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Abstract
Critical point tracking is a core topic in scientific visualization for understanding the dynamic behaviour of time-varying vector
field data. The topological notion of robustness has been introduced recently to quantify the structural stability of critical points,
that is, the robustness of a critical point is the minimum amount of perturbation to the vector field necessary to cancel it. A
theoretical basis has been established previously that relates critical point tracking with the notion of robustness, in particular,
critical points could be tracked based on their closeness in stability, measured by robustness, instead of just distance proximity
within the domain. However, in practice, the computation of classic robustness may produce artifacts when a critical point is
close to the boundary of the domain; thus, we do not have a complete picture of the vector field behaviour within its local
neighbourhood. To alleviate these issues, we introduce a multilevel robustness framework for the study of 2D time-varying
vector fields. We compute the robustness of critical points across varying neighbourhoods to capture the multiscale nature of
the data and to mitigate the boundary effect suffered by the classic robustness computation. We demonstrate via experiments
that such a new notion of robustness can be combined seamlessly with existing feature tracking algorithms to improve the visual
interpretability of vector fields in terms of feature tracking, selection and comparison for large-scale scientific simulations. We
observe, for the first time, that the minimum multilevel robustness is highly correlated with physical quantities used by domain
scientists in studying a real-world tropical cyclone dataset. Such an observation helps to increase the physical interpretability
of robustness.
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1. Introduction

The analysis and visualization of vector fields has seen widespread
applications in science and engineering, including combustion,
climate study and ocean modelling. With the increasing size and
complexity of vector field data that arise from scientific simula-
tions, vector field topology has been one of the most promising
tools to describe and interpret vector field behaviour by providing
meaningful abstraction and summarization [PPF*11, BYH*20].

Critical points (i.e.where a vector field vanishes) are core fea-
tures of vector field topology. To improve the visual interpretabil-
ity of time-varying vector fields, a key challenge is feature track-
ing [PVH*03] – in particular, critical point tracking – that is,
to resolve the correspondences between critical points in suc-
cessive time steps in the form of trajectories, and to understand
the dynamic behaviour of these trajectories via selections and
comparisons.
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The topological notion of robustness has been introduced re-
cently to quantify the stability of critical points. The robustness
of a critical point is defined to be the minimum amount of per-
turbation to the vector field necessary to cancel it. Robustness
has been shown to be useful in feature extraction [WBR*17] and
simplification [SWCR14, SWCR15, SRW*16] of vector field data.
In particular, Skraba and Wang inferred correspondences between
critical points based on their closeness in stability, measured
by robustness, instead of just distance proximity within the do-
main [SW14]. They obtained theoretical results by relating critical
point tracking with the notion of robustness: roughly speaking, crit-
ical points with high robustness values could be tracked more easily
and more accurately [SW14]. However, the results in [SW14] were
theoretical in nature, and bringing this theory to practice is nontriv-
ial. Vector field data generated from large-scale ocean, atmospheric
and fluid dynamics simulations contain features at different scales.
It is a common practice for researchers to study the data within a
chosen domain of interest. For critical points close to the boundary
of the domain, we have an incomplete picture of flow behaviour
within their local neighbourhoods. Consequently, the computation
of classic robustness may suffer from poor boundary conditions; for
instance, a critical point may not find a cancellation partner or may
be forced to cancel with another critical point that is far away in the
known data domain (see Section 4 for details). Such phenomena de-
crease the effectiveness in robustness-based critical point tracking.

In this paper, we introduce multilevel robustness for critical
points, a “scale-aware” notion of robustness that accommodates the
inherent multiscale nature of vector field data. Multilevel robust-
ness helps to mitigate the boundary effect suffered by the classic ro-
bustness computation. More importantly, it can be integrated with
existing feature tracking algorithms to improve feature tracking, se-
lection and comparison.

Contributions. Building upon the theoretical basis established
previously [SW14], the focus of this paper is to realize robustness-
based critical point tracking in practice for large-scale scientific sim-
ulations. To that end,

• We introduce a multilevel robustness framework for the study of
2D time-varying vector fields. We compute the robustness of crit-
ical points across varying neighbourhoods to capture the multi-
scale nature of the data and to mitigate the boundary effect suf-
fered by the classic robustness computation.

• We demonstrate that our proposed framework – in particular, the
minimum multilevel robustness – can be combined with feature
tracking algorithms such as FTK [GLX*21] to improve the vi-
sual interpretability of vector fields in terms of feature tracking,
selection and comparison.

• We observe, for the first time, that the minimummultilevel robust-
ness is highly correlated with physical quantities (such as maxi-
mum wind speed and mean sea-level pressure) used by domain
scientists in studying real-world tropical cyclone datasets.

The observation above is quite exciting as it implies that robust-
ness – a notion of feature stability derived based on vector field per-
turbation – is highly correlated with scalar-valued physical quanti-
ties commonly used by domain scientists to study tropical cyclones,
which helps to increase the physical interpretability of robustness.

2. Related Work

We review related work on vector field topology, critical point track-
ing and robustness of critical points.

Vector field topology has been researched over the past decades
since it was firstly introduced by Helman and Hesselink [HH89].
However, as pointed out by Pobitzer et al. [PPF*11] and Bu-
jack et al. [BYH*20], vector field topology for time-varying
flows remains a challenge. In particular, it is difficult to inter-
pret flow topology w.r.t. physical meaning in the time-varying
setting [BYH*20]. In this paper, we focus on the tracking and
visualization of critical points of time-varying vector fields, and
investigate the potential relationship between the topological
properties of critical points and physical quantities of relevance to
real-world flow dataset.

Critical point tracking, which reconstructs the trajectories of crit-
ical points over time, may be achieved by proximity-, integral- and
interpolation-based methods. Proximity-based critical point track-
ing includes the work of Helman and Hesselink [HH89, HH90],
which connects the critical points (singularities) from separate time
steps based on proximity and region connectedness.

For integral-based critical point tracking approaches, Theisel and
Seidel [TS03] recast the tracking of critical points in a 2D vector
field as an integration problem in a 3D field, called feature flow field
(FFF), and computed feature trajectories based on tangent curves in
FFF. Weinkauf et al. [WTVGP10] improved upon the FFF and pre-
sented a more stable formulation for tracking critical points by ad-
dressing instabilities in the numerical integration during the compu-
tation of tangent curves. This is followed by the work in [RKWH11]
that introduced a combinatorial version of FFF.

