
DOI: 10.1111/cgf.14805 COMPUTER GRAPHICS forum
Volume 42 (2023), number 6, e14805

Visually Abstracting Event Sequences as Double Trees Enriched
with Category-Based Comparison

Cedric Krause,1 Shivam Agarwal,1 Michael Burch2 and Fabian Beck1

1University of Bamberg, Bamberg, Germany
fabian.beck@uni-bamberg.de

2University of Applied Sciences of the Grisons, Chur, Switzerland

Abstract
Event sequence visualization aids analysts in many domains to better understand and infer new insights from event data.
Analysing behaviour before or after a certain event of interest is a common task in many scenarios. In this paper, we intro-
duce, formally define, and position double trees as a domain-agnostic tree visualization approach for this task. The visualization
shows the sequences that led to the event of interest as a tree on the left, and those that followed on the right. Moreover, our
approach enables users to create selections based on event attributes to interactively compare the events and sequences along
colour-coded categories. We integrate the double tree and category-based comparison into a user interface for event sequence
analysis. In three application examples, we show a diverse set of scenarios, covering short and long time spans, non-spatial and
spatial events, human and artificial actors, to demonstrate the general applicability of the approach.
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1. Introduction

An event in data science and visualization corresponds to a par-
ticular happening, incidence or effect within a temporal sequence.
Events are typically classified through event types. In many sce-
narios, the user has previous knowledge about events that are par-
ticularly important to answer certain analysis questions. Analysing
biographies of historical figures, key private and professional events
(e.g. marriage, academic degree) can act as important references
and make different biographies comparable. For a soccer analyst,
it might be important to look at what happened before a shot was
taken, to steer the team’s tactics. The event of interest can be con-
sidered as an anchor, and the analysis around it can yield insights
into what led to the event or how it impacted the follow-up. For this
purpose, we define and discuss double trees as a data structure fo-
cused around an anchor that abstracts preceding subsequences in a
tree on the left, and succeeding subsequences in a tree on the right.

To counterbalance the data aggregation through the double trees,
a group of visual comparison analysis tasks [PS16, GGJ*21] can
re-introduce context and reveal relevant deviations and commonal-
ities in the event sequences. For example, comparing researchers’

careers by their nationality can give a better understanding if and
how this attribute impacted the career progression. It is possible
to compare event sequence data at various levels of granularity.
Many techniques for the comparison of individual sequences (e.g.
Refs. [WS09, GFL*20]) and mined patterns (e.g. Refs. [CXR18,
PW14]) have been proposed. Prior research focusing on the compar-
ison of sequence collections (e.g.Refs. [MDM*15, ZLD*15]), how-
ever, is rare and does not extend beyond two collections. Moreover,
in event sequence comparison, information about absolute time and
temporal gaps between events get lost.We aim to address these chal-
lenges by linking these observations about categories back to the
attributes on the event or sequence level, while hinting at time dif-
ferences between consecutive events.

We have developed an approach to analyse what happened before
and after an event of interest, by using the double tree structure with
an interactively defined anchor. It supports the comparison of up
to around ten colour-coded categories based on a variety of event
attributes. In Figure 1, the lives of physics Nobel Prize laureates
are modelled as sequences of important events and visualized with
our approach, aligned at the doctorate degree, which can be consid-
ered a major step in an academic’s career. The example discerns the
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Figure 1: Double tree visualization displaying life events of Physics Nobel Prize laureates. Subsequences before and after a user-selected
anchor (here, the doctorate degree) are aggregated as trees. Colours support a comparison based on event attributes (here, nationalities).

nationality of the scientists—as the colour-coded categories—to in-
vestigate regional differences. Our approach also shows time gaps
between consecutive events as small bar charts on the edges, split
by colour in case a comparison is activated. We complement this
visualization with a detail view for inspecting individual sequences
(Figure 5). Interactive selections allow for an iterative exploration
and comparison of relevant subsets of event sequences.

In three application examples, we demonstrate how our novel ap-
proach can help answer common questions in event analytics. We
look at biographical events for physics Nobel Prize laureates from
the early 20th century, we compare in-game actions from the soccer
World Cup final in 2018, and we analyse AI train routing models
that challenged classical operations research techniques.

The paper, hence, introduces a new approach that leverages the
double tree structure to aggregate event sequences around a central
event of interest (anchor). It shows time differences between events
and is enriched with visual event sequence comparison, where com-
parison categories stem from interactively selectable attributes of
the events. The main contributions of this work include

• a formal definition and visual design of structuring event se-
quence collections as double trees,

• a formal definition and visual design of a category-based compar-
ison technique for multivariate event sequences within the double
trees,

• a prototypical implementation of this approach called DTVis, in-
tegrated into a user interface that adds functionality for filtering,
selection and investigation of individual sequences, and

• application examples from diverse domains to exemplify the gen-
eral applicability of the approach.

The implementation of DTVis is available on GitHub, and sup-
plemental material contains a video showing its main features.

2. Related Work

Our approach tackles two of the tasks identified by Plaisant and
Shneiderman [PS16]—the analysis of subsequences before and af-
ter an event of interest and comparing sets of sequences. In address-
ing these tasks, our approach shares similarities with other event
sequence visualizations. Moreover, we find related approaches in
visual comparison strategies for hierarchical data.

2.1. Event sequence visualization

Guo et al. [GGJ*21] have published a survey on visual analy-
sis of event sequence data. Our approach fits into the following
categories: (1) data scale: subsequences and sequence collection;
(2) automated sequence analysis: none; (3) visual representation:
hierarchy-based and (4) interaction techniques: querying, align-
ment, emphasis and aggregation. Out of the analysis tasks, our work
concerns explicit summarization and the comparison of sequence
collections.

Hierarchy-based event sequence visualizations have already been
used for summarization. Lifeflow [WGP*11] displays the sequences
hierarchically as icicle plots. It is also possible to align the sequences
on one event type which leads to icicle plots before and after the
alignment point, which corresponds to the same double tree data
model that we use. Culy et al. [CL10] have also used the double
tree structure in their work on words in context. However, their ap-
proach is limited to one level of depth on either side of the align-
ment point and only fans out the next level for selected children.
AcitiviTree [VJC09] applied the same concept, but extended it to
consider entire subsequences as alignment points, instead of single
event types. Even though the aforementioned approaches make use
of the same double tree data structure, they do not discuss it as a gen-
eralizable technique and, for instance, lack a formal definition and
discussion of design alternatives. We discuss in depth a generalized,
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interactively adaptable version of the approach and, in addition, ex-
tend it with comparison capabilities regarding interactively defined
categories based on event attributes.

