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Figure 1: The integrated pipeline is split into three pre-processing modules (cropping, segmentation, and centerline generation) and one
visualization module (the classifier module) to analyze vessel stenoses. At any time, the user can inspect and, if necessary, make corrections
to any of the processing steps. The results are automatically propagated.

Abstract
Analyzing stenoses of the internal carotids – local constrictions of the artery – is a critical clinical task in cardiovascular
disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid
artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical
routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide
means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing
stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation.
We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making
the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize
scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide
the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists
and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular
architecture, available as an extendable open-source platform.

CCS Concepts
• Human-centered computing → Scientific visualization; • Applied computing → Life and medical sciences;

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.14808

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14808


P. Eulzer et al. / A Fully Integrated Pipeline for Visual Carotid Morphology Analysis

1. Introduction

The two internal carotid arteries provide oxygen supply to the ma-
jority of the brain. If their blood flow is constricted, stroke is immi-
nent. Stroke is a major type of cardiovascular disease – the leading
cause of mortality and morbidity worldwide [GBD19]. Full recov-
ery from a stroke is a rare exception. In non-fatal cases, perma-
nent neurological impairments are the norm and post-stroke care
represents a tremendous societal and economic burden [RGB∗19].
Therefore, effective stroke prevention strategies are of fundamen-
tal importance. Due to the buildup of atherosclerotic plaque on its
vessel walls, stenosis of the internal carotid may occur, where a
localized narrowing restricts the blood flow (see Figure 2). A typi-
cal predilection site for stenosis is closely after the carotid bifurca-
tion, located in the upper neck area, where the internal and external
carotid split off the common carotid artery. A developing steno-
sis, if detected at the right stage, can be treated through surgical
removal of plaque or stent insertion. As with most cardiovascu-
lar diseases, however, surgical intervention is an option but car-
ries its own risks [HTW∗09]. Therefore, treatment decisions need
to be made on an individual basis, considering a large number of
factors involved. In general, better comprehension of these factors
and a more accurate assessment of objective descriptors of the dis-
ease are crucial for ideal treatment and monitoring of a patient’s
condition. In the case of carotid stenosis, essential objectives are
the proper analysis of the stenosis location, degree, composition,
and shape, i.e., the vessel morphology. In this work, we introduce
a fully integrated pipeline to efficiently extract and visualize 3D
vascular models from computed tomography angiography (CTA)
images. We pair AI-assisted segmentation and automatic feature
extraction with carefully selected user interaction options in a pro-
cessing pipeline with step-wise visual feedback. Based on the re-
sulting vascular models, we introduce a specialized tool to immedi-
ately detect, assess, and accurately classify stenoses of the internal
carotids. The pipeline is outlined in Figure 1.

Considering the prevalence of cardiovascular disease, it is unsur-
prising that abundant proposals have been made to improve moni-
toring, treatment planning, and medical research using techniques
from the visualization toolbox. This includes volume render-
ings [KGNP12], image reformations [MMV∗13, RFK∗07], map-
like depictions [EMML22], and visualizations of hemodynamics
(blood flow) [OJMN∗19]. In spite of the positive feedback of po-
tential users for these algorithms and applications and decades of
development, we find that the majority of techniques are hardly on
their way to being used in clinical practice or medical research. We
identify four major bottlenecks for the practical transfer of meth-
ods that we aim to address with our approach: the users’ trust in
what is visualized, the efficiency of using a visualization with new
data, the compatibility of the used data formats, and the scale at
which such systems are validated. An integrated pipeline, as de-
lineated in the following, targets these bottlenecks by streamlining
data processing. Giving the user carefully chosen control over the
pipeline then allows for uncomplicated validation of data and even
on-the-fly correction, ultimately improving understanding and trust
in what is shown. Additionally, a modularized pipeline design sup-
ports the implementation of new processing steps and visualiza-
tion modules, where the database does not need to be recreated. We
elaborate on the design of the pipeline for the analysis of stenoses of
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Figure 2: Anatomy of the carotid bifurcation. A stenosis caused
by plaque on the arterial wall restricts blood flow in the internal
carotid.

the internal carotids. However, the concept could be transferred to
other domains like cranial circulation [MMNG16], aneurysm risk-
assessment [MGB∗19, MPL21], liver surgery planning [LL20], or
the analysis of heart valves [EEL∗19]. In summary, our contribu-
tions are:

• A fully self-contained processing and visualization pipeline for
carotid bifurcation geometries.

• A modularized and open-source framework design, which allows
easy integration of processing and visualization modules inter-
facing with a shared patient database.

• A novel visualization for highly efficient carotid stenosis detec-
tion and classification implemented as a pipeline module.

To evaluate the effectiveness of our approach, the pipeline has
been used to generate over 100 carotid bifurcation models from
real patients. We hope that this will provide a basis for further re-
search to validate vessel visualization methods more broadly. The
open-source code of all integrated modules and the carotid model
database are available online [EL23a, EL23b].

2. Related Work

Related work encompasses all pipeline processing and visualiza-
tion stages. We highlight key works in each field and provide rele-
vant surveys for more in-depth discussions of each stage.