An example of interpolation-based method is from Tric-
oche et al. [TSH01b, TWSH02], who implemented the linear in-
terpolation between time steps, which guarantees the existence of
one critical point in each cell, and analysed the cell faces to de-
tect changes in the topology over time. Analogously to [TSH01b],
Garth et al. [GTS04] extended this approach and provided a crit-
ical point tracking algorithm for 3D time-varying vector fields.
Guo et al. [GLX*21] proposed a simplicial spacetime meshing
scheme for tracking critical points, referred to as the Feature Track-
ing Kit (FTK) framework, which is further reviewed in Section 3.

Robustness of critical points has been introduced recently to quan-
tify the structural stability of critical points with respect to perturba-
tions to the vector fields [SWCR14, SWCR15, SRW*16]. Robust-
ness has been shown to be useful for the analysis and visualization
of vector fields. For example, Wang et al. [WRS*13] studied how
the robustness of a critical point evolves in the time-varying set-
ting. Skraba and Wang [SW14] showed potential usage of robust-
ness in feature tracking, that is, critical points with high robustness
values could be tracked more easily and more accurately. Robust-
ness is also used for 2D [SWCR14, SWCR15] and 3D [SRW*16]
vector field simplification. Lately, Wang et al. [WBR*17] further
extended the classic definition of robustness to a Galilean invariant
robustness framework that quantifies the stability of critical points
across different frames of reference. The notion of robustness was
further extended to study the stability of degenerate points in tensor
fields [WH17, JWH19].
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Figure 1: An augmented merge tree generated from a 2D vector
field: (a) a continuous 2D vector field f ; (b) relations among con-
nected components of sublevel setsXr; and (c) the augmented merge
tree. Sources/sinks/centres are in red, saddles in blue.

The concept of robustness, first introduced by Edelsbrun-
ner et al. [EMP11b, EMP11a], is closely related to the notion of
persistence [ELZ02] – a common tool used to quantify feature im-
portance. In addition to robustness, other measures have been ex-
plored to characterize the importance of vector field critical points
based on their lifetime [KHNH11] and scales [KE07].

Different to previous efforts, this paper introduces a new nota-
tion of multilevel robustness for critical points. Multilevel robust-
ness studies the robustness of a critical point w.r.t. their local neigh-
bourhoods of varying sizes, and thus helps to mitigate the boundary
effects suffered by classic robustness computation, and better dif-
ferentiates the behaviours of critical points across multiple scales.

3. Technical Background

We review the classic notion of robustness and the critical point
tracking method by Guo et al. [GLX*21], referred to as the FTK
algorithm in this paper.

3.1. Robustness

3.1.1. Degrees of critical points

Consider a continuous vector field f : X ⊆ R
2 → R

2 defined on a
2D domain X. A critical point x ∈ X is an isolated zero in the vec-
tor field, that is, | f (x)| = 0. A critical point x in 2D can be classi-
fied with respect to its degree, denoted as deg(x), as the number of
field rotations while travelling along a closed curve counterclock-
wise surrounding x enclosing no other critical point. In 2D, a sad-
dle point has degree −1, whereas a source/sink/centre has degree
+1. A connected component C ⊆ X that contains n critical points
{x1, x2, . . . , xn} has a degree that is the sum of the degrees of xi,
deg(C) = ∑n

i=1 deg(xi); see [Hat02, page 134] for a formal investi-
gation of the degree of a continuous mapping. As illustrated in a 2D
vector field in Figure 1a, x1 and x3 are centres with +1 degree, and
x3 and x4 are saddles with −1 degree.

3.1.2. Merge tree

The computation of robustness relies on the notion of an augmented
merge tree. Given a continuous 2D vector field f : X → R

2, we can
define a scalar field f0 : X → R that assigns the vector magnitude
to each point x ∈ X, that is, f0(x) = || f (x)||2. LetXr = f−1

0 (−∞, r]
denote the sublevel set of f0 for some r ≥ 0. X0 is precisely the

set of critical points of f . In Figure 1b, f0 is visualized using an
orange to purple colour map, and certain sublevel sets Xr are shown
as coloured curves.

We can construct a merge tree of f0 that tracks the evolution of
connected components in Xr as r increases. Specifically, leaves in a
merge tree represent the creation of a component at a local minimum
of f0, internal nodes represent the merging of components, and the
root represents the entire space as a single component; see Figure 1c
for an example. Once the merge tree is constructed, it can be further
augmented with the degrees of critical points (on leaves), and the
degrees of components (on internal nodes). As shown in Figure 1c,
we useCi to represent the connected components of the sublevel sets
of Xr for some r, and augment the corresponding merge tree with
deg(xi) and deg(Ci) as attributes of the tree nodes. For example, C1

is one of the three components of Xr1 , which contains critical points
x1 and x2. Therefore, we have deg(C1) = deg(x1) + deg(x2) = 0.

3.1.3. Robustness

The robustness of a critical point is the function value of its lowest
zero degree ancestor in the merge tree [WRS*13]. For the example
in Figure 1, the robustness of x1 and x2 is r1 and the robustness of x3
and x4 is r3, respectively. We review some properties of robustness
here for completeness; see [WRS*13] for details.

Let us first define the concept of vector field perturbation. A con-
tinuous mapping h : X → R

2 is an r-perturbation of f , if d( f , h) ≤
r, where d( f , h) = supx∈X || f (x) − h(x)||2, where sup means supre-
mum. Suppose a critical point x of f has robustness r, then we have:

Lemma 1 (Critical Point Cancellation [WRS*13]). Let C be the
connected component of Xr+η containing x, for an arbitrarily small
η > 0. Then, there exists an (r + η)-perturbation h of f , such that
h−1(0)

⋂
C = ∅ and h = f except possibly within the interior of C.

Lemma 2 (Degree Preservation [WRS*13]). LetC be the connected
component of Xr−η containing x, for some 0 < η < r. For any ε-
perturbation h of f , where ε < r − η, deg(h−1(0)

⋂
C) = deg(C).

If C contains only one critical point x, deg(h−1(0)
⋂
C) = deg(x).

These two lemmas imply that the topological notion of robust-
ness quantifies the stability of a critical point with respect to pertur-
bations of the vector fields. Intuitively, Lemma 1 implies that a crit-
ical point x with a robustness of r may be cancelled with a (r + η)-
perturbation, for arbitrarily small η > 0. Lemma 2 states that xmay
not be cancelled with a (r − η)-perturbation.

