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Abstract
Efficiently simulating the full range of light effects in arbitrary input scenes that contain participating media is a difficult task.
Unified points, beams and paths (UPBP) is an algorithm capable of capturing a wide range of media effects, by combining bidi-
rectional path tracing (BPT) and photon density estimation (PDE) with multiple importance sampling (MIS). A computationally
expensive task of UPBP is the MIS weight computation, performed each time a light path is formed. We derive an efficient algo-
rithm to compute the MIS weights for UPBP, which improves over previous work by eliminating the need to iterate over the path
vertices. We achieve this by maintaining recursive quantities as subpaths are generated, from which the subpath weights can be
computed. In this way, the full path weight can be computed by only using the data cached at the two vertices at the ends of the
subpaths. Furthermore, a costly part of PDE is the search for nearby photon points and beams. Previous work has shown that
a spatial data structure for photon mapping can be implemented using the hardware-accelerated bounding volume hierarchy
of NVIDIA’s RTX GPUs. We show that the same technique can be applied to different types of volumetric PDE and compare
the performance of these data structures with the state of the art. Finally, using our new algorithm and data structures we fully
implement UPBP on the GPU which we, to the best of our knowledge, are the first to do so.

Keywords: global illumination, novel applications of the GPU, ray tracing, rendering
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1. Introduction

Physically accurate light simulation is complex, as light behaviour
depends on materials and media it interacts with. As a consequence,
scenes that vary in geometric configuration and object parameters
produce different light paths. While many different path sampling
techniques have been developed over the years, no single technique
is able to best capture all possible light paths, as they typically per-
form well on specific path subsets and poorly on others. The versa-
tile bidirectional path tracing [LW93, VG94] (BPT) technique per-
forms well on direct and smooth indirect lighting. Photon density
estimation (PDE) techniques [JNSJ11] complement this nicely by
handling well concentrated indirect lighting and caustics.

Multiple importance sampling [VG95] (MIS) combines multi-
ple sampling techniques. After the individual techniques have been
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evaluated, the total contribution is a weighted sum of contributions.
MIS can make the combined algorithm robust, meaning that it per-
forms well regardless of the light effects in the scene. However, eval-
uation is costly due to having to evaluate multiple strategies.

Unified points, beams, and paths [KGH*14] (UPBP) uses MIS
to combine PDE and BPT, which are complementary in terms of
strengths and weaknesses. UPBP starts by sampling light paths orig-
inating from light sources. Photon maps are created, which are data
structures that contain all points and segments of the light paths.
Next, paths are sampled starting at the camera. At every step, the
data structures built in the previous step are used to find nearby light
data. Using the light and camera subpaths, the BPT and PDE esti-
mators are evaluated. The contributions obtained by evaluating the
estimators are combined using MIS, which basically means com-
puting a weight based on the used estimator. Due to the large num-
ber of estimators present in UPBP, computing the MIS weights is
computationally intensive. In Section 4, we derive an efficient algo-
rithm for computing the MIS weights in UPBP. By reformulating

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

1 of 14

https://diglib.eg.orghttps://www.eg.org

http://creativecommons.org/licenses/by/4.0/


2 of 14 N. Moonen and A. C. Jalba / Efficient Hardware Acceleration of Robust Volumetric Light Transport Simulation

the weight so that it can be incrementally computed as subpaths are
sampled, redundant computations are avoided. Here, we build upon
previous work, specifically by adding support for participating me-
dia and additional volumetric estimators.

Recent advances in GPU hardware have led to the inclusion of
hardware units to accelerate ray casting. Not only can this hardware
be used to accelerate the generation of light paths, but it can also be
creatively used for other purposes. In this work, we leverage these
GPU capabilities to accelerate the UPBP method. To this end, in
Section 5 we present data structures for PDE that make use of ray
tracing frameworks. The selection of a performant data structure is
crucial for improving the PDE estimator’s speed and, in turn, the
performance of UPBP.

In Section 2, we review highly-related work. We cover neces-
sary background in Section 3. In Section 6, we evaluate our full
GPU implementation and show that it significantly improves over
a CPU-based implementation. Furthermore, we compare our indi-
vidual data structures to state-of-the-art and find that in most cases,
considerable speedups can be achieved. We conclude and discuss
avenues for future work in Section 7.

2. Related Work

In this section, we briefly review highly-related works on efficient
GPU light transport algorithms. While many different algorithms
exist, we focus only on those that make up UPBP: BPT and (volu-
metric) PDE.

Virtually all global illumination algorithms rely on ray casting as
a fundamental operation to locate the closest intersection of a ray
with the scene. Work that uses the GPU for this operation mostly
focuses on construction and traversal algorithms for acceleration
structures. The most popular data structures are bounding volume
hierarchies, on which Meister et al. recently conducted a survey
[MOB*21]. Another main challenge in implementing ray casting
on the GPU is dealing with thread divergence, stemming from ran-
dom walks terminating at different lengths. As the GPU executes
groups of threads at the same time, diverging threads remain idle.
Aila and Laine [AL09] use a set of persistent threads that take a
new path out of a queue when the current one is done. Novak et al.
[NHD10] improve on this by removing the need for a queue and van
Antwerpen [vA11a] refines it by grouping similar threads. Meister
et al. [MBGB20] investigate reordering rays before traversing ac-
celeration structures. For ray casting, full GPU solutions are avail-
able such as OptiX [PBD*10] that deal with the above concerns.
In our approach, we have used OptiX as its newer versions utilizes
NVIDIA’s RTX ray tracing hardware.

As MIS is a core component of many light transport algorithms,
the way MIS weights are computed has seen a few developments
over the years. For BPT, Veach [Vea97] originally proposes a way
of computing the MIS weight that only requires a single itera-
tion over the sampled path vertices. For UPBP [KGH*14], this
method is adapted for its reference implementation by Vévoda
[Vév14]. However, iterating over all vertices in a path incurs a
large cost, especially on GPUs where memory accesses should be

minimized. In their GPU implementation of BPT, van Antwerpen
[vA11b] formulates the weight differently such that it can be ac-
cumulated and stored at the subpath endpoints. This allows effi-
cient computation by eliminating iteration over path vertices. Guo
et al. [GHZ18] apply the same idea for volumetric BPT in layered
BSDFs. For vertex connection and merging (VCM), a technique
combining BPT and photon mapping, Georgiev et al. [GKDS12,
Geo12] develop a similar scheme. We extend this scheme to support
UPBP.

