopathology images. In the
following, we discuss their typical objectives and workflows.

Developers design and implement new AI algorithms for image
segmentation and classification. Their main objective when visually
examining the histopathology data is the evaluation of the algorithm

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

64

J. Horák et al. / xOpat

performance with respect to ground truth provided by pathologists
as annotations. They compare all the data to identify differences
between algorithmic and manual classifications and subsequently
analyze these to discover possible causes of the differences to im-
prove the algorithm. This often involves switching between different
images, which is cumbersome and slow (due to the data size) and
requires high mental effort from the developers.

Research pathologists evaluate new and existing digital pathol-
ogy algorithms and approaches in terms of their applicability and
suitability for various clinical scenarios. Thus, in their workflows,
they need to compare outputs of multiple AI algorithms or ana-
lyze the performance and outcomes of a given algorithm across
different patients and patient cohorts (e.g., patients with different co-
morbidities). Furthermore, research pathologists provide the domain
knowledge for the developers—they use WSI viewers for manual
image annotation to provide ground truth and validate the correct-
ness of the algorithm results. As such, they heavily rely on mutual
communication with the developers.

Clinical pathologists use the WSI viewers in clinical practice.
Their main objective is an efficient examination of samples and
detection of tissue morbidity or other anomalies. They need to be
sure to notice everything noteworthy. To this end, they can be as-
sisted by automated analysis methods. In the case of long-term
treatment, they often collect and compare information about vari-
ous changes in the tissue. It is also common for them to share and
consult their observations and diagnoses with other colleagues.

3.2. Requirements

In this paper, we are making the first step towards a generic tool
supporting all three user types. We primarily focus on the developers
and research pathologists, but we kept the needs of clinical patholo-
gists in mind when designing our system. Based on the discussions
within our interdisciplinary research team and the analysis of typical
user workflows, we have identified the following requirements for a
flexible visual analysis system for digital pathology.

R1: Extensibility and data source independence. The tight cou-
pling of visual analysis systems with specific data processing
pipelines and protocols limits the adaptation of many existing
histopathological solutions to continuously evolving algorithms and
data sources. Moreover, adapting their existing frameworks to novel
analytical solutions is too costly for many laboratories and hospi-
tals. A flexible analytical system should thus be modular, easily
extensible, and independent of specific data processing pipelines.

R2: Multi-layer data handling. Histopathology images are often
examined with additional layers of metadata (e.g., annotations or
outputs from AI algorithms). The users need to be able to combine,
reorder, and compare data presented in multiple layers over the
background (e.g., tissue) images. Furthermore, they should be able
to configure various settings for the layers (e.g., opacity or coloring).

R3: Navigation within images. Minimized image overviews are
required to indicate which part of the high-resolution image is dis-
played in the main viewport. Furthermore, intuitive and efficient
interaction with the image must ensure navigation to the potential
points of interest (e.g., suspected tumor lesion).

R4: Efficient data handling. The size of the data produced by WSI
also poses challenges for real-time exploratory analysis. Emphasis
should therefore be put on rendering performance and low latency
of the interactions within the system.

R5: Annotation features. Users often need to create many anno-
tations to track their analysis and communicate their observations.
The annotation process should thus be simple, without unnecessary
repetitive settings, but at the same time, it should allow the creation
of sophisticated annotations if needed.

R6: Collaboration and data sharing. To facilitate the exchange of
information between users, e.g., algorithm developers and pathol-
ogists, the system should support easy exporting and sharing of
meta-data related to the individual images, including annotations,
points of interest, and their rendering configurations.

4. xOpat Architecture

Our primary goal is to provide the target users with a flexible tool
that can be easily integrated into their routine workflows. As a
result, xOpat is a modular viewer that anticipates existing connec-
tors/components: data providers, and configuration management
systems, as shown in Figure 1. We also provide an example imple-
mentation of a data provider and a management system to deliver
an out-of-the-box working solution.

Configuration
Management
System

Image Viewer

Core

Load/store data

Load

viewer

configurations

Data Providers

AI computation
server

JSOJSOJSON

Image server 1
…

Use

Manage Use

Plugins

HTTP API

Metadata
management

Use

Modules

Image server N

Figure 1: xOpat environment architecture overview. The data
providers (bottom) provide the xOpat viewer (top left) with the
requested data and manage metadata. The configuration manage-
ment system (top right) creates desired xOpat session configuration.
The diagram omits the possibility of direct access via generated
URLs and file exports.

xOpat Viewer is a service-independent web application enabling
easy integration into existing environments. xOpat viewer ensures
the rendering of the images and other metadata, such as AI outputs,
provides the primary user interface, and handles user interaction
capabilities such as annotating. Its CORE contains essential features,
such as the viewing logic, user interface subsystem, and API for
managing plugins, modules, and data fetching. MODULES are simi-
lar to libraries in operating systems. They allow flexible inclusion
of new features (e.g., WebGL rendering) and can form dependency
trees. Modules should not have an implicit impact on the system.
PLUGINS are similar to applications. They are instantiated and man-
aged automatically, and their behavior is more restricted. They bring

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

65

J. Horák et al. / xOpat

a

b

c

d

f

g

e

Figure 2: The default configuration of xOpat viewer: (a) main canvas with a scale bar, (b) minimap with highlighted part of the image
displayed in the main canvas, (c) visualization configuration options for individual layers, (d) toolbar with available interaction modes, (e)
sharing options—URL and export to file (f) on-demand features—plugin manager, tutorials, and settings. The visualization shows a rasterized
annotation of cancer provided by a pathologist (blue edges). Further, the explainability layer indicates the positive (yellow) or negative
(purple) contribution to the prediction of AI algorithm results loaded as the probability layer. The probability layer is not visible since it is used
as a clipping mask (g) on the explainability layer, so we render explainability only where the probability is higher than its current threshold.

new functionality, such as annotation capabilities or support for
neural network inspection.