3.1.4. Limitations in computing the classic robustness

In practice, the robustness of a critical point depends on its cancel-
lation partner(s) defined by the merge tree, whose locations may be
influenced by the boundary condition of the known data domain.
To compute the classic notion of robustness, we use the known data
domain to construct a single merge tree, as shown in Figure 1c. If
the domain is without boundary, we expect all critical points to have
cancellation partners and all the robustness values to be finite (how-
ever, there is a technical condition on the domain for the algorithm
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to work, that is, trivial tangent bundle, which excludes the sphere).
If the domain has a boundary, a critical point may be cancelled with
a potentially far away critical point, based on the merge tree con-
struction. For example, x1 has a partner x2 in Figure 1b; however, in
the cropped region (a), x1 has a new partner x4 since x4 is the only
candidate in (a) that may be cancelled with x1. Furthermore, a crit-
ical point may have an infinite robustness value if it does not have
a cancellation partner in the known data domain. For example, x3
has a partner in the original domain of Figure 1b; however, it loses
its partner in the cropped region (b). These cases happen when the
sublevel sets intersect the boundary of the domain where we have
an incomplete picture of the flow behaviour closer to the boundary.
We aim to mitigate some of these boundary effects by introducing
the notion of multilevel robustness (see Section 4).

3.2. Critical point trajectories

Critical point tracking algorithms take a time-varying vector field
as the input, and produce as the output 1D geometries that represent
the trajectories of critical points in spacetime. In general, our mul-
tilevel robustness framework may be used to enhance any critical
point tracking result; we choose to use the recent FTK algorithm by
Guo et al. [GLX*21] for its simplicity and performance.

3.2.1. Trajectories

Let f̂ : X̂ = X × R → R
2 denote a time-varying vector field over

a 2D domain X, where f̂t (x) = f̂ (x, t ) : X → R
2 represents a 2D

vector field at time t ∈ R. We define critical point trajectories (or
simply trajectories) as the 0-levelset of f̂ , X̂0 := f̂−1(0, 0), that is,
the vicinity where both x- and y- components of f̂ are 0 and thus is
the intersection of two isosurfaces of both vector components.

3.2.2. Piecewise linear assumption

The basic assumption of the tracking method is that f̂ is piecewise
linear in spacetime. That is, X̂ is a 3D simplicial complex consisting
of a set of spacetime tetrahedra {Ti} such that f̂ (x) = aix+ bi, x ∈
Ti ⊂ X̂, where ai and bi are constants for each tetrahedron Ti, and
f̂ is 0-continuous on cell boundaries. If the linear system f̂ = 0 in
Ti is nondegenerate, the 0-levelset of f̂ in Ti may be analytically
solved as a linear curve; otherwise, degenerate cases may be han-
dled with the simulation of simplicity [EM90]. Therefore, trajecto-
ries can be extracted as 1D piecewise linear curves in 3D spacetime;
see [GLX*21] for details on the construction of spacetime simplicial
complexes, handling of degenerates and extraction of trajectories.

3.2.3. Interpretation of trajectories

Note that the 0-levelset of f̂ is not a bijection of time t onto the
trajectory; one may observe non-monotonous time along the same
trajectory, such as a loop. The change of monotonicity typically in-
dicates a bifurcation (split) or annihilation (merge). Such eventsmay
reflect topological changes of the vector field or are simply caused
by numerical instabilities in trajectory extraction. One may need to
simplify, segment, and filter the trajectories to understand the vector
field dynamics. To these ends, we demonstrate novel understanding

of trajectories based on multilevel robustness, as demonstrated in
the rest of this paper.

4. Our New Definition: Multilevel Robustness

To mitigate the drawbacks of the classic robustness computation,
we introduce a multilevel robustness framework. In Figure 2, we
give an example of a classic robustness analysis using a 2D vector
field instance from the MPASOEddy dataset (see Section 6.2 for
details). We study the robustness of critical points that represent the
centres of large-scale eddies. In (a), we visualize cancellation part-
ners in computing the classic robustness. In (b), we visualize the
critical points with radii proportional to their classic robustness val-
ues. Specifically, a number of centres (e.g.x0, x1, . . . , x9) are shown
to share the same lowest zero degree ancestor in the merge tree (c),
thus, they are grouped together and have the same robustness value
of 0.43. In other words, for any value r < 0.43, these critical points
may not be cancelled based on Lemma 2. Specifically, at r = 0.13,
the sublevel set X0.13 contains these centres in isolation, see (c) and
(d). Such a phenomenon happens for two reasons. First, some of
these critical points represent centres of large-scale eddies and are
surrounded by flows of a large magnitude. Imagining that these cen-
tres are sitting at the bottoms of deep wells (of the vector magnitude
field), a large amount of perturbation is then needed to cancel these
centres, and therefore they have high robustness values. Second, the
sublevel set X0.43 is shown to intersect significantly with the domain
boundary in (e), and some of these critical points become cancella-
tion partners due to the boundary effect.

To mitigate these issues, we introduce the notion of multilevel ro-
bustness. Roughly speaking, for a critical point x ∈ X, we define its
multilevel robustness as a sequence of robustness values computed
from its neighbourhoods of increasing radii. Formally, let Bx(a)
denote a ball of radius a surrounding a critical point x ∈ X, that
is, Bx(a) := {x′ ∈ X | ||x− x′|| ≤ a}, where ||x− x′|| represents the
Euclidean distance between two points. The multilevel robustness
of x is a function

Rx : [0, ∞) → R,

where Rx(a) is the (classic) robustness of x computed w.r.t. the do-
main Bx(a) for a ∈ [0, ∞).

We compute Rx at a discrete number of radii. Assuming the do-
main X contains n critical points, then for a fixed critical point
x ∈ X, as a increases, its multilevel robustness will change at most
n− 1 times, since x gets onemore candidate of the cancellation part-
ner as Bx(a) passes through each critical point. Computing the mul-
tilevel robustness Rx exactly (considered as the ground truth) takes
O(n2) time, which is impractical for complex data with a large num-
ber of critical points. Therefore, in practice, we approximate Rx by
sampling a number (N) of radii.

Figure 3a illustrates our method in calculating the multilevel ro-
bustness. For a critical point x, we consider N = 10 number of
its neighbourhoods at radius {a0, . . . , aN−1}, where each ai := L×
(i+ 1)/N for L being the diameter of the domain X (i.e. L is the
least upper bound of the set of all distances between pairs of points
in the domain). Figure 3a shows the N neighbourhoods of a critical
point x3 at radii at 10%, 20%, . . . , 100% of L, respectively. At each
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Figure 2: Classic robustness analysis of an instance from the MPASOEddy dataset. (a) A 2D vector field f where critical point partners
share the same colour. (b) Multiple sublevel sets of f0, where critical points are coloured by their degree (+1 in blue and −1 in red), and
the size of each critical points is shown to be proportional to their robustness values. (c) Part of an augmented merge tree of f0 used in the
robustness computation. (d) Sublevel set X0.13 in orange. (e) Sublevel set X0.43 in pink.