The selection of suitable data structure is crucial for the efficient
evaluation of PDE on the GPU. For photon mapping and VCM,
Davidovič et al. [DKHS14] compare the state-of-the-art and find
hash grids to perform the best. On the CPU, for beam-based volu-
metric PDE, typically a BVH is used [JZJ08, JNSJ11]. Jarosz et al.
[JNT*11] implement their progressive photon beams using a BVH
and a GPU-based ray tracing framework. Progressive photon beams
differs from UPBP as it terminates the camera subpath after the first
diffuse scattering event. Evangelou et al. [EPVV21] use ray tracing
hardware to implement a data structure for non-volumetric photon
mapping. We extend this data structure to support several volumet-
ric estimators.

3. Background

In this section, we briefly introduce the path integral formulation of
[Vea97] and its extension to participating media [PKK00], which
formulates the light simulation problem as an integral over light
paths. We discuss how to unidirectionally sample light transport
paths and how PDE and BPT combine two of these paths. Finally,
we review how UPBP estimates the path integral by combining BPT
and PDE.

3.1. Path integral formulation

The light transport problem consists of computing the amount of ra-
diance that arrives at the camera from all light sources in the scene.
The path integral formulation expresses the pixel intensity I as the
integral I = ∫

P f (x) dμ(x), where P is the space consisting of all
possible light transport paths, dμ is a product measure on P cor-
responding to area integration for surface vertices and volume inte-
gration for medium vertices. A k-length path x = x0 . . . xk has k ≥ 1
segments and k + 1 vertices, and the integral sums up the contribu-
tions of all path lengths. Paths follow the direction of light and start
with x0 on a light source, x1 . . . xk−1 are scattering events on sur-
faces or in media, and xk is on the camera. The contribution of this
path is described by f (x), the measurement contribution function,
which is defined as

f (x) = Le(x0)T (x)We(xk ) ,

and illustrated in Figure 1. Here, Le(x0) is the emitted radi-
ance, We(xk ) is the response function, and T (x) is the path
throughput

T (x) =
[
k−1∏
i=0

G(xi, xi+1)Tr(xi, xi+1)

][
k−1∏
i=1

ρ(xi)

]
,
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Figure 1: The measurement contribution function. A light path of
k + 1 vertices and k segments is shown, with the first and last ver-
tices being at the light source and the eye, respectively. The first
scattering event occurs in a medium and the last on a surface.

where G is the geometry term for segments, Tr is the volumetric
transmittance term for segments, ρ is the scattering function for
inner vertices. G is defined as

G(x, y) = V (x, y)(D(x → y)D(y → x))/‖x − y‖2 ,

where the visibility function V (x, y) is 1 if the path from x to y is
not obstructed by geometry and 0 otherwise. D(x → y) is a factor
accounting for attenuation on surfaces and is defined as 1 if x is in
media and nx · ωxy otherwise, where ωxy is the normalized direction
from x to y and nx is the surface normal at x. The last component
of the path throughput is the scattering function at vertices, which
is defined as

ρ(xi) =
{

ρs(xi−1 → xi → xi+1) if xi on a surface ,

ρp(xi−1 → xi → xi+1)σs(xi) if xi in a medium ,
(1)

where ρs is the bidirectional scattering distribution function, ρp is
the phase function, and σs denotes the scattering coefficient.

3.2. Path integral estimation

Closed-form solutions for the path integral only exist for very re-
stricted cases and in practice, the path integral is approximated using
an estimator. Monte Carlo integration is the ‘de facto’ method for es-
timating this integral. It has the form 〈I〉 = (1/m)

∑m
i=1 f (xi)/p(xi),

which averages the contributions of m independent randomly-
sampled paths xi that are sampled with probability density function
(PDF) p(xi). Estimation methods differ in the way paths are gener-
ated and in their corresponding path PDFs.

Bidirectional light transport algorithms construct a path x by
combining the endpoint of a subpath from a light source with the
endpoint of a subpath from the camera. For the remainder of this
paper, let y = y0 . . . ys−1 denote a light subpath of s vertices, where
vertex y0 is a point on a light source. Let z = z0 . . . zt−1 denote an
eye subpath of t vertices, where z0 is a vertex on the camera.

3.3. Path probability density function

Unidirectional sampling extends the path segment by segment. The
PDF p(y) of such a path y is the joint distribution of its vertices via
a chain of conditional vertex PDFs. We will now state the forward
path PDFs, sampled in the same direction as the random walk, and
the reverse path PDFs, sampled in the opposite direction of the ran-
dom walk. The reverse PDFs are needed to assign a weight when

combining multiple sampling strategies, as will become apparent
later. The notation below also applies to z.

Forward vertex PDFs.

p→
i (y) =

{
p(y0) if i = 0 ,

p→
ω,i(y)g

→
i (y)p→

τ,i(y) otherwise ,
(2)

p→
ω,i(y) =

{
pω(y0 → y1) if i = 1 ,

pω(yi−2 → yi−1 → yi) if i > 1 ,
(3)

g→
i (y) = G(yi−1, yi) , (4)

p→
τ,i(y) = pτ (yi−1 → yi) . (5)

In the equations above, p(.) denotes an unconditional PDF ex-
pressed w.r.t. the Euclidean volume on R

3, pω denotes a directional
PDF w.r.t. the solid angle measure and pτ denotes a distance PDF
w.r.t. the Euclidean length on R

1. Geometry factor G converts the
solid angle × length product measure to a volume measure. The
PDF of a subpath y with s vertices is ps(y) = ∏s−1

i=0 p
→
i (y).

Reverse vertex PDFs.

p←
i (y) =

{
p(yk ) if i = k ,

p←
ω,i(y)g

←
i (y)p←

τ,i(y) otherwise ,
(6)

p←
ω,i(y) =

{
pω(yk−1 ← yk ) if i = k − 1 ,

pω(yi ← yi+1 ← yi+2) if i < k − 1 ,
(7)

g←
i (y) = G(yi, yi+1) , (8)

p←
τ,i(y) = pτ (yi ← yi+1) . (9)

The arrow above the symbols distinguishes between a forward
and a reverse PDF.

3.4. Bidirectional path tracing

BPT is a light transport algorithm that combines a light subpath
with a camera subpath by connecting their endpoints with an ad-
ditional segment. As a result, a k-length path can be constructed in
k + 2 different ways, yielding k + 2 different sampling techniques.
Let 〈I〉BPT,s denote the BPT estimator and pBPT,s its PDF for evalu-
ation on a light subpath with s vertices and a camera subpath with
t = k + 1 − s vertices, 0 ≤ s ≤ k + 1. The estimator and its PDF
are given by

〈I〉BPT,s =Le(y0)
T (y)
p(y)

ρ(ys−1)Tr(ys−1, zt−1)G(ys−1, zt−1)

ρ(zt−1)
T (z)
p(z)

We(z0) , (10)

pBPT,s =p(y)p(z) . (11)
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Figure 2: The photon density estimators used in unified points, beams, and paths. (a-c) are applied for volumes, (d) for surfaces. The shared
input of these estimators are the photon beam (a, ωa) and the camera beam (d, ωd). The P-B2D, P-P3D, and P-P2D estimators sample a
photon point b and the P-P3D and P-P2D sample a camera point c.