Data Providers represent various services (e.g., image servers,
WSI storages, computational servers, metadata providers) providing
data to the image viewer. xOpat uses a protocol-agnostic approach
that abstracts the communication with these third-party services
without the need to re-organize data and metadata structures. In
principle, the viewer sends HTTP requests conforming to existing
data providers’ APIs and processes their responses and vice versa.
Our approach allows using arbitrary data fetching protocols (e.g.,
DeepZoom [Mic]) without requiring to change the image viewer
implementation (R1) or limiting what data in what format is sent in
the response as long as an appropriate handler is implemented. Data
Providers also take care of arbitrary metadata handling (e.g., user
data or storage of viewer configurations; see Section 5.4).

Configuration Management System is an optional component that
provides UI-friendly access to the viewer. Whether implemented as a
stand-alone service (our case) or as a part of the existing information
system, it only needs to know how to construct xOpat configuration.
It provides an entry point through which the users can initiate their
work with the image viewer, and it can use Data Providers to open
saved sessions or prepare more sophisticated session configurations.

5. xOpat Viewer

The xOpat Viewer consists of Main Canvas for rendering tissue
images with various overlaid metadata (R2), minimap serving for
navigation (R3), and controls allowing users to manage the appear-
ance of rendered images and data (see Figure 2). The additional
functionality, e.g., support for creating annotations (R5), is then
provided via various plugins (Figure 2f) that can be loaded ad-hoc.

5.1. Main Canvas and Minimap

The Main Canvas (see Figure 2a) spans most of the viewer to provide
users with enough resolution when exploring the whole slide images.
Except for basic keyboard and mouse navigation (pan and zoom), the
canvas inherits other controls from the OpenSeadragon [Cod] library,
which we used for its implementation, e.g., canvas rotation. However,
we enhanced the zooming with automatic speed adjustment for a
better experience.

Following the "overview+detail" design concept [CKB09], the
canvas is accompanied by a Minimap (Figure 2b) showing the po-
sition of the viewport and allowing quick zooming and navigation
between distant areas within the large images (R3). The minimap
can also be detached from the right panel, where it is positioned by
default, and pinned on the canvas so that it always remains visible.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

66

J. Horák et al. / xOpat

5.2. Visual Representation of Data Layers

When rendering the images, we distinguish between image layers
and data layers. The image layers form the background (i.e., stained
tissue slices) and allow only opacity adjustments. Multiple slices
can be rendered simultaneously on top of each other or switched
between one slice at a time. On the other hand, the data layers
represent arbitrary data, either pre-computed or generated on-the-
fly (e.g., the output of neural networks or manual annotations).
Unlike image layers, data layers provide more rendering capabilities,
such as configurable blending modes or customized visual data
representations.

The data layers encode the values as overlays using color and
opacity. However, histopathological images are already visually
complex data, which limits the possible visual encodings of ad-
ditional overlaid metadata. In xOpat, there are five built-in types
(Figure 3a—e) of visual representations:

• identity showing the original data;
• heat map encoding values (e.g., network predictions) to pixel

opacity of a selected color;
• bi-polar heat map, which is an extension of the heat map for

diverging variables, encoding values also to pixel opacity but
using a different color for each direction (suitable, for example, to
depict occlusion-based AI explainability map describing positive
or negative contributions to the network predictions);

• color map allowing to encode both discrete or continuous data
with several colors using cyclic, sequential, or diverging color
map sets (most generic option suitable for most data, but also the
most occluding);

• edges rendering line borders at a given threshold (suitable for data
containing large areas of close or constant values, such as raster-
ized annotations because, unlike other representations, edges do
not occlude the tissue).

Furthermore, the data layers can also be used as clipping masks
for layers below them, so only areas where the clipping layer data is
above a given threshold are rendered (e.g., in Figure 2g, probability
layer is used as the clipping mask for explainability layer). Finally,
xOpat integrates a GLSL code editor allowing users to script their
own data layer shaders in real-time (Figure 3f).

The configuration options of individual layers are placed below
the minimap in collapsible panels, stacked according to the order
of layers (Figure 2c). The user can customize order, visibility, and
other visualization-dependent parameters of individual superim-
posed layers (R2). While the superimposition of data layers allows
easy in-place comparison of data (e.g., manual and automatic an-
notations), it is not always suitable due to occlusions and the high
visual complexity of the data. To address this problem, it is pos-
sible to split the application into two synchronized windows. In
such cases, both views move synchronously. However, the data can
be visualized using different representations. Moreover, different
plugins modifying the data can be activated in each window which
enables flexible side-by-side comparisons of regions and available
data. This is useful, for example, when comparing the outputs of
two different AI models.

a b

c d

fe

Figure 3: Build-in data layer shaders: (a) identity, (b) heat map,
(c) bi-polar heat map, (d) color map, (e) edges, (f) interactive con-
sole allowing to create custom shaders.

5.3. Annotations and Presets

One of the main requirements was support for an effective way of
image annotations (R5), avoiding cumbersome repetitive actions,
such as selecting the annotation category. Since annotations are
not always needed, we implemented the annotation subsystem as a
collection of modules and a plugin. Currently, we support several
annotation primitives: rectangle and ellipse for marking approxi-
mate regions of interest, polygon and polyline for the precise region
selection, ruler for distance measurements, and text and point for
other use cases (such as storytelling described in Section 5.5).

To speed up the annotation process, the users can create Annota-
tion presets. They represent a binding between an annotation object
and a user-defined collection of properties, i.e., visual features (color
or shape) and configurable metadata (comments). As such, the pre-
sets can be quickly used to create specific annotation types. A unique
feature implemented in our solution is that two annotation presets
can be used simultaneously. Each mouse button can be assigned a
different preset to annotate with, which is very useful for binary
manual classification tasks, such as the decision of false- or true-
positive outputs of the AI pipeline. The annotation presets can also
be stored and shared with other users.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

67

J. Horák et al. / xOpat

By default, annotations have three modes of operation. The users
can switch between these modes (and adjust their respective set-
tings) using keys or the toolbar menu (Figure 2d), which appears on
demand when the annotation plugin is activated.