Figure 3: Multilevel robustness calculation of critical points in
a 2D vector field from the MPASOEddy dataset. (a) Multilevel
neighbourhoods for critical point x3. Columns (b) and (c): N-level
robustness (in blue) and ground-truth robustness (in black) of criti-
cal points x3 and x4.

fixed level ai, we compute the classic robustness of x3, giving rise
to its multilevel robustness Rx3 .

We investigate multilevel robustness for critical points x3 and x4
as N increases, see Figure 3b and c for N = 10, 30 and 50, respec-
tively. Not surprisingly, Rx(a) becomes a better approximation of

the ground truth as N increases. For computational efficiency, we
use N = 50 to approximate multilevel robustness for the datasets
used in the remainder of this paper.

There are a few benefits of using multilevel robustness Rx for a
critical point x ∈ X. First, Rx is better at differentiating different be-
haviours of critical points in terms of their multiscale stability. As
shown in Figure 3, critical points x3 and x4 now exhibit different
behaviours using Rx. Second, statistical information, such as min-
imum, median and maximum of Rx, could be used in analysis and
visualization tasks. Specifically, for the remainder of this paper, we
work with the minimum of Rx for critical point tracking, selection
and comparison, which is defined as

minRx := min
a∈[0, L)

Rx(a).

minRx captures the smallest possible robustness of x with varying
neighbourhood sizes, and thus alleviates the artifacts induced by
the boundary effects in classic robustness calculation. In addition,
minRx is shown to be highly correlated with physical quantities em-
ployed by domain scientists who study tropical cyclones; compare
Figure 12 for a concrete example.

5. Method: Multilevel Robustness for Visualization Tasks

With the newly introduced multilevel robustness framework, we de-
velop its usage in visualization tasks. Such a new notion of robust-
ness can be combined seamlessly with any feature tracking algo-
rithm.We choose to integrate it with FTK [GLX*21], a state-of-the-
art feature tracking technique. In particular, we demonstrate that the
minimum multilevel robustness minRx can be integrated with the
FTK algorithm to improve the original FTK feature tracking and
selection results for scientific simulations.

5.1. Illustrative dataset

In this section, we use an E3SMWind dataset to illustrate our
method. E3SMWind is a time-varying 2D vector field processed
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Figure 4: Critical points and FTK tracking results for the
E3SMWind dataset. (a), (c) and (d): selected vector fields with
their critical points. (b) Feature (i.e. critical point) tracking results
using FTK; each trajectory is coloured by the trajectory id.

using a HiResMIP-v1.0 (1950-Control) dataset [CMT*19] from the
Energy Exascale Earth SystemModel (E3SM) [GCVR*19] project.
It has an approximate horizontal resolution of 0.25◦ (degree) in the
atmosphere (28 km grid spacing), with an ocean and sea ice grid
of 18 km in the mid-latitudes and 6 km at the equator and poles.
We truncate a rectangular region around south Asia (10 N◦ to 30 N◦

and 105 E◦ to 140 E◦), and select 36 time steps from September 18,
the 26th run of the 1950-control dataset with 6 h as the time gap.
We use UBOT and VBOT as 2D vector fields, which correspond to
lowest model level zonal and meridional wind, respectively. These
instances describe the movement of a main cyclone, which forms in
the Pacific ocean, passes through the Philippines (around time steps
15–18), makes landfall (time step 27), and dissipates (around time
step 31) at the mainland of south Asia; see Figure 4a, c and d, which
visualizes the vector fields associated with time steps 0, 15 and 27.
The cyclone of interest is indicated by the white arrows.

5.2. Initial computation of trajectories and multilevel
robustness

The initial (critical point) trajectories of time-varying vector field
data are computed by FTK [GLX*21] (see Figure 4b), and we then
use the method of Tricoche et al. [TSH01a] to calculate degrees of
critical points in individual time steps. The computation of multi-
level robustness is parallelized with Eden [SOH12], which sched-
ules and manages a number of small tasks on a high-performance
computing cluster. In our implementation, each task is associated
with one critical point and a neighbourhood size. As a result, the
robustness computation of n critical points with N levels leads to
n× N independent tasks.

5.3. Enhancing feature tracking with multilevel robustness

In this section, we show that multilevel robustness – in particular,
the minimum multilevel robustness minRx – can significantly im-
prove the feature tracking results. Given the initial trajectory of a

Figure 5: (a) Minimum multilevel robustness values minRx for a
critical point x along the selected FTK trajectory. (b) Logistic trans-
formation of minRx along the FTK trajectory. (c) Segmentation of
points in the trajectory based on kernel density estimation. (d) The
selected FTK trajectory is highlighted in solid blue, whereas other
trajectories are transparent.

critical point x together with its multilevel robustness Rx over time,
we may visualize the trajectory by encoding the statistical informa-
tion of Rx along the trajectory, such as its minimum, median, and
maximum values. Figure 5d shows a visualization of these trajecto-
ries where the radius of each point along a trajectory is shown to be
proportional to the minimum of its multilevel robustness minRx.

The main idea of feature tracking with multilevel robustness is
to segment the initial trajectories (obtained by FTK or any other
feature tracking algorithms) into multiple pieces with similar ro-
bustness values. As discussed in Section 4, we prefer to use the
minimum of multilevel robustness minRx to quantify the stability
of critical points, which alleviates the artifacts introduced by the
boundary effect in classic robustness computation. We demonstrate
that our tracking strategy improves the initial FTK trajectories and
captures stable features in the domain, for example, in tracking the
main cyclone for the E3SMWind dataset.

We focus our analysis on an FTK trajectory that contains the main
cyclone. The blue trajectory in Figure 5a and d shows the minRx

values along the trajectory. Note that in Figure 5a, each trajectory
is a parameterized curve, where an integer index (horizontal axis)
corresponds to the parameter used in the parameterization. In the
remainder of this section, we use indices to refer to nodes along a
trajectory. As shown in Figure 5a, minRx decreases significantly at
indices 15 and 16, and its value remains low after index 32.

