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Abstract
Modelling garments with rich details require enormous time and expertise of artists. Recent works re-construct garments through
segmentation of clothed human scan. However, existing methods rely on certain human body templates and do not perform as
well on loose garments such as skirts. This paper presents a two-stage pipeline for extracting high-fidelity garments from static
scan data of clothed mannequins. Our key contribution is a novel method for tracking both tight and loose boundaries between
garments and mannequin skin. Our algorithm enables the modelling of off-the-shelf clothing with fine details. It is independent
of human template models and requires only minimal mannequin priors. The effectiveness of our method is validated through
quantitative and qualitative comparison with the baseline method. The results demonstrate that our method can accurately extract
both tight and loose garments within reasonable time.
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1. Introduction

3D modelling and authoring are important research topics in aug-
mented reality (AR) and virtual reality (VR). Especially, 3D mod-
elling of real-world objects can be used to construct photo-realistic
virtual environments. Recently, 3D scanning technologies such as
Smartphones’ Lidar cameras and photogrammetry (structure-from-
motion and multi-view stereo) have been widely adopted to digitize
real-world objects.

Specifically, virtual garments have received much attention as
they are playing an increasingly significant role in AR/VR ap-
plications. 3D modelling of highly realistic clothing is a pre-
requisite for dressing and animating clothed avatars [XPB*21].
E-commerce platforms are beginning to embrace virtual try-on
for better shopping experience and lower product return rates
[GCH*12]. 3D virtual garments can be created from 2D sewing
patterns with CAD software such as Marvelous Designer. How-
ever, manipulating such tools generally requires a considerable
amount of expertise and effort from CG artists or fashion de-
signers, especially when one tries to model garments with rich
details.

In order to find a simple yet effective way to model 3D gar-
ments, a variety of research has been carried out over the last decade.

Some image-based methods re-construct 3D virtual garments from
single-view images [ZCF*13, JHK15, DDÖ*17, YPA*18] or a few
images [XYS*19] from different views. Many existing work of
this category employ certain garment templates and recover the
garments in the input images by deforming the pre-defined gar-
ment templates [CZL*15, DDÖ*17, YPA*18, XYS*19, SWY*22].
Others take 2D sewing patterns [BGK*13, SLL20] or sometimes
sketches [CXJL21] as input to generate 3D garments. While in-
put images for these methods can be easily acquired and prepared,
image-based methods capture limited details and are generally un-
able to generate high-fidelity garment models.

On the other hand, thanks to rapidly evolving scanning tech-
niques, 3D scans nowadays are much more easier to acquire than
before and are thus gaining popularity. In both the CG industry and
the apparel business, it has become increasingly common for peo-
ple to scan clothed mannequins for the purpose of digitizing real-
world clothing. Virtual garments are then obtained via segmentation
of these clothed mannequin scans. In this work, we aim to acquire
high-fidelity virtual garments from real-world clothing.

Despite the popularity of this setup, segmentation of clothed
mannequin scans generally requires tedious manual labour. With
3D modelling software such as RealityCapture [Cap23], one can
extract the target object from a re-constructed scene using a
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Figure 1: Our method can handle both tight and loose garments. Given a 3D scan of a clothed mannequin, our system extracts a garment mesh
by colour-based boundary tracking, and then automatically categorizes the garment into tight or loose. For a loose garment, geometry-based
boundary tracking is executed to refine the extracted mesh.

bounding box as shown in Figure 2. This kind of interface/tools can
be used for extracting the entire shape of the target object from the
scene. Nonetheless, extracting a part of a scanned object, such as
extracting clothing from a scanned human body, is often a laborious
process. Developing automatic solutions to this problem remains a
challenging task, and much effort has been made in this area. Most
existing methods [PMPHB17, BTTPM19, BKL21] of this category
try to extract garments from clothed human scans in various poses.
To handle pose variety, they rely on a certain body template such
as the SMPL model [LMR*15] and thus fail to perform as well on
loose garments whose topologies differs greatly from the body. On
the other hand, in the case of high-fidelity garment re-construction
using a mannequin, we deem it unnecessary to consider pose variety
and thus unnecessary to resort to rich priors such as SMPL.

In this study, we propose a simple yet practical solution to
the problem of garment extraction from clothed mannequin scans,
which employs minimal mannequin priors and works for both tight
and loose garments. Similar to Bang et al. [BKL21], our approach
also focuses on the boundaries between garment and skin rather
than per-node classification. While Bang et al. [BKL21] uses only
colour information in its exploration of such boundaries, our ap-
proach incorporates geometric information into this process. An ex-
ample of garment extraction with our proposed method is illustrated
in Figure 1. Our proposed method is capable of producing highly re-
alistic textured garment models.

Our main contributions are three-fold:

• We present an approach to acquire high-fidelity 3Dmodels of off-
the-shelf clothing using a mannequin with simple set-up.