• automatic mode enables creating annotations by double-clicking
on the canvas—the system will automatically outline the continu-
ous area of a chosen layer spanning from the mouse cursor;

• outline mode (Alt key) enables to manually create selected
primitives—for example, polygonal shapes by placing or drawing
individual vertices using the mouse;

• area mode (Shift key) allows modifications of annotations by
free-hand coverage of a filled area using a paint tool of a given
radius. The filled area is then automatically converted to a polygon
primitive. The user can adjust the tool radius using a mouse scroll.
Shift+Alt modifier can be used to switch to area removal instead.

5.4. Configurability and Sharing

The appearance and functionality of the individual data layer con-
trols (see Figure 4), as well as additional advanced features (e.g.,
gamma correction used when rendering), can be easily customized
via a configuration file. Such flexibility allows configuration for
various use cases depending on the user’s needs and goals. The
configuration (including plugins) is stored in JSON format and can
be shared (R6), either as an exported HTML file or as a URL (Fig-
ure 2e). When the URL is loaded, the image viewer is initialized at
the exact state. This includes the viewport settings (i.e., position and
zoom level), so the users can easily share what they see with others.

Figure 4: Example of configurable controls used to specify filtering
of the probability layer. Changing the JSON configuration allows
quick switching from simple thresholding using one value (top)
to range thresholding (bottom). The range slider is also further
configurable (e.g., axis labels, number of ranges). This way, different
visualization tasks can be supported.

5.5. Storytelling

To increase the ability to share findings (R6), xOpat also features
the Presenter plugin, which provides data storytelling support. It
allows users to record the current state of the viewer, including
all settings for the data layers as a keyframe. These keyframes are
then automatically concatenated into data stories while allowing the
user to parametrize the length and animation style of the transition
between them. The UI for setting the parameters can be found in
the toolbar menu (Figure 2d). The created stories can then be shared

and replayed by others (see an exemplary story demonstrating Case
Study 1 at muni.cz/go/xopat-story). The Presenter plugin can
be used not only for presenting the case by clinicians, but also by
researchers and developers for algorithm or performance evaluation;
or by teachers in education.

5.6. Neural Network Inspection

Neural network inspector plugin further demonstrates the xOpat
flexibility. This plugin with a python-based backend service provides
visualization for explainability of AI algorithms (such as saliency-
based image segmentation [Hru22]) used in the WSI analysis. The
system allows non-trivial, interactive, and user-friendly inspection
of the network architecture, see Figure 5. The plugin is used when
identifying errors in the AI models during their development. In
the future, it will also support adopting these models into clinical
practice, as providing the users with a visual explanation of the
network decision process will help to foster the trust of users in these
AI systems and, more importantly, allow them to make informed
decisions based on them.

a

b

c

Figure 5: Neural network inspector plugin. The image shows fea-
ture maps from different network convolution layers responding
to: (a) stroma, (b) individual non-grouped nuclei, and (c) areas of
grouped nuclei [Hru22].

5.7. User Guidance

Our design decisions emphasize user guidance and the show-on-
demand principle. For example, the system provides tutorials (Fig-
ure 2f) implemented using a modified version of EnjoyHint li-
brary [XB]. An iterative example with all currently available tutori-
als can be found here: muni.cz/go/xopat-tutorial. To further
improve user experience, pop-up dialogues are actionable. They
not only provide hints or instructions but also offer interactive ele-
ments supporting users’ actions. The dialogues may contain menus,
highlight UI parts, or trigger actions.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

68

https://muni.cz/go/xopat-story
https://muni.cz/go/xopat-tutorial

J. Horák et al. / xOpat

6. Implementation Details

Our tool is open-source and available under MIT License at
muni.cz/go/xopat-repo, together with documentation of pro-
vided features for developers. In addition to a service-agnostic
viewer, we also supply exemplary services—Data Providers—that
can be used alongside the viewer or replaced by custom implementa-
tions if needed. Ensuring efficient fetching and rendering of multiple
image and data layers (R4) is necessary for a pleasing user expe-
rience and fast tissue inspection. Thus, we designed our rendering
abilities and data exchange services to address performance issues.

6.1. Viewer

We are unaware of any existing WSI viewer that would provide a
similar amount of visualization flexibility, i.e., a simple interface for
configuring visualizations over arbitrary raster data, both file- and
channel-wise. Existing WebGL libraries either implement viewing
capabilities (handled by OpenSeadragon) or provide rendering inter-
faces that are neither suitable for requested visualization needs nor
do they allow the amount of optimization we can do directly with
WebGL as we use a lot of textures but have no explicit geometry or
scene system. Our WebGL visualization module is designed both
for performance and usability.

The viewer defines so-called visualization goals (see Figure 2c)
representing a user’s intention, i.e., a particular user-defined con-
figuration of the individual data layers. Each visualization goal is
defined by a set of so-called layer shaders, one for each data layer.
The layer shaders specify which data to fetch from the server, the
controls available in the UI, and how to render the data based on
these controls.

Only GLSL code generating the visual output (pixel processing)
must be provided to program a new layer shader. The module pro-
vides all low-level features (e.g., data access or WebGL version
independence) for the final shader. The shader input values (i.e.,
user controls) can be syntactically described in JSON-like structure
and used directly in the GLSL code. The module provides built-in
support for blending modes, pre-filtering (e.g., gamma correction),
attaching default controls (e.g., opacity setting), caching, and inter-
changeability of UI controls. Such a shader can then be instantly
used and parametrized in the UI configurator.