3.5. Photon density estimation

PDE combines a camera subpath with a light subpath by finding
nearby endpoints of light subpaths and merging the two endpoints
together. This results in one less vertex in the complete path, than the
sum of vertices of the subpaths. We use Křivánek et al.’s [KGH*14]
formulation of the radiance estimators in the path integral frame-
work. Let a := ys−2, b := ys−1, c := zt−1, d := zt−2. The light sub-
path is sampled up to a, and the ray (a, ωa) defines a photon beam.
Sampling a distance along the ray would create a photon point at b.
The same holds on the camera side: the camera subpath is sampled
up to d and the ray (d, ωd) defines a camera beam, sampling a dis-
tance along the camera beam creates a camera point c. This setup is
shown in Figure 2. We define the contribution of the light subpath
up to yi as Cl (y0 . . . yi) and the contribution of the camera subpath
up to z j asCc(z0 . . . z j ),

Cl (y0 . . . yi) = Le(y0)(T (y0 . . . yi)ρ(yi))/(p(y0 . . . yi)p→
ω,i+1(y)) ,

Cc(z0 . . . z j ) =We(z0)(T (z0 . . . z j )ρ(z j ))/(p(z0 . . . z j )p→
ω, j+1(z)) .

The scattering function ρ at query location c is evaluated using the
direction of the light subpath, which may or may not actually pass
through this location. This is because b and c are interpreted to be
the same point, but do not actually share a position. To describe this
behaviour, ρ (see Equation (1)) is amended as

ρ(b, c) =
{

ρs(a → b, c → d) if c is on a surface

ρp(a → b, c → d)σs(b) if c is in a medium
. (12)

Depending on whether or not a photon point and/or a camera
point are sampled, as well as the dimension of the kernel employed
for the merge, a large number of estimators exists. The estimators
are assigned an acronym using the following naming scheme: the
light data type (photon Point or photon Beam), the camera data type
(camera Point or camera Beam), and the dimension of the blur em-
ployed (1D, 2D, or 3D). Křivánek et al. find the minimum-blur esti-
mators to introduce the least amount of bias, which is why UPBP in-
cludes one minimum-blur estimator for volumetric PDE from each

category. Beam-Point is not included, which they state is too costly
to evaluate. In addition, a surface estimator in the form of P-P2D is
included. Furthermore, Křivánek et al. distinguish between ‘long’
and ‘short’ beams. We assume the use of long beams for each of
the estimators. For each of these techniques, we state the estimator
function and their PDF. The PDFs of the B-B1D, P-B2D, P-P3D
and P-P2D estimators are derived by Vévoda [Vév14], who use
the name SURF instead of P-P2D. In these equations, Kd denotes
a normalized d-dimensional kernel. All estimators are prefixed by
Cl (y0 . . . a) and postfixed by Cc(z0 . . .d), all PDFs are prefixed by
p(y0 . . .b) and postfixed by p(z0 . . . c). These terms are excluded
in the equations below in favour of readability. The estimator PDFs
for B-B1D and P-B2D are slightly simplified using Equation (2).
Let 〈I〉v,s denote the estimator and pv,s the PDF for a PDE technique
v that is evaluated on a light subpath with s vertices and a camera
subpath with t = k + 2 − s vertices, 2 ≤ s ≤ k. For each technique,
Figure 2 shows its geometric configuration, and Equations (13)–(20)
show their estimators and PDF, that is,

〈I〉B-B1D,s = Tr(a, b)
ρ(b, c)K1(b, c)

sin θad
Tr(c,d) , (13)

pB-B1D,s = p→
ω,s−1(y)G(a, b)

p(b)

sin θad

K1(b, c)

G(c, d)p→
ω,t−1(z)

p(c)
,

= sin θad

p→
τ,s−1(y)K1(b, c)p→

τ,t−1(z)
, (14)

〈I〉P-B2D,s = Tr(a, b)

p→
τ,s−1(y)

ρ(b, c)K2(b, c)Tr(c,d) , (15)

pP-B2D,s = K−1
2 (b, c)

G(b, c)p→
ω,t−1(z)

p(c)
= K−1

2 (b, c)
p→

τ,t−1(z)
, (16)

〈I〉P-P3D,s = Tr(a, b)

p→
τ,s−1(y)

ρ(b, c)K3(b, c)
Tr(c, d)

p→
τ,t−1(z)

, (17)

pP-P3D,s = K−1
3 (b, c) , (18)
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〈I〉P-P2D,s = Tr(a,b)

p→
τ,s−1(y)

ρ(b, c)K2(b, c)
Tr(c, d)

p→
τ,t−1(z)

, (19)

pP-P2D,s = K−1
2 (b, c) . (20)

3.6. Unified points, beams, and paths

To capitalize on the strengths and to mitigate the weaknesses of the
individual estimators, unified point, beams, and paths [KGH*14]
(UPBP) combines the BPT and PDE estimators using MIS. With
MIS, the contributions of multiple estimators are summed according
to the number of samples and a weighting function. For UPBP, this
results in the estimator

〈I〉UPBP = 1

nBPT

nBPT∑
i=1

k+1∑
s=0

wBPT,s,t (xi) 〈I〉BPT,s(xi)

+ 1

nB-B1D

nB-B1D∑
i=1

k∑
s=2

wB-B1D,s,t (xi) 〈I〉B-B1D,s(xi)

+ 1

nP-B2D

nP-B2D∑
i=1

k∑
s=2

wP-B2D,s,t (xi) 〈I〉P-B2D,s(xi)

(21)

+ 1

nP-P3D

nP-P3D∑
i=1

k∑
s=2

wP-P3D,s,t (xi) 〈I〉P-P3D,s(xi)

+ 1

nP-P2D

nP-P2D∑
i=1

k∑
s=2

wP-P2D,s,t (xi) 〈I〉P-P2D,s(xi) .