• We propose a novel metric for estimating the looseness of a gar-
ment.

• Our key contribution is that we propose a novel method for track-
ing boundaries of garments, which takes both colour and geomet-
ric information into account.

Our approach does not rely on any form of body template and
leverages both the colour information and the geometric informa-
tion. This not only frees our approach from the need for time-
consuming template registration, but also allows for higher accu-
racy when extracting loose garments whose topologies differ greatly
from the body.

2. Related Work

In this section, we discuss various garment modelling methods. Ex-
isting methods can be classified into two categories based on their
input: 2D images or 3D scan data.

2.1. Garment capture from 2D images

Yang et al. [YPA*18] dress a parametric human body model with
2D garment patterns and optimizes 2D garment shape parameters
based on the re-constructed human body and image information
from a single-view image. A similar work [SWY*22] takes it a
step further to generate garments with realistic dynamics by fit-
ting a simulated garment model to the garment observed in the
input video frames. Nevertheless, the range of garments recover-
able through these methods is limited by the garment templates
available.

During the last decade, there has been a noticeable trend to-
wards leveraging the learning power of neural networks for the
task of garment capture from images. Xu et al. [XYS*19] pro-
pose a multi-task learning network that can identify the garment
landmarks and segment the garment semantically at the same time.
A pre-defined garment template mesh is then deformed accord-
ing to predicted landmarks to re-construct the 3D garment model.
This method requires a minimum of two images and can work
on images of both garments on human body and laid on a flat
surface. Zhu et al. [ZCJ*20] provide a data-set of 2078 models
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re-constructed from real garments, for evaluation of image-based
garment re-construction. Although this proves to be an interesting
area of research, it is theoretically difficult to re-construct high-
fidelity garment models from single-view or a relatively small num-
ber of images.

2.2. Garment modelling from 3D scan

An early work [BPS*08] of this category recovers a garment mesh
with a multi-view stereo re-construction algorithm from a relatively
small number of images. This mesh has many holes and bound-
aries with missing geometry. A smooth garment mesh is then ac-
quired through template-based completion. As the first marker-free
approach to capture off-the-shelf garments, this method tends to re-
move the fine details in the geometry. Chen et al. [CZL*15] first ob-
tain a rough garment mesh by KinectFusion and interactive cutting.
It then synthesizes a garment by detecting garment components on
a reference image and assembling pre-defined corresponding gar-
ment components in a database. The assembled garment is fit to the
initial garment mesh to acquire a final mesh. This method has a no-
table limitation that instead of recovering the target mesh itself, it
can only reproduce a garment that resembles the target garment in
structure.

Some more recent works try to solve the problem of mesh
segmentation on 3D scans of clothed human. Currently, graph-
based methods [PMPHB17, BTTPM19] are the most popular
among them. They usually utilize weak garment prior and perform
vertex-level mesh segmentation by solving the Markov Random
Field (MRF). Specifically, Pons-Moll et al. [PMPHB17] use a se-
quence of 3D scans (4D scan) to improve the accuracy of vertex clas-
sification; Bhatnagar et al. [BTTPM19] lift image-based semantic
segmentation to the 3D domain by incorporating a CNN-based data
termwhen solving anMRF on the UV-map of the SMPLmodel. De-
spite all the improvement, mis-classification still often occurs within
the garment region.

Different from the popular graph-based segmentation approach,
Bang et al. [BKL21] managed to explicitly find the boundaries be-
tween garment and skin or between garment parts through curve
optimization, which outperformed previous methods by generating
much smoother boundaries. However, similar to Refs. [PMPHB17,
BTTPM19], we observed that their method does not work as well on
loose garments as on tight ones. Besides, Bang et al. [BKL21] also
suffers from occlusion, so that invisible area of a garment piece,
e.g. upper part of a pair of pants under a T-shirt, can never be re-
covered. As a result, garment models recovered from clothed hu-
man scan of arbitrary poses may be incomplete. Goto and Umetani
[GU21] used neural network to estimate garment patterns from a
3D scan of a clothed human. Their method essentially worked on
multi-view projected images of the scan by learning to predict the
probability of each pixel belonging to certain type of patterns, e.g.
sleeve, front or back. The classification was of limited accuracy, and
it was not clear how well it could perform on clothing other than
T-shirts.

In contrast, our mannequin takes T-pose and is clothed with a
single garment each time, so that both occlusion and overlapping of

Figure 2: An example of photogrammetry-based re-construction
using RealityCapture.

different layers of garments are negligible, i.e. our method is more
capable of extracting the complete geometry of a garment than pre-
vious methods. More importantly, our method does not require any
form of body template and, thus, has the potential for performing
better at modelling loose garments.