Other techniques use a hierarchical visualization for event se-
quences, like CoreFlow [LKD*17] and MAQUI [LLMB18], and
operate on large datasets with potentially thousands of event se-
quences. However, they follow a different approach and identify
frequent patterns. Whereas this increases scalability, it comes at the
cost of losing information about infrequent patterns and outliers,
which would still be visible in our approach.

Regarding the comparison task, the survey by Guo
et al. [GGJ*21] attests that there are only few event sequence com-
parison techniques at all [WS09, MDM*15, ZLD*15, QBW*20,
GFL*20], none of which model the data hierarchically. The
interaction technique of alignment is only used in one of these
papers [WS09], but comparison is limited to individual sequences
instead of aggregations. Our approach complements previous
research by investigating comparison around an alignment point
and considering aggregations of sequences. Most closely related
might be approaches considering the comparison of sequence
collections. CoCo [MDM*15] compares two collections guided
by statistical metrics. The authors provide basic statistical sum-
mary metrics for the collections (e.g. difference in the number
of sequences) to provide an overview and introduce different
metrics on event sequences, temporal distributions and attributes.
MatrixWave [ZLD*15] uses a different approach, where steps
in the event sequences are represented by transition matrices.
Multiple matrices are then concatenated in a zigzag line and encode
differences between two categories in a colour gradient in the
nodes. Our proposed approach is different from the aforementioned
ones, as it can compare up to 10 collections instead of just two.
Other event sequence comparison techniques (e.g. Refs. [WS09,
GFL*20]) differ more fundamentally from our approach, since
they do not compare collections of event sequences, but patterns or
individual sequences. In our approach, we do not consider mined
patterns; the individual sequence comparison is only a minor part
in our approach, supported by the sequence list which is related
to time-line-based comparison techniques (e.g. Wongsuphasawat
and Shneiderman [WS09]). In addition to comparing multiple
collections of sequences, our approach allows a more fine-grained
comparison as it can consider different event-level categories within
each event sequence, not only one category per event sequence.

For analysis of temporal differences and absolute time in event
sequences, there are different variations. Some approaches (e.g.
Du et al. [DPSS16]) extract the temporal information about events
from the sequences themselves and focus on whether certain event
types typically occur sooner or later. Other approaches focus on
the time gaps between consecutive events, although the visual en-
codings vary between these techniques. While MAQUI [LLMB18]
uses the placement on the x-axis to convey this information, other
approaches (e.g. Refs. [WG12, GS14]) encode the time gaps into
equidistant links by splitting them into a temporal and a connection
part of the link. Our approach uses a similar representation of time
differences between events. We further incorporate the visual en-
coding of time in both, the individual sequence list and the double
tree. Moreover, the comparison aspect is extended to the temporal
analysis explicitly, unlike in the existing techniques.

2.2. Visual tree and stream comparison

In this work, we compare event sequences within a hierarchical tree
data structure and, hence, our approach relates to visual tree compar-
ison methods. A survey by Graham and Kennedy [GK10] proposed
a taxonomy based on the number of trees to compare. Our approach
falls under the multiple tree comparison (n > 2) category of the tax-
onomy. Among the limited existing approaches enabling compari-
son of multiple hierarchies, juxtaposition is commonly used instead
of a consolidated, single representation of a tree structure like in
our approach. For instance, BarcodeTree [LZD*20] juxtaposes the
condensed bar code tree representations, Beck et al. [BMW16] use
a juxtaposed icicle plot representation of hierarchies and TreeJux-
taposer [MGT*03] is a focus+context approach to compare juxta-
posed trees represented in a dendrogram layout. Another general
difference of our approach to these tree comparison methods is that
we can also compare event-specific categories (i.e. different event
categories in one sequence).

Our aggregated tree representation of event sequences uses
colours for comparison. Visually similar to BaobabView [EW11],
we split the edges, use the width to encode the number of transitions
between two event nodes, and colour them based on their category.
However, unlike showing decision trees, our approach models and
visualizes the aligned event sequences as two trees with a common
root node. Although not showing trees but directed acyclic graphs,
Set Streams [AB20] shares similarity with our approach but consid-
ers sequences of potentially overlapping set memberships, whereas
events can only belong into one category. Their approach is limited
to comparing two collections of sequences, but also works with
colour-coded categories. Sankey-based event sequence visual-
izations (e.g. Refs. [PW14, CWM16]) enable comparison using
colour-coded ribbons. While they focus on comparing the aggre-
gated sequences as-is, our approach centres on enabling a condensed
comparison of subsequences around a selected anchor event type.

3. Double Tree

Event sequences are, by definition, ordered temporally. Many sce-
narios include analysis tasks where the user focuses the analysis
on a specific event type of interest and investigates the behaviour
building up to it or following from it [PS16]. With double trees, we
align all event sequences on this specific event type as the anchor—
making it a natural focal point in the visualization as well—and ag-
gregate what happened before and after into branches, without los-
ing track of time differences between consecutive events.

The double tree aggregates sequences to enhance the visual scal-
ability. When designing them, we considered different aggregation
techniques. Most notably, we rejected directed acyclic graphs as
an alternative. Directed acyclic graphs lose information about the
provenance of their nodes, as it is not possible to unambiguously
trace back its path to the root (which is the focus of our analysis).
Interactions in a double tree are easier to implement and use; click-
ing a node can select unambiguously the branch up to the root. In
a directed acyclic graph, there might be multiple paths to the root,
and selecting all of them could be unintentional. Moreover, the con-
struction of directed acyclic graphs requires additional parameters,
which might vary between scenarios.
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Figure 2: From a collection of event sequences, we derive sequences of event types τ (S), align all sequences at the anchor (here, B) and
create postfix and prefix trees from the subsequences τ (S−) and τ (S+). Merging the trees at their roots results in the double tree G± with
weights w(v) shown at the top right of each node. The red rectangles indicate in this example the two events of type C (before B), finally
merged in the same tree node.

3.1. Formal definition

The basic data structures that are subject to our analysis are or-
dered sequences of events. Our dataset is a collection of event se-
quencesC := (S1, . . . , Sn), with Si := (e(1)i , e(2)i , . . .) where n is the
number of sequences in the dataset, and the number of events in
any sequence can vary. Each event e ∈ E has a particular event type
τ (e) ∈ T . In our model, we always focus on one event type τc ∈ T
as the anchor and consider all sequences that contain it. If there are
multiple events of the anchor’s event type in as sequence, the first
event will act as the anchor event e∗

i in this sequence Si. All se-
quences that contain the anchor will then be cut in two pieces, with
S−
i consisting of the subsequence up to and S+

i consisting of the sub-
sequence starting from the anchor event.