Vessel Segmentation. From medical volume images, like CTA,
vascular structures can be segmented manually or automatically.
The voxels of interest are marked in the volume. This is of-
ten followed by a surface reconstruction step, where a geometric
model, e.g., a triangulation, is extracted. Sometimes, multiple mod-
els are created, for instance, to differentiate the vessel inner wall
(lumen) and atherosclerotic plaque [JN∗18]. There are two prin-
cipal types of segmentation methods, “traditional” and machine
learning-based. Traditional methods to segment blood vessels are
reviewed by Lesage et al. [LABFL09]. These include, for exam-
ple, active contours [MVN06] or graph-cuts [BPS∗10,ELD10]. As
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many of these methods are computationally slow and not as robust
against noise and artifacts as desired, recent years have seen a surge
in machine learning methods [LK16, PHM∗16, WXG∗16]. Partic-
ularly convolutional neural networks (CNNs) have been found ad-
vantageous for the automatic segmentation of vessels. Specialized
networks for carotid lumen and plaque segmentation have been pro-
posed [BKS18, CVOA08], where good performing networks, with
a Dice similarity of 82%, were based on as low as 15 training data
sets [ZTP∗21]. For further reading, we refer to the surveys by Moc-
cia et al. [MMHM18] and Zhao et al. [ZCHH17].

Centerline Extraction. A typical way to describe vascular topol-
ogy is to derive centerlines passing through the geometric center of
the tubular structures. Centerlines can be directly computed from
image volumes through topological thinning [SSZZ01, WL08] or
graph search [BSB∗00, BKS01]. They can also be computed from
triangulated vessel models through thinning [ATC∗08] or using the
medial axis transform. The medial axis passes through the origins
of the maximally inscribed spheres inside the model. A distinct
advantage of the latter approach is that it computes the minimal
radii inside the vessel as a byproduct. The medial axis can be de-
rived from bisectors [CKM04], which is computationally complex.
A faster method is to first construct the 3D Voronoi diagram from
the surface points and compute the medial axis as a subset using
the cells that lie inside the geometry. Antiga et al. [AEIR03] imple-
mented this approach and Wang et al. [WCH∗10] provide a com-
parison of different methods.

Blood Vessel Visualization. Various visualization frameworks for
blood vessels exist that are designed to solve specific tasks of
clinical practitioners [MKP∗16, MVB∗17, MOJB∗19]. A common
approach is the combination of multiple coordinated data views
with different purposes, for example, slice-based renderings, vol-
ume renderings, 3D surfaces, views of integral lines, focus lenses,
map-like depictions, and also data graphs or charts. Generally, a
differentiation is made between model-free and model-based tech-
niques [PO08]. The latter rely on a processing pipeline that extracts
geometric models from volume images. These can then be fur-
ther used in advanced visualizations showing, e.g., blood flow fea-
tures [OJMN∗19] or map-like depictions with strategically reduced
visual complexity [EMML22]. Eulzer et al. [EMKL21] specifically
target the visualization of hemodynamics in carotid stenoses. Wall-
related parameters like shear stress or plaque distribution at the
carotid bifurcation have been visualized using parameterizations of
the vessel surface geometry [CLC13, CCR20, ERM∗21]. Lawonn
et al. [LMW∗19] propose a technique for detecting and segmenting
aneurysms (pathological vessel bulges). Similarly, in this work, we
introduce a technique for the extraction of stenosis geometries.

There are a number of data processing frameworks designed for
researchers working with vascular models. The vascular model-
ing toolkit (VMTK) [APB∗08, ISMA18] is a suite of command-
line scripts for segmentation, centerline creation, vessel mesh pro-
cessing, and volume mesh generation. There are also generalized,
multi-purpose software frameworks for processing medical vol-
ume data, most notably 3D Slicer [KPV13] and ImageJ [SRE12].
Due to their high versatility, they are broadly used. However, their
steep learning curve and vast range of functions means, in terms
of usability for specialized (clinical) tasks, they cannot compete

with individualized tools specifically designed for these purposes.
Notably, in almost all related medical applications, data process-
ing happens separately from data visualization. The processing
pipeline is usually present but not fully integrated into the final
application. From the user’s perspective, this means there is no in-
sight into the correctness of the data and no easy way to fix errors
or adapt the presented models.

3. Bottlenecks in Clinical Transfer

The traction of vessel visualization techniques and frameworks in
clinical practice has been notoriously challenging when compared
to other, non-medical, application domains. These challenges are
partly attributed to the difficulty of properly developing and eval-
uating medical visualizations [PRI18] – user studies with a large
number of highly specialized medical experts are not a conceiv-
able option – and also to the integration of new algorithms into
clinical workflows, which requires going through elaborate legal
procedures. These obstacles mean that, for most visualization re-
searchers, it is simply not lucrative to sustainably determine the
benefits of new vessel visualizations. From the literature on ves-
sel visualization systems and our discussions with clinicians we
do, however, repeatedly get the impression that advanced visu-
alizations of vascular features, including morphology, connectiv-
ity, wall parameters, and blood flow, do posses a high potential
value for diagnosis and treatment. So why are they only sparsely
adopted? While various probable reasons may exist, in our discus-
sions we kept iterating on a particular aspect: commonly, in pro-
totypical development, we do not focus on the streamlined inte-
gration of data processing. This leads to the fact that many solu-
tions for pre-processing, segmentation, feature extraction, and vi-
sualization exist, yet most of them are individual and scattered. At
the same time, these solutions are becoming more and more com-
plex, as they tackle increasingly sophisticated problems, making it
harder to functionally connect them. From this lack of integration,
we distill four aspects that are dominant bottlenecks for the clinical
transfer of vessel visualization techniques:

• B1 Trust. With highly processed data, how can a user assure
the correctness of what they see? This is an exceptionally criti-
cal factor in clinical environments. Medical personnel has to be
able to fully trust the algorithms and their results, partly with-
out understanding how they are computed. In medical decision-
making, the liability question is always a focal consideration.
Physicians bear immediate responsibility over their patients’
lives and, thus, need to know to which extent they can trust a
data representation.

• B2 Efficiency. Many advanced medical visualization frame-
works have a high adoption cost, as they depend on various frag-
mented tools for data curation and processing. The result is that
small corrections early in a processing pipeline often require ex-
tensive effort to propagate through later stages.

• B3 Compatibility. Additionally, these tools sometimes suffer
from high interface costs, as specific data formats with varying
degrees of standardization are used [GSG∗21].

• B4 Validation Scale. Typically, only a handful of example data
sets are used for the development and validation of vessel vi-
sualizations, as processing steps like model extraction or sim-
ulation are profoundly time-intensive. This reliance on selected
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Figure 3: User interface of the analysis framework. (A) Module selection bar. The crop module is currently active. (B) Global discard and
save buttons. (C) The data inspector shows the list of available data sets and which files exist for the left and right carotid. (D) Slice view of
the crop module. The left and right volumes can be set here. (E) Volume rendering of the CTA scan with the selected crop regions highlighted.

data sets, however, may lead to unwanted side effects, such as
algorithms and visualization techniques that are biased toward
certain data attributes. Repeating the performed processing steps
with new data might be more challenging than initially antici-
pated. In the worst case, this results in low generalizability and
transferability.

4. System Design

In this work, we propose a first approach to address the described
bottlenecks using the example of visual carotid morphology anal-
ysis. Advancing the detection and classification of carotid stenoses
has a high potential value due to the frequency and severity of
the affliction. In routine diagnostics, a suspected carotid steno-
sis is screened using angiographic volume imaging, typically a
head and neck CTA. A crucial factor for deciding if surgery is
necessary is the stenosis degree S. Following the guidelines from
the North American Symptomatic Carotid Endarterectomy Trial
(NASCET) [FEB∗99], a high indication for surgical intervention
is given for symptomatic patients with S ≥ 70%. To derive the
stenosis degree, the smallest diameter inside the suspected stenosis
dmin and the poststenotic “normal” diameter of the internal carotid
dnormal need to be measured:

S =
dnormal −dmin

dnormal
·100%. (1)

These values are usually taken from CTA or sonography imag-
ing. In practice, the exact positions for dmin and dnormal are not
known and are subject to the estimate of the attending physician.
The stenosis degree then needs to be considered in light of all fac-
tors, including the general anatomy, progression, and composition
of the stenotic region.

In discussions with two collaborating physicians who treat stroke
patients, one radiologist and one neurologist, we found that a tai-
lored visualization based on an extracted model of the carotid could
aid in these tasks. The efficiency could be improved if the iden-
tification and classification of stenoses could be performed faster.
Also, the classification accuracy would benefit from a computed di-
ameter that can be used to derive the stenosis degree objectively and
automatically. Additionally, general qualitative aspects could be en-
hanced, like the assessment of the overall anatomy, insight into the
3D distribution of plaque, and communication between profession-
als could be fostered. To meet these goals, however, we require a
3D reconstruction of the vessel lumen, as well as a diameter model,
e.g., based on a centerline. The necessary processing of the image
data automatically runs into the bottlenecks discussed above.

As a way to alleviate the low transferability that usually results
from complex data processing, we propose a fully integrated, adap-
tive, and modular pipeline. Integrated means that all tasks around
data processing and visualization can be performed within a single
software framework. A minimal data interface that only requires
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the CTA image data in standardized DICOM format as input en-
sures maximal compatibility (B3 Compatibility). By adaptive, we
mean that manual edits at any pipeline stage will propagate to the
later stages automatically, where only the necessary parts of the
data are updated. This greatly simplifies validating and correcting
the models (B2 Efficiency) and fosters a better understanding of
the processing steps (B1 Trust). Modular means that the pipeline
is compartmentalized into secluded processing and visualization
stages with minimal data interfaces between them. Processing mod-
ules may be optional and new modules can be easily integrated. The
database resulting from the processing modules is shared between
distinct visualization modules. This means new visualizations that
provide a different view of the data can simply be appended, allow-
ing direct comparisons and evaluations.