Our first step is to segment a given trajectory into groups of criti-
cal points with similar robustness values. This step is supported by
the theoretical work in [SW14], where correspondences between
critical points may be inferred based on their closeness in robust-
ness. To induce a segmentation more easily, we can amplify the sig-
nal minRx with a logistic transformation. Starting from a standard
logistic function s(z) = 1/(1 + e−k(z−z0 ) ), set z = minRx at a fixed
time step and z0 = 0 (the minimal possible robustness value). Since
minRx ∈ [0, ∞), we have s(z) ∈ [1/2, 1]. Introducing a normaliza-
tion term, we have

l(minRx) = 2

1 + e−k·minRx
− 1,
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Figure 6: Comparing feature tracking results for a time-varying
E3SMWind dataset. (a) Initial (classic) FTK trajectories; (b) tra-
jectories obtained based on multilevel robustness, with zoomed-in
view for indices 13-15. The vector field at index 14 is visualized in
(c) with a zoomed-in view around the Philippines in (d).

so that l(minRx) ∈ [0, 1]. Here, k is the logistic growth rate or the
steepness of the curve of the function. We set k = 0.5 for most
cases, and discuss the parameter choices later. There are two jus-
tifications for using a logistic transformation. First, minRx may be
infinity when a critical point x cannot find a cancellation partner
in the known data domain; l(minRx) is thus constrained within the
range [0, 1], making parameter selection easier. Second, l(minRx) is
less sensitive w.r.t. to the changes in minRx, and therefore it focuses
only on significant changes of minRx. For example, as shown in Fig-
ure 5a and b, the logistic transformation l maps the minRx ∈ [0, ∞]
to l(minRx) ∈ [0, 1]. Furthermore, it helps to differentiate unstable
critical points along the trajectory from relatively stable ones. As
shown in Figure 5b, there appears to be clear separations between
indices [15, 16] and [31, 40] from the rest of the trajectory.

Our second step is to cluster critical points along a trajectory
into different groups using l(minRx) and kernel density estimation
(KDE) with a Gaussian kernel. As illustrated in Figure 5c, by choos-
ing an appropriate bandwidth parameter σ for the Gaussian kernel,
we can further cluster the critical points with indices [15, 16] and
[32, 40] from those with indices [0, 14] and [17, 31]. σ controls the
smoothness of a KDE, where a small σ leads to more segments.
For our experiments, we set σ = 0.2 as the default value; see a later
section for parameter tuning.

Our third step is to refine critical point trajectories based on the
clustering results. Critical points belonging to the same cluster are
reconstructed as a new trajectory by examining spatial faces and
spacetime edges [GLX*21]. As illustrated in Figure 6b, the selected
blue FTK trajectory is segmented into three pieces: an orange tra-
jectory connecting critical points of indices [15, 16], a red trajec-
tory connecting critical points with indices [31, 40], both with small
robustness values; and the remaining blue trajectory with large ro-
bustness values. In particular, the new blue trajectory in (b) is recon-

structed by connecting critical points of indices 14 and 16 following
the approach in [GLX*21].

Based on domain knowledge, a critical point representing the cen-
ter of a cyclone should have a high stability measure across time be-
fore it hits the land and dissipates. Take a close look at the trajectory
at index 14. As shown in Figure 6d, there are two critical points with
low stability near the landmass of the Philippines. Since the classic
FTK algorithm only considers the correspondences of critical points
based on 0-levelset extraction, these two critical points are included
in the initial trajectory in Figure 6a. Furthermore, the critical points
with indices [31, 40] are likely unstable features when the cyclone
makes landfall and dissipates.

Our feature tracking method is used as a postprocessing step to
segment initial FTK trajectories into more meaningful segments,
based on multilevel robustness. In particular, we compare the initial
trajectory with our new trajectory based on multilevel robustness
in Figure 6a and b. The initial trajectory includes a pair of critical
points on the island of the Philippines with low robustness values;
whereas our method successfully tracks the main cyclone and re-
moves these two critical points from the main trajectory, as indi-
cated by an orange arrow in Figure 6b. Also, our method splits the
initial trajectory into a red trajectory when the cyclone hits the south
of Asia, as indicated by the green arrow in Figure 6b, since the low
robust tail of the initial trajectory is formed by unstable features on
land; see critical points within the white box of Figure 6c.

5.3.1. Parameter selection for k and σ

We now discuss how the choice of k from the logistic transformation
and bandwidth σ from the KDE affect the feature tracking results.
k is used to control the growth rate of the logistic transformation.
Figure 7a shows the feature tracking results for k = 0.1 and 0.5.
When k is relatively small (e.g.k = 0.1), the logistic transformation
cannot differentiate stable features from unstable ones, regardless of
the values of σ . For example, for k = 0.1 and σ = 0.1, our method
over-segments the initial trajectory. As σ increases (Figure 7a 1st
row), our method does not exclude unstable features on the island
and those on the mainland. On the other hand, we obtain reasonable
(similar) feature tracking results for k ∈ [0.3, 1.0]. This indicates
that a slightly higher value of k is effective in differentiating stable
and unstable features. Therefore, we set k = 0.5 for our experiments
in Section 6.

For a fixed k value, Figure 7a also shows the feature tracking re-
sults for σ = 0.1, 0.2 and 0.4, respectively. As discussed previously,
a small σ will likely introduce the over-segmentation of a given tra-
jectory. For example, when σ = 0.1, the trajectory representing a
merging behaviour of a pair of critical points on the left bottom cor-
ner of E3SMWind is divided into two parts, as indicated by the
orange arrows in Figure 7a (1st column and 2nd row). When σ is
large, the KDE curve becomes too smooth to differentiate stable and
unstable features. As shown in Figure 7a (3rd column and 2nd row),
if we set σ = 0.4, the blue trajectory is similar to the trajectory using
classic FTK algorithm. This means that our feature tracking under
σ = 0.4 fails to extract the main cyclone from other unstable fea-
tures around the regions indicated by orange arrows. Finally, since
both KDE and l(minRx) have a range of [0, 1], we set σ = 0.2 as
default since it works well in most cases considered in Section 6.
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Figure 7: Parameter selection of k and σ for the E3SMWind dataset. (a) From top to bottom, feature tracking results for k = 0.1 and 0.5.
From left to right, σ = 0.1, and 0.4. (b) Number of trajectories w.r.t. parameter selection of k and σ . (c) A zoomed-in view of (b) for the region
surrounded by the dashed white box.

Additionally, we use a heatmap that records the number of tra-
jectories under various parameter settings in Figure 7b, which pro-
vides a supplementary view for parameter selection. The values of
k and σ from Figure 7a are highlighted by crosses in Figure 7b.
For parameter selection, we look for the regions where the number
of trajectories remains relatively stable with a range of values for k
and σ . For example, when σ ≥ 0.45, our framework produces the
same number of trajectories as the original FTK tracking result. It
means that with a relatively high σ , our framework cannot differ-
entiate between stable and unstable features, for example, see the
region surrounded by the green boundary in Figure 7b. On the other
hand, a small σ tends to over-segment the initial FTK tracking re-
sults, see the first row of Figure 7b. Our default values of k and σ

come from the region surrounded by the orange boundary in Fig-
ure 7c. Any combination of k and σ from this region leads to the
same post-processed feature tracking result.

5.4. Feature selection with multilevel robustness

This section demonstrates feature selection aided by multilevel ro-
bustness. We introduce two filters, one based on minRx, and the
other based on degree information. Both filters help to reduce vi-
sual clutter and highlight dominant features in the domain.