From these subsequences, we construct two trees of event types:
a postfix tree for the sequences before the anchor and a prefix tree
for those after. The process is displayed visually in Figure 2. To
this end, from a sequence of events S, we derive a sequence of
event types τ (S) = (τ (e(1) ), τ (e(2) ), . . .), cut at the anchor event
into sequences τ (S−) and τ (S+). We use these sequences of event
types to construct the postfix tree for all τ (S−

i ) and prefix tree for
all τ (S+

i ). Formally, we can model these trees as directed graphs
G− (postfix tree) and G+ (prefix tree). Both have the same root
vr, and child vertices are identified by their subsequence up to the
root.

Combining the postfix and prefix tree at both of their roots results
in what we consider a double tree G± = (G−,G+). With the postfix
tree on the left and the prefix tree on the right, time is read from left
to right in the double tree.

Each vertex v in these trees represents a set of events of the same
type that are at the start (if v is in G−) or the end (if v is in G+) of a
subsequence to the root (red rectangles in Figure 2). We can assign
a weight w(v) = |v| to each vertex v counting the number of events
it represents. Directed edges dv,v′ := {(e, e′) ∈ v × v′|∃i with Si =
(. . . , e, e′, . . .)} are sets of tuples of consecutive events that are con-
tained in the sets v and v′, respectively. The weight of an edge is
simply w(d) = |d|.

Moreover, each event has a timestamp t(e) that determines
its position in the sequence. The time difference between two
events is defined as δ(e, e′) = t(e′) − t(e) > 0 in a sequence Si =
(. . . , e, e′, . . .). Along similar lines, we define the time difference
δ(v, v′) between two consecutive vertices as the average time dif-

Figure 3: Double tree, without active categories, with the same
data as in Figure 2. Time differences between all events are equal.

ference between all consecutive events that are contained in v and
v′, respectively, and occurred in the same original sequence.

3.2. Layout and visual encoding

We visualize the double tree data structure G± described above as
a node-link diagram. We first explain its base layout and main vi-
sual encodings as shown in Figure 3 without any highlighting of
categories and selections.

The tree layout is based on the tidy tree algorithm [RT81] with
adjustments to the position of the root node vr to fit the trees on both
sides. The single node at the centre is the merged root and represents
the currently selected anchor τc. A vertical line separates the double
tree into events that occurred before the anchor (left, G−) and after
(right, G+). Sequences that do not contain an event of the anchor’s
event type are not displayed.

Sibling nodes in trees—at least when being drawn—have an or-
der (here, vertically arranged from top to bottom). To reflect this
order in the vertical arrangement of the tree branches, sequences
that appear early in the collection tend to be placed towards the top
of the double tree visualization. Figure 3 shows this arrangement,
as the first exemplary event sequence A,B,C,B is connected by the
topmost links. However, sequences later in the dataset might extend
an already existing branch at the top of the double tree. Wherever
the new and existing sequences diverge, the existing sequence will
be placed above the new one.

Each node v represents a set of individual events that share the
same subsequence to the root node vr. We encode the number
of represented events w(v) in the nodes’ area, constrained with a
minimum and maximum to improve legibility. The way we merge
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Figure 4: Design alternatives to encode temporal extension be-
tween events: (1) position on the x-axis, (2) clock metaphor, (3) ring
segments, (4) link length (selected alternative).

sequences leads to trees where nodes closer to the centre represent
more events. To account for this, we do not use equal distances for
each horizontal layer. Instead, nodes close to the centre occupymore
space. We compound this design choice by using a shaded back-
ground that is darker on the outer sides depending on the depth
of trees, guiding the users’ attention towards the lighter, higher-
contrast centre of the visualization.

The common type of the events represented by each node is
mapped to a visual identifier. If possible, we use application-specific
icons so that the corresponding event types of the nodes in the tree
can be quickly understood without sacrificing a lot of screen space.
If no icons can properly represent the event types, a single charac-
ter or short string (e.g. the initials of the event type names) can be
used as a fallback. In both cases, this encoding is also explained in
a legend at the top of the view (Figure 1).

The root node vr marks the first event of the selected event type
in a sequence as the anchor τc. A node of the same event type might
re-appear in the tree G+ on the right, which could be of specific
relevance for analysis. To allow quick retrieval of these events with
the selected event type, we mark all nodes of that type and apply
a hatch pattern to their otherwise unfilled inner area (e.g. nodes B
in Figure 3). All other event types can also occur multiple times on
both sides of the double tree. To quickly identify all such cases, the
user can hover a node—including the root node—which highlights
all other nodes with the same event type.

The links dv,v′ in our tree connect the nodes and also encode two
attributes of these transitions. First, the width encodes the weight
w(d) of the link. Hence, subsequences that occur in many event
sequences have thicker links (Figure 3). Second, the average time
differences δ(v, v′) between the source node and the target node
are encoded. By default, absolute time is displayed (i.e. longer link
means more absolute time differences), but can be changed to rel-
ative time (i.e. longer link means longer share of the durations of
the sequences). We have considered four design alternatives to con-
vey these time differences within the links (Figure 4). Alternative
(1) arranges the nodes along the x-axis according to their exact time
differences, which has a big impact on the overall double tree layout
and leads to issues when comparing the lengths (number of nodes)
of different branches. The clock metaphor of alternative (2) causes
occlusion with the event identifier. Moreover, it is problematic to
interpret when the time difference is absolute, such that the pointers
of most sequences would not complete a full circle, just like alter-
native (3) where the ring segments would not complete a full circle.
All three of the aforementioned alternatives also suffer from diffi-

culties in splitting the time difference into multiple categories, as it
is necessary for category-based comparison. Hence, we decided to
integrate alternative (4) into our visualization in which the time dif-
ference is encoded in the length of the link, and the link is then con-
nected to the target node as a thin line. The time differences encoded
like this hint at absolute time, but it remains an open challenge to
make timestamps of specific events readable and comparable within
the double tree.

The beginning of an event sequence is explicitly indicated by an
incoming link, top-left of the corresponding node representing the
first event. Conversely, when the link goes to the bottom right of the
node, the event sequence ends with the event (e.g. Figure 3).