The overarching objective of our work is to increase the effi-
ciency, accuracy, and quality of clinical workflows. However, we
noticed that more concern should fall on intermediary goals, pri-
marily increasing the trust medical users have in the data views. We
consider this the only way to ultimately increase the adoption rate
of promising vessel visualizations. With the integrated pipeline, we
target to give the user insight into the processing stages directly.
We believe these stages should be automated where sensible, but at
the same time control should be enabled where required. We found
that this balancing act of controllability versus ease of use is a con-
siderable challenge on its own.

5. System Implementation

The pipeline takes as input only the raw CTA images of patients
as they are exported by clinical workstations (DICOM format). As
shown in Figure 1, three data processing modules are integrated for
cropping the original volume, segmenting the carotid lumen and
plaque, and computing the vessel centerlines and diameter infor-
mation. In each stage, the results are saved in standard formats.
Volumes and masks are written as nearly raw raster data (nrrd) and
triangulated surface models as STL files. This enables easy inte-
gration of further processing modules if desired. Similarly, plain
visualization modules can be appended, which do not modify the
data but only visualize it. We propose one such module for detect-
ing and classifying stenoses. The system user interface is shown
in Figure 3. The pipeline stages are layered on top in left-to-right
order. In each stage, the user can save and propagate or discard
changes they made. The selected module is shown in the window
center. A database view can be toggled that displays the imported
patients and shows which files were created per case. All files can
also be externally used if desired. We append additional header in-
formation in the files to achieve cross-compatibility with typical
volume image processing tools like 3D Slicer.

The implementation is Python-based with backend C/C++ li-
braries to allow an efficient setup and development while reduc-
ing any performance compromises. The user interface is devel-
oped in PyQt for platform independency. New modules can be
easily integrated as Qt widgets. The segmentation module uses
PyTorch for machine learning with a U-Net architecture from
MONAI [CLBe22]. The 3D visualizations are based on the Python
VTK wrapper and 2D graphs are created with PyQtGraph [Cam22]
to enable smooth real-time interaction.

Edit

Preview

Figure 4: In the segmentation module, the result of the automatic
labeling can be reviewed in a slice-based view (left). The resulting
3D model is shown in a second view. If adjustments are required,
the user can switch into edit mode (right), where multiple drawing
tools are available to correct the segmentation mask.

5.1. Crop Module

Before the vessel can be segmented from the input image, the re-
gions of interest need to be cropped. The subsequent automatic la-
beling stage uses a convolutional neural network (CNN), whose
quality can be significantly improved by consistently providing a
small target domain with a fixed resolution. To crop the image, we
first show an axial slice view of the volume (see Figure 3 left),
which the users are familiar with, as it is commonly used to ana-
lyze the carotids in CTA. The user can set the desired windowing by
dragging on the image, which is a common interaction in radiology
workstations. Selecting any point close to the carotid bifurcation
automatically positions the bounding box of the crop region around
that point. We include voxels in a fixed region of 35×45×80 mil-
limeters, which describes a reasonable section around the carotid
bifurcation in adults to cover any possible stenoses. The region of
interest is also indicated in a volume rendering (see Figure 3 right)
to facilitate the quick assessment of the 3D box position. We use a
transfer function preset that highlights vascular structures, but the
transfer function may also be modified. The user can place one crop
region each for the left and right sides. When saved, the volume is
cropped and interpolated to a fixed resolution of 120× 144× 248
voxels using the windowed sinc kernel, as it provides favorable
passband characteristics, preserving local contrasts [LGS99]. If a
segmentation already exists, for example, if the user decides to ad-
just the region of interest retrospectively, the segmentation label
map is not discarded but only cropped to align with the new region
extends.

5.2. Convolutional Neural Network

Deep neural networks, CNNs in particular, have rapidly evolved
and been widely used in medical image analysis [LKB∗17]. In-
spired by the biological visual system [Lin21], CNNs were de-
signed to process data with grid patterns through convolution op-
eration with kernels, and thus are ideal for image processing and
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analysis. One of the main components of a CNN is a group
of convolutional layers, which can automatically extract spatial
features from an input image in a hierarchical manner. For im-
age segmentation, one of the most popular candidates is the U-
Net [RFB15], which is a variant of CNN proposed for biomedi-
cal image segmentation. A U-Net consists of a contracting (encod-
ing) path for feature extraction and a symmetric expanding (de-
coding) path for precise localization and image dimension restora-
tion. U-Nets have been extensively studied and improved in re-
cent years [ÇAL∗16,DCL∗20,SPED21]. To segment the carotids in
CTA volumes, we chose a state-of-the-art 3D U-Net implemented
in PyTorch from MONAI [CLBe22]. The input to the network is
the cropped CTA dataset. The output is the predicted segmenta-
tion mask with three channels: background, lumen, and plaque. We
manually segmented 37 datasets, which we then split into train-
ing (25), validation (6), and test (6) sets. The preprocessing steps
include windowing (Hounsfield units [180, 650]) to remove irrele-
vant structures, as well as normalization to the intensity range of [0,
1]. The data was augmented by random horizontal and vertical flip-
ping with a probability of 0.5. The network was optimized using
Dice loss, which is robust against class imbalance [SLV∗17] and
trained for 100 epochs with a learning rate of 0.001 and a batch size
of 4. The network performance was evaluated on the test datasets,
reaching a Dice score of 0.776. Note that this score contains the
plaque label whose shape and proportions vary extensively between
datasets and is thus hard to train for.

