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Abstract
We present a simple and effective method for the interactive segmentation of feature regions in a triangular mesh. From the
user-specified radius and click position, the candidate region that contains the desired feature region is defined as geodesic disc
on a triangle mesh. A concavity-aware harmonic field is then computed on the candidate region using the appropriate boundary
constraints. An initial isoline is chosen by evaluating the uniformly sampled ones on the harmonic field based on the gradient
magnitude. A set of feature points on the initial isoline is selected and the anisotropic geodesics passing through them are then
determined as the final segmentation boundary, which is smooth and locally shortest. The experimental results show several
segmentation results for various 3D models, revealing the effectiveness of the proposed method.
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1. Introduction

Mesh segmentation plays an important role in shape matching, pa-
rameterization, texturing and remeshing in geometric modelling and
processing. Existing methods are either based on automatic or in-
teractive algorithms, depending on the level of user intervention.
Even if automatic methods [AZC*11, LLZ*15, XLZ18, ZLS*20]
produce plausible segmentation results, sophisticated applications
require many user interventions for semantic segmentation.

Recently, harmonic fields have been widely used in both auto-
matic and interactive mesh segmentation [ZT10, AZC*11, MFL11,
ZTA11, ZLL*15, LLZ*15, LDB17]. Au et al. [AZC*11] pre-
sented an automatic mesh-segmentation method based on a set of
concavity-aware harmonic fields with large variations across con-
cave regions. The harmonic fields are computed by solving a Lapla-
cian system derived from a concavity-sensitive weighting scheme,
and then the segmentation boundaries are determined as isolines
with the maximum gradient magnitude. Zheng et al. [ZTA11] pro-
posed a novel single-click interface, called the dot scissor, for inter-
activemesh segmentation. Thismethod requires only a singlemouse

click to specify the proximity location through which the desired
segmentation boundary passes. From the user’s click position, four
concavity-aware harmonic fields are generated, and the uniformly
sampled isolines are voted on for selecting the optimal isoline. This
interface is effective and easy to use; however, the user is restricted
to only clicking on the concave boundary region. Therefore, for ex-
ample, if the user intends to segment the right tooth in Figure 1a by
clicking on the middle concave region of two teeth, the left tooth
may be segmented.

The minima rule suggested by Hoffman et al. [HR84, HS97]
described that based on human perception, people tended to cut
a shape along concave regions in the direction of the minimum
principal curvature. Segmentation methods based on the harmonic
field employ concavity information as a key measure for the un-
derlying algorithm, and the resulting segmentation boundaries gen-
erally satisfy the minima rule. However, people tend to segment
shapes along the shortest boundary locally, which is not guaran-
teed by the isoline sampled from the harmonic field. Therefore,
post-processing is required to shorten the segmentation boundary
[JLCW06].
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Figure 1: Effectiveness of the proposed method: (a) undesired segmentation from a click on the middle region of the teeth; (b) consistent
segmentations from arbitrary points in the ROI; (c) smooth and locally shortest segmentation boundary in yellow and (d) additive segmentation
using multiple mouse clicks.

To efficiently compute the locally shortest segmentation bound-
ary, Zhuang et al. [ZZCJ14] proposed an interactive mesh-
segmentation technique. They defined live wires as geodesics in
a new tensor-based anisotropic metric and introduced an effec-
tive mesh-embedding approach to efficiently compute anisotropic
geodesics. Their method generated the locally shortest segmenta-
tion boundary that was aligned with the features and curvature di-
rections. However, their method required many user interventions
to specify the intermediate points through which the geodesics
would pass.

In this paper, we present a simple and effective method for in-
teractive mesh segmentation that combines the strengths of the har-
monic field [AZC*11, ZTA11] and anisotropic geodesics [ZZCJ14].
A candidate region that contains the feature region of interest (ROI)
is defined as geodesic disc which can be specified by a single mouse
click for centre position followed by mouse scroll for radius. A
segmentation harmonic field sharply varying over the boundary of
an ROI is then generated and an initial segmentation boundary is
chosen from the uniformly sampled isolines on the harmonic field.
Some feature points on the initial segmentation boundary are se-
lected, and then, the anisotropic geodesics passing through them are
determined as the final segmentation boundary. In our method, un-
like that in Refs. [ZTA11, ZZCJ14], mouse clicks are not restricted
to concave regions and user intervections are not required to con-
struct the anisotropic geodesics. Therefore, consistent segmentation
boundaries can be obtained through a single mouse click on an ar-
bitrary point in the feature region as long as the candidate region
contains that region.