4. Category-Based Comparison

The double tree visualization allows us to investigate collections of
event sequences around the anchor. Using the visualization with real
data, we considered it natural to compare the sequence progressions
of different collections, e.g. how different soccer teams are building
up towards shots. Instead of creating multiple double trees side-by-
side, we decided to leverage tree comparison techniques and inte-
grated the comparison aspect into the double tree itself. We gener-
alize this to select the comparison categories interactively, based on
the attributes of the events.

Event attributes can be categorical (e.g. the person who exe-
cuted the event), or numerical (e.g. the score or rating of the event).
In some cases, these attributes are inherited from the sequence of
events it belongs to (e.g. the whole event sequence is performed
by the same person). To process and visualize event-level and
sequence-level attributes in the same way, we assign the sequence
level attribute to all events within that sequence. We utilize these
attributes to define event categories that we can compare within the
double tree.

4.1. Formal definition of categories

These event categories define a partition P of the events E, from
which the individual event sequences are assembled, yielding a fam-
ily of sets P = {E1,E2, . . . ,Em} with

⋃
i Ei = E and Ei ∩ Ej = ∅

for i 	= j. This way v ∩ Ei is the set of events represented by ver-
tex v that fall into the category of Ei. This partition can be used to
subdivide the weight of nodes of the double tree G± into weights
w(v ∩ E1),w(v ∩ E2), . . . , w(v ∩ Em) with

∑
i w(v ∩ Ei) = w(v).

Each weight w(v ∩ Ei) summarizes the number of events from cat-
egory Ei at the position in the sequence that corresponds to the po-
sition of v in the double tree.

Each directed edge in the graph is also subdivided into the cate-
gories. Edge dv∩Ei,v′ represents the tuples of consecutive events that
are contained in v the given partition Ei and v′. Analogously, we can
define the time difference of the categories for each link such that
δ(v ∩ Ei, v′) yields the time difference from the source to the target
when only considering the category Ei at the source.

In contrast to the event types, which are fixed and define the struc-
ture of the double tree, we use such event categories and resulting
event partitions as a transient subdivision, interactively defined on
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Figure 5: The full interface with controls and raw event sequences on the left and the main tree visualization on the right. The data shows
event sequences from the soccer World Cup final 2018 that led to shots.

different attributes of the events. Changing the definition of the cat-
egories does not alter the structure of the double tree, but only the
subdivision of weights of the nodes.

4.2. Adaptable visual comparison

We allow for the interactive choice of an attribute of the events that
groups events into partitions. The user can select this attribute from
which the categories are derived. This process is straightforward for
categorical attributes. If the selected attribute is numerical, however,
the partition can be derived from user-defined data ranges, which
results in two categories Over and Under or equal. The temporal
attribute that is used in the links can also be selected as a numeri-
cal attribute. Each category maps to a distinct colour as shown, for
instance, in Figure 5, for two and in Figure 1, for 10 categories. All
visual elements representing a category can be hovered, which will
highlight all other visual elements representing the same category
(Figure 10, middle).

The relative sizes of these categories of events are visualized as
ring fractions of the respective colours around the nodes in the dou-
ble tree. The angles of the fractions correspond to the weight of the
categoriesw(v ∩ Ei) in relation to the total weight of the nodew(v).
The links also split up, where the colour is determined by the source
node in the specific sequence, since we read all links from left to
right. The widths of these coloured links display the weights of the
links w(v ∩ Ei) given the category represented by the same colour.
The lengths of the links are also adjusted to show the average time
differences for the respective category δ(v ∩ Ei, v′), which allows
for their comparison across the selected categories for each link.

5. DTVis

We implemented the design discussed above in a tool called DTVis.
The single-page web application is written in Typescript and

uses the Vue.js framework and D3.js [BOH11]. The application
is heavily modularized into components, to increase reusability
and extensibility. Transformers from the file structures used in
our datasets to the internal data model of DTVis exist and can be
taken as a template to add new transformers for other data sources.
All source code and data are publicly available on GitHub at
https://github.com/vis-uni-bamberg/event-sequence-double-trees.

WithinDTVis, we integrate the double tree visualization enriched
with category-based comparison into a user interface (Figure 5). A
control panel on the top left allows determining the event type of
the anchor and defining the categories for comparison of events and
sequences. The user can also select whether the time difference en-
coded in the length of the links should be absolute or relative to the
duration of the sequence they occur in. The individual sequences
contained in the double tree are shown in the sequence list at the
bottom left. Ensuring consistency, the time differences and categor-
ical information encoded in the links are the same as in the double
tree visualization, and hovering the sequence in the list will high-
light the respective branches of the double tree (Figure 9).

Depending on the dataset, the double tree might get complex, but
further filtering of event sequences can help to focus on a specific
aspect and simplify. We incorporate multiple interaction techniques
to set the focus of the analysis and to inspect details of event se-
quences. Through a query builder, the user can provide a subse-
quence of event types, including wildcards in between. Sequences
have to match the query to be displayed, which can greatly reduce
the size of the double tree.

In the double tree visualization, the user can highlight branches
by clicking on the nodes. The highlighting is propagated to the list
of sequences, where the corresponding subsequences are also high-
lighted (Figure 5).Multiple branches can be highlighted on the same
side of the double tree. In this case, no single event sequence can
satisfy all of them. Hence, the individual sequences are highlighted
if they match any of the mutually exclusive branches. It is also
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possible to highlight branches on both sides of the double tree. The
individual sequences in the sequence list are sorted by the degree to
which they align with the highlighted branches in the double tree.
At the top are those sequences that contain highlighted branches on
both sides, followed by those matched only on the left and by those
matched only on the right.

6. Application Examples

To demonstrate our approach, we apply it to three domains, namely,
biographical data, soccer event data and routing data from simu-
lated trains. This set of scenarios is diverse regarding the length of
sequences and time spans, contains spatial and non-spacial events,
and events from human and artificial actors. Hence, the scenarios
highlight the general applicability of our approach.

6.1. Biographies of physics nobel prize laureates

For our first application example, we manually collected biograph-
ical data from public sources about winners of the Nobel Prize in
physics between 1901 and 1921. Each scientist represents one event
sequence to a total of 25. We chose nationality and age of the person
at the time of the event as attributes. Both of them are on the event
level. The event types we collected range from their birth, over aca-
demic degrees, the Nobel Prize, to their death; they can be seen in
the legend in Figure 1.