5.3. Segmentation Module

While the automatic labeling of the carotid vessel lumen and plaque
produces highly useful results and the trained models have substan-
tially improved in recent years, the segmentation masks do some-
times contain errors. Especially patients with atypical anatomy,
e.g., with complex plaque distributions, are difficult to train for.
To cover all possible input data, a correction mechanism must be
in place that ideally allows the user to quickly inspect and adjust
the segmentation mask without leaving the application. In the seg-
mentation module, we show an axial view of the cropped CTA re-
gion with an outline of the segmentation mask rendered on top (see
Figure 4). To make adjustments of the segmentation directly vis-
ible, next to the slice view we show the extracted 3D models of
the lumen and plaque. The model is continuously and automati-
cally generated by applying discrete marching cubes [Gro16] to
the segmentation label map. It is smoothed with a windowed sinc
filter [TZG96] (20 iterations, passband 0.005).

When the user decides to switch to edit mode, we show a direct
overlay of the discrete segmentation mask in which pixel-precise
changes with a brush and eraser are possible. With the brush, new
pixels are labeled as plaque or lumen while the eraser removes the
label of the current volume and inscribes the pixels as background.
The size of the brush can be adjusted with a slider. The user can
choose to draw or erase either two-dimensionally, i.e., in the indi-
vidual slices, for precise corrections, or three-dimensionally with
a spherical volume to cover more area faster. A marker shows the
current drawing position to facilitate the navigation of the brush
both in the slice and the 3D view. To further simplify the manual
editing, a threshold can be set which restricts drawing to the im-

Centerline
 

Computation

Figure 5: In the centerline module, the user can select the approx-
imate start and endpoints of the desired centerline tree by clicking
on the model. The resulting lines can be reviewed before they are
saved.

age values above. This threshold allows locally adjusting the image
value range that is considered lumen or plaque and quickly drawing
over larger areas without overwriting the background. The finished
segmentation can then be saved and the generated models are prop-
agated to the subsequent modules. A fundamental advantage of the
integrated pipeline is that edits can also be made retrospectively,
for example, if during the analysis of the vessel morphology an in-
accuracy in the model is suspected. Retrospective changes are also
automatically forwarded and the data is updated in all consecutive
modules.

5.4. Centerline Module

To enable analyzing the change in vessel width, we compute a cen-
terline tree using the medial axis method, which gives us the radius
of the maximally inscribed sphere, i.e., the minimal internal radius,
at every centerline point. The minimal lumen diameter is used by
clinicians to determine the stenosis degree, which means, with the
radius information, we can effectively specify the stenosis degree
at any point of the vessel. To compute the centerlines, we use the
VMTK implementation of the method by Antiga et al. [AEIR03].
By clicking on the model, the user can choose the centerline source
and target points. This provides flexibility regarding the number of
branches to be analyzed. The user may select the tip of the internal
carotid as a target, but they can also add the external carotid and
any potential further outgoing branches that are of interest. Then,
the centerline tree is automatically computed and displayed with
the vessel hull as shown in Figure 5, such that the user can quickly
visually inspect the results.

5.5. Stenosis Classifier Module

We integrated an interactive visualization module to detect and
classify stenoses of the internal carotid as an example of how the
results of the processing pipeline can be directly used by physi-
cians. The module consists of two linked views, one that shows
diameter plots and a 3D view of the vessel model (see Figure 6
right). The most important information is the vessel diameter, for
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Figure 6: The classifier module is shown on the right. It is composed of a diameter graph for each branch modeled by a centerline and a
3D view of the vessel lumen. As shown on the left, dragging the branch-specific threshold, indicated by a horizontal line, segments the corre-
sponding stenosis candidate in the surface model. Based on the diameter model, the stenosis degree is automatically computed. (A) Diameter
graph of the common and internal carotid. (B) 3D view of the vessel model. (C) Diameter graph of the external carotid. (D) The dashed line
shows the bifurcation point. (E) The vertical line can be dragged to set the sampling point for the poststenotic reference diameter. This point
is also shown on the 3D model by a small disc.

which we chose a simple line graph as a direct form of representa-
tion. We plot the vessel length (x-axis) against the computed diam-
eter (y-axis). As centerlines for multiple branches might exist, we
show one graph for each branch. We considered superposing the
line graphs to enable comparisons of the changing diameter after
branches, but we later rejected this approach as it makes the in-
dividual diameters less readable. Instead, we juxtapose the graphs
vertically with a shared x-axis and indicate the branching points
with dashed lines (visible in Figure 6D). Hovering over a graph
highlights the respective vessel segment in the 3D model to intu-
itively connect the two visualizations.

Candidates for stenoses can be easily spotted as local minima
of the line graphs. To analyze such a candidate, the user can drag
a horizontal line over the plot, which interactively sets a local di-
ameter threshold. Everything below the threshold is classified as
part of a potential stenosis. This interaction is shown in Figure 6
left. The selected region is filled with a color in the line graph as
well as on the 3D model surface to visually link the two representa-
tions. If multiple stenotic regions are selected, which is a common
occurrence in patients with increasing atherosclerosis, they auto-
matically receive different colors to make them discernible. We ap-
ply a qualitative color map, which we generated using the Color-
Brewer [BH22].