Figure 1 shows the representative results of the proposed method.
Our method allows the user to click on an arbitrary point in the fea-
ture ROI while producing consistent segmentation results. For ex-
ample, even though the user clicks three different points (in blue)
on the right tooth in Figure 1b, consistent segmentation results are
obtained as long as the right tooth is inside the candidate region
(in green). Additionally, the segmentation boundary is represented
by an anisotropic geodesic, which is smooth and locally shortest,
compared with the isolines selected from the concavity-aware har-
monic field. Figure 1c shows the initial isoline (inmagenta) and final
segmentation boundary (in yellow). Furthermore, a feature region
surrounded by a complex boundary can be easily segmented using
the proposed method. Figure 1d shows the result of such a segmen-
tation, which was obtained through four mouse clicks on different
feature regions.

Figure 2: Different segmentation boundaries (in cyan) are gener-
ated depending on the candidate region (in green) even if the user
clicks on the same point (in yellow) on the ear part in (a) and (b).

The proposed method in this paper has several advantages, which
can be summarized as follows.

• To segment the desired feature region, the user simply needs to
click on an arbitrary point in that region as long as the feature
region is inside a candidate region (see Figure 1b).

• Our method provides an effective control mechanism for seg-
menting a specific feature region among several possible ones by
allowing the user to control the radius of a candidate region at
runtime (see Figure 2).

• The segmentation boundary generated in this paper is represented
by anisotropic geodesics passing through feature points on the
isoline selected from a concavity-aware harmonic field. Thus, it
is smooth and locally shortest, compared to those generated by
the existing methods (see Figure 1c).

• Boolean operations, such as the union or difference of geodesic
discs, can define a new candidate region and thus, make it possi-
ble to segment the feature region of the complex boundary (see
Figure 1d).

• The proposed method is insensitive to mesh resolution and geo-
metric noise, while being able to produce stable and consistent
segmentation results (see Figure 3).
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Figure 3: Insensitivity of proposed method to (a) mesh resolution and (b) geometric noise.

The remainder of this paper is organized as follows. In Section 2,
we briefly review previous results on mesh segmentation. In Sec-
tion 3, we improve the concavity-aware harmonic field and explain
how to compute anisotropic geodesics on a triangular mesh, and
in Section 4, we describe the proposed method. In Section 5, we
present the experimental results and finally, in Section 6, we present
the conclusion of the paper and suggestions for future work.

2. Related Work

In this section, we briefly review previous work on various mesh
segmentation techniques that are directly related to our method.
Automatic methods for mesh segmentation do not require user
intervention, and numerous such techniques [AZC*11, LLZ*15,
XLZ18, ZLS*20] have been proposed, ranging from purely geomet-
ric approaches to deep neural networks. In this paper, we restrict our
discussion on previous work to interactive methods that require the
minimum interaction of a user while providing semantically mean-
ingful results. For a comprehensive review of mesh segmentation
methods, we referred to a recent survey [RMG18].

Sophisticated methods with various types of user interactions
have been proposed. Ji et al. [JLCW06] proposed a sketch-based
method for interactive mesh segmentation. This method is based on
a region-growing algorithm; it provides the users with an easy and
effective way to mark strokes in the foreground and background
while allowing them to select the ROI. Zheng et al. [ZT10] pro-
posed two types of brushes: part-brush and patch-brush. The part-
brush is used for constructing a harmonic field on semantic parts,
and the patch-brush is used for flattening surface patches. Through
these brushes, the user could select the desired region with a sin-

gle stroke. In this paper, we propose an interface similar to the dot
scissor [ZTA11] for segmenting triangular meshes. However, our
method does not restrict the user’s click position to the concave re-
gion and provides consistent segmentation results even if the user
clicks on arbitrary points in the desired region to be selected.

From a technical perspective, various algorithms have been em-
ployed for mesh segmentation, including region growing, watershed
segmentation, clustering, and segmentation field. Region growing
is a method of expanding the initial region while satisfying con-
vexity, which was first inspired by the convex decomposition algo-
rithm [CDST97]. Mangan andWhitaker [MW98, MW99] proposed
a watershed method that was another type of 3D mesh segmenta-
tion based on image segmentation and analysis [Ser83]. Katz and
Tal [KT03] proposed a new hierarchical mesh-decomposition algo-
rithm based on fuzzy clustering and cuts. However, most of these
methods did not guarantee that a closed segmentation boundary
would be obtained. To resolve this limitation, segmentation meth-
ods [ZT10, ZTA11, AZC*11] based on a harmonic field have been
proposed, wherein a closed segmentation boundary is determined
as a closed isoline on the harmonic field.

In this paper, we employed a concavity-aware harmonic field with
large variations across the concave regions. This approach has sev-
eral advantages, such as being insensitive to mesh noise and changes
in mesh posture. Concavity-aware harmonic fields have been widely
used in various applications. Zou et al. [ZLL*15] applied it to the
interactive tooth segmentation of dental meshes. Based on prior
knowledge of human teeth, this method provides effective bound-
ary constraints for constructing harmonic fields on dental meshes.
Additionally, a refining strategy was introduced here to successfully
segment teeth from a complicated dental mesh with indistinctive
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tooth boundaries on the lingual surface. Later, this method was ex-
tended to the automatic segmentation of dental meshes [LLZ*15].