Our first feature selection strategy is referred to as the stability
filtering. For any trajectory, this strategy considers the topological
notion of stability in terms of l(minRx), as well as its temporal stabil-
ity in terms of the lifespan. Let γ denote a parameterized trajectory,
|γ | is its total length. Formally, we define the stability measure of a
trajectory γ as follows:

b(γ ) :=
∑

x∈γ l(minRx)

|γ | · tγ
T

, (1)

where T is the temporal span of all trajectories (e.g.T = 36 for the
E3SMWind dataset), and tγ is the temporal span of γ in terms of the
maximum difference between node indices. The first term in Equa-
tion (1) captures the average pointwise stability (in a logistic scale),
whereas the second term encodes the lifespan of the trajectory. By
definition, b(γ ) has a range in [0, 1].

Figure 8: Feature selection for the E3SMWind dataset. From top
to bottom: degree filtering with thresholds at −1 (i.e.keeping all
saddles) and −0.2 , respectively. From left to right: stability filter-
ing with thresholds at 0, 0.2 and 0.4, respectively. Trajectories are
coloured by the degrees of critical points, where red means +1 and
blue means−1. The radius of a trajectory is proportional tominRx.

Our second feature selection strategy is referred to as the degree
filtering. That is, we select trajectories based on their pointwise av-
erage degree. Formally, for a trajectory γ , its average degree is

d(γ ) :=
∑

x∈γ deg(x)

|γ | , (2)

where deg(x) is the degree of a critical point x ∈ γ . Since a critical
point may be of degree +1 or −1, d(γ ) has a range in [−1, 1]. For
our experiments involving cyclones and ocean eddies, we work pri-
marily with critical points with a degree of+1, which correspond to
centres of cyclones and eddies. Domain scientists mainly care about
centres in our applications. For example, the trajectory that repre-
sents the main cyclone in the E3SMWind dataset contains criti-
cal points (centres) whose degrees are all +1. Therefore, trajectory
γ1 within Figure 8 has d(γ1) = +1. For trajectory γ2, d(γ2) = 0,
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Table 1: Datasets used in this paper. #steps, #nodes, #cells and #CPs, re-
spectively, mean the number of time steps, number of vertices in the mesh,
number of cells in the mesh and number of critical points. Running times are
in seconds.

Dataset #steps #nodes #cells #CPs time per task

E3SMWind 36 13,639 26,356 8-53 0.11-1.18
E3SMWind L 36 99,007 195,602 238-425 0.11-27.72
HurricanKatrina 216 50,861 100,800 208-501 0.11-15.97
MPASOEddy 20 × 4 37,929 75,063 18-65 0.11-1.44

since critical points on its left branch have degrees +1 and criti-
cal points on its right branch have degrees −1. Once a trajectory
is enriched with a stability measure and an average degree, one
may select features based on these criteria jointly or independently.
As illustrated in Figure 8, we successfully select the trajectory
that represents the main cyclone with degree filtering and stability
filtering.

6. Results with Large-Scale Simulations

We demonstrate the use of multilevel robustness in feature tracking,
selection and comparison for large-scale scientific simulations. Ta-
ble 1 lists some basic information for datasets used in this paper,
including the number of time steps, grid nodes, grid cells (triangles)
and critical points. We also provide a brief running time analysis
for all datasets based on each task discussed in Section 5 (i.e. a
single task involves computing classic robustness of a given criti-
cal point at a fixed radius). All tasks are arranged on a cluster with
664 nodes (128GB DDR4 and 36 cores). We utilize 16 nodes in
all experiments, which means that at most 16 × 36 = 575 tasks can
run at the same time. Since the running time of each task is highly
correlated with the size of neighbourhood in the robustness calcu-
lation, Figure 9 provides the box plots of running time at each level
of robustness for all critical points in a given dataset; also see Ta-
ble 1 (last column) for the range of running time of tasks for each
dataset.

In the following, all timestamps in the descriptions are repre-
sented in the universal coordinated time (UTC).

6.1. Feature tracking and selection

6.1.1. E3SM Wind L dataset

We revisit the HighResMIP-v1.0 (1950-Control) dataset [CMT*19]
from E3SM simulations. Instead of truncating a small region for il-
lustrative purposes in Section 5, we enlarge theE3SMWind dataset
to the E3SMWind L dataset by choosing the region from 10 S◦ to
50 N◦ for latitude and from 80 E◦ to 175 E◦ for longitude.

As shown in Figure 10b, with the appropriate trajectory segmen-
tation, stability filtering and degree filtering, our framework detects
the trajectories of three main cyclones in the domain, denoted as a,
b and c. Trajectory a appears at the east of Japan from time step 0,
moves to the east, and disappears on the right boundary at time step
9. Trajectory b exists from time step 0 to 31, and coincides with the
selected cyclone trajectory ofE3SMWind in Figure 6 and Figure 8.
Trajectory c stays on the right bottom corner of the domain from
time steps 0 to 21. For further investigation of these trajectories, we
visualize the vector fields associated with time step 0 in Figure 10a,
with colour map based on the magnitude of the vector fields. We
also give the zoomed-in views of the detected main features.

6.1.2. Hurricane Katrina dataset

Hurricane Katrina was a large and destructive Category 5 Atlantic
hurricane that formed on 23 August 2005, and dissipated on 31 Au-
gust 2005. OurHurricanKatrina dataset is truncated fromECMWF
Reanalysis v5 (ERA5), which is produced by the Copernicus Cli-
mate Change Service (C3S) [C3S]. ERA5 provides hourly estimates
of the global climate information covering the period from Jan-
uary 1950 to the present with the spatial grid resolution of 30 km.
The rectangular region is centred at the southeast of the contigu-
ous U.S. (5 N◦ to 50 N◦ and 120 W◦ to 50 W◦); the time steps
range from 12:00, August 23, 2005, to 23:59, August 31, 2005.
Since ERA5 uses a 1-h time gap, ourHurricanKatrina dataset con-
tains 9 × 24 = 216 instances.We choose 10m zonal andmeridional
wind speed as the 2D vector field, since in the near-surface the hur-
ricane core represents a region of strong convergence and associated
vertical motion.

We start with the initial trajectories provided by FTK, shown in
Figure 11a. Due to visual clutter among thousands of trajectories,

Figure 9: Boxplots of running time with different neighbourhood sizes for the (a) E3SMWind, (b) E3SMWind L, (c) HurricanKatrina and
(d)MPASOEddy datasets.
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Figure 10: Feature tracking and selection for the E3SMWind L dataset. (a) A selected vector field with zoomed-in views, where saddles are
in blue, and critical points with degree+1 are in red. (b) Tracking results with degree filter thresholds at−1 and−0.2 (from left to right) and
stability filter thresholds at 0, 0.2 and 0.4 (from top to bottom).