The multiple-layer data can be fetched within a single image
request by concatenating them into different color channels. While
this approach is the most straightforward, it requires specific stor-
age for the source images, severely limiting flexibility. OpenSead-
ragon [Cod], by default, allows fetching the individual images sep-
arately via multiple asynchronous requests. To further optimize,
we decided to promote synchronous data fetching. We enhanced
OpenSeadragon protocol API so that protocols can have full control
over the data flow, allowing the use of any image server (even those
unable to process image array queries) and any data. We have also
extended tile caching control support for the protocols. We decided
to leverage synchronous requests due to the following reasons:

• Reduced memory: Since all the data for a single tile is available
at once, we can combine them and cache the resulting tile instead
of storing multiple tiles.

• Faster rendering: By combining the tiles from multiple sources
into one, we can also improve rendering performance by setting
up the OpenGL pipeline once and using it repeatedly for all tiles
without the context switching.

• Fewer HTTP requests and better scaling: Each tile position
is requested, converted, decompressed, and processed only once
without solving the synchronization on the client side. The num-
ber of HTTP requests is lower since their amount does not grow
with the number of data layers. We include the performance eval-
uation of this aspect in the supplementary material.

• More control: Thanks to synchronous data access, advanced
features such as custom blending and clipping of data layers are
possible. Users can also define and change the parameters for this
blending in real-time.

By default, the rendering engine can receive the data as a single
concatenated image or an array of images. Optionally, one can add
support for other formats by extending proper interfaces.

The downside of synchronous requests is that an Image Data
Provider (i.e., an image server) must either support image array
requests or store the data in a single image via channel concatenation.
Therefore, when such a provider is integrated, one has to put more
effort into the process to achieve optimal performance.

Portable Request/Response Schemes. The viewer also aims
to eliminate the dependency on particular metadata and service
providers by defining a scheme translation for metadata within the
system. Such metadata is then propagated through requests. Plugins
are responsible for offering adjustable API schemes (which is the
case for the annotation plugin). This is a somewhat naïve approach
that should be refined in the future, but it allows modifying the
service communication through dedicated translations.

6.2. Exemplary Data Providers

Since no suitable high-resolution image server could work with im-
age arrays, we implemented our own. We were able to design a solu-
tion that scales well for up to tens of independent image sources and
allows us to employ viewer-efficient, multi-layered visualization,
maintaining a highly responsive user interface. To facilitate syn-
chronous data fetching, we extended the DeepZoom [Mic] protocol.
The protocol can fetch data both synchronously and asynchronously.
The synchronous requests return data concatenated in a single image
or tiles as a zip file. The protocol is part of the viewer’s default
protocol set. Integration of a custom image server can happen at
different levels:

I. Use our IIPImage Server extension. It is a fast server, but image
data must be stored as a pyramidal JPEG2000 or TIFF.

II. Use a custom image server implementation that would handle
image array requests capable of fetching images from multiple
files via our Extended DeepZoom protocol (which requires modi-
fications of the existing image server).

III. Use an image server capable of sending the data in an arbitrary
format synchronously (better performance) or asynchronously.
Extend xOpat with the protocol of choice defining how the data
is stored and loaded to the GPU—if a loader is unavailable for
the given data type. For example, it is possible to reuse a single-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

69

https://muni.cz/go/xopat-repo

J. Horák et al. / xOpat

tile protocol and extend a multiplexing capability for it; this is
provided for all available protocols.

IV. Do not support image arrays and fall back to either asynchronous
requests or channel concatenation. The downside of asynchronous
access is the performance impact, which can be solved partially
by data channel concatenation—not very flexible since the data
must be stored in one file across channels instead of reading from
multiple files.

7. Case Studies

In this section, we present three case studies demonstrating the utility
of xOpat for two user groups—developers of AI-powered image
analysis algorithms and research pathologists. The datasets were
provided by the Department of Pathology of Masaryk Memorial
Cancer Institute. All patients provided written informed consent to
use their leftover material for research. The datasets are not publicly
available outside of our live tool demo.

7.1. Case 1: Validation of the U-net Classification Model

In the first case study, we present an investigation of the results of the
U-net model [RFB15] for detecting cancer lesions and identifying
possible problems within the model by its developer. The study was
performed by a junior developer who uses xOpat daily to investigate
the results of his algorithms and presents his typical workflow. In
addition to the developer, the manager of the AI development team
was also present during the case study demonstration and provided
further feedback.

The dataset with the network results contained: the tissue image,
manual annotations of cancerous regions by a pathologist, and the
output of the evaluated algorithm represented by the probability
and explainability data. At this point, the researcher utilized the
configurability of xOpath and mapped the original heterogeneous
data to individual data layers without the need to adjust the data itself.
The data is all displayed in Figure 6 in separate layers with different
visual representations: annotations as region outlines, probability as
a yellow-toned heat map, and explainability as a bi-polar heat map.

Note that neural networks split the images into smaller chunks
that are different from the tiles displayed by the viewer. To differ-
entiate these chunks from tiles, we use the term patches. In the
probability layer, each rectangular patch indicates the probability
that the region within this patch contains cancer as identified by the
network. The explainability layer is obtained via occlusion sensitiv-
ity analysis [ZF14] and indicates which parts of the image contribute
to AI decision and how (i.e., positively, indicating that the region
contains cancer, or negatively).

After selecting the dataset, the developer checked the layers with
respect to the position of the original image. He did this first for the
annotation layer to check if the manual annotations were correctly
aligned with the image. Then he switched off the annotation layer
and inspected the probability layer. The developer noted that this
procedure has previously led to the discovery of cases where the
network generated high probability output for regions outside of
imaged tissue which was caused by an error in the initial network
setup with misaligned data. Besides the positioning, the developer

also quickly checked the general shape of the network output and
looked for patterns since results exhibiting regular patterns or blurred
regions also indicate errors in the model setup, such as overlapping
input patches. A live example of network output with an erroneous
setup can be found at muni.cz/go/xopat-ex1.