Generally, the isoline obtained from a harmonic field is neither
smooth nor locally shortest. Thus additional post-processing is re-
quired to use it as the final segmentation boundary [JLCW06].
This is because the generated boundary tends to depend on the
topology of the mesh rather than on the part to be segmented.
Anisotropic geodesics can be effectively used for segmentation
boundaries as an alternative to isoline. Zhuang et al. [ZZCJ14]
defined a new tensor-based anisotropic metric to generate the
shortest segmentation boundary along the feature and curvature
directions. For computational efficiency, they proposed the mesh
embedding approach and computed anisotropic geodesic efficiently
using the existing geodesic algorithms [MMP87, SSK*05, CH90,
XW09, CHK13]. In the SeamCut of Lucquin et al. [LDB17], iso-
lines of harmonic fields are created with a few sketches, and the
mesh is segmented by growing seams along anisotropic geodesic
paths. Yang et al. [YWZK20] presented an intuitive user interface
for dental mesh segmentation using the anisotropic geodesics pro-
posed by Zhuang et al. [ZZCJ14].

In this paper, we employed two existing techniques; a concavity-
aware harmonic field and anisotropic geodesics. However, we take
a different approach to generating them. The concavity-aware har-
monic field is generated by single mouse click on arbitrary points in
ROI. For this, we propose newmethods for computing edge weights
and boundary constraints. The initial isoline selected from the har-
monic field is not sufficient to serve as the desired segmentation
boundary. To resolve this limitation, we present a method for com-
puting anisotropic geodesics that align with the mesh features and
curvature directions from the initial isoline.

3. Mathematical Background

This section introduces the fundamental techniques of the proposed
method. Given a triangular mesh M = (V,E ), where V is the set of
vertex indices and E is the set of edges, we present an effective way
to construct a concavity-aware harmonic field with large variations
across a concave region onM (Section 3.1) and compute anisotropic
geodesic between two points that follows the geometric features of
M (Section 3.2).

3.1. Concavity-aware harmonic field

Let f : M → R be a scalar function on a triangle meshM and fi be
the corresponding function value of a vertex i ∈ V . The Laplace–
Beltrami operator [MDSB03] (also known as Laplacian), when ap-
plied to fi, produces the following expression:

� fi =
∑
j∈N1(i)

wi j( f j − fi),

where N1(i) represents the one-ring neighbouring vertex indices of
vertex i and wi j is the weight of an edge (i, j) ∈ E. Intuitively, � fi
is the sum of the weighted differences between fi and f js, and the
cotangent weight [MDSB03] is commonly used for various appli-
cations. The Laplacian of all the fis can be computed efficiently as

follows:

�f =

⎡⎢⎢⎢⎢⎢⎣
� f1

� f2
...

� fn

⎤⎥⎥⎥⎥⎥⎦ = L

⎡⎢⎢⎢⎢⎢⎣
f1

f2
...

fn

⎤⎥⎥⎥⎥⎥⎦ = Lf,

where n is the number of vertices and L is the n× n Laplacian
(sparse) matrix that encodes the edge weights wi j.

A harmonic field is a special type of scalar function of M that
satisfies the Laplace equation Lf = 0 with Dirichlet boundary con-
straints. Let fu = [ f1 · · · fm]T be the unknown values for the un-
constrained vertices and fc = [ fm+1 · · · fn]T be the given values
for the constrained vertices. Then the harmonic field can be con-
structed by solving the following linear system:[

Lu Lc

0 I

][
fu
fc

]
=

[
0

fc

]
⇒ Lufu = −Lcfc, (1)

where Lu and Lc are the submatrices of L and the unknown vector fu
can be efficiently found by sparse Cholesky factorization [BKP*10].

Figure 4a shows an example of the harmonic field f which is con-
structed using two constraints: one (in red) and zero (in blue)—and
cotangent weights; these weights are commonly used in various ap-
plications [MDSB03]. The uniformly sampled isolines (in white)
show a smooth variation in f over the entire meshM, which is suit-
able for shape deformation or approximation rather than mesh seg-
mentation. To utilize a harmonic field for mesh segmentation, the
field needs to have large variation in a concave region so that the
uniformly sampled isolines are gathered at the concave region as
densely as possible.