The prize: When selecting the Nobel Prize as the anchor, we
observe that most of the winners did not have any events between
winning the Nobel Prize and their death , even though the link
shows that the average time between those events was rather large.
Those scientists who had events that followed were comparatively
young when receiving their Nobel Prize. Two of them only started
their first professorship after being awarded the Nobel Prize. Se-
lecting the professorship event type to the right of the root (Fig-
ure 6), we see in the sequence list that one of them is Marie Curie,
who, as a woman, was denied university admission in her home
country, and only took over the professorship of her husband after
his death. The other person to receive his first professorship after his
Nobel Prize is Lawrence Bragg, who was 25 years old when he was
distinguished with the award together with his father.

The doctorate degree: To investigate when scientists have re-
ceived a doctorate degree , we select it as the anchor (Figure 1). If
we define the categories by nationality of the person at the time of
the event, we quickly see that only people from six different coun-
tries received a doctorates degree at all, even though the dataset con-
tains people of 10 countries. Most prominently, no British laureate
acquired a doctorate degree, which might be surprising since they
are tied with Germany for most Nobel Prizes won in the selected
time range. The historical reason is that the PhD degree was only
adopted in 1917 in the United Kingdom.

The first professorship: If we are more interested in the career
paths of the scientists, we can select the first professorship as the
anchor (Figure 7). We observe that multiple scientists went abroad

as the event before gaining their professorship and highlight that
node. Through the short time differences shown in the links, we can
see that these five scientists received their professorship shortly after

Figure 6: Marie Curie and Lawrence Bragg have not been pro-
fessors before winning the Nobel Prize. Orange means the persons
were 35 years or younger, while blue means they were older.

Figure 7: Out of all 22 scientists who received a professorship, five
of them went abroad shortly before their appointment.

emigration, indicating that this might have been a career accelera-
tor or the reason to move abroad. We can define categories by the
age and interact with the slider to select the threshold for the Over
and Under or equal categories, which confirms that between 0 and
2 years laid between the events.

6.2. Key actions in soccer matches

The next domain concerns event data from a soccer match. We look
at the final of the FIFA World Cup 2018 between France and Croa-
tia. The data are taken from Statsbomb [Sta] and contains about
3500 events like fouls, shots or dribbles. To reduce the size of the
dataset, we excluded several event types that distorted the double
tree due to their frequency. The two most notable event types we
removed are passes and carries, which are the most common event
types in the data. Furthermore, we have promoted some subtypes to
regular event types where meaningful (e.g. main type: shot, subtype:
goal). The sequences in this dataset are the different ball posses-
sions, which change whenever the opposite team acquires the ball
or the ball goes out of play. Some attributes we collected are on the
event level (e.g. players) and others are on the sequence level (e.g.
halftime).

Set pieces: In the match, there have been a combined 25 corners
and free kicks. These events always start a new event sequence;
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Figure 8: Sequences from the soccer World Cup 2018 final that
started with a set piece (corners or free kicks). All branches that
led to a shot (missed), goal or own goal are highlighted. Events are
orange for France and blue for Croatia.

hence, we see that the double tree in Figure 8 only has branches
on the right side. From the ring fraction of the root node, we see
that France had almost as many events of the set piece event type
as Croatia. This is information we might typically see in any basic
scoreboard of the match. However, if we look more specifically into
the sequences and check which of these sequences ended in a shot
, goal or own goal , we see that, of the original 25 sequences,

only nine remain (which are highlighted in Figure 8). Looking in
more detail, we observe that Croatia has also scored an own goal in
one of the highlighted sequences. After the set piece from France,
a failed block attempt, led to the own goal, which we can also
draw from the visualization. While analysing sequences from one
game and one type of attack only can be anecdotal, it demonstrates
the additional information our approach provides over widely used
statistical match summaries.

Shots in each halftime: Our visualization can quickly show us
that the offensiveness of the teams was entirely different in the first
half compared to the second half of the match. Figure 5 displays
the sequences that led to shots from either team, and the coloured
categories indicate whether the sequences happened in the first or
second half of the match. While the subsequences before the shot in
the second half show events from regular play, almost all the shots
in the first half resulted from a set piece. Investigating the links (ab-
solute time) on the left side of the double tree, we also notice that
the sequences from the first half occurred in quick succession—as
we would expect for a set piece. The sequences from the second half
have much longer links (e.g. those selected in Figure 5), indicating
larger time differences between the events, and were likely resulting
from a slower, more controlled setup of attacks.

6.3. Routing of simulated trains

Flatland [MNL*20] is a virtual environment to promote research ad-
dressing the generic vehicle re-scheduling problem [LMB07]. Each
map consists of railway tracks and trains. The trains originate near
stations, can only move forward on tracks, wait at their position,
might freeze for a few time steps due to random malfunctions, and
end once they reach their destination station. The goal is to sched-

ule all trains to reach their destination in the shortest time. The top
submissions of the competition organized for theNeurIPS 2020 con-
ference [LSS*21] were an operations research (OR) technique, fol-
lowed by three solutions based on reinforcement learning (RL). We
selected Level 20 Map 3 from the competition dataset [The21],
with 14 stations and 98 trains to schedule. Using an existing visual
analytics tool [AWWB22], we defined 13 regions-of-interest based
on their importance in the structure of the rail network (R1–R13
in Figure 9, left; labelled 1–13 in all visualizations). R6 (a single-
cell region) is an important junction of tracks from many directions,
R9 and R10 are parallel tracks for trains transitioning between R8
and R6. The sequences in this dataset are the individual trains for
each scheduling approach, and the events are traversals of marked
regions. Attributes are the approach that scheduled this train (se-
quence level) and the time step of the region’s traversal (event level).

Waiting on tracks: With the links in the double tree, we inves-
tigate the elapsed time for trains going from one region to another.
Anchoring the double tree on R13, we focus on the links from R12,
on the bottom left, up to the root (Figure 9, right). The widths of the
coloured links suggest thatOR_old_driver scheduled a higher num-
ber of trains between these two regions. The time difference encoded
in the red links shows that the trains, on average, took more time
steps (absolute time) between the two regions than those of other
scheduling techniques. Although regions R12 and R13 are nearby,
there are many parallel tracks between them. The trains might have
waited on the parallel tracks to allow oncoming trains, which could
have led to a higher time to reach R13.