3. Method

Following the common practice of the CG industry and the apparel
business, we put a target garment on a mannequin with a fixed pose
and acquire the 3D mesh of the clothed mannequin (see Figure 2).
After scanning, we extract the target garment mesh region from
the scanned mannequin model by detecting boundary edges be-
tween the mannequin and garment regions. While colour informa-
tion alone may be enough for extraction of tight clothing and ge-
ometric information alone may be enough for extraction of certain
loose clothing ( e.g. through mesh boolean operation), yet in order
to deal with both tight and loose clothing with a single pipeline,
we incorporate both colour and geometric information into the ex-
traction process. As shown in Figure 3, our method consists of two
stages: tight and loose garments extraction stages. We employ the
coarse-to-fine strategy to extract tight and loose garments. First, our
method extracts boundary candidates using colour information. Ex-
tracted boundary candidates are then filtered and refined using the
mannequin priors. During the extraction process, the input garment
is automatically categorized into tight or loose. If the input garment
is loose, we apply the additional refinement process to get more ac-
curate boundary edges. The details of our algorithm are explained
in the following sections.

3.1. Initial boundary curve detection

First, we roughly categorize vertices of the input scanned mesh into
mannequin skin and garment using colour information. We then ac-
quire the initial boundary curves as shown in Figure 4. Note that
actual boundaries exist between mannequin skin and garment tri-
angles, which are represented as blue dotted curves in Figure 4. In
this study, we aim to extract all the garment meshes (yellow regions
in Figure 4) with minimal loss. Therefore, target boundary curves
pass through the red edges in Figure 4. Concretely, we define the
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Figure 3: Overview of the proposed method. Our framework is composed of two stages. Tight garments can be extracted in the stage I. The
stage II is executed for handling loose garments.

Figure 4: An example of an initial boundary curve between gar-
ment and skin. It consists of mesh edges highlighted in red. The
corresponding actual boundary is illustrated with the dotted blue
curve.

boundary curves between mannequin and garment as sequences of
mesh edges which satisfy both of the following conditions:

1 Both of the two end vertices of the edge are labelled as man-
nequin skin.

2 Two vertices opposite to the edge belong to different classes.

To classify vertices, similar to Pons-Moll et al. [PMPHB17], we
employ HSV colour space instead of RGB to gain more robustness
against illumination changes. The classification of vertices is based
on simple K-Means clustering. For an input scan of clothed man-
nequin V , each of its vertex vi (i ∈ {0, 1, . . . ,NV }, where NV is the
number of vertices inV) is assigned a label li ∈ {0, 1}, where 0 and 1
correspond to mannequin skin and garment, respectively. Figure 6b
illustrates an example of the result of classification.

Ideally, each initial boundary curve should correspond to one
opening of the garment such as the neckline and the hemline.
However, extracted initial boundaries may include unwanted curves
when the input garment has texture patterns such as logos. As a re-

sult, it is difficult to obtain accurate initial boundaries only from
colour information. To solve this problem, we use the mannequin
priors to filter out unwanted boundaries. These mannequin priors
are defined using pre-defined landmark positions on the naked man-
nequin (see Figure 5).

We first locate the corresponding body part for each initial bound-
ary curve by comparing the centre position of curve vertices and
landmark positions. The curves which are located higher than the
jaw position or lower than the ankle position are then removed.
In addition, we exclude the initial boundary curves shorter than a
threshold thcurve. We set the value of thcurve for each initial bound-
ary curve based on the perimeter of its corresponding body part. For
example, thcurve for an initial boundary curve around a leg is set to
the perimeter of an ankle. The example result of filtering is shown
in Figure 6d.

After landmark-based and length-based filtering, there may still
be unwanted curves due to texture patterns or noise within the gar-
ment region. We then detect initial boundary curves which satisfy
both of the following conditions:

(i) It should be an extreme (i.e. uppermost, down-most, left-
most or rightmost) initial boundary curve. As indicated in
Bradley et al. [BPS*08] and Zhu et al. [ZCJ*20], the num-
ber and the position of boundary loops differ across garment
types. In our pipeline, a garment is first categorized into ei-
ther upper-wear/one-piece or bottom-wear based on the ex-
istence of neck-related initial boundary curves. Next, among
multiple initial boundary curves around the same body part,
we locate the most extreme one based on central position
of the curves and the category of the garment (see Table 1).
Specifically, among waist-related curves, we select the down-
most one for an upper-wear/one-piece, and the upper-most one
for a bottom-wear; among initial boundary curves around the
torso or the legs, we always select the down-most ones; among
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Figure 5: The naked mannequin with pre-defined landmarks is
highlighted in yellow. The directions of the arms, the torso and the
legs, which are calculated from landmarks, are illustrated with ar-
rows in red, blue and green, respectively.

initial boundary curves around the left/right arm, we select the
leftmost/rightmost one for an upper-wear/one-piece garment.