To produce such harmonic field, Au et al. [AZC*11] proposed a
concavity-aware weighting scheme which defines edge weights as
follows:

wi j =

⎧⎪⎨⎪⎩
−∑

k∈N1(i) wik if i = j,
|ei j |
Gi j

β if (i, j) ∈ E,

0 otherwise,

(2)

where |ei j| is the length of the edge (i, j) ∈ E; and Gi j is the sum of
the absolute Gaussian curvature at vertex i and j. In Equation (2),
the constant β is a key component for generating large variation in a
concave region. Au et al. [AZC*11] set β = 0.01 if either vertex i or
j is concave, and β = 1, otherwise. Concave vertex can be identified
by the following condition:

(p̂i − pi) · ni > 0, (3)

where pi and ni are the position and normal of a vertex i and p̂i is
the centroid of one-ring vertices. Figure 4b shows the harmonic field
generated by this weighting scheme.

In this paper, we improve the weighting scheme in Equation (2)
to produce a harmonic field with much larger variations in a con-
cave region. The basic idea is to promote the step function β to a
smooth function β(·) of mean curvature to better reflect the con-
cavity. Concavity condition in Equation (3) only informs whether a
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Figure 4: Comparison of harmonic fields generated by different weighting schemes: (a) cotangent weights; (b) concavity-aware weights in
Au et al. [AZC*11]; (c) concavity-aware weights in Zheng et al. [ZTA11] and (d) weights under proposed method.

vertex is concave or not, but it does not give how much it is con-
cave, which can be measured by mean curvature. Thus, we employ
the mean curvature to sophisticate the concavity condition. Let Ĥ
be the maximum mean curvature and Hi j be the sum of the mean
curvature at vertex i and j. We define β(t ) as follows:

β(t ) =
{

1
1+100t2

if t > 0,

1 otherwise,

where 0 ≤ t(= Hi j
2Ĥ

) ≤ 1. Note that β(t ) is inversely proportional

to Hi j and smoothly changes from 1 (Hi j = 0) to 0.01 (Hi j = 2Ĥ ),
whereas a constant value β = 0.01 was used in Au et al. [AZC*11].
Figure 4d shows the harmonic field constructed using our weighting
scheme, which exhibits much larger variations in concave regions.
Note that more isolines are densely gathered at the neck and tail re-
gions of the model compared to those in other weighting schemes in
Figure 4b,c. Once a concavity-aware harmonic field is constructed,
we choose the isoline with the highest score (see Section 4.2) and
then improve it using an anisotropic geodesic (see Sections 3.2 and
4.3).

3.2. Anisotropic geodesics

Zhuang et al. [ZZCJ14] proposed an anisotropic distance met-
ric such that the shortest geodesic followed the ridge, valley,
and curvature directions. In this paper, we employed anisotropic
geodesics [ZZCJ14] to improve the isoline selected from the
concavity-aware harmonic field constructed by our weight-
ing scheme.

Let gi(v) be a distance metric defined for each vertex i ∈ V and a
tangent vector v at i. The length of vector v is computed as follows:

gi(v) =
√
vTMiv,

whereMi is a 2D symmetric tensor that controls the isotropy of the
distance metric and is identical to the identity matrix for the Eu-
clidean distance,Mi, which represents the anisotropic distance, can
be determined as follows:

Mi =
[
e1 e2

][λ1 0

0 λ2

][
e1 e2

]−1
, (4)

where ei is the direction along which the vector length is modified
by the value of λi. Several approaches [PSH*04, KMZ10, CBK12,
ZZCJ14] exist for defining tensor-based anisotropic metrics. We
employed the metric proposed by Zhuang et al. [ZZCJ14], who
chose e1 (e2) as the direction of the maximum (minimum) normal
curvature, and λ1 and λ2 as follows:

λ1 = 1 + γ (|κ1| − |κ2|), λ2 = 1

λ1
, (5)

where κ1 and κ2 are the maximum and minimum normal curva-
tures, respectively, and γ = 0.01 is a user-specified constant. Con-
sequently, the anisotropic metric determined using Equations (4)
and (5) increases the length of a vector in the e1 direction and de-
creases it in the e2 direction because λ1 > 1 and λ2 < 1.

Based on the anisotropic metric discussed above, the edge length
|ei j| can be modified such that it elongates (shortens) in the maxi-
mum (minimum) curvature direction. Figure 5 shows two geodesic
distance fields computed by isotropic and anisotropic metrics, re-
spectively, where the isolines (in grey) represent equidistance from
the source vertex S. Note that the isolines are expanded along
the minimum curvature direction and shrink along the maximum
curvature direction. Moreover, the shortest geodesic path on the
anisotropic metric follows the features and the minimum curva-
ture direction; satisfying the minima rules of Hoffman et al. [HR84,
HS97] for mesh segmentation based on human perception. Specif-
ically, people tend to cut a shape along concave regions in the di-
rection of the minimum principal curvature, as shown in Figure 5b.
Additionally, it is not necessary to find an explicit triangular mesh
with modified edge lengths because the geodesic distance field can
be computed from edge lengths and connectivity, that is, the intrin-
sic representation of a triangular mesh. Further details on this can
be found in Zhuang et al. [ZZCJ14].