The central benefit of the interactive region selection is that
stenoses can be instantly and automatically classified, removing
the need for approximating diameters in slice views of the CTA
volume. The stenosis degree, following the NASCET guidelines, is
derived from the smallest diameter dmin inside the stenosis and the
poststenotic diameter dnormal of the vessel. We use the local mini-

mum in each user-selected region for dmin. As the precise location
of dnormal is not defined, we first default to a diameter at a position
that lies ½ of the length of the stenosis behind it. The user can in-
teractively change this location by dragging a vertical line on the
line chart. One such line is given for each detected stenosis and is
visually linked using the same color. The position dnormal is also
marked with a circle in the 3D view, providing the user with an
intuitive way to quickly chose a location where they consider the
diameter to be normal. The stenosis degree is displayed at dmin un-
der the diameter curve and on top of the 3D model. Hovering over a
stenosis reveals additional information, such as the stenosis length,
and the exact values of dmin and dnormal . Exemplary results of the
automatic stenosis classification with different degrees of severity
can be seen in Figure 7.

6. System Evaluation

During the course of the development cycle, we internally evalu-
ated the system’s applicability by processing a wide range of input
CTA volumes. Our first goal was to validate the generalizability
regarding heterogeneous input (B3). The second goal was to es-
tablish a database of carotid bifurcation models that is publicly ac-
cessible for use in further research. We imported head and neck
CTA scans from two different clinics. In total, we processed 60 pa-
tients, resulting in about 120 carotid bifurcation models, one each
for the left and right sides. Then, to assess the usefulness of the in-
tegrated pipeline for carotid morphology analysis, we performed a
user study with four physicians who routinely treat stroke patients.
Our goal was to gather impressions regarding the encodings we use
for interactive stenosis classification and also regarding the concept

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

31



P. Eulzer et al. / A Fully Integrated Pipeline for Visual Carotid Morphology Analysis

81.1%
24.1% 52.8%10.5% 40.8%

31.0%

73.0%
65.8%

A B C D E F G

Figure 7: Exemplary results of the stenosis classifier with increasing stenosis degree from left to right. The disc glyph marks the sampling
point for the poststenotic reference diameter. If multiple stenoses are selected, they are differentiated by color, as shown in (F).

of the integrated and adaptive pipeline in general. In particular, we
wanted to know if the clinicians’ trust (B1) is aided by the option
to inspect the processing steps and whether they find the workflow
efficient enough (B2) to be applicable in practice.

6.1. Method

We recruited four neurologists by word of mouth (P1-P4; two fe-
male, two male; ages 34-42). They have 17, 13, 8, and 15 years of
working experience in clinics for neurology, respectively. P1 is a
direct collaborator and co-author of this paper, the others are not
associated with the project. None have used the developed soft-
ware framework before. We conducted individual interviews last-
ing about 60 minutes. We first explained the pipeline concept and
goals and, subsequently, demonstrated the execution of all process-
ing steps using an example case. Then, we asked the physicians
to evaluate the carotid morphology and classify possible stenoses
of three patients using the framework. The data sets were not pre-
processed, so they had to perform the cropping, segmentation, and
centerline creation themselves. We chose data sets with high varia-
tion in the carotid geometries and stenosis degrees. One contained
no stenosis, one represented an edge case with mild stenosis, and
one had strong calcifications and multiple stenoses. We deliberately
included a case where we found the segmentation prediction to of-
ten exhibit errors, to see if the participants would find and correct
them.

After they interacted with the framework, the participants were
given a questionnaire to rate their impressions of the pre-processing
workflow, the carotid stenosis classification module, and their
overall trust in the application. We used a series of statements,
summarized in Figure 8, regarding the workflow and modules,
which the participants were to score on a five-point Likert scale
(−−,−,◦,+,++). We further discussed multiple open questions,
including whether the data views in the analysis framework would
present new possibilities for clinical practice and if they found the

insights into the processing pipeline necessary and helpful. We also
compared the results of the stenosis classification performed by the
participants with the stenosis degree from the radiology report of
each case. If the values differed notably, we asked the physicians
how they believed the difference came about.

6.2. Findings

We report on frequent comments and feedback that we gathered
from the interviews. Overall, the framework was very well re-
ceived. Participants repeatedly mentioned the advantage of the in-
teractive stenosis analysis based on the 3D reconstruction, as com-
pared to the image-based representation they currently use:

“Understanding the location, the shape, the length [of
a stenosis] is immensely important when we discuss
surgery if we should do an endarterectomy [open plaque
removal] or stenting [insertion of a wire mesh tube]. The
3D model would be much better to discuss this. I partic-
ularly like that I can also see the plaque. We often need
to estimate if the stenosis is stable or if emboli can break
off.” (P4)

All physicians stated they would find the tool highly useful to sup-
port the screening of the carotids. P3 and P4 immediately asked
how they could import new patients. P1 and P4 requested details
about the implementation and how complicated the setup of the
framework would be on their local system.