In this case, the initial inspection of the probability layer did
not reveal anything unexpected, so the developer proceeded with a
more detailed examination. He re-added the annotation layer and
checked if the network’s output corresponded with the pathologist’s
annotations. In most annotated regions, the network also predicted a
high probability of cancer. However, there is one region where the
network failed to detect cancer (Figure 6, right).

To further inspect this result, the developer added the explain-
ability layer (Figure 6). Here it was evident that some parts of
the cancerous region were incorrectly identified as negative (red)
while others were actually marked correctly as positive (green). This
demonstrates that additional information from the explainability
layer is useful in resolving why and on what parts of the tissue the
prediction failed.

The developer concluded that with this, the first iteration of the
model result examination was finished. At this point, he would
utilize xOpat’s URL or file sharing capabilities and communicate
his findings with the development team manager to decide whether
the findings were caused by some technical issue (e.g., misaligned
data) or whether the network model should be further inspected and
adjusted. The manager confirmed that further refinement would be
necessary, followed by another iteration of the result inspection.

Figure 6: Results of neural network model composed of three layers:
pathologist’s annotations (blue outline), probability (yellow), and
explainability (red-green). Image on the right shows the portion of
the tissue where network failed to identify cancer. The interactive
example is at muni.cz/go/xopat-ex2).

7.2. Case 2: Evaluation of U-net Classification Results

The second use case was conducted by a pathologist collaborating
on developing novel AI algorithms. In this case, the task was to
evaluate the performance of a previously developed U-net model
trained to identify epithelium in hematoxylin-eosin-stained tissue
sections. This network was trained on breast and colorectal cancer
tissue. The investigation aimed to identify whether and to which
extent it can be applied to prostate tissue. Therefore, we set up an
image server that streamed the original data and configured xOpat
to overlay the prostate core needle images with the neural network’s

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

70

https://muni.cz/go/xopat-ex1
https://muni.cz/go/xopat-ex2

J. Horák et al. / xOpat

output represented as a separate segmentation layer, classifying
image pixels as epithelial. The pathologist investigated the epithelial
segmentation and marked them as either true or false positives
(Figure 7). He used two annotation presets (one for true and one
for false segmentations) mapped to the left and right mouse buttons.
Using the xOpat annotation plugin, he could quickly and easily
annotate the network results without switching between different
annotation categories. In this case, there was a large number of
false positives. According to the pathologist, the reason was that
the prostatic stroma contained plump fibromuscular cells, which
were not represented in the training dataset. The pathologist saved
the annotations to share them directly with the developers, who
could use them to further refine or retrain the model. Based on
his observations, the developers concluded that the model must be
retrained for the prostate tissue.

Figure 7: Presentation of U-net segmentations over hematoxylin-
eosin stained prostate tissue sample. Pathologist annotations further
classified the epithelium segmentations (yellow) as true positive
(green) and false positive (red). The false positivity appears in plump
fibromuscular stromal cells.

7.3. Case 3: Evaluation of Tissue Patterns

The third use case was conducted by the same pathologist. The
dataset consisted of a similar set of layers as in Case 1. The task was
to evaluate i) whether the regions contributing to the classification of
image patches (either cancerous or noncancerous) can be assigned
to some previously estimated tissue patterns, ii) and the relative fre-
quency of such patterns in different cancer grades. Both tasks usually
require error-prone and time-consuming pixel-level data exploration.
However, the pathologist used xOpat’s ability to load custom data
and added a layer that contained information about unambiguous
regions that positively or negatively contributed to the classification.
The custom layer was precomputed from the explainability layer,
which was regularly sampled. The sampling points were placed on
a square grid of side length 280px. Then, if the absolute difference
between the mean positive and negative explainability scores in the
15×15px square neighborhood of the sampled point was greater than
70, the point and its neighborhood were marked as unambiguous
(Figure 8). Thanks to this additional sampling layer, the pathologist
could quickly locate regions with unambiguous classification and
evaluate the whole image with reasonable effort in a reasonable time.

Figure 8: Hematoxylin-eosin stained prostate cancer tissue im-
age with additional data layers: pathologist’s annotations (green
outline), probability (yellow), explainability (red and green), and
sampling for unambiguous regions along with sampling grid (blue).
The blue square indicates a region with unambiguous positive con-
tributions to the classification (shown in the zoomed cutout with
inverted sample layer rendering).

8. Discussion

Further, we discuss user feedback collected during the case studies,
lessons learned during the implementation, and future work. We
have also conducted a performance evaluation showing the benefits
of our approach, which is discussed in the supplementary material.

8.1. User Feedback

During the case studies and subsequent discussions with the users,
we also collected verbal feedback on xOpat’s usability and use-
fulness and its shortcomings addressable in future research and
development.

Both the pathologist and the developers noted fast and flexible
data layer capabilities as the cutting-edge feature of xOpat, not
available in other tools. The developers stated that before xOpat,
they used in-house scripts to generate output for visual inspection of
network outputs. Due to the slowness of this approach, they typically
generated and visually inspected only small regions of the slides
and thus often missed critical parts.

The scripting-based approach also limited communication and
sharing of the findings among the development team members. No-
tably, it took a lot of work to localize the errors in the context of the
entire image based on small cut-outs generated with local and often
non-reproducible settings. xOpat allows the developers to inspect
data layers over entire images quickly. The annotation and sharing
features support consistent communication within the research and
development teams. The team manager added that using xOpat for
sharing findings also eliminates the cherry-picking of results.

The pathologist also mentioned annotation as one of the promi-
nent features of xOpat, appreciating the option to create the annota-
tion presets and add the annotations in a fast manner. However, he
also noted missing options for working with multiple hierarchical
annotation categories and category adjustment. While xOpat enables
adding annotations of multiple categories, hierarchical categoriza-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

71

J. Horák et al. / xOpat

tion or changing the annotation category once added will require
additional development.