The initial isoline selected from the concavity-aware harmonic
field (Section 3.1) is neither smooth nor locally shortest. There-
fore, it needs to be improved by anisotropic geodesics introduced in
this section. Specifically, final segmentation boundary will be deter-
mined as anisotropic geodesics passing through key points sampled
on the initial isoline (Section 4.3).
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Figure 5: Shortest geodesic paths (in black) between S and T on
(a) isotropic distance field and (b) anisotropic distance field.

4. ROI Scissor

By combining the concavity-aware harmonic field with anisotropic
geodesics, we propose a simple and effective interface, called the
ROI scissor, for interactively segmenting the feature ROI in a trian-
gular mesh.

4.1. Boundary constraints

Boundary constraints play a crucial role in constructing a concavity-
aware harmonic field and at least two boundary constraints
are required to avoid the trivial solutions in Equation (1). Au
et al. [AZC*11] located extreme vertices in a harmonic field con-
structed by a random vertex and used them as boundary constraints.
Zheng et al. [ZTA11] sampled four pairs of points on a user-
specified circle on a screen and projected them onto a triangular
mesh to determine the boundary constraints of the harmonic field.
Although this method provides an intuitive and easy-to-use inter-
face, the user’s input is limited to the concave region through which
the segmentation boundary passes.

In this paper, we take a different approach to determining the
boundary constraints. We also aim to compute the segmentation
boundary of a feature region from a single mouse click, which can
be an arbitrary point in the ROI. For this, a candidate region C(r),
which is a geodesic disc on a triangular mesh, is defined as follows:

C(r) = {
i ∈ V |dg(i, s) < r

}
,

where r is the user-controllable radius and dg(i, s) is the geodesic
distance to the vertex i from the source vertex s specified by the
user’s mouse click. The radius r can easily be controlled by mouse
scroll at runtime and it remains unchanged until a new value is spec-
ified.

Once the candidate region has been determined, the appropriate
boundary constraints are assigned to the vertices inC(r). We assign
one to the vertices whose geodesic distance to s is less than 0.1r
and zero to the end vertices on the edges that intersected with the
boundary of C(r). The constant 0.1 for the constrained vertices of
ones was determined empirically. For a smooth region, one vertex
closest to the click position is sufficient, however, more vertices are
necessary for bumpy region. Figure 6 shows the boundary (in green)
of the candidate region and constrained vertices with ones (in red)
and zeros (in blue), respectively.

Figure 7 shows two different harmonic fields constructed using
the same source vertex s but different candidate regions. The candi-
date region in Figure 7a intersects with the ears of the Bunny model,
while the one in Figure 7b covers entire head region. Consequently,
different isolines (in white) are extracted depending on the user-
specified radius r even if the same source vertex s is used. This pro-
vides a flexible mechanism for selecting the desired feature region
by interactively controlling the size of the candidate region. For ex-
ample, only the face region of the Bunny model is selected in Fig-
ure 8a, whereas the entire head part region is selected in Figure 8b.

Figure 9 shows two harmonic fields constructed using different
sources in ROI but the same radius. The generated harmonic fields
show large variation in the neck region similarly, which allows the
user to click on arbitrary vertex in ROI to obtain similar segmenta-
tion results.

In most cases, the candidate region defined by one geodesic disc
contains the ROI to be segmented. However, there are cases wherein
the geodesic disc is not sufficient to cover feature regions with com-
plex boundary shapes, as shown in Figure 10a. In this paper, we pro-
pose an efficient way to resolve this limitation by using Boolean op-
erations, such as union and difference of geodesic discs. Figure 10b
shows an example of the union of candidate regions defined by three
mouse clicks and the corresponding harmonic field generated by
the boundary constraints explained above. This mechanism signifi-
cantly facilitates the user to interactively segment the desired region
while adding or subtracting specific regions.

4.2. Initial segmentation boundary

Once the harmonic field is constructed from the user-specified ver-
tex s and distance r, the next step is to choose an isoline that serves
as the initial segmentation boundary. For this, we uniformly sample
isolines Ii, where i = 1, 2, . . . ,m. Let T be a triangle intersecting
with Ii and f j, where j = 1, 2, 3 be the harmonic value for each ver-
tex of T . The gradient of the harmonic field on T is computed as
follows [MDSB03]:

∇ fT = 1

2AT

3∑
j=1

f je⊥
j ,

whereAT is the area of triangle T and⊥ denotes a counter-clockwise
rotation of 90◦ in the triangle plane (see Figure 11). Note that the
gradient ∇ fT is constant on triangle T and informs the direction
along which the harmonic field varies maximally and ‖∇ fT‖ indi-
cates the amount of its variation. In this paper, we aim to choose
an isoline Î across which the harmonic field exhibits the maximum

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



J.-H. Moon et al. / ROI Scissor: Interactive Segmentation of Feature Region of Interest in a Triangular Mesh 7 of 14

Figure 6: Candidate regions and the constrained vertices of one (in red) and zero (in blue).