In the above estimator, it becomes clear how many different
techniques UPBP actually evaluates. It estimates the pixel value
found by tracing a single camera subpath through the pixel, be-
ing merged with and connected to light subpaths using technique
v. Here, nv denotes the number of light subpaths used to eval-
uate technique v. wv,s,t is the weight for technique v evaluated
on a light subpath of s vertices and a camera subpath of t ver-
tices. In Section 3.4, t is defined as k + 1 − s for BPT and in Sec-
tion 3.5, t is defined as k + 2 − s for PDE. Note that the PDE tech-
niques cannot be evaluated on a light source or on the camera lens,
hence the subpaths need at least two vertices. A provably good and
frequently used choice for the weighting function is the balance
heuristic

ŵv (x) = nv pv (x)/
m∑
l=1

nl pl (x) .

The balance heuristic assigns a weight ŵv to each technique v pro-
portional to the PDFs of all m techniques, which minimizes vari-
ance. For UPBP, this results in Equation (22), where pv,s denotes
the PDF of a path created by technique v from a subpath with s

vertices on the light subpath, that is,

wv,s,t (x) = nv pv,s(x)
gv (x)

gv (x) =
k+1∑
j=0

nBPTpBPT, j(x)

+
k∑
j=2

nB-B1DpB-B1D, j(x) + nP-B2DpP-B2D, j(x)

+
k∑
j=2

nP-P3DpP-P3D, j(x) + nP-P2DpP-P2D, j(x) .

(22)

A single iteration of UPBP is performed in two stages. In the first
stage, light subpaths y are generated and the vertices on surfaces
and the vertices and beams in media are stored. Data structures are
created for the accelerated lookup of the vertices and beams. In Sec-
tion 5, we describe a data structure that leverages ray tracing hard-
ware. In the second stage, one camera subpath z is generated for
each pixel. At every camera beam and vertex generated, all relevant
PDE estimators are evaluated by querying the data structures for
nearby beams and points. At every camera vertex, the BPT estima-
tor is evaluated with all vertices of a randomly chosen light subpath
that was stored in the first phase. Each contribution is multiplied by
the MIS weight and added to the pixel value. The light and camera
subpaths are stochastically terminated up to a user-defined maxi-
mum path length. Next section presents an efficient algorithm for
the computation of the MIS weight.

4. Recursive Algorithm

At the heart of UPBP lies the path weight computation, performed
each time a light path x is formed by evaluating technique v on a
light subpath with s vertices and a camera subpath with t vertices. A
weight wv,s,t (x) is computed for this path, with which the radiance
along the light path is multiplied before accumulating. This weight
depends on the path PDF, which is the product of the PDFs of the
path vertices. As subpaths are extended, the calculated probability
density of the vertices earlier in the path remains constant. Hence,
the part of this product that represents vertices earlier in the path
remains constant. If we can reformulate the above weight to split
out these constant terms, it can be computed more efficiently by
caching a part of it. We will explain below how a set of recursive
quantities can be maintained as both subpaths are generated, which
represent the subpath weights. When the subpaths are combined to
form a light path, the full weight can be obtained by only taking into
account the quantities stored at the light and camera vertex. This
allows for its progressive computation, similar to how the estimator
contributions in Equations (10), (13), (15), (17), and (19) typically
are computed. In this section, we omit x when it is clear what path
is used.

4.1. Subpath weights

Before we derive a recursive formulation of the path weight for the
subpaths, we first write Equation (22) such that we separate out one
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term for the light subpath and one term for the camera subpath. We
rewrite the weight as

wv,s,t = 1

hv,s

hv,s =
k+1∑
j=0

nBPTpBPT, j

nv pv,s

+
k∑
j=2

nB-B1DpB-B1D, j + nP-B2DpP-B2D, j

nv pv,s

+
k∑
j=2

nP-P3DpP-P3D, j + nP-P2DpP-P2D, j

nv pv,s
.

(23)

We now split the weight into three parts: one sum that depends on
only light subpath vertices wlight

v,s , one quantity that depends on the
“local” information of the connection or merge wlocal

v,s , and one sum
that depends only on camera subpath vertices wcamera

v,s , i.e.

wv,s,t = 1/(wlight
v,s + wlocal

v,s + wcamera
v,s ) . (24)

The two partial sums and local quantity have different shapes de-
pending on technique v for which we compute the weight. We can
derive a common formula for the PDE techniques, as their PDFs
share a common form. For v ∈ {B-B1D,P-B2D, P-P3D, P-P2D},
we write

pv,s = ps(y)ev,s pt (z) , (25)

where ev,s is the estimator specific term of technique v in Equa-
tions (14), (16), (18), and (20). Note that we cannot write the
BPT PDF in the same way, as its subpaths have different lengths
than the PDE subpaths. We will now define wlight

v,s , wlocal
v,s , and

wcamera
v,s for all estimators. Since we have a common form for the

PDE PDFs, we can also group the derivation of these quantities
for PDE.

Bidirectional path tracing. For v = BPT we have

wlight
v,s =

s−1∑
j=0

pBPT, j

pBPT,s

+
s∑
j=2

nB-B1DpB-B1D, j + nP-B2DpP-B2D, j

nBPTpBPT,s

+
s∑
j=2

nP-P3DpP-P3D, j + nP-P2DpP-P2D, j

nBPTpBPT,s

, (26)

wlocal
v,s =

s∑
j=s

pBPT, j

pBPT, j
= 1 , (27)

wcamera
v,s =

k+1∑
j=s+1

pBPT, j

pBPT,s

+
k∑

j=s+1

nB-B1DpB-B1D, j + nP-B2DpP-B2D, j

nBPTpBPT,s

+
k∑

j=s+1

nP-P3DpP-P3D, j + nP-P2DpP-P2D, j

nBPTpBPT,s

. (28)

An important property of the light and camera sums is that they are
symmetric. If we take the perspective of the camera subpath and
reverse the numbering of the vertices, the weight of the camera sub-
path becomes the same sum as the light subpath weight above (but
for t instead of s). We use this symmetric property to only derive the
recursive quantities for both sums by making a single derivation.

Photon density estimation. For v ∈ P we have

wlight
v,s = nBPT

nv

s−1∑
j=0

pBPT, j

pv,s

+
s−1∑
j=2

nB-B1DpB-B1D, j + nP-B2DpP-B2D, j

nv pv,s

+
s−1∑
j=2

nP-P3DpP-P3D, j + nP-P2DpP-P2D, j

nv pv,s

, (29)

wlocal
v,s =

s∑
j=s

∑
b∈P

nbpb,s
nv pv,s

= 1 +
∑

b∈P\{v}

nbeb,s
nvev,s

, (30)

wcamera
v,s = nBPT

nv

k+1∑
j=s

pBPT, j

pv,s

+
k∑

j=s+1

nB-B1DpB-B1D, j + nP-B2DpP-B2D, j

nv pv,s

+
k∑

j=s+1

nP-P3DpP-P3D, j + nP-P2DpP-P2D, j

nv pv,s

. (31)

The same symmetry property holds also for the PDE sums. Note that
the local quantity does not reduce to 1 as for BPT, but instead we
have to take all PDE techniques in P into account. Here, \ denotes
set difference.