Revisiting a region: Trains visiting a region more than once can
indicate inefficient planning. To explore re-visits, we focus on re-
gion R13, set it as the anchor and select its repeated occurrence
in the tree on the right. In Figure 9 (right), we see two branches
with repeated visits to the region (R13 → R4 → R13 and R13 →
R12 → R13). Several trains, scheduled by all techniques except
RL_netcetera, visited the region R13 more than once (absence of
orange coloured ring segment in the R13 nodes on the right side of
the double tree). Investigating further to understand the revisits, we
select regions R3 (on the left) and R12 (on the right) to order the
sequence list, as shown in Figure 10 (right). Hovering over the se-
quence R3 → R4 → R13 → R12 → R13 → R4 → R3 in the list,
the path gets highlighted in the double tree (Figure 9, right). The
sequence implies a train moving east in R3 passed through R4 and
R13, was looped around using structural layout in R12 to change
the direction of movement, revisiting R13 and finally R3, but now
moving west. Since the trains cannot move backwards, the cyclic
manoeuvre might have been necessary to change the direction of a
train. OR_old_driver exhibited this specific manoeuvre twice (first
two rows in Figure 10, right). The next two sequences in the list
show a similar behaviour by trains of RL_marmot that circle from
region R12 over R13 and R4 to R11, while trains could have moved
directly from R12 to R11 by moving west.

Uni-directional usage of parallel tracks: Next, we compare the
usage of two parallel tracks,R9 andR10 between regionsR8 andR6.
Out of the two connected regions, we choose R6 as the anchor and
select all occurrences ofR8 on both sides of the double tree (see, Fig-
ure 10, middle). Hovering over the red coloured ring segment of
OR_old_driver, we infer that it scheduled all trains from R8 going
toR6 only viaR10 (no red coloured ring segment inR8→R9→R6;
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Figure 9: Flatland map with regions-of-interest R1–R13 in grey and trains as black circles (left). Filtered and selected event sequences to
show repeated visits in R13 from R3 and R12, comparing the performance of the four scheduling techniques (right).

Figure 10: Sequences showing transition of trains through the region R6 in Flatland (left). Comparing the sequences based on scheduling
techniques (red is highlighted with a black border because it is hovered) and focusing on the movement of trains between two regions R8 and
R6 (middle). The list of sequences re-visiting region R13 and hovering over the first row (right).

left side of the double tree). Additionally, OR_old_driver sched-
uled all trains from R6 to R8 to transit via R9, suggesting exclu-
sive usage of parallel tracks for opposite directions to avoid head-on
collisions. RL_marmot also exhibits the strategy, while RL_jbr_hse
moves trains on the tracks from both directions (green colour in all
nodes of R9 and R10 between R6 and R8), and RL_netcetera uses
only one of the two tracks (R10) exclusively.

Busy junction: To investigate routes around the junction in R6,
we select it as the anchor in the double tree. From Figure 10 (left),

we observe many links on both sides of R6. It indicates that trains
are coming in and going out in all four directions—east (R7), north
(R5), west (R11) and south (R9 and R10). Hovering the node of the
anchor (R6), we see its repeated occurrence in the sequence R6 →
R7 → R1 → R7 → R6 highlighted on the right side of the double
tree. Repeated visits by trains to an important junction could in-
dicate inefficient planning, as revisiting junction points could stall
the traffic. We also observe the orange outgoing edge at the bottom
right of the node of region R6, indicating that trains scheduled by
RL_netcetera stayed on top of the junction or on connecting tracks
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towards other regions. This insight indicates possible reasons behind
the bad performance of RL_netcetera (only 26 of 98 trains reached
their destination).

7. Limitations and Open Research Questions

Our approach allows focusing analysis on a user-defined anchor and
comparing event sequences based on categories. As shown in the ap-
plication examples, this already supports various relevant use cases
and provides meaningful insights. We tried to keep the data model
simple so that the approach stays broadly applicable and the de-
sign of the visualization will not become overly complex. However,
some assumptions regarding the data also restrict us in supporting
certain analyses. Moreover, the application examples also revealed
other limitations of the approach. We discuss these limiting factors
and translate them to open research questions that can inspire fu-
ture research.

How to better handle numeric attributes, without transform-
ing them into discrete and unordered categories? Numeric at-
tributes of the events can be used in our approach to define cate-
gories for comparison. This converts the often continuous numeric
scale into a discrete one and ignores the inherent order of the re-
sulting discrete categories. This is acceptable often (e.g. focusing
on the last 15 min of a soccer match), but can be considered a lim-
itation of our approach in other cases. Among the authors, we have
discussed different designs for visualizing such numeric data in ad-
dition to categories, but possible solutions would make the diagram
significantly more complex and difficult to interpret. Showing one
additional numeric value per node is not an issue, however, in our
case, we would need to show a distribution of numeric values, split
according to the interactively defined categories to be compatible
with the category-based comparison. Displaying time differences is
a step in the direction of visualizing numeric attributes. However,
while the temporal differences fit on the links as it describes a char-
acteristic of the transition, other numerical attributes would require
different encodings.

How to support the visualization and comparison of multi-
ple categorical attributes simultaneously? The interactive defini-
tion of categories allows for quickly switching between different
aspects of comparison. In the application examples, we already ex-
perienced that, in some cases, it would also be interesting to see
the categorical information about two or more different aspects at
the same time. For instance, it might be relevant to analyse a soc-
cer match for by categories of team and first/second half to identify,
for instance, that one team adopted the strategy of the other team
in the second half. If both categories are binary, like in this exam-
ple, we could translate them into a new categorical variable with
four cases. However, this approach does not scale to handle many
more variables and categories, as the number of possible combi-
nations grows quickly. Hand-picking interesting combinations and
grouping everything else in an Other category could potentially
help with this issue. Generally, the limiting factor here is the use
of colours, which restricts the comparison to about 10 categories.
While this is a substantial gain over the maximum of two cate-
gories as in prior research, support for even higher numbers of cate-
gories would require other channels and means to express category
memberships.