Figure 7: Generation of different harmonic fields in (a) and (b) by
the same source vertex s depending on the radii of the candidate
region.

Figure 8: Different isolines Î (in magenta) are selected from the
harmonic fields in Figure 7.

variation. For this purpose, we evaluate each isoline Ii by computing
its score Si as follows:

Si =
∑
T∈T̂

|Ii ∩ T |
|Ii| ‖∇ fT‖,

where T̂ is the set of all the triangles intersecting with the isoline Ii;
and |Ii| and |Ii ∩ T | are the lengths of Ii and the intersecting segment
between Ii and T , respectively (see Figure 11). Isoline Î, which has

Figure 9: Generation of similar harmonic fields by two different
source vertices in ROI.

Figure 10: Concavity-aware harmonic field constructed by union
of candidate regions.

the highest score, is then chosen for the initial segmentation bound-
ary. Intuitively, Si can be considered as the changing rate of a har-
monic field per unit length of Ii.

Figure 8 shows two selected isolines Î (in magenta) with the high-
est scores among the uniformly sampled 50 isolines in Figure 7a,b,
respectively. Note that the segmentation boundary may have two
separate isolines with the same isovalue as shown in Figure 8a.

Our method can generate the segmentation field reliably, even
if it is ambiguous to segment concave parts visually. The isolines
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Figure 11: Computation of the score Si of an isoline Ii (in magenta).

Figure 12: Initial isoline Î (in magenta) is selected robustly, even
for the ambiguous concave region.

sampled from the segmentation field are always composed of a fi-
nite set of nonself-intersecting closed loops. For example, it is not
easy to identify concave part on the lower right of the back leg the
Bunny model in Figure 12a. However, our method can select the
best isoline (in magenta) forming a round almost circular loop as
shown in Figure 12b.

4.3. Geodesic segmentation boundary

Although the isoline Î, with the highest score, can be used for the
final segmentation boundary of a feature region, Î is neither smooth
nor locally shortest, as shown in Figure 13. This limitation can be
resolved by employing the anisotropic geodesic introduced in Sec-
tion 3. Specifically, we choose feature points p1, p2, . . . ,pk with
a relatively higher mean curvature on Î and then find the closed
anisotropic geodesic that passes through them.

To determine these feature points, we first divide the initial isoline
Î into k segments with uniform length, that is, Î = Î1 ∪ Î2 ∪ · · · ∪ Îk.
Let T̂i be the set of triangles intersecting with the ith segment Îi.
For each triangle in T̂i, we compute the mean curvature at its cen-
troid and determine the centroid pi with the maximum curvature as
the feature point pi in Îi. In this manner, we can find the feature
points (in blue), as shown in Figure 14a, where the model is visual-
ized as a colour-coded mean curvature field. Finally, the geodesics

Figure 13: Initial isoline Î (in magenta) is neither smooth nor lo-
cally shortest.

Figure 14: Computation of geodesic segmentation boundary: (a)
feature point (in blue) with the highest mean curvature in each seg-
ment; and (b) resulting geodesic segmentation boundary (in cyan)
passing through the feature points.

(in cyan) passing through the feature points is determined as the fi-
nal segmentation boundary as shown in Figure 14b. We determined
the number of segments as 10% of the number of triangles inter-
secting with the initial isoline Î, empirically. Figure 15 shows more
examples of geodesic segmentation boundaries (in cyan) generated
from the initial segmentation boundaries (in magenta) using the pro-
posed method.

5. Experimental Results

The proposed method was implemented on a PC with an Intel Core
i5-10400 processor, a 2.90-GHz CPU, 16 GB main memory and
an NVIDIA GeForce GTX 1650 graphics card, using the C++
language. In this section, we demonstrate the effectiveness of the
proposed method by segmenting the feature regions of various
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Figure 15: Geodesic segmentation boundaries (in cyan) generated from the initial isolines (in magenta).

triangular meshes that include the Princeton Segmentation Bench-
mark (PSB) dataset [CGF09] and 3D scanned tooth models.

5.1. Intuitive usability

Our primary goal is to provide the user with a mesh segmentation
method that is easy-to-use and has intuitive usability. To segment the
desired feature region, the user simply needs to click on an arbitrary
point in the desired region. The geodesic segmentation boundary,
which is smooth and locally shortest, gets automatically generated.
To demonstrate the usability of the proposed method, various exper-
iments were performed. Figure 16 shows the segmentation results of
the threemodels used in the experiments. For eachmodel, consistent
segmentation boundaries (in cyan) were generated even though the
user clicked three different points (in yellow) in the feature region.
These examples demonstrate the usability of our method; that is, it
produces similar segmentation results; as long as the user simply
clicks on arbitrary points in the desired feature region. Compared
with the dot scissor [ZTA11], our method provides the user with
more flexibility in the click position; even users familiar with the
dot scissor can easily use our method without difficulty.