(ii) Its orientation should match the direction of its correspond-
ing body part. First, we calculate the orientation of the curve
through principal component analysis. The eigenvector which
corresponds to the minimal eigenvalue is regarded as the direc-
tion of the curve. To verify curves, we define the body-part di-

rections of the mannequin in advance (see Figure 5). The curve
direction and each body-part direction are compared and the
body part with minimal direction error with the curve is se-
lected. We then check if the body part with minimal direction
error matches the location of the curve.

We select the curve satisfying both of the above-mentioned con-
ditions as a final candidate for openings as shown in Figure 6e.

3.2. Marginal vertices sampling

Initial boundary curves are jaggy due to miss-classification near ac-
tual boundaries. It is especially difficult to classify concave regions
on the mesh accurately because these regions are not observed dur-
ing the scanning process (see Figure 7). Both their shape and colour
are interpolated from their surroundings. To obtain smoother and
more reliable boundary curves, we sample ‘marginal’ vertices from
initial boundary curves through geometric analysis.

To specify marginal vertices, we project an initial boundary curve
c onto the plane which is perpendicular to the direction of the cor-
responding body part. Figure 8 illustrates c′, the 2D profile of the
projected initial boundary curve. On the projection plane, we cre-
ate a polar coordinate system, whose origin O is the projection of
the centre of c. We further divide the polar angles of the projection
plane into M intervals (M = 32). Vertices of c′ are then distributed
into one of theM intervals based on their polar angles. Subsequently,
marginal vertices are sampled based on their radial distance. In each
interval mi(i ∈ 1, 2, . . . ,M), we sample the outermost vertex as the

Figure 6: (a) The input scan of a clothed mannequin. (b) The result of vertex classification. Vertices labelled as garment and mannequin skin
are represented in yellow and green, respectively. (c) Extracted initial boundary curves based on vertex labels. (d) Initial boundary curves after
filtering using landmark positions. (e) Boundary curves chosen as final candidates for garment openings. They are the uppermost, down-most,
leftmost and rightmost initial boundary curves.

Table 1: Body parts corresponding to extreme boundary curves for commonly seen garment types.

Body part Upper-wear One-piece (e.g. coat, dress) Skirt Trousers

Uppermost Neck Neck Waist Waist
Down-most Waist Torso Torso Left leg and right leg
Leftmost Left arm Left arm — —
Rightmost Right arm Right arm — —
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Figure 7: An example of an initial boundary curve along the sleeve,
which is too noisy to approximate the actual boundary.

Figure 8: An example of marginal vertices sampled with our strat-
egy. c’, the projection of an initial boundary curve c on the plane
perpendicular to the body, is illustrated with the pink solid curve.
The sampled marginal vertices are highlighted in red. Note that v′

i

is sampled as a marginal vertex instead of v′
j . While v′

i and v′
j fall

into the same interval based on their polar angles, v′
i has a larger

radial distance than v′
j (i, j ∈ {0..NV}, NV is the number of vertices

in the input scan).

marginal vertex. These marginal vertices are used as control points
in the boundary tracking process. As shown in Figure 9 (left), for
computational efficiency, we create a bounding box for vertices of
the initial boundary curve and only utilizemeshes within this bound-
ing box in the following process.

3.3. Colour-based boundary tracking

Usingmarginal vertices as control points, we detect actual boundary
vertices through colour-based boundary tracking. In general, a ver-
tex is likely to lie on the actual boundary if half of its neighbouring
vertices are labelled as garment and the other half as the mannequin
skin.

Figure 9: (Left) For an initial boundary curve (the same curve
shown in Figure 7) along a sleeve opening, highlighted in white,
only meshes within the bounding box are utilized in colour-based
boundary tracking. One pair of opposite faces of the bounding box
are perpendicular to the arm. (Right) The same bounding box is re-
used to locate meshes required for occluding contours detection and
loose-boundary tracking.

In order to find the weighted shortest path on the mesh patch be-
tween marginal vertices, for each vertex of the mesh, we define an
entropy-like quantity as follows:

φ(vi) = −(p log2(1 − p) + (1 − p) log2 p) (1)

where p is the probability for a vertex in vi’s one-ring neighbour-
hood to take the label of garment.

The weight wcolour of a mesh edge e = [vi, v j] is defined as

wcolour(i, j) = 1

φ(vi) + φ(v j ) + ε
(2)

where i, j ∈ {0..NV}, NV is the number of vertices in the input scan,
ε is a small positive number (ε = 0.0001).

The weighted shortest path between sampled vertices can then
be computed with Dijkstra’s algorithm [Dij59]. The garment is ex-
tracted by cutting the input scan along these shortest paths.