Another limitation of xOpat pointed out by the pathologist was
the missing tracker of already viewed parts of the slide. He stated
that this is a crucial feature, particularly for clinical usage, where
the pathologist needs to ensure that he checked the entire slide and
did not overlook anything. Such a tracker should collect information
about which parts were already viewed and at which resolution.

Finally, both the developers and the pathologist noted that the
tool needs a better interface for loading the data, which is crucial
for future usage and is already a work in progress.

8.2. Lessons Learned

In pathology research, it is unfortunately still common to present
a few cut-out patches with results of the AI algorithms without
broader context, which may be misleading (not unlike quoting a
person without context). WSI viewers usually do not account for
the need to communicate the research results through their interface
nor support a visualization means to do so. With xOpat, we enable
sharing the results via interactive links showing the detailed patches
and the whole slide image. We hope these interactive links will
complement static images in their presentations or research papers,
providing the necessary context to evaluate the new algorithms better
and thus increase trust in them.

Furthermore, the data size and variety require the ability of a sys-
tem to adjust flexibly rather than having an all-in-one solution. We
designed a context-free viewer that delegates the data management
to an external system and provides many ways to adjust or extend
the data fetching process (see Advanced Data API that we added
to OpenSeadragon version 3.2.0). Its RESTful API also enabled
reproducibility, a crucial property for sharing and testing.

Concerning the UI, we noticed flaws in most annotation environ-
ments in spatial and conceptual separation and focused on mini-
mizing the required steps when annotating the images. To improve
intuitiveness, we implemented tutorials and action-based notifica-
tions that help novice users learn to use the system and perform
actions directly in system messages.

Architecture-wise, our iterative development resulted in a design
based on three abstraction components: the core (management util-
ities and crucial components), modules (or libraries, components
with direct impact), and plugins (components with implicit impact).
We believe that other plugin-supporting viewers should consider
having at least these three abstraction components as well.

8.3. Future Work

In our future research, we plan to include missing features pointed
out by the users in the evaluation—i.e., implement data loading UI
and user progress tracking. Based on the evaluation, we have already
included a simple tracker highlighting the regions explored on the
minimap (see the interactive examples). But we would also like to
explore the possibilities of the storytelling feature for automatically
tracking the users’ actions for provenance purposes and to uphold
reproducible research. We also plan to further improve annotation

sharing and add full-scale support for vector data rendering, cur-
rently supported only through annotations functionality. Another
possible area for future work regarding sharing and collaboration
is the support of live multi-user collaboration sessions. However,
this requires further research regarding technological setup and user
interactions within such a setting.

We are also working on the Playground Plugin that will enable
the interactive execution of custom algorithms on a server (similarly
to computational notebooks), show real-time results, and store and
further process them. We already have a working demo allowing us
to run real-time Python code on viewed tiles.

Finally, we also plan to improve xOpat’s security and optional safe
mode, since some features (e.g., remote shader loading or runtime
protocol customization) allow cross-site scripting attacks.

9. Conclusion

In this paper, we presented xOpat, a browser-based WSI viewer
for explainable open digital pathology. xOpat suits the needs of
digital pathology researchers, where it can significantly speed up
the workflows. It addresses multiple limitations of the existing tools
and aims to deliver easy integration into the existing environments.
It further provides open and extensible architecture and supports
collaboration among different users.

xOpat fulfills the requirements of domain experts who collaborate
on designing novel AI-based image segmentation and annotation
methods. Together with collaborating domain experts, we identified
three typical users—AI algorithm developers, research, and clini-
cal pathologists—and elicited their requirements on the novel tool.
The implementation is based on OpenSeadragon, a widely used
library for high-resolution images. xOpat is highly configurable
and provides a context-free and data-independent environment that
supports multi-layer data visualizations that gives insight into AI
decisions. To our knowledge, its features are unmatched by any
other currently available tool. We kindly advise readers to visit
the muni.cz/go/xopat-showcase with interactive examples to
showcase the tool.

In the future, we would like to extend xOpat with several features
that would further increase its applicability in clinical practice. Al-
though numerous tools are already available and well adapted for
clinical purposes, an open and unified framework could improve
both the clinical and the research digital pathology and help bridge
the gap between research and practice. XOpat can also help increase
trust in AI algorithms, streamline the collaboration of different re-
search teams, and contribute to the open science movement.

Acknowledgements

This work has been supported by EOSC-Life project supported by
EU Horizon 2020, grant agreement no. 824087, as a part of WP1
Demonstrators under APPID 1228 "Cloudification of BBMRI-ERIC
CRC-Cohort and its Digital Pathology Imaging"; by the Czech
Ministry of Health (MMCI 00209805) and the Czech Ministry of
Education, Youth and Sports (LM2018125—BBMRI-CZ). Com-
putational resources were supplied by the project ‘e-Infrastruktura
CZ’ (e-INFRA LM2018140) provided within the Projects of Large
Research, Development and Innovations Infrastructures program.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

72

https://muni.cz/go/xopat-showcase

J. Horák et al. / xOpat

References
[AAB*84] ADELSON, E. H., ANDERSON, C. H., BERGEN, J. R., et al.

“Pyramid Methods in Image Processing”. RCA Engineer 29.6 (1984), 33–
41 1.

[ABM*12] ALLAN, CHRIS, BUREL, JEAN-MARIE, MOORE, JOSH, et al.
“OMERO: Flexible, Model-Driven Data Management for Experimental
Biology”. Nature Methods 9.3 (Feb. 28, 2012), 245–253. ISSN: 1548-7105.
DOI: 10.1038/nmeth.1896. pmid: 22373911 2.

[Ape] APERIO. Aperio ImageScope – Pathology Slide Viewing Software.
URL: https://www.leicabiosystems.com/digital-pathology/
manage/aperio-imagescope/ (visited on 03/24/2022) 2.