4.2. Recursive formulation

Now that we have a term that represents the subpath weight, we want
to formulate it such that it can be computed in a forward manner,
rather than to have to solve the sum by iterating over the vertices.
To this end, we write the weight as

wv,s,t = 1/(wv,s−1(y) + wlocal
v,s + wv,t−1(z)) , (32)
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with wv,s−1(y) and wv,t−1(z) recursive formulations of the partial
light and camera subpath weights wlight

v,s and wcamera
v,s , respectively.

We derive these formulas only for the light subpath, as the deriva-
tions also apply to the camera subpath due to symmetry of Equa-
tions (26) and (28) as well as of Equations (29) and (31). The re-
cursive formulation requires us to address how to evaluate pv,i for
i < s, having unidirectionally sampled a path y. We do this by inter-
preting the path from s to i as having been sampled from the cam-
era, by maintaining reverse probabilities as we sample y. For the
PDE techniques, there is an additional complication as the kernel in
the estimator-specific factors depends on the mutual position of the
merged light and camera vertex. These do not actually exist, as the
subpath of s vertices is unidirectionally sampled and only a light
vertex exists at vertex yi. To deal with this, we assume a constant
kernel that is not dependent on these positions, which is the same
assumption Vévoda[Vév14] makes.

For convenience, we define fi(y) to be the sum of all ev,i(y) times
their respective nv terms for v ∈ P. Note that fi(z) is not equal to
fi(y), as the estimator-specific term for P-B2D is not symmetric with
respect to the sample direction.

4.2.1. Bidirectional path tracing

Filling in the path PDF definitions in Equation (26), we can cancel
out large parts of the PDFs. This results in the equation below for
v = BPT, the derivation of which is provided in the supplementary
material

wlight
v,s =

s−1∑
j=0

s−1∏
i= j

p←
i (y)
p→
i (y)

+ 1

nBPT

s∑
j=2

f j(y)p←
j−1(y)

s−1∏
i= j

p←
i (y)
p→
i (y)

.

We write the above equation as the following recursive quantity

qBPT,0 = p←
0

p→
0

, qBPT,i = p←
i

(
fi+1

nBPT
+ 1

p→
i

+ 1

p→
i

qBPT,i−1

)
,

with which we write the light subpath weight for BPT as

wBPT,s−1 := qBPT,s−1 . (33)

If instead of the light subpath notation y we use camera subpath no-
tation z, the above formulas apply without modification to Equa-
tion (28), since the light and camera sums are symmetric. This
now allows us to substitute wBPT,s−1(y) and wBPT,t−1(z) into Equa-
tion (32).

4.2.2. Photon density estimation

Filling in the path PDF definitions in Equation (29), we again can
cancel out large parts of the PDFs. This results in the equation below
for v ∈ P, the derivation of which is also given in the supplementary
material, that is,

wlight
v,s = 1

nvev,s

⎛
⎝ nBPT

p→
s−1

s−1∑
j=0

s−2∏
i= j

p←
i (y)
p→
i (y)

+
s−1∑
j=2

f j(y)
s−1∏
i= j

p←
i−1(y)

p→
i (y)

⎞
⎠ .

We write the term within brackets in the above equation as the fol-
lowing recursive quantity

qPDE,0 = nBPT

p→
0

, qPDE,1 = nBPT

p→
1

(
p←

0

p→
0

+ 1

)
,

qPDE,i = nBPT
1

p→
i

+ p←
i−1

p→
i

( fi + qPDE,i−1) ,

with which we write the light subpath weight for v ∈ P as

wv,s−1 := qPDE,s−1/nvev,s . (34)

If instead of the light subpath notation y we use camera subpath
notation z, the above formulas apply without modification to Equa-
tion (31), since the light and camera sums are symmetric. This now
allows us to substitute wv,s−1(y) and wv,t−1(z) for v ∈ P into Equa-
tion (32).

4.3. Forward evaluation

Now that we have derived two recursive quantities, qBPT and qPDE,
with which we can construct the weight wv for each estimator v,
we would like to store these quantities at every light and camera
vertex, as subpaths are traced. This allows us to construct the path
weight only from information stored at these two vertices. However,
we cannot evaluate qBPT,i and qPDE,i as soon as we sample vertex
i. Both recursive quantities depend on reverse probabilities that are
not known when sampling subpath vertex i: p←

i depends on the next
two vertices via pω(yi ← yi+1 ← yi+2); similarly, p←

i−1 depends on
the next vertex. To deal with this problem, we separate three terms
that can be stored at vertex i. From these three quantities, the actual
weights can be constructed in a constant amount of operations. Note
that fi can be stored at i, as sin θyi−2yi is known after sampling the
BSDF at i− 1 and p←

τ (yi−1, yi) is known when the next vertex is
found. We will now repeat qBPT and qPDE and separate these quanti-
ties, that is,

qBPT,i = p←
i

(
fi+1

nBPT
+ 1

p→
i

+ 1

p→
i

qBPT,i−1

)
(35)

1= p←
i

(
fi+1

nBPT
+ 1

p→
i︸︷︷︸

dshared
i

+p←
τ,i−1p

←
ω,i−1

g←
i−1

p←
i−1p

→
i

qBPT,i−1︸ ︷︷ ︸
dBPT
i

)
,

qPDE,i = nBPT
1

p→
i

+ p←
i−1

p→
i

( fi + qPDE,i−1)

1= nBPT
1

p→
i︸︷︷︸

dshared
i

+p←
τ,i−1p

←
ω,i−1

g←
i−1

p→
i

(
fi + qPDE,i−1

)
︸ ︷︷ ︸

dPDE
i

, (36)

where in steps (1) we make use of Equation (6). Note that dshared
i

appears in both qBPT,i and qPDE,i. These formulas apply to both the
light subpaths y and camera subpaths z.