How to simplify and aggregate the tree to support longer se-
quences of events and larger sets of sequences? Currently, our
approach is limited to event sequences consisting of up to about 30
events. If trying to show more, the horizontal space for each layer
would become too small. A straightforward solution would be to cut
non-branching sequences, making them explorable on demand, or
implementing horizontal panningwhere the view always starts at the
anchor, which would be the focus of most analysis tasks. Integrat-
ing pattern mining techniques and visualizing the patterns would
reduce the length of sequences, however, would come at the cost
of significantly decreased interpretability. If not only the lengths
of the event sequences grow but also more and more distinct se-
quences shall be considered, the complexity of the tree structure
itself might also become too high. We have added the query builder
to partially tackle this challenge, but it would need further capabil-
ities for vastly greater numbers of distinct sequences. On the other
hand, we could allow optional alternatives in the sequences to better
aggregate the sequences but would transform the tree data structure
into a directed acyclic graph, which leads to the issues we discussed
in Section 3. Introducing focus-and-context techniques (e.g. a data
lens [TGK*17]) might further improve the visual scalability. How-
ever, if aiming at analysis of event sequences at a large scale, an ad-
ditional overview visualization becomes necessary, potentially with
the double trees acting as an intermediate representation for subsets
of event sequences.

8. Conclusion

We proposed double trees as a visualization approach for abstract-
ing collections of event sequences focused around a user-selected
event of interest. This interactively set focus of analysis makes the
approach versatile regarding the studied analysis questions and, at
the same time, reduces the complexity of the visual representations
to an interpretable higher-level abstraction. We extended the double
trees with interactive category-based comparison of colour-coded
categories of events and event sequences. We assume that the events
in the sequences carry type information and can be further cate-
gorized based on other attributes and meta-data. As demonstrated
in our application examples, such data are relevant in different use
cases across various domains.

Acknowledgements

This work is partly funded by Mercator Research Center Ruhr
(MERCUR; project: “Vergleichende Analyse dynamischer Net-
zwerkstrukturen im Zusammenspiel statistischer und visueller
Methoden”).

Open access funding enabled and organized by Projekt DEAL.

References

[AB20] Agarwal S., Beck F.: Set Streams: Visual exploration
of dynamic overlapping sets. Computer Graphics Forum 39, 3
(2020), 383–391.

[AWWB22] Agarwal S., Wallner G., Watson J., Beck F.:
Spatio-temporal analysis of multi-agent scheduling behaviors on

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



C. Krause et al. / Visually Abstracting Event Sequences as Double Trees Enriched with Category-based Comparison 11 of 12

fixed-track networks. In Proceedings of the IEEE Pacific Visu-
alization Symposium (2022), pp. 21–30. https://doi.org/10.1109/
PacificVis53943.2022.00011

[BMW16] Beck F., Melcher J., Weiskopf D.: Identifying modu-
larization patterns by visual comparison of multiple hierarchies.
In Proceedings of the 2016 IEEE 24th International Confer-
ence on Program Comprehension (2016), IEEE, pp. 1–10. https:
//doi.org/10.1109/ICPC.2016.7503712

[BOH11] Bostock M., Ogievetsky V., Heer J.: D3 data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 17, (2011), 2301–2309.

[CL10] Culy C., Lyding V.: Double Tree: An advanced KWIC vi-
sualization for expert users. In Proceedings of the 14th Interna-
tional Conference Information Visualisation (2010), pp. 98–103.
https://doi.org/10.1109/IV.2010.24

[CWM16] Chou J.-K., Wang Y., Ma K.-L.: Privacy preserving
event sequence data visualization using a Sankey diagram-like
representation. In Proceedings of the SIGGRAPH ASIA 2016
Symposium on Visualization (2016), ACM. https://doi.org/10.
1145/3002151.3002153

[CXR18] Chen Y., Xu P., Ren L.: Sequence synopsis: Optimize
visual summary of temporal event data. IEEE Transactions on
Visualization and Computer Graphics 24 (2018), 45–55.

[DPSS16] Du F., Plaisant C., Spring N., Shneiderman B.:
EventAction: Visual analytics for temporal event sequence rec-
ommendation. In Proceedings of the IEEE Conference on Vi-
sual Analytics Science and Technology (2016), pp. 61–70. https:
//doi.org/10.1109/VAST.2016.7883512

[EW11] Elzen S. V. D., Wijk J. J. V.: Baobab-View: Interac-
tive construction and analysis of decision trees. In Proceed-
ings of the IEEE Conference on Visual Analytics Science and
Technology (2011), pp. 151–160. https://doi.org/10.1109/VAST.
2011.6102453

[GFL*20] Guo R., Fujiwara T., Li Y., Lima K. M., Sen S., Tran
N. K., Ma K. L.: Comparative visual analytics for assessing
medical records with sequence embedding. Visual Informatics 4
(2020), 72–85.

[GGJ*21] Guo Y., Guo S., Jin Z., Kaul S., Gotz D., Cao N.:
Survey on visual analysis of event sequence data. IEEE Trans-
actions on Visualization and Computer Graphics (2021). https:
//doi.org/10.1109/TVCG.2021.3100413

[GK10] Graham M., Kennedy J.: A survey of multiple tree visu-
alisation. Information Visualization 9, 4 (2010), 235–252.

[GS14] Gotz D., Stavropoulos H.: Decisionflow: Visual ana-
lytics for high-dimensional temporal event sequence data. IEEE
Transactions on Visualization andComputerGraphics 20 (2014),
1783–1792.

[LKD*17] Liu Z., Kerr B., DontchevaM., Grover J., Hoffman
M., Wilson A.: CoreFlow: Extracting and visualizing branching

patterns from event sequences. Computer Graphics Forum 36, 3
(2017), 527–538.

[LLMB18] Law P.-M., Liu Z., Malik S., Basole R. C.: MAQUI:
Interweaving queries and pattern mining for recursive event se-
quence exploration. IEEE Transactions on Visualization and
Computer Graphics 25 (2018), 396–406.

[LMB07] Li J.-Q., Mirchandani P. B., Borenstein D.: The vehi-
cle rescheduling problem: Model and algorithms. Networks 50,
3 (2007), 211–229.

[LSS*21] Laurent F., Schneider M., Scheller C., Watson J.,
Li J., Chen Z., Zheng Y., Chan S.-H., Makhnev K., Svid-
chenko O., Egorov V., Ivanov D., Shpilman A., Spirovska
E., Tanevski O., Nikov A., Grunder R., Galevski D., Mitro-
vski J., Sartoretti G., Luo Z., Damani M., Bhattacharya
N., Agarwal S., Egli A., Nygren E., Mohanty S.: Flatland
competition 2020: MAPF and MARL for efficient train coor-
dination on a grid world. In NeurIPS 2020 Competition and
Demonstration Track, Proceedings of Machine Learning Re-
search (2021), vol. 133, pp. 275–301. https://proceedings.mlr.
press/v133/laurent21a.html

[LZD*20] Li G., Zhang Y., Dong Y., Liang J., Zhang J., Wang
J.,McguffinM. J., YuanX.: BarcodeTree: Scalable comparison
of multiple hierarchies. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2020), 1022–1032.