5.2. Effective control and consistency

Our method provides an effective control mechanism for segment-
ing a desired feature region even when the user clicks on the same
point. This mechanism can be easily realized by allowing the user
to scroll the middle mouse button at runtime to control the radius
of the candidate region. Figure 2 shows the controllability of our
method; two segmentation results are compared, wherein the user
clicks on the same point on the ear part; however, different segmen-
tation results are obtained by the candidate regions (in green).

Combined with the Boolean operations of the candidate regions
introduced in Section 4, this control mechanism significantly fa-
cilitates the segmentation of a feature region with a complicated
boundary. For example, the user can add (remove) a feature re-
gion to (from) a previously segmented region while adjusting the
radius of the candidate region. Figure 17 shows the union of the fea-
ture regions, where the final segmentation boundary is generated by
four mouse clicks, and candidate regions of different radii are used
for each segmentation. This type of additive segmentation would
be challenging using existing methods [JLCW06, ZT10, ZTA11].
Figure 18a shows additional example of additive segmentation of
3D scanned tooth model, where a large candidate region (in green)
is defined as the union of the geodesic discs specified by multiple
clicks, and the teeth are segmented from the gums using appropri-
ate boundary constraints. Figure 18b shows the results of individual
tooth segmentation, as the user clicks on an arbitrary point on each
tooth sequentially. Figure 18c,d shows the effects of the different
sizes of candidate regions (in green) where too small candidate re-
gion may produce an undesired segmentation result (Figure 18c),
which will be discussed in Conclusion.

The proposed method is insensitive to both geometric resolution
and noise. Figure 3a shows the five segmentation results for the Bud-
dha model with different numbers of triangles. Note that our method
generated consistent segmentation boundaries despite the mesh res-
olutions being different. In addition, our method is insensitive to
geometric noise and produces consistent segmentation results, as
shown in Figure 3b.

5.3. Evaluation

Figure 19 shows three segmentation boundaries, each of which
is generated by the dot scissor (in blue) [ZTA11], initial isoline
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Figure 16: Segmentation results of three models; all segmentation boundaries (in cyan) for each model are generated from different user-
clicked points (in yellow).

Figure 17: Sequence of additive segmentations.

Figure 18: Segmentation of 3D scanned tooth model.

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



J.-H. Moon et al. / ROI Scissor: Interactive Segmentation of Feature Region of Interest in a Triangular Mesh 11 of 14

Figure 19: Comparison of three segmentation boundaries: dot scissor (in blue), initial isoline (in magenta) and anisotropic geodesics (in
cyan).

Table 1: Comparison of several segmentation boundaries.

Segmentation boundary
(a) Sum of

mean curvature (b) Length (a)/(b)

Initial isoline 10.695432 1.328787 8.049017
Left wing Aniso. geodesic 10.930929 1.232984 8.865425

Dot scissor 9.656585 1.260928 7.658317
Initial isoline 11.522935 1.494311 7.711203

Right wing Aniso. geodesic 10.197441 1.261243 8.085232
Dot scissor 10.288594 1.329011 7.74154

(in magenta) and anisotropic geodesics (in cyan). Based on the min-
ima rule [HR84, HS97], we evaluated the segmentation boundary
by measuring the mean curvature per unit length. More specifi-
cally, we computed the sum of the mean curvatures at the edge
intersections with each segmentation boundary and divided it by
its length. The evaluation results of the segmentation boundaries
in Figure 19 are listed in Table 1, wherein the geodesic segmen-
tation boundary shows a higher mean curvature per unit length.

Note that we employed a mean curvature for an unbiased compar-
ison; because the dot scissor and the proposed method generally
generated different harmonic fields. Figure 20 compares various
segmentation boundaries generated by dot scissor and our method,
respectively.

We performed quantitative evaluations of our segmentation re-
sults using the PSB dataset, which includes 380 models from 19
object categories. We randomly chose 19 models—one for each
category—and requested several users to segment each model into
parts without giving any specific information about the number of
parts. Figure 21 shows the results of the mesh segmentations ob-
tained by a user. Each feature region was segmented by a single
mouse click on the candidate region of an appropriate radius con-
trolled by the user. On an average, it took less than 1 min for
the simple models and less than 2 min for the complex models
with several parts. Based on the protocols in Chen et al. [CGF09],
we measured four error metrics: Cut Discrepancy (CD); Ham-
ming Distance (HD); Rand Index (RI); and Consistency Error
(CE). We referred to these protocols for more details on the er-
ror metrics. Figure 22 shows the evaluation results by comparing

Figure 20: Comparison of segmentation boundaries generated by (a) dot scissor (in blue) and (b) ROI scissor (in cyan). ROI, region of
interest.
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Figure 21: Mesh segmentation results using PSB data set [CGF09]. PSB, Princeton Segmentation Benchmark.