3.4. Garment looseness evaluation

During the re-construction of a clothed mannequin, some pho-
togrammetry software solutions automatically enclose the volume
to create a ‘watertight’ mesh. As a result, since the topologies of
loose garments vary greatly from the body, the input scan may con-
tain gap-filling triangles between the body and the garment. These
regions are not observed during the scanning process and such gap-
filling triangles are often with meaningless colour. Loose garments,
therefore, should be handled with a strategy different from tight gar-
ments.
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Figure 10: An example of tight-or-loose decision for a boundary
curve along a sleeve opening. The intersection curve between the
best-fitting plane of the boundary curve and the clothed mannequin
is highlighted in red (left). The intersection curve between the best-
fitting plane of the boundary curve and the naked mannequin is
highlighted in red (right).

In this paper, by ‘loose garments’, we refer to garments with at
least one loose boundary curve. Now we describe the procedure of
tight-or-loose decision for each boundary curve.

For each boundary curve, we find its best-fitting plane and in-
tersect the plane with both the naked and the clothed mannequin to
acquire two sets of closed intersection curves as shown in Figure 10.

We can then define the looseness, η , of a boundary curve as fol-
lows:

η = �clothed

�naked
(3)

where �clothed and �naked are the unsigned area enclosed by the in-
tersection curves between the fitted plane and the static scan of the
clothed and the naked mannequin, respectively. A boundary curve
between mannequin and garment that satisfies the following condi-
tion is assumed to be loose:

η > λ (4)

where λ is a pre-defined threshold for differentiating loose and tight
boundary curves. During the experiments, we set λ = 1.20. For sim-
plicity, convex hulls of these two intersection curves are used instead
of the curves themselves in our implementation.

Note that since necklines may involve complex structures such as
collars and hoods, definition of necklines may become ambiguous.
We, therefore, assume that all boundary curves around the neck are
tight boundaries regardless of their looseness.

3.5. Occluding contours detection

After cutting the input scan along colour-based boundaries, loose
garments may still contain gap-filling triangles near the cuts as
shown in Figure 11 (left). In stage II of our pipeline, loose garments
are to be refined by taking occluding contours into account.

Suppose, we place an anchor near the centre of the opening, as
shown in Figure 11 (right), the occluding contours viewed from the
anchor turn out to be a better approximation of the actual boundary

Figure 11: The gap-filling triangles (left) are expected to be re-
moved if the mesh is cut again, along occluding contours viewed
from an anchor, which is highlighted in red (right).

Figure 12: A front view of an occluding contour on a sphere (left).
A side view of the scene (right). The occluding contour is painted
in purple. Two points on the occluding contour from a certain view-
point are highlighted in green and blue, respectively. They are where
depth discontinuity occurs. The occluded region on the sphere is
painted in pink.

at the garment opening than the original colour-based cut. There
are a few ways to define the occluding contours or, simply contours
[RDF05, BH19]. As illustrated in Figure 12, occluding contours are
the locations where depth discontinuity occur when viewed from a
certain viewpoint.

Intuitively, such occluding contours only need to be detected from
the mesh patch around the garment opening. We locate the mesh
patch with the same bounding box defined in stage I (see Figure 9
(right)). Similarly, we initialize the anchor with the centre of the
initial boundary curve defined in stage I.

We now describe the procedure for detecting occluding contours.
After anchor set-up, we create a plane � whose normal is n. �

passes through the anchor and is perpendicular to the correspond-
ing body part as shown in Figure 13 (left). For a series of azimuthal
angles α = 2π i

L on � (i ∈ 0, 1, . . . , L− 1, L is set to two times the
number of vertices along the colour-based cut defined in stage I in
our implementation), we find the point on the mesh patch with the
highest elevation angle along each direction (cosα, sinα). The loci
of such points form the occluding contours. Nonetheless, since our
objective is to find the sequences of mesh edges that best approxi-
mate garment openings, we search for the mesh edges where such
points are located. Specifically, for each sampled azimuthal angle
α, we compute the intersections between mesh edges in the patch
and a plane 
. The plane 
 is determined by (cosα, sinα) and n as
shown in Figure 13 (right). Among these intersections, we locate the
intersection Q with the highest elevation angle θ and the mesh edge
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Figure 13: (Left) A direction (cosα, sinα) is sampled on the plane
�.�, whose normal is n, is perpendicular to the body part. (Right)
A plane 
 is determined by (cosα, sinα) and n. Among all inter-
sections between 
 and mesh edges on the mesh patch, Q has the
highest elevation angle. The anchor is highlighted in red.

Figure 14: During the anchor fine-tuning process, we search for
the optimal anchor position on the line segment between its initial
position A and its upper-bound A′ by shifting the anchor a small step
each time along n and evaluating the goodness of the position. n is
the direction of the body part. The anchor points are highlighted in
red.

where Q lies. By projecting the collection of end vertices of such
edges onto plane�, we can sample the marginal vertices from them
with the same strategy described in Section 3.2. These marginal ver-
tices are the control points in our loose-boundary tracking process.