The comments the participants made while using the framework
were also reflected in the questionnaire. The results are shown in
detail in Figure 8. All participants found executing the pipeline
straightforward and the processing steps and interactions compre-
hensible. Only when correcting errors in the segmentation mask,
did P2 and P4 note that the interaction was occasionally tricky and
would require some training to be smooth and efficient. The physi-
cians agreed that the stenosis classification module enables highly
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efficient identification and classification of stenoses. P3 stated,
“Seeing the dips in the graph, I can very quickly highlight the steno-
sis. That it instantly gives me the stenosis degree is very impres-
sive.” P4 said, “Computing the NASCET value with this is super
efficient. If the model has no [segmentation] errors, doing all the
steps before is also quite fast, so I think it could be integrated into
practice.” All four noted that the ability to smoothly change the ref-
erence diameter sampling position is highly advantageous. P1 said,
“It is always different where the poststenotic diameter should be
measured. With this, I can tune the position very accurately and get
immediate feedback.”

Regarding their trust in the visualizations, the participants re-
sponded very positively. The general impression was that perform-
ing or simply being able to inspect the processing steps fosters un-
derstanding the model extraction and preventing errors:

“I would not want to use this [the classifier module] with-
out being able to check if the model is correct. I can ad-
just what I need to see and make quick corrections, that
is what makes this tool actually useful. The automatic
NASCET computation is really neat but it would be point-
less if I couldn’t see where the model comes from.” (P1)

“Seeing the overlay on the CT is really helpful. I can im-
mediately see if something is not right and correct it. I
could even imagine merging the CT with the last tab [the
classifier module], so I don’t have to switch between the
views.” (P4)

One participant (P2), however, argued that she would rather use the
classifier module only, as inspecting the processing stages would
be too time-intensive in urgent situations. Nevertheless, she agreed
that as long as the processing stages were not widely established
and tested for accuracy, there should be an option to manually ver-
ify the correctness of the models.

When we checked the stenosis degree computed with the clas-
sifier module against the degree given in the radiology report, we
sometimes found differences in the values. The participants made
the same observation on the example data sets they explored with
the framework. Remarkably, when asked which value they thought
to be more accurate, all four claimed they would rather trust the
application than the report:

“It might be more effort to first create the 3D model and
make sure it is correct, but the upside is, I think then it
gives us the most accurate results. Getting the diame-
ters from the CT can be challenging, it is up to the ob-
server where to measure the two values. With the model,
the minimum can be found numerically. And if I can see
that the model fits with the CT, I would rather trust the
computed value.” (P4)

7. Discussion

Our discussions during the interviews showed that the visualiza-
tions of the extracted carotid bifurcation models would benefit
the understanding of the morphology and aid in clinical decision-
making. The physicians repeatedly stated that the demonstrated vi-
sual encodings allowed them to intuitively assess the lumen shape,

Experience (y.) 17 13 8 15

Participant P1 P2 P3 P4

Workflow

Classifier
Module

Trust

Understand which vessel section is shown

Generate 3D carotid models

Detect errors in the segmentation

Correct errors in the segmentation

Easy to identify stenoses 

Easy to derive stenosis degree

Fast identification of stenoses

Fast classification of stenoses

Vessel model would aid in clinical practice

Diameter graph would aid in clinical practice

Horizontal slider is helpful (stenosis diameter)

Vertical slider is helpful (reference diameter)

...understanding how the models are computed

...identifying errors in the processing steps

Importance of being able to check the steps

Importance of correcting errors in the steps

Would use tool in clinical routine 

Likert score

Viewing the processing steps aids in...

+++o---

Figure 8: Results of the questionnaire with color-encoded Likert
scores. Each box represents the answer of one physician.

the location of stenoses, and the distribution of plaque. The au-
tomatic stenosis labeling based on coordinated views, as imple-
mented in the classifier module, was considered highly promising.
Here, the users particularly cherished real-time interactions, which
are directly reflected in the visualizations. These enable experi-
menting with suspected stenosis sites considerably more efficiently
than when relying on slice-based representations only. These ob-
servations are underlined by Figure 7, where it becomes evident
that stenoses, even reduced to those at the carotid bifurcation, vary
in their location, shape, and size, making individual assessments
indispensable. If the models are correctly extracted, the resulting
stenosis degrees are also highly accurate, as the minimum internal
diameter can be precisely computed.

With this work, we attempted to address typical bottlenecks in
the clinical transfer that arise for visualizations of processed medi-
cal data. In the interviews, we found that the concept of the fully in-
tegrated pipeline allows users to better understand the different pro-
cessing stages and assure the correctness of what they see (B1). To
enable these insights, tailored visualizations are key, as they allow
uncomplicated inspection of each processing step. From the feed-
back we gathered, we determine that this approach is an effective
way to lower the adoption costs (B2) since the combined frame-
work can be set up once as a self-contained unit. The only inputs are
the already existing CTA volumes in the format they are exported
from clinical workstations. This results in increased transferability,
which we noticed during the interviews, as participants were eager

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

33



P. Eulzer et al. / A Fully Integrated Pipeline for Visual Carotid Morphology Analysis

to try the framework on their own data, for which they would only
need to import existing image volumes (B3). Furthermore, to com-
bat algorithmic bias (B4), we leveraged the streamlined processing
to create a comprehensive database of models extracted from 60
different patients. This effort was only viable due to the tightly in-
tertwined processing modules, which allow new image volumes to
be swiftly processed and later edits to be directly propagated. As a
result, the modules were developed and tested with a large variety
of geometries, increasing their robustness against different inputs.