As the subpath is traced, we update and store quantities dshared
i ,

dBPT
i , and dPDE

i at each vertex i. For practical reasons, the first ver-
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tices (y0 and z0) are not stored, see Section 4.4. We obtain the ini-
tialization of these quantities by writing out qBPT,1 and qPDE,1 and
factoring out the terms, that is,

dshared
1 = 1/p→

1 , (37)

dBPT
1 = g←

0 /(p→
0 p→

1 ) , (38)

dPDE
1 = (g←

0 nBPT)/(p→
0 p→

1 ) . (39)

We find the recursive formulation of the d-quantities by recur-
sively expanding qBPT,i−1 and qPDE,i−1 in Equations (35) and (36) to
obtain

dshared
i = 1/p→

i , (40)

dBPT
i = g←

i−1

p→
i

(
fi

nBPT
+ dshared

i−1 + p←
τ,i−2p

←
ω,i−2d

BPT
i−1

)
, (41)

dPDE
i = g←

i−1

p→
i

(
fi + nBPTd

shared
i−1 + p←

τ,i−2p
←
ω,i−2d

PDE
i−1

)
. (42)

We now know how to initialize the d-quantities and update them
as the subpaths are traced. From these quantities, qBPT and qPDE are
constructed. Recall that the weight of a full path constructed by tech-
nique v from a light subpath y with s vertices and a camera subpath
z with t vertices is given by Equation (32). For each technique, we
will now explain how the full path weight is constructed from the
quantities stored at the connected or merged vertices.

4.3.1. Bidirectional path tracing

The subpath weight for BPT is given by Equation (33). The quantity
qBPT is constructed from recursive quantities given in Equation (35).
Combining this for a light subpath y with s vertices and a camera
subpath z with t vertices gives (for v = BPT)

wv,s−1(y) = p←
s−1

(
fs

nBPT
+ dshared

s−1 + p←
τ,s−2p

←
ω,s−2d

BPT
s−1

)
, (43)

wv,t−1(z) = p←
t−1

(
ft

nBPT
+ dshared

t−1 + p←
τ,t−2p

←
ω,t−2d

BPT
t−1

)
. (44)

Recall that wlocal
v,s = 1. Note that the above equations only hold for

the general case, in which s > 1 and t > 1. This is because we do
not store the recursive quantities at the first vertices. In the next sec-
tion we discuss how to handle the cases when s ≤ 1 or t ≤ 1.

4.3.2. Photon density estimation

The subpath weight for v ∈ P is given by Equation (34). The quan-
tity qPDE is constructed from the recursive quantities as given in
Equation (36). Combining this for a light subpath y with s vertices
and a camera subpath z with t vertices yields

wv,s−1(y) = 1

nvev,s

(
nBPTd

shared
s−1 + p←

τ,s−2p
←
ω,s−2d

PDE
s−1

)
, (45)

wv,t−1(z) = 1

nvev,s

(
nBPTd

shared
t−1 + p←

τ,t−2p
←
ω,t−2d

PDE
t−1

)
. (46)

Note that both these equations contain ev,s, which is the estimator-
specific term for technique v on a light subpath with s and a camera
subpath with t vertices; wlocal

v,s is given by Equation (30). Note that
PDE techniques are only evaluated when s > 1 and t > 1, so no
special care is required when this is not the case.

With these equations out of the way, we now focus on implemen-
tation. In the first phase of UPBP, as light subpaths are generated,
quantities dshared, dBPT, and dPDE are maintained and stored in mem-
ory for each vertex. In the second phase, camera subpaths are gen-
erated and dshared, dBPT, and dPDE are computed for the camera side.
When a technique is evaluated using the current camera subpath and
a light subpath, the d-quantities for the light subpath and camera
subpath are used to fill Equations (43) and (44), or Equations (45)
and (46), depending on the technique used. Finally, these two quan-
tities are plugged in Equation (24) using either Equation (27) or
Equation (30).

4.4. Special cases

In our derivation we have made a couple of assumptions. Specifi-
cally, we disregarded that pBPT,s,0 = 0 due to the probability of hit-
ting a pinhole camera lens being zero. Furthermore, pBPT,s,1 actually
needs multiplication by the number of light paths, as every light
vertex is connected to the camera. Moreover, in practice the proba-
bility p→

0 is different depending on whether a vertex is sampled on
the light source or camera lens, to connect to a subpath or form the
start of a new subpath. Finally, in the above scheme we disregarded
BPT techniques when s ≤ 1 or t ≤ 1, since the subpath weights in
these cases are never stored. In the supplementary material we lift
all these assumptions and we adapt the scheme to take these facts
into account.

As not all estimators may be evaluated on all combinations of
vertices, the following must be ensured by an implementation: the
PDF of the BPT estimator should be zero when ys−1 or zt−1 is on a
specular surface. The PDF of the B-B1D, P-B2D, and P-P3D esti-
mators should be zero when ys−1 or zt−1 are not in media. Finally,
the PDF of the P-P2D estimator should be zero when ys−1 or zt−1

are in media or on a specular surface.

5. Photon Query Using Ray Tracing

Having presented an efficient method to compute the MIS weights
for UPBP, we will focus on how to efficiently implement photon
queries for points and beams. We do this by formulating the query
as a ray-tracing problem, such that hardware-accelerated ray trac-
ing frameworks can be used to solve it. We have selected OptiX
[NVIb] for this purpose as, in recent versions, it makes use of the
RTX GPU’s hardware-accelerated BVH. We assume the reader to be
familiar with OptiX and RTX, and refer to the OptiX programming
guide [NVIa] and Turing whitepaper [Bur18] for further details. For
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Figure 3: For each estimator, we show the 3D volume stored by the BVH in order to use ray tracing hardware to accelerate the photon query.
In each figure, radius r denotes the width of the kernel.

each PDE estimator in UPBP, we will present a bounding box pro-
gram that produces an axis-aligned bounding box (AABB) and an
intersection program that rejects or confirms ray-AABB intersec-
tions. Using these two components, we can evaluate the estimator
when needed.

In the construction of these data structures, the width of the esti-
mator kernel is important. It denotes the maximum distance between
points or beams taken into account by the estimator. Note that in this
context, a beam has no thickness and is equivalent to a ray. Further-
more, the kernel width is often called the radius of the estimator; in
our work, we set the radii as in Vévoda [Vév14].

Beam-Beam, one-dimensional

The B-B1D estimator considers a one-dimensional blur between a
photon beam and a camera beam. This setup is shown in Figure 2a.
A one-dimensional blur is performed on the segment that is found by
the intersection of the camera beam with the plane perpendicular to
both photon beam and camera beam, which is the rectangular plane
in the figure. We cannot store the plane directly in the BVH, as its
orientation for the estimator depends on the mutual positions of the
photon and camera beams. Therefore, we must consider an arbitrary
orientation of this plane, as the stored representative must function
for any arbitrary camera ray. Since it must be perpendicular to the
photon beam, this results in a cylinder centred on the photon beam
with a radius equal to the width of the 1D kernel, see Figure 3a.