[BLF*17] BANKHEAD, PETER, LOUGHREY, MAURICE B., FERNÁNDEZ,
JOSÉ A., et al. “QuPath: Open Source Software for Digital Pathology
Image Analysis”. Scientific Reports 7.1 (2017), 16878. ISSN: 2045-2322.
DOI: 10.1038/s41598-017-17204-5 1, 2.

[CKB09] COCKBURN, ANDY, KARLSON, AMY, and BEDERSON, BEN-
JAMIN B. “A Review of Overview+detail, Zooming, and Focus+context
Interfaces”. ACM Computing Surveys 41.1 (2009). ISSN: 0360-0300. DOI:
10.1145/1456650.1456652 4.

[Cod] CODEPLEX FOUNDATION. OpenSeadragon – An Open-Source, Web-
Based Viewer for High-Resolution Zoomable Images. URL: https://
openseadragon.github.io (visited on 10/12/2022) 4, 7.

[Com] COMPUTATIONAL PATHOLOGY GROUP. Automated Slide Analysis
Platform. URL: https://computationalpathologygroup.github.
io/ASAP/ (visited on 10/12/2022) 2.

[GEMF13] GHAZNAVI, FARZAD, EVANS, ANDREW, MADABHUSHI,
ANANT, and FELDMAN, MICHAEL. “Digital Imaging in Pathology:
Whole-Slide Imaging and Beyond”. Annual Review of Pathology: Mecha-
nisms of Disease 8.1 (2013), 331–359. ISSN: 1553-4006, 1553-4014. DOI:
10.1146/annurev-pathol-011811-120902 1.

[Gle] GLENCOE SOFTWARE. PathViewer: An interactive visualization,
analysis, and annotation tool specifically tailored for the digital pathology
workflow. URL: https://www.glencoesoftware.com/products/
pathviewer/features/ (visited on 10/26/2022) 2.

[Hea] HEALTH, TRIBUN. Tribun Suite. URL: https://www.tribun.
health/th-suite (visited on 10/17/2022) 1.

[HMK*17] HOLZINGER, ANDREAS, MALLE, BERND, KIESEBERG, PE-
TER, et al. “Machine Learning and Knowledge Extraction in Digital
Pathology Needs an Integrative Approach”. Towards Integrative Machine
Learning and Knowledge Extraction. Ed. by HOLZINGER, ANDREAS,
GOEBEL, RANDY, FERRI, MASSIMO, and PALADE, VASILE. Lecture
Notes in Computer Science. Springer, 2017. ISBN: 978-3-319-69774-1.
DOI: 10.1007/978-3-319-69775-8_2 1.

[HMP*22] HOLLANDI, REKA, MOSHKOV, NIKITA, PAAVOLAINEN,
LASSI, et al. “Nucleus Segmentation: Towards Automated Solutions”.
Trends in Cell Biology 32.4 (2022), 295–310. ISSN: 09628924. DOI:
10.1016/j.tcb.2021.12.004 1.

[HPS20] HANNA, MATTHEW G., PARWANI, ANIL, and SIRINTRAPUN,
SAHUSSAPONT JOSEPH. “Whole Slide Imaging: Technology and Appli-
cations”. Advances in Anatomic Pathology 27.4 (2020), 251–259. ISSN:
1072-4109. DOI: 10.1097/PAP.0000000000000273 1.

[HRM*20] HOFFER, JOHN, RASHID, RUMANA, MUHLICH, JEREMY L.,
et al. “Minerva: a light-weight, narrative image browser for multiplexed
tissue images”. Journal of Open Source Software 5.54 (2020), 2579. DOI:
10.21105/joss.02579. URL: https://doi.org/10.21105/joss.
02579 2.

[Hru22] HRUŠKA, JAKUB. “Visualization of Hidden Layers in Convolu-
tional Neural Networks”. Supervisor: Tomáš Brázdil. Diploma Thesis.
Masaryk University, Faculty of Informatics, Brno, 2022. URL: https:
//is.muni.cz/th/huq0h/ 6.

[Ind] INDICA LABS INC. HALO – Image Analysis Platform for Quantitative
Tissue Analysis in Digital Pathology. URL: https://indicalab.com/
halo/ (visited on 10/11/2022) 2.

[JKW*22] JESSUP, JARED, KRUEGER, ROBERT, WARCHOL, SIMON, et al.
“Scope2Screen: Focus+Context Techniques for Pathology Tumor Assess-
ment in Multivariate Image Data”. IEEE Transactions on Visualization
and Computer Graphics 28.1 (2022), 259–269. DOI: 10.1109/TVCG.
2021.3114786 2.

[JSH*13] JEONG, W., SCHNEIDER, J., HANSEN, A., et al. “A Collabo-
rative Digital Pathology System for Multi-Touch Mobile and Desktop
Computing Platforms”. Computer Graphics Forum 32.6 (2013), 227–242.
DOI: 10.1111/cgf.12137. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.12137 2.

[Med] MEDIA CYBERNETICS. Image-Pro. URL: https://www.mediacy.
com/imagepro (visited on 03/24/2022) 2.

[Mic] MICROSOFT. Deep Zoom File Format Overview. URL: https://
docs.microsoft.com/en- us/previous- versions/windows/
silverlight/dotnet- windows- silverlight/cc645077(v=vs.
95) (visited on 10/12/2022) 4, 7.

[MRS*16] MARÉE, RAPHAËL, ROLLUS, LOÏC, STEVENS, BENJAMIN, et
al. “Cytomine: An Open-Source Software For Collaborative Analysis Of
Whole-Slide Images”. Diagnostic Pathology 1.8 (2016). DOI: 10.17629/
www.diagnosticpathology.eu-2016-8:151 1, 2.

[PAA*23] PIELAWSKI, NICOLAS, ANDERSSON, AXEL, AVENEL,
CHRISTOPHE, et al. “TissUUmaps 3: Improvements in Interactive
Visualization, Exploration, and Quality Assessment of Large-Scale
Spatial Omics Data”. bioRxiv : the preprint server for biology (2023).
DOI: 10.1101/2022.01.28.478131. URL: https://www.biorxiv.
org/content/early/2023/01/16/2022.01.28.478131 2.