[MDM*15] Malik S., Du F., Monroe M., Onukwugha E.,
Plaisant C., Shneiderman B.: Cohort comparison of event se-
quences with balanced integration of visual analytics and statis-
tics. In Proceedings of the International Conference on Intelli-
gent User Interfaces (2015), pp. 38–49. https://doi.org/10.1145/
2678025.2701407

[MGT*03] Munzner T., Guimbretìere F., Tasiran S., Zhang
L., Zhou Y.: TreeJuxtaposer: Scalable tree comparison using
focus+context with guaranteed visibility. In Proceedings of the
ACM SIGGRAPH (2003). https://doi.org/10.1145/1201775

[MNL*20] Mohanty S., Nygren E., Laurent F., Schneider
M., Scheller C., Bhattacharya N., Watson J., Egli A.,
Eichenberger C., Baumberger C., Vienken G., Sturm I.,
Sartoretti G., SpiglerG.: Flatland-RL:Multi-agent reinforce-
ment learning on trains. http://arxiv.org/abs/2012.05893 (2020)

[PS16] Plaisant C., Shneiderman B.: The diversity of data and
tasks in event analytics. In Proceedings of the IEEE VIS 2016
Workshop on Temporal & Sequential Event Analysis (2016). http:
//eventevent.github.io/papers/EVENT_2016_paper_13.pdf

[PW14] Perer A., Wang F.: Frequence: Interactive mining and vi-
sualization of temporal frequent event sequences. In Proceedings
of the International Conference on Intelligent User Interfaces
(2014), pp. 153–162. https://doi.org/10.1145/2557500.2557508

[QBW*20] Qi J., Bloemen V., Wang S., Wijk J. V., Wetering
H. V. D.: STBins: Visual tracking and comparison of multiple
data sequences using temporal binning. IEEE Transactions on
Visualization and Computer Graphics 26 (2020), 1054–1063.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/PacificVis53943.2022.00011
https://doi.org/10.1109/PacificVis53943.2022.00011
https://doi.org/10.1109/ICPC.2016.7503712
https://doi.org/10.1109/ICPC.2016.7503712
https://doi.org/10.1109/IV.2010.24
https://doi.org/10.1145/3002151.3002153
https://doi.org/10.1145/3002151.3002153
https://doi.org/10.1109/VAST.2016.7883512
https://doi.org/10.1109/VAST.2016.7883512
https://doi.org/10.1109/VAST.2011.6102453
https://doi.org/10.1109/VAST.2011.6102453
https://doi.org/10.1109/TVCG.2021.3100413
https://doi.org/10.1109/TVCG.2021.3100413
https://proceedings.mlr.press/v133/laurent21a.html
https://proceedings.mlr.press/v133/laurent21a.html
https://doi.org/10.1145/2678025.2701407
https://doi.org/10.1145/2678025.2701407
https://doi.org/10.1145/1201775
http://arxiv.org/abs/2012.05893
http://eventevent.github.io/papers/EVENT_2016_paper_13.pdf
http://eventevent.github.io/papers/EVENT_2016_paper_13.pdf
https://doi.org/10.1145/2557500.2557508


12 of 12 C. Krause et al. / Visually Abstracting Event Sequences as Double Trees Enriched with Category-based Comparison

[RT81] Reingold E. M., Tilford J. S.: Tidier drawings of trees.
IEEE Transactions on Software Engineering SE-7 (1981), 223–
228. https://doi.org/10.1109/TSE.1981.234519

[Sta] Statsbomb.com: Statsbomb Academy Free Data. https://
statsbomb.com/academy/#data. Accessed: 2021-11-29.

[TGK*17] Tominski C., Gladisch S., Kister U., Dachselt R.,
Schumann H.: Interactive lenses for visualization: An extended
survey. Computer Graphics Forum (2017), 173–200. https://doi.
org/10.1111/cgf.12871

[The21] The Flatland Community: The dataset of recorded episodes
from Flatland 2020 NeurIPS Competition winners. https://www.
aicrowd.com/challenges/flatland/dataset_files (2021). Accessed:
March 2021.

[VJC09] Vrotsou K., Johansson J., Cooper M.: ActiviTree:
Interactive visual exploration of sequences in event-based data
using graph similarity. IEEE Transactions on Visualization and
Computer Graphics 15 (2009), 945–952.

[WG12] Wongsuphasawat K., Gotz D.: Exploring flow, fac-
tors, and outcomes of temporal event sequences with the out-
flow visualization. IEEE Transactions on Visualization and
Computer Graphics (2012), 2659–2668. https://doi.org/10.1109/
TVCG.2012.225

[WGP*11] Wongsuphasawat K., Gómez J. A. G., Plaisant
C., Wang T. D., Ben S., Taieb-Maimon M.: LifeFlow: Vi-
sualizing an overview of event sequences. In Proceedings
of the Conference on Human Factors in Computing Sys-
tems (2011), pp. 1747–1756. https://doi.org/10.1145/1978942.
1979196

[WS09] Wongsuphasawat K., Shneiderman B.: Finding
comparable temporal categorical records: A similarity mea-
sure with an interactive visualization. In Proceedings of the
IEEE Symposium on Visual Analytics Science and Tech-
nology (2009), pp. 27–34. https://doi.org/10.1109/VAST.2009.
5332595

[ZLD*15] Zhao J., Liu Z., DontchevaM., HertzmannA., Wil-
son A.: MatrixWave: Visual comparison of event sequence data.
In Proceedings of the Conference on Human Factors in Com-
puting Systems (2015), pp. 259–268. https://doi.org/10.1145/
2702123.2702419

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Video S1

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/TSE.1981.234519
https://statsbomb.com/academy/#data
https://statsbomb.com/academy/#data
https://doi.org/10.1111/cgf.12871
https://doi.org/10.1111/cgf.12871
https://www.aicrowd.com/challenges/flatland/dataset_files
https://www.aicrowd.com/challenges/flatland/dataset_files
https://doi.org/10.1109/TVCG.2012.225
https://doi.org/10.1109/TVCG.2012.225
https://doi.org/10.1145/1978942.1979196
https://doi.org/10.1145/1978942.1979196
https://doi.org/10.1109/VAST.2009.5332595
https://doi.org/10.1109/VAST.2009.5332595
https://doi.org/10.1145/2702123.2702419
https://doi.org/10.1145/2702123.2702419