Figure 11: Feature tracking and selection for the HurricanKatrina dataset. (a) Selected vector fields with zoomed-in views. (b) Tracking
results with stability filter thresholds at 0 and 0.1 (from left to right) and degree filter thresholds at −1 and −0.02 (from top to bottom).

it is hard to identify the principal features. However, our multilevel
robustness framework is able to detect four dominant features in the
domain, after trajectory segmentation and filtering, shown as trajec-
tories a to d in Figure 12b.We visualize vector fields associated with
time steps 15, 65 and 120, and highlight these four features in the
zoomed-in views; see Figure 12a. In particular, trajectory c contains
critical points representing the centre of Katrina.

We perform a detailed analysis of the robustness-based segmen-
tation of trajectory c. As shown in Figure 11b, the initial FTK tra-
jectory containing c also contains a number of critical points that

are not associated with Katrina. These critical points are part of the
same initial trajectory with c. Multilevel robustness is used to seg-
ment this initial trajectory by differentiating spurious features from
the features of interest, using k = 0.5 for the logistic transformation
and σ = 0.2 for the KDE. As shown in Figure 11c, our approach ex-
tracts the trajectory c that represents Katrinawith two segmentation
points highlighted by orange arrows.

Trajectory c, which represents Katrina, exists between time steps
33 and 201, which correspond to 9:00, 24 August 2005 and 9:00
31 August 2005. This means our framework does not capture
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Figure 12: Feature tracking result for the HurricanKatrina
dataset. (a) Initial FTK trajectories. (b) Initial FTK trajectory that
contains Katrina. (c) Segmenting trajectory in (b) with multilevel
robustness; new segments are assigned different colours.

Katrina on 23 August 2005, when it was a tropical depression. Tak-
ing a closer look at the critical points within the dashed white box
from Figure 12a at time step 15, it is hard for us to extract the low
robust critical point that can represent Katrina as there are many
unstable features nearby. However, this could be an artifact of the
reanalysis product being used: since data assimilation in ERA5 oc-
curs at 09:00, it is likely that the reanalysis product has been arti-
ficially adjusted to include Katrina’s precursor. Overall, our frame-
work works well in detecting Katrina when it strengthened into a
tropical storm on the morning of August 24.

Based on input from domain scientist, our hypothesis of data
preparation being an issue for Katrina is related to the disparate char-
acter of the storm at the hour of its first detection and the previous
hour. The storm first appears when the data assimilation system is
employed to generate new initial conditions for the forecast, sug-
gesting that its development was not easy to predict from a fore-
cast run initialized 12 h earlier. Thus, data preparation is likely one
factor in the inability to extract a clear centre when the storm is
a tropical depression. Tropical depressions are not well-organized
systems, and whether or not the storm eventually develops a clear
eye is highly dependent on the 3D evolution of the storm. So at this
early stage, it is not surprising that a system that uses only a 2D slice
of the wind field cannot detect the storm.

6.1.3. Correlation with known physical quantities

We investigate the relationship between robustness and quantities
that are used by the tropical cyclone research community, including
five-degree maximum wind speed (5DMWS) and mean sea-level
pressure (MSLP). These two quantities are commonly used by
domain scientists to detect, track and evaluate tropical cyclones.
Compared with traditional cyclone tracking schemes, our multilevel
robustness framework has the advantage of identifying cyclonic
features using only the wind vector fields.

We observe a strong correlation between robustness and
5DMWS, which has been widely used in hurricane intensity met-
rics such as the Saffir-Simpson scale. As illustrated in Figure 13a,
5DMWS is defined as the maximum wind speed within the five-
degree region of the hurricane centre x. As shown in Figure 13b and
c, the Pearson correlation coefficients between the minRx curve and
5DMWS is 0.95, suggesting a strong relationship between these two

Figure 13: (a) A schematic in calculating a five-degree region. (b)
Minimum multilevel robustness minRx, (c) 5DMWS and (d) MSLP
along the Katrina trajectory.

Figure 14: From top to bottom, minRx, 5DMWS and MSLP along
trajectories a, b and d from Figure 12.

quantities. Mean sea-level pressure (MSLP) is another scalar field
that is frequently used by domain scientists in hurricane analysis.
MSLP is connected to maximum wind speed via gradient wind bal-
ance, modified to account for surface friction; an empirical relation-
ship connecting these two quantities is described in [Hol08]. Hur-
ricanes higher on the Saffir-Simpson scale (with higher maximum
wind speed) have lower MSLP at their centre. The MSLP along
the detected Katrina trajectory is shown in Figure 13d. The Pear-
son correlation coefficient between the minRx curve and MSLP is
−0.83.

We further investigate the correlations between robustness with
5DMWS and MSLP for trajectories a, b and d from Figure 12.
As shown in Figure 14 (1st row), minRx has a strong correlation
with 5DMWS and MSLP along trajectory a, where the correlation
of the former is 0.94 and of the latter is −0.95. Further investiga-
tion reveals that trajectory a corresponds to Hurricane Hilary. This
experiment shows that robustness strongly correlates with physical
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Table 2: Pearson correlation coefficients between minimal multilevel ro-
bustness minRx with 5DMWS and MSLP for cyclones detected in 2004 and
2008.

Name
5DMWS

versus minRx

MSLP versus
minRx

Tropical Storm Bonnie (2004) 0.40 0.01
Laura (2008) 0.80 −0.66
Fay (2008) 0.66 −0.73

Cristobal (2008) 0.83 −0.5
Category 1 Lisa (2004) 0.62 −0.79

Hanna (2008) 0.78 −0.83
Kyle (2008) 0.76 −0.87

Category 2 Danielle (2004) 0.79 −0.82
Dolly (2008) 0.79 −0.90

Category 3 Jeanne (2004) 0.82 −0.89
Bertha (2008) 0.76 −0.85

Category 4 Charley (2004) 0.75 −0.83
Frances (2004) 0.96 −0.87
Karl (2004) 0.96 −0.94
Ike (2008) 0.89 −0.84

Gustav (2008) 0.83 −0.90
Omar (2008) 0.86 −0.95

Category 5 Alex (2004) 0.93 −0.91

quantities for trajectories a and c, which correspond to Hurricane
Hilary (category 2 hurricane) and Hurricane Katrina (category 5
hurricane) respectively. However, such high correlations do not gen-
eralize to weaker storm systems. The correlation between minRx

with 5DMWS is 0.764 for trajectory d, and −0.032 for trajectory b,
see Figure 14 (2nd and 3rd row). It turns out that trajectory d rep-
resents the Tropical Storm Irwin, whereas trajectory b can not be
found in the National Hurricane Center’s Tropical Cyclone Reports.
Therefore, our hypothesis is that there are strong correlations be-
tween minRx with 5DMWS/MSLP for strong storm systems (such
as hurricanes) but weak correlations for weak storm systems (such
as tropical storms).