Storing an AABB of this cylinder can result in a bounding box
with much empty space. To remedy this, we use the technique de-
scribed by Wald et al. [WMZ*20]. They describe how an instance
transform of a unit cylinder can be used to perform an initial rejec-
tion test, which can be performed in hardware. This effectively im-
plements an oriented bounding box, which encloses the beam much
more tightly. Only when the oriented bounding box is intersected,
the costly software intersection test is performed.

The query ray of this data structure is equal to the camera beam,
with which the hardware checks for an intersection with the AABB.
If an intersection is found, an intersection program checks whether
the ray intersects the perpendicular plane. This additional test is re-
quired as, for example, the camera beam may be parallel to the pho-
ton beam, intersecting the cylinder but not the plane. When the in-
tersection program finds that the camera beam intersects the plane,
based on the mutual orientations of the photon and camera beams,
points b and c are found and the estimator is evaluated.

Point-Beam, two-dimensional

The P-B2D estimator considers a two-dimensional blur between a
photon point and a camera beam, see Figure 2b. The blur is per-
formed on the disk in which the photon point lies, perpendicular
to the camera ray. Like the Beam-Beam estimator, we cannot store
this disk directly as its orientation depends on the camera ray. In-
stead, we consider an arbitrary rotation of this disk, which results
in a sphere with a radius equal to the kernel width. This is shown in
Figure 3b; we store the AABB of the resulting sphere in the BVH.

The ray with which the data structure is queried, is equal to the
camera beam. If the ray hits the AABB, the intersection program
checks whether the ray intersects the disk that is centred at the pho-
ton point and is perpendicular to the ray. This test is required as the
ray origin or endpoint may lie in the sphere, in which case the sphere
is hit but the disk may not be. When the intersection program finds
the camera beam to be intersecting the disk, point c is found.

Point-Point, two- and three-dimensional

For P-P3D and P-P2D, a three- or two-dimensional blur is per-
formed between a photon point and a camera point, see Figure 2c
and Figure 2d. The blur is performed either on the 3D positions of
the points or their 2D positions, by interpreting them to lie in the
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Figure 4: Benchmark scenes. Left-to-right: Bathroom, Still Life, Mirror Balls, San Miguel, Bistro, and Sun Temple; results obtained with our
GPU renderer.

same plane. We store the AABB of a sphere centred on the photon
point with a radius equal to the kernel width, shown in Figure 3c.
If a camera point is inside the sphere, we know that the distance
between the points is smaller or equal to the radius of the sphere.

One problem with the point-point estimator is that the query is a
point, whereas the ray tracing framework requires a ray. To remedy
this, the trace call is made with a ray with a very small extent. The
origin of the ray is equal to the point and an arbitrary direction is
chosen. The two-dimensional case is exactly how Evangelou et al.
[EPVV21] use the RTX BVH as a photon map data structure.

6. Results

We separately evaluate a full GPU implementation of UPBP and the
individual GPU data structures. We compare our GPU implementa-
tions with SmallUPBP [Vév15], which is the CPU-based implemen-
tation of UPBP used by Křivánek et al. [KGH*14] and described in
detail in [Vév14]. All experiments are performed on a system with
an AMD Ryzen 5 2600 CPU with six cores and 3.4 GHz, 16 GB of
RAM, and an NVIDIA RTX 2070 GPU.

In all experiments, we used six different scenes that contain both
sparse and dense media, see Figure 4. Bathroom, Still Life, and Mir-
ror Balls appear in [KGH*14] and are run with the same parameters.
A full list of scene parameters is provided in the supplementary ma-
terials. This list includes the number of threads used, as this for the
CPU implementation is limited by the available system RAM.

6.1. GPU implementation

We have implemented UPBP to completely run on the GPU using
our new MIS weight algorithm and accelerated data structures. Fur-
thermore, this implementation also makes use of the RTX hardware
for the generation of light and camera paths. We make the source
code publicly available at https://github.com/nolmoonen/gpuupbp.
Figure 5 shows the performance compared to a CPU implementa-
tion running single- and multi-threaded. The running times of the
CPU implementation are given in Table 1; the CPU implementa-
tion uses the default data structures as explained in the next section.
As can be seen from Figure 5, our GPU implementation achieves
a speedup of 21 to 69 times over the single-threaded SmallUPBP
and 4 to 15 times over the multi-threaded version. Most of the GPU
running time is taken up by the camera kernel, which generates the
camera subpaths, queries the data structures, and evaluates the es-
timators. A small fraction is taken by the construction of the data
structures and the remainder by the light kernel, which generates the

Figure 5: Speedup of our GPU implementation over the single-
and multi-threaded CPU versions. Values are per-iteration aver-
ages, measured over 120 iterations.

Table 1: Baseline CPU running times in seconds for both ST – single-
threaded and MT – multi-threaded versions of SmallUPBP.

Bathroom Bistro Mirror Balls San Miguel Still Life Sun Temple

ST 134.01 127.22 58.33 115.06 50.72 419.78
MT 28.46 18.28 9.97 26.84 7.86 89.00

light subpaths. The number of light and camera subpaths is equal in
our experiments. Therefore, and since our new algorithm allows for
computing the weight for a pair of paths in constant time, most time
spent in the GPU implementation is due to data structure queries.

6.2. Data structures

To properly compare data structures on the CPU and GPU, we sep-
arated building and querying from the remainder of the algorithm,
such that we could only profile those specific parts. We compared
the data structure for each estimator of the previous section with its
CPU counterpart and a reference BVH implementation, and a lin-
ear BVH (LBVH) [Kar12], see the recent survey by Meister et al.
[MOB*21]. A list of the number of elements used in each estimator
is provided in supplementary material.

6.2.1. Beam-Beam, one-dimensional

Table 2 gives the performance of the data structure of the Beam-
Beam estimator. SmallUPBP uses a grid data structure where each
beam is referenced in every cell it intersects. While the LBVH has
a lower construction time than our data structure, in most cases our
data structure spends less time performing the queries. Thus, over-
all, our implementation outperforms the LBVH.
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Table 2: Running times (ms) and speedup over the CPU data structure, for the B-B1D data structures; 20 iterations.