Note that occluding contours are view-dependent. We introduce
an additional anchor fine-tuning process to gain robustness against
noisy boundaries. To that end, we measure the goodness of an an-
chor position based on how much more information we can gain
about the location of actual garment opening, other than informa-
tion already provided by the colour-based cut. In other words, we
evaluate an anchor position based on the number of unique vertices
which are on the occluding contours detected from the anchor but
not on the colour-based cut.

As illustrated in Figure 14, from the initial position A, we shift the
anchor by a small step (the step size is set to half of the average edge
length of the input mesh) each time along \boldmath n, the direction

of the body part, to find the optimal position between A and A′ based
on its goodness. A′ is the upper-bound of A, determined by B, the
most extreme vertex on the mesh patch along \boldmath n, and a
small displacement δ. For each garment opening, δ is defined as
follows:

A′ = A+ n ∗ δ

δ = k ∗ r

r =
√

�clothed

π

(5)

where r is the estimated ‘radius’ of the boundary, deduced from
�clothed (see Equation 3); k is a parameter controlling the impact
of the radius. During the experiments, we set k = 0.7 because it en-
ables successful garment extraction for all our test data. However,
we confirmed that our method is insensitive to the value of k as long
as k is within a reasonable range. The impact of k on the accuracy
of extraction is discussed in detail in Section 6.1.

3.6. Loose-boundary tracking

Given marginal vertices sampled from occluding contours, we track
loose boundaries by finding the weighted shortest path between
them.

Based on our observation that the input mesh usually bends more
near loose boundaries, we use the notion of curvature in definition
of such weights. For a curve, curvature is the reciprocal of the radius
of the circle that best approximates the curve locally. For a surface,
intuitively, it is the amount by which the surface deviates from being
a plane. The weight wgeometric of a mesh edge e = [vi, v j] is defined
as follows:

wgeometric(i, j) = 1

|Hi| + |Hj| + ξ
(6)

where Hi and Hj are the mean curvature at vi and v j, respectively;
i, j ∈ {0..NV}, NV is the number of vertices in the input scan, ξ is a
small positive number (ξ = 0.0001).

4. Experiments

We prepared our test data by scanning a clothed mannequin in dif-
ferent types of clothing and evaluated our method both quantita-
tively and qualitatively against the baseline method [BKL21]. We
implemented our algorithm using Python and C++. Libigl [JP*18],
CGAL [The22] and OpenMesh [BSBK02] are used for geometry
processing.

4.1. Data preparation

We test our method with a mannequin taking T-pose. A green tight
suit is put on the mannequin before scanning to better differenti-
ate skin and garment. The mannequin is scanned with a multi-view
scanning system consisting of 134 cameras. The cameras are set up
in a ring configuration.

Note that although our extraction technique takes the scan data of
a clothed mannequin as input, it is totally independent of the data
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acquisition method/system ( e.g. photogrammetry or laser scan-
ning). The large-scale camera rig we utilized can be replaced by
multi-view images taken with a single camera.

Similarly, although a fixed mannequin and a colour-tight-suit
are prerequisites for our extraction technique, they can be easily
purchased nowadays. Moreover, sophisticated commercial/open-
source photogrammetry software has become widely available re-
cently. We hence believe that one has little difficulty preparing the
input scanned data.

In total, the mannequin was scanned with 14 different pieces of
garments, with 12 out of 14 being loose garments based on our
looseness criterion. Each scan of clothed mannequin is with a single
piece of garment so that no overlapping of multiple layers of clothes
occurs. During the entire scanning process, the mannequin is kept
roughly in a fixed pose and position so that the same set of man-
nequin priors can be re-used for all the clothed mannequin scans.

High-resolution 3D meshes of the clothed and naked mannequin
are then re-constructed with RealityCapture [Cap23]. After scanned
meshes are acquired, we prepare mannequin priors. These priors
include: pre-defined landmarks on the scanned naked mannequin
corresponding to joints; the body-part directions derived from land-
mark positions (see Figure 5). Among all our test data, each clothed
mannequin scan has about 200K polygons.

4.2. Evaluation metric

We use precision and recall for evaluation of extraction accuracy.
After locating true positive (TP), i.e. triangles on the extracted mesh
which overlap the ground truth mesh, precision and recall of extrac-
tion can be computed as follows:

precision = �TP

�extracted

recall = �TP

�GT

(7)

where�extracted and�GT are the area of extracted garment mesh and
ground truth garment mesh, respectively. The ground truth meshes
were created by manually extracting the garments from the scanned
data.

5. Results

The accuracy of extraction with baseline method [BKL21] and our
proposed method are reported in Table 2. Among 12 loose garments
extracted with our proposed method, 11 and nine garments demon-
strate accuracy higher than baseline method in terms of precision
and recall, respectively. Some qualitative comparison results are il-
lustrated in Figure 15. Please refer to Figures S1–S3 for complete
comparison results. Note that some of the garments in our test data
are categorized into ‘loose’ by definition while they are partially
‘tight’. For example, in the case shown in Figure 15k, the boundary
curves passing through the armpits are ‘tight’ while the boundary
curve that corresponds to the hemline is ‘loose’.