It should be noted that even with B1-B4 addressed, the transfer of
methods into clinical everyday use still presents a major challenge.
While the experts agreed that the pipeline would be a useful tool,
many more certification and integration steps are necessary to actu-
ally deploy such a framework. For these to be feasible, any change
in a clinical procedure must prove to provide a substantial benefit
that would justify integration costs. Therefore, in a next step, we
intent to deploy the pipeline in clinical research, gathering further
feedback and testing the applicability in the real world.

7.1. Controllability vs. Ease of Use

When asked about the importance of being able to inspect and po-
tentially correct the processing steps, one of the interviewed ex-
perts argued that the required time to do this properly would be
too high in an applied clinical context. The others disagreed and
two even highlighted the ability to control the pipeline themselves
as the most important feature for enabling adoption. This is in-
dicative of a core challenge. In an integrated application, like the
presented pipeline, should we favor controllability or ease of use
from the users’ perspective? Allowing more control will likely pro-
duce more accurate results. Furthermore, our evaluation indicates
that pipeline insight and control do increase user trust and under-
standing of the processed data. However, increasing control options
makes the whole process inevitably more complex, which might ul-
timately backfire and hinder adoption. On the other hand, favoring
automated processing would benefit efficiency, making the applica-
tion more suited for time-critical scenarios. Automating and hiding
processing stages, though, comes at the cost of less fidelity, which
could lead to decreased validity of the results.

The challenge is to reduce control options up to the point where
they have the maximum benefit. For example, in the proposed
pipeline, the user may select the endpoints for the centerline com-
putation. The points could be computed automatically in the back-
ground [LL20], but the selection can be done quickly, as only a
handful of points need to be clicked, and this short task greatly
improves the results. Automatic endpoint selection can be unsta-
ble and the user might only be interested in a subset of vascular
branches. We found a promising rule of thumb is to automate pro-
cesses where reasonably possible, but always let the user inspect
stages where automation is prone to fail. For example, the machine
learning models for vessel segmentation have become impressively
capable of delivering fast and “good enough” results. Still, to cover
unusual cases, the user must be able to correct the geometries. If in-
accuracies in the processing are sometimes observed, in a medical
treatment context, the whole application becomes useless if these
errors cannot be reliably detected and rectified.

7.2. Opportunities and Future Work

The integrated pipeline proposed in this work, together with the
database of already processed and tuned carotid bifurcation mod-
els, lays the foundation for the efficient development of further
extensions. The framework is implemented using a modularized
architecture, where additional processing or visualization stages
can simply be inserted. Conceivable are, for example, modules
geared for hemodynamic simulation analysis or epidemiological
cohort studies. Existing processes could also be improved, for in-
stance, it would be beneficial if the segmentation prediction net-
work would continuously and automatically learn from the user-
corrected masks. In clinical practice, the carotid stenosis degree is
currently estimated from diameters measured in CTA scans, as well
as from blood flow velocities recorded with Doppler sonography.
We plan to evaluate the automatic stenosis classification in a clini-
cal comparative study to investigate the differences between these
methods.

8. Conclusion

We presented a system for the visual analysis of the carotid mor-
phology to improve cardiovascular disease screening and treat-
ment. We implemented our methods in a modular and fully inte-
grated processing and visualization pipeline. By combining state-
of-the-art techniques, like pairing a neural network for segmenta-
tion mask prediction with graphics-based user control, we make
the pre-processing required for advanced visualization applicable
to practical scenarios. We show how the processed data can be used
to interactively detect and classify stenoses quickly and reliably.

A general takeaway from this work is that the integration of med-
ical data processing and visualization is a challenging task. Imple-
menting and testing the presented system was a considerable col-
laborative and time-intensive effort, not least because of the dif-
ficulty of connecting previously detached solutions for model ex-
traction and interactive visualization. Yet, we found that this type of
integration may make the adoption of methods feasible that could
improve medical imaging analysis tasks. A key question is where
the user should be able to interrupt and adapt automatic processing.
Favoring higher accuracy in the results might be desirable but is
also more time-intensive for the user and adjusting complicated al-
gorithms may also be hard to learn. Our impression from this line of
work is that if intensive processing is a requirement for novel med-
ical visualization tools, for example, if segmenting images is nec-
essary, any required interaction must be fast enough such that in-
troducing a new way to analyze the data does not significantly dis-
rupt the clinical workflow. An interesting opportunity arises from
the fact that machine learning models, like CNNs, are just becom-
ing good enough that they can substitute tasks in this process that
would otherwise be too time-intensive. We hope that the insights
gathered in this work will spawn further endeavors to connect frag-
mented processing and visualization techniques in medical appli-
cations, which may ultimately pave the way for applying advanced
visual analysis tools in medical practice.
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