Figure 22: Evaluation of segmentation results using the protocols in Chen et al. [CGF09]: (a) CD, (b) CE, (c) HD and (d) RI. CD, Cut
Discrepancy; CE, Consistency Error; HD, Hamming Distance; RI, Rand Index.

our method with manual segmentation and the dot scissor, respec-
tively. Our results showed lower or similar errors than those of these
methods.

The proposed method showed interactive speed for all the ex-
amples tested in the experimental results (see supplemental video).
Computation time consists of three components: (i) construction

of the harmonic field; (ii) selection of the initial isoline and fea-
ture points and (iii) construction of the anisotropic geodesics.
Since the computations are restricted to the candidate region,
the computation time is proportional to the number of vertices
or faces in the candidate region. Table 2 shows the detailed re-
sults of the computation times for some segmentation results in
Figure 21.
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Table 2: Timing results for the segmentations of models in Figure 21.

Model Time (in ms)

Name(part)
#Vertex of

candidate region
#Face of

candidate region
Concavity-aware
harmonic field

Initial segmentation boundary
and selection of feature points

Anisotropic
geodesic boundary Total

Bearing(upper) 1272 2441 8.8334 22.4485 0.95475 32.2366
Plier(handle) 2297 4514 10.4446 3.9224 0.6058 14.9728
Dolphin(tail) 1330 2611 5.4067 4.6563 0.7861 10.8491
Chair(leg) 1165 2269 5.572 6.6053 0.5983 12.7756
Bird(wing) 3940 7724 17.0493 5.9612 0.8089 23.8194
Horse(neck) 1238 2405 8.8606 7.2564 0.5969 16.7139
Airplane(wing) 1969 3870 11.0634 8.5171 0.878 20.4585
Octopus(head) 3338 6566 18.798 5.4619 1.9461 26.2060
Hand(index) 3541 6865 13.734 6.4676 0.5102 20.7118
Glasses(frame) 2149 4220 10.4589 6.8879 0.5509 17.8977
Giraffe(neck) 5014 9869 21.4279 9.7341 0.8896 32.0516
human(arm) 7291 14,354 27.8941 17.9009 0.8233 46.6138
Vase(handle) 6379 12,534 25.4951 20.4722 1.299 47.2663
Cup(handle) 5490 10,815 26.011 20.8542 1.3618 48.2270
Armadillo(arm) 10,442 20,569 53.5425 60.004 0.5611 114.1076

6. Conclusion

We proposed a simple and effective interface, the ROI scissor,
for the interactive segmentation of feature regions in a triangular
mesh. Our method is based on a concavity-aware harmonic field and
anisotropic geodesics. The concavity-aware harmonic field is im-
proved by our sophisticated weighting scheme, allowing it to iden-
tify concave regions more clearly. Also anisotropic geodesics can
be automatically constructed by providing feature points carefully
selected from the improved harmonic field. In the experimental re-
sults, we demonstrated the usability, controllability and consistency
of the proposed method through several segmentation results for
various 3D models, including the PSB dataset [CGF09]. Based on
a quantitative evaluation, our method showed slightly lower or sim-
ilar errors compared to those of manual segmentations and exist-
ing methods.

In the current implementation, segmentation results can be af-
fected by the candidate region and its manual control can be a
weakness of the proposed method even though an effective control
mechanism is provided. Once the radius of a candidate region is de-
termined, it remains unchanged until a new one is set. Therefore, the
user does not need to adjust the candidate region as long as the de-
sired feature region is contained in the candidate region. However, it
would be necessary to increase the radius of candidate region when-
ever the desired feature region is not inside the current candidate
region. Figure 18c shows an example of such case where the candi-
date region (in green) is too small to cover the desired tooth. In this
case, the user has two options: (i) expanding the candidate region, or
(ii) performing additive segmentation explained above. Large can-
didate region has a relatively small effect on the segmentation re-
sult if the desired feature region has a definite concave boundary as
shown in Figure 18d. Even if there exist several candidate bound-
aries, our method will find the best one with maximum variation of
a harmonic field.

In future research, we plan to extend the proposed method to au-
tomatic segmentation for a specific type of models. For this, we
need to find how to determine the radius of the candidate region and
click position automatically. We also plan to develop a segmenta-
tion method for volumetric meshes. Since it is difficult to construct
a segmentation field on a volumetric mesh, further research will be
necessary.
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