The baseline method [BKL21] extracts boundaries by locating
zero-isolines of an implicit function defined over the input scan.

Table 2: Extraction accuracy with baseline method and our proposed
method for our test data. The looseness column refers to the maximal loose-
ness of the garment’s all openings (except neckline). Bold values indicate
better results between the baseline and our proposed method.

Precision (%) Recall (%)

Garment Looseness Baseline Ours Baseline Ours

(a) Tight-pants 1.142 99.999 100.000 98.715 99.752
(b) Hoodie 1.117 98.877 99.940 99.999 99.882
(c) Shirt 1.251 99.198 99.748 99.098 98.796
(d) Polo-Shirt 1.340 96.279 99.867 99.907 99.698
(e) Long-Tshirt 1.436 99.256 99.892 98.980 99.829
(f) Knit 1.453 98.485 99.919 99.046 99.490
(g) Tshirt 1.503 94.087 99.949 100.000 99.391
(h) Jacket 1.530 96.981 99.601 98.343 99.875
(i) Down-coat 1.871 100.000 99.917 97.961 98.850
(j) Cardigan 2.511 99.085 99.948 99.300 99.371
(k) Tanktop 2.684 98.587 99.636 95.984 99.568
(l) Wide-pants 2.891 99.084 99.801 99.006 99.731
(m) Trench-coat 3.467 98.366 99.688 98.722 99.547
(n) Long-skirt 5.181 99.581 99.892 96.084 99.876

Since these isolines usually traverse across mesh edges, instead of
detecting sequences of existing mesh edges, the baseline method
sub-divides the original triangles near detected isolines. It can,
therefore, generate relatively smoother boundaries than our pro-
posedmethod, and performs generally well onmost of our scan data.

However, such smooth isolines turned out to be incapable of
approximating curvy boundaries, usually leaving mannequin skin
mesh unremoved around such boundaries (see the unremoved
meshes along the neckline in Figure 15f,h,j). For certain garments,
this poses a problem as the optimal boundary curves determined by
their curve optimization algorithm may deviate significantly from
actual boundaries, causing loss of useful structural information
of the target garment. As illustrated in Figure 15k, the baseline
method failed to preserve the shoulder-straps during skin-cloth
segmentation.

Another key difference between the baseline method and our
method is that their boundary optimization strategy uses a displace-
ment function that is based only on colour information, whereas ours
incorporates geometric information into the extraction of loose gar-
ments. As highlighted by the different extraction results around the
opening at the sleeves in Figure 15g,m, our method achieves no-
tably higher accuracy for loose garments with noisy gap-filling tri-
angles by incorporating geometric information (occluding contours
and curvature) into the pipeline. Furthermore, boundary initializa-
tion in the baseline method requires multiple sets of labelled region
points, splines and sign points, involving complicated projection of
these sign points and splines from SMPL template to the input scan.
Meanwhile, the only mannequin priors required by our proposed
method are the landmark positions of joints and perimeters of limbs.

Last but not the least, the baseline method relies on the accuracy
of SMPL fitting [ZPBPM17], and the accuracy of the initial pose es-
timated with OpenPose library [CHS*19]. During the experiments,
we confirmed that SMPL fitting of input scans made reasonably
good estimation of pose/shape (‘under clothing’). Nevertheless, this
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Figure 15: Examples of cases in which our proposed method performs noticeably better than the baseline method. Loss in garment meshes
and unremoved skin meshes resulted from the baseline method and corresponding results generated with proposed method are highlighted
with boxes in orange, lime and red, respectively.

remains a tedious and time-consuming procedure. To the contrary,
different from previous methods, our approach does not rely on any
form of body template. This not only frees our approach from the
need for time-consuming template registration, but also allows for
more robustness when extracting loose garments whose topologies
differ greatly from the body. Table 3 shows computation time for
the baseline method and our proposed method. The results prove
that our method can extract garments more efficiently than the base-
line method. Note that computation time for the baseline method
does not include the processing time for SMPL fitting. Therefore,
the actual computation time of the baseline method is expected to
be longer than it appears in the table.

6. Discussion

6.1. Anchor positioning

The extent to which detected occluding contours match the actual
garment opening depends on the position of the anchor. The oc-
cluding contours detected by our method are not guaranteed to be
optimal for all garments, especially when the input scan has noisy
gap-filling triangles.

Table 3: Comparison of computation time for baseline method (boundary
optimization) and our proposed method (garment extraction). Bold values
indicate shorter computation time between the baseline and our proposed
method.