Scene
Bathroom
Build Query Total ×

Bistro
Build Query Total ×

Mirror
Balls Build Query Total ×

Grid (CPU) 628 14650 - 34 9055 - 220 11653 -
Ours (GPU) 79 388 32.8 86 102 48.7 59 307 32.5
LBVH (GPU) 23 3061 5.0 22 240 34.8 17 1877 6.3

Scene

San
Miguel
Build Query Total ×

Still Life
Build Query Total ×

Sun
Temple
Build Query Total ×

Grid (CPU) 64 30547 - 10 624 - 63 79166 -
Ours (GPU) 54 75 239.4 27 18 14.6 82 343 186.7
LBVH (GPU) 17 336 86.8 8 17 25.9 28 2845 27.6

Table 3: Running times (ms) and speedup over the CPU data structure, for the P-B2D data structures; 20 iterations.

Scene Bathroom Build Query Total × Bistro Build Query Total × Mirror Balls Build Query Total ×
Embree (CPU) 213 9702 - 11 6262 - 106 6770 -
Ours (GPU) 163 37 49.9 56 73 49.3 94 50 48.1
LBVH (GPU) 33 283 31.4 21 146 37.7 22 174 35.3

Scene San Miguel Build Query Total × Still Life Build Query Total × Sun Temple Build Query Total ×
Embree (CPU) 158 5682 - 31 9712 - 226 37177 -
Ours (GPU) 113 45 37.2 34 74 90.9 177 286 81.0
LBVH (GPU) 24 6397 0.9 11 284 33.2 39 9004 4.1

Table 4: Running times (ms) and speedup over the CPU data structure, for the P-P3D data structures; 20 iterations.

Scene Bathroom Build Query Total × Bistro Build Query Total × Mirror Balls Build Query Total ×
Hash grid (CPU) 50 578 - 5 2266 - 25 240 -
Ours (GPU) 27 2 22.9 15 80 24.1 15 1 16.9
Hash grid (GPU) 9 9 36.7 6 15 110.8 6 4 29.7
LBVH (GPU) 15 17 20.5 7 48 42.0 10 7 16.6

Scene San Miguel Build Query Total × Still Life Build Query Total × Sun Temple Build Query Total ×
Hash grid (CPU) 36 491 - 7 400 - 51 2747 -
Ours (GPU) 20 2 24.5 8 3 39.5 105 52 18.0
Hash grid (GPU) 8 625 0.8 6 4 45.8 16 1216 2.3
LBVH (GPU) 12 897 0.6 7 17 17.4 22 1326 2.1

6.2.2. Point-Beam, two-dimensional

Table 3 shows the performance of the data structures for the Point-
Beam estimators. SmallUPBP uses a CPU-based ray tracing frame-
work, Embree, to accelerate the search. Similar to the Beam-Beam
estimator, our data structure needs more time building, but less
time querying than the LBVH, so that again, our data structure is
faster overall.

6.2.3. Point-Point, two- and three-dimensional

Table 4 and Table 5 give the data structure performance for the
Point-Point estimators. SmallUPBP uses a hash grid, which, for
comparison, we also implemented on the GPU. Unlike the beam-
based estimators, it is not immediately clear which data structure is
best. For the volumetric P-P3D estimator, the hash grid seems to per-
form best on all scenes, with the exception of San Miguel and Sun

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Table 5: Running times (ms) and speedup over the CPU data structure, for the P-P2D data structures; 20 iterations.

Scene Bathroom Build Query Total × Bistro Build Query Total × Mirror Balls Build Query Total ×
Hash grid (CPU) 424 28646 - 331 10298 - 310 5165 -
Ours (GPU) 415 171 49.7 356 80 24.4 371 205 9.5
Hash grid (GPU) 52 1946 14.6 52 265 33.7 29 378 13.5
LBVH (GPU) 88 833 31.6 72 531 17.7 58 482 10.1

Scene San Miguel Build Query Total × Still Life Build Query Total × Sun Temple Build Query Total ×
Hash grid (CPU) 145 3955 - 116 1713 - 169 4525 -
Ours (GPU) 273 78 11.7 107 44 12.2 291 30 14.7
Hash grid (GPU) 20 366 10.6 22 80 18.1 22 248 17.5
LBVH (GPU) 36 192 18.0 33 56 20.7 37 124 29.5

Temple. These two scenes share the property that the light sources
are relatively small compared to the scene geometry and are concen-
trated in a small part of the scene. This causes a non-uniform distri-
bution of light samples, which is a situation a hash grid performs no-
toriously poor on. For the surface-based P-P2D estimator, our data
structure spends the least amount of time performing the queries,
but most time constructing it. As a result, there is no clear winner.

7. Conclusions and Future Work

Our main contribution is an efficient method to evaluate the MIS
weight for UPBP, which provides an algorithmic speedup by re-
moving the need to iterate over the path vertices. Thanks to this, the
MIS weight can now be evaluated in constant time instead of be-
ing proportional to the path length. The key idea is to split the path
weight into three independent parts: one for the light subpath, one
for the camera subpath, and a quantity depending on both subpath
ends. The subpath weight is formulated as a recursive quantity that
can be evaluated as the subpath is traced. Upon forming a full path
by combining two subpaths, the weight is computed only from data
cached at the light and camera vertex that are merged with PDE, or
connected with BTP.

We also showed how the hardware-accelerated bounding volume
hierarchy of NVIDIA’s RTX graphics cards can be used to imple-
ment a data structure for PDE. By reformulating the problem, we
implemented three different photon maps for volumetric PDE. We
also compared the performance of these data structures to CPU-
based reference implementations and hardware-accelerated state of
the art. We have found that in many cases, the RTX-based pho-
ton maps offer a significant improvement over state-of-the-art ap-
proaches. To further analyse the performance of the proposed al-
gorithm and hardware-accelerated photon maps, we implemented
the full UPBP algorithm on the GPU using CUDA. 1 We evaluated
our full GPU solution on a varied selection of scenes and compared
running times with single- and multi-threaded CPU implementa-
tions. We found that our GPU implementation is able to achieve

1Our GPU implementation is publicly available and can be found at https:
//github.com/nolmoonen/gpuupbp.

a speedup of up to 15 times compared to the best-performing prior
work.

Work by Bitterli and Jarosz [BJ17] and Deng et al. [DJBJ19]
further generalizes the theory of photon points and beams to pho-
ton planes and volumes. This results in an even larger set of
volumetric photon density estimators, geared primarily towards
simulating thin participating media. UPBP handles thin media
mostly with the B-B1D estimator, which is also one of the most
computationally-intensive parts of the algorithm. It would be inter-
esting to see if these estimators can be incorporated into UPBP and
if the RTX data structures could be applied to this extended set of
estimators.

Several, more theoretical, future challenges stated by Křivánek
et al. [KGH*14] still remain unsolved and are not addressed by our
work. Specifically, finding a theoretical basis for radius reduction
of the beam-based estimators and for selecting the number of light
subpaths used for each technique are still open problems.
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