To provide more evidence, we have run experiments with the
ERA5 hourly data for the years 2004 and 2008 and extracted 18
storm systems categorized by the Saffir-Simpson Hurricane Wind
Scale (e.g. category 1–5 hurricanes). We report the Pearson corre-
lation coefficients between minRx and 5DMWS/MSLP for each de-
tected trajectory in Table 2. We observe a higher correlation coeffi-
cient with an increasing wind scale. For instance, we observe higher
correlations betweenminRx and 5DMWS/MSLP for Category 4 and
5 hurricanes than for tropical storms.

6.2. Feature comparison for ensemble dataset

We demonstrate our framework in feature comparison in an ensem-
ble of global ocean dataset (referred to as MPASOEddy), simu-
lated with different wind stress parameters. The simulation code,
MPAS-Ocean [GCVR*19, PADB*19], is a multiscale and unstruc-
tred mesh simulation for studying the ocean component of climate
changes. In this experiment, we utilized the standard low-resolution
EC60to30 mesh, whose size of the cells along the coast varied from
60 to 30 km. Specifically, in the MPASOEddy dataset, each of

the four simulation runs captures 20-day ocean eddies with the bulk
wind stress amplification parameter ω varying from 1.0 to 2.5; the
time-resolution of the data is 1 day. We truncate the region near the
equator in the Pacific Ocean (15 S◦ to 18 N◦ for latitude and 170 E◦

to 110 W◦ for longitude), since this region contains many large ed-
dies for feature comparison. Figure 15 (left three columns) visual-
izes selected vector fields associated with time steps 0, 9 and 19, for
ω = 1.0, 1.5, 2.0 and 2.5, respectively. In the rest of this section, we
investigate the variability of features – in particular, the centres of
eddies – induced by varying wind stress.

From the visualization of vector fields in Figure 15, we obtain
some preliminary observations: (1) critical point locations share a
similar distribution at the beginning of each simulation (1st col-
umn); (2) as ω increases, vector field features show more variations
as t increases (3rd column); (3) a large value of ω leads to a higher
flow magnitude. However, simply showing the locations of critical
points in the ensemble has a limited effect on guiding parameter se-
lection and post hoc analysis. Instead, our framework can capture
more variability across the four parameter settings for feature com-
parison. To preserve the merging and splitting behaviour of critical
points, we set the threshold for degree filter at −1, thereby preserv-
ing saddles in the domain. We also set σ = 0.2 and the threshold
for stability filter at 0.02 to postprocess initial FTK trajectories and
eliminate visual clutter.

The first observation from our framework is that trajectories have
a shorter lifespan as ω increases; see the trajectories in Figure 15b
(from top to bottom) for examples. The second observation is that as
ω increases, a number of critical points have decreased robustness
and more consistent cancellation partners, see Figure 15c.

The domain scientists pointed out that an increased wind stress
will reduce the scales of existing eddies and suppress the develop-
ment of larger scale eddies. This also leads to a decrease in stability,
measured by robustness, for some eddy centres as they interact more
easily with nearby features, thus locating more consistent cancella-
tion partners (see Figure 15c at ω = 2.5). As a consequence, some
trajectories are filtered out in Figure 15a as ω increases, since these
trajectories become less stable. To summarize, our feature compar-
ison captures variability and stability among critical point trajecto-
ries under various parameter settings, which may help guide param-
eter selection (e.g.maintaining a certain number of stable features)
in scientific simulations.

7. Conclusion and Discussion

In this paper, we introduce a new multilevel robustness framework.
Our framework helps to mitigate the drawbacks of the classic ro-
bustness computation due to the boundary effect, and better differ-
entiate the behaviours of critical points in terms of their multiscale
stability. We show that the statistical information of multilevel ro-
bustness, in particular, minimum multilevel robustness, can be inte-
grated seamlessly with feature tracking algorithms such as FTK as a
postprocessing step. Our framework thus supports feature tracking,
selection, and comparison, and improve the visual interpretability
of vector fields from scientific simulations.

Modern heuristic tracking schemes detect tropical cyclones
through a two-step procedure: first, isolated minima in the sea level
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Figure 15: Feature comparison with multilevel robustness for the MPASOEddy dataset. Left three columns: selected vector fields at time
steps 0, 9 and 19, with ω = 1.0, 1.5, 2.0 and 2.5. Critical points with degrees +1 and −1 are in red and blue, respectively. Columns (a), (b)
and (c): feature tracking and selection results and their zoomed-in views; trajectories are coloured by their indices with radius proportional
to minRx. (b) corresponds to the regions in (a) surrounded by red boxes, and (c) refers to the regions enclosed by blue boxes.

pressure field are identified; second, an upper-level warm core cri-
terion is used to filter out storms that are not tropical in nature.
Compared with such heuristics, our robustness-based framework
has the advantage of identifying strong cyclonic features using only
the wind vector fields.

There are a number of points for discussions, such as feature
tracking in 3D, scalability, uncertainty visualization, and alternative
strategies. First, it is possible to extend our current approach to 3D
vector fields, since robustness has been studied for critical points in
3D [SRW*16]. However, topological features such as vortices and
vortex cores are arguably more interesting to study in 3D than crit-
ical points, where a notion of robustness has yet to be developed.
This presents a current limitation of our framework. Second, our
current implementation approximates multilevel robustness with a
discrete set of radii. Increasing the number of levels will require
more computational resources, where advanced parallel/distributed
computation may be needed (cf. Figure 9, which uses an embarrass-
ingly parallel approach). Third, our work is motivated by the com-
putation of classic robustness, whichmay produce artifacts when the
sublevel sets containing critical points intersect the domain bound-
aries. It would be interesting to consider alternative strategies. For
instance, moving critical points out of the domain by a perturbation
may change the structure of the underlying sublevel sets, and the
correspondingmerge treemay become inconsistent with the original
(observable) data. Fourth, the multilevel robustness is a natural can-
didate for uncertainty visualization, which is left for future work. Fi-
nally, the classic robustness has been applied to data beyond climate
science, such as vector fields from combustion simulation and ten-
sor fields from materials science and diffusion tensor imaging. We
believe a generalization of multilevel robustness to these datasets
would be interesting but beyond the scope of the current paper. A
main challenge is to study its correlation with physical quantities in
these respective application domains.
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