[PFP15] PANTANOWITZ, LIRON, FARAHANI, NAVID, and PARWANI,
ANIL. “Whole slide imaging in pathology: advantages, limitations, and
emerging perspectives”. Pathology and Laboratory Medicine Interna-
tional (2015), 23. ISSN: 1179-2698. DOI: 10.2147/PLMI.S59826 1.

[PZD*19] PUTTAPIRAT, PARGORN, ZHANG, HAICHUAN, DENG, JINGYI,
et al. “OpenHI2 — Open source histopathological image platform”.
2019 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). 2019, 2696–2701. DOI: 10 . 1109 / BIBM47256 . 2019 .
8983322 2.

[RFB15] RONNEBERGER, OLAF, FISCHER, PHILIPP, and BROX, THOMAS.
U-Net: Convolutional Networks for Biomedical Image Segmentation.
2015. arXiv: 1505.04597 [cs] 8.

[RL21] RYDELL, CHRISTOPHER and LINDBLAD, JOAKIM. “CytoBrowser:
A Browser-Based Collaborative Annotation Platform for Whole Slide Im-
ages”. F1000Research 10 (Mar. 22, 2021), 226. ISSN: 2046-1402. DOI: 10.
12688/f1000research.51916.1. URL: https://f1000research.
com/articles/10-226/v1 (visited on 03/14/2023) 2.

[Sec] SECTRA AB. Sectra Digital Pathology Solution. URL: https://
medical.sectra.com/product/sectra- digital- pathology-
solution/ (visited on 10/12/2022) 2.

[SGBP03] SWEDLOW, JASON R., GOLDBERG, ILYA, BRAUNER, ERIK,
and PETER K. SORGER. “Informatics and Quantitative Analysis in Bio-
logical Imaging”. Science (New York, N.Y.) 300.5616 (2003), 100–102.
DOI: 10.1126/science.1082602. URL: https://www.science.
org/doi/abs/10.1126/science.1082602 2.

[SLN*22] SOFRONIEW, NICHOLAS, LAMBERT, TALLEY, NUNEZ-
IGLESIAS, JUAN, et al. Napari/Napari: 0.4.15. Version v0.4.15. Zenodo,
Mar. 10, 2022. DOI: 10.5281/ZENODO.3555620. URL: httpcope:
//zenodo.org/record/3555620 (visited on 10/03/2022) 2.

[SSV20] STRITT, MANUEL, STALDER, ANNA K., and VEZZALI, ENRICO.
“Orbit Image Analysis: An open-source whole slide image analysis tool”.
PLOS Computational Biology 16 (2020), 1–19. DOI: 10.1371/journal.
pcbi.1007313 2.

[XB] XB SOFTWARE LTD. EnjoyHint. URL: https://github.com/
xbsoftware/enjoyhint (visited on 10/12/2022) 6.

[ZF14] ZEILER, MATTHEW D. and FERGUS, ROB. “Visualizing and un-
derstanding convolutional networks”. European conference on computer
vision. Springer. 2014, 818–833. DOI: 10.1007/978-3-319-10590-
1_53 8.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

73

https://doi.org/10.1038/nmeth.1896
22373911
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1145/1456650.1456652
https://openseadragon.github.io
https://openseadragon.github.io
https://computationalpathologygroup.github.io/ASAP/
https://computationalpathologygroup.github.io/ASAP/
https://doi.org/10.1146/annurev-pathol-011811-120902
https://www.glencoesoftware.com/products/pathviewer/features/
https://www.glencoesoftware.com/products/pathviewer/features/
https://www.tribun.health/th-suite
https://www.tribun.health/th-suite
https://doi.org/10.1007/978-3-319-69775-8_2
https://doi.org/10.1016/j.tcb.2021.12.004
https://doi.org/10.1097/PAP.0000000000000273
https://doi.org/10.21105/joss.02579
https://doi.org/10.21105/joss.02579
https://doi.org/10.21105/joss.02579
https://is.muni.cz/th/huq0h/
https://is.muni.cz/th/huq0h/
https://indicalab.com/halo/
https://indicalab.com/halo/
https://doi.org/10.1109/TVCG.2021.3114786
https://doi.org/10.1109/TVCG.2021.3114786
https://doi.org/10.1111/cgf.12137
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12137
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12137
https://www.mediacy.com/imagepro
https://www.mediacy.com/imagepro
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:151
https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:151
https://doi.org/10.1101/2022.01.28.478131
https://www.biorxiv.org/content/early/2023/01/16/2022.01.28.478131
https://www.biorxiv.org/content/early/2023/01/16/2022.01.28.478131
https://doi.org/10.2147/PLMI.S59826
https://doi.org/10.1109/BIBM47256.2019.8983322
https://doi.org/10.1109/BIBM47256.2019.8983322
https://arxiv.org/abs/1505.04597
https://doi.org/10.12688/f1000research.51916.1
https://doi.org/10.12688/f1000research.51916.1
https://f1000research.com/articles/10-226/v1
https://f1000research.com/articles/10-226/v1
https://medical.sectra.com/product/sectra-digital-pathology-solution/
https://medical.sectra.com/product/sectra-digital-pathology-solution/
https://medical.sectra.com/product/sectra-digital-pathology-solution/
https://doi.org/10.1126/science.1082602
https://www.science.org/doi/abs/10.1126/science.1082602
https://www.science.org/doi/abs/10.1126/science.1082602
https://doi.org/10.5281/ZENODO.3555620
httpcope://zenodo.org/record/3555620
httpcope://zenodo.org/record/3555620
https://doi.org/10.1371/journal.pcbi.1007313
https://doi.org/10.1371/journal.pcbi.1007313
https://github.com/xbsoftware/enjoyhint
https://github.com/xbsoftware/enjoyhint
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