Time (s)

Garment Baseline Ours

(a) Tight-pants 529 67
(b) Hoodie 463 78
(c) Shirt 289 141
(d) Polo-Shirt 306 112
(e) Long-Tshirt 711 118
(f) Knit 316 139
(g) Tshirt 299 109
(h) Jacket 392 206
(i) Down-coat 330 229
(j) Cardigan 325 140
(k) Tanktop 305 171
(l) Wide-pants 157 124
(m) Trench-coat 315 154
(n) Long-skirt 456 113
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Figure 16: Occluding contours are view-dependent: (left) occlud-
ing contours detected from the anchor correspond to colour-based
cut generated in stage I; (right) occluding contours detected from
the anchor correspond to actual garment opening. The anchors and
points on occluding contours viewed from the anchors are high-
lighted in red and lime, respectively.

Figure 17: F1-score for garment extraction on our test data when
k takes equidistant values ranging from 0.0 to 2.0. For most of our
test data, when k fluctuates within such a reasonably wide range,
accuracy of extraction remains relatively stable despite minor os-
cillation.

As illustrated in Figure 16, when some of the gap-filling triangles
are on the exterior of the garment opening, the anchor may needs
to be shifted a little away from the boundary curve centre, towards
exterior of the garment opening. By doing so, the occluding contours
detected correspond to the garment opening instead of colour-based
cut generated in stage I.

We have hence introduced an additional anchor fine-tuning pro-
cess as described in Section 3.5. According to Equation (5), the
range of anchor position is determined by a parameter k. We have
tested the impact of k on the accuracy of extraction. As illustrated
by Figure 17, the accuracy of our method, in terms of F1-score, is
insensitive to the value of k when k is within a reasonable range.
F1-score is defined as below:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(8)

Although a common value of k generates reasonably good results
for all garments in our test data, as indicated by Figure 17, differ-
ent garments may have slightly different optimal k values. Optimal
occluding contours are more likely to be detected if a user can man-
ually position the anchor properly with the aid of a real-time visual-

Figure 18: Examples of failure cases for our proposed method:
clothing with ornamental holes on the legs (o) and the shoulder (p).
The skin between the cuts, which is extracted as a part of the gar-
ment, is highlighted with boxes in red.

ization tool for occluding contours. This is a topic out of the scope
of this paper and remains to be investigated for future work.

6.2. Limitations

Although performing generally well on our test data, including
clothing with complex patterns such as stripes (see Figure 15f), our
proposed method still has certain limitations. First of all, while our
method takes a clothed mannequin scan as input, the re-construction
of the clothed mannequin itself is out of the scope of this work. Our
method assumes that the garments can be scanned properly and is
not intended for garments that may fail to meet the requirement,
e.g. garments made from semi-transparent materials. Another obvi-
ous limitation of our method is that it is targeted at regular clothing
with specific numbers of openings, e.g. upper-wear/one-piece with
four openings, pants with three openings and skirts with two open-
ings. It cannot handle clothing with ornamental holes such as ripped
jeans: the skin between the cuts would be extracted as a part of the
garment (see Figure 18). A possible solution to surpass this limi-
tation would be to enable the selection of boundary curves among
candidates by users through a user interface, which we shall leave
for future exploration.

7. Conclusion

In this work, we have introduced an easy-to-use two-stage pipeline
for extracting garments from scan data of clothed mannequins,
which enables the modelling of off-the-shelf clothing with fine de-
tails. Specifically, we have proposed a novel method for tracking
both tight and loose boundaries with a single pipeline. Our algo-
rithm is independent of both the data acquisition method and hu-
man template models such as the SMPL model and requires only
minimal mannequin priors. We have demonstrated the effectiveness
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Figure 19: Examples of simulated garments using garment meshes
extracted with our proposed method: (m) (left); (e) and (n) (middle);
(g) and (a) (right). Note that both tight and loose garments deform
following different poses of the avatars. Animation is created with
Marvelous Designer[CLO23].

of our method through quantitative and qualitative comparison with
the baseline method.

It is noteworthy that while we have only confirmed our method
using the set-up of a mannequin taking T-pose, our methodology
can be easily applied to the setup of a mannequin taking A-pose.

As for application, assets of virtual garments extracted with our
proposed method can be utilized directly in animation of clothed
avatars (see Figure 19). Note that the garment mesh extracted with
our method retains the geometric quality of the input mesh because
it simply cuts the input mesh along its original edges. The quality of
animation can be further improved after cleaning-up and retopology
of the garment meshes.

We noticed that for certain garments, e.g. Figure 19 (left), some
undesirable wrinkles are formed near the shoulders after reposing.
Leveraging an A-pose mannequin is expected to help produce gar-
ments without such wrinkles, while being more likely to introduce
more occlusion into regions such as armpits. A strategy to balance
this trade-off between occlusion and wrinkles is yet to be devised.
Such tasks, together with rigging, and skinning of garments are
promising directions to explore in the future for realistic cloth sim-
ulation and real-time animation.
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