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Abstract
Clothed human re-construction from a monocular image is challenging due to occlusion, depth-ambiguity and variations of body
poses. Recently, shape representation based on an implicit function, compared to explicit representation such as mesh and voxel,
is more capable with complex topology of clothed human. This is mainly achieved by using pixel-aligned features, facilitating
implicit function to capture local details. But such methods utilize an identical feature map for all sampled points to get local
features, making their models occlusion-agnostic in the encoding stage. The decoder, as implicit function, only maps features and
does not take occlusion into account explicitly. Thus, these methods fail to generalize well in poses with severe self-occlusion. To
address this, we present OaIF to encode local features conditioned in visibility of SMPL vertices. OaIF projects SMPL vertices
onto image plane to obtain image features masked by visibility. Vertices features integrated with geometry information of mesh
are then feed into a GAT network to encode jointly. We query hybrid features and occlusion factors for points through cross
attention and learn occupancy fields for clothed human. The experiments demonstrate that OaIF achieves more robust and
accurate re-construction than the state of the art on both public datasets and wild images.
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1. Introduction

Clothed human re-construction is widely applied in human digitiza-
tion, remote presence and virtual try-on. And re-construction based
on the monocular image is a challenging task with lack of informa-
tion, self-occlusion and depth ambiguity.

Previous methods using parametric model [LMR*15] can re-
construct full human shape from a single RGB image. But the re-
sults lose high frequency information such as hair and cloth wrin-
kle. Therefore, the following works [ZZW*19, APMTM19] take
static templates as geometry priors to guide the network to pre-
dict displacement fields for such templates. While some others learn
latent code in low dimension for pre-defined clothing templates
with outfit-specific generative networks [BTTPM19, TBTPM20,
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CPA*21]. However, these methods, constrained by the topology of
the template, are unable to tackle varied styles of human clothes.

The proposed method is based on widely followed implicit sur-
face representation [PFS*19]. This kind of method relies on the
property of the neural network, being able to fit any topology in
theory. Among shape re-construction approaches with implicit rep-
resentation, those combining a unified global coding with 3D coor-
dinates have achieved considerable results in the re-construction of
general objects [CZ19, KBJM18]. But they are not applicable for
clothed humans with lots of local details. Thus pixel-aligned fea-
tures are proposed to model high-frequency information and show
its power in recovering local details [SHN*19, SSSJ20]. These
methods usually use high precision, general standing commercial
3D models for training, resulting in their struggling with non-
standing poses or wild images with severe occlusion. The generated
meshes usually include unexpected deformation and broken body
parts. The main reason for this limitation, in addition to the distri-
bution of training data, lies in the depth ambiguity of pixel-aligned
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features. It can be attributed to using a unified image encoder to ob-
tain the image features of all sampling points, regardless of whether
they are visible or not on the plane of the image.

We aim to concentrate image encoding on the inference of vis-
ible information and make the network aware of the visibilities of
sampling points. And then our model can make more clear discrim-
inations in feature representation, which is important for implicit
surface learning. The image features are more significant compared
to coarse 3D ones when the depth does not need to be integrated
explicitly in the image feature encoding stage. Thus, we propose
an Occlusion-aware Implicit Function called OaIF, to utilize image
feature properly. With a single RGB image and corresponding mask
as input, a coarse SMPLmodel predicted by Pare [KHHB21] is used
as body reference and a feature map is generated by hourglass net-
work [NYD16]. Similar to the approach used in Li et al. [LWF*21],
we embed pixel-aligned features into the topology space of the ver-
tices of the parametric model. Next, the 2D image feature and 3D
geometry feature can be jointly encoded on the surface manifold.
We also utilize a mask to filter 2D feature, enabling this encoding
process to perceive the visibilities of vertices. To query the fused
feature and how much it is occluded for any point, a cross atten-
tion module is applied. The resulting occlusion factor can be further
used to filter pixel-aligned feature for any point in space. Finally, the
concatenation of multi-modal features is fed into multi-layer per-
ceptron (MLP) to learn the occupancy field and then a mesh can
be extracted with Marching Cubes [LC87]. Since OaIF heavily de-
pends on the accuracy of SMPLmodel, we apply the body reference
optimization in PaMIR [ZYLD21] to align SMPL to the 0.5 level set
conditioned in the observed image, which results in a better gener-
alization ability.

We conclude the major contributions as follows:

(1) OaIF is presented, a method based on the implicit function
to re-construct clothed human. Compared with PIFu-liked ap-
proaches, it is the first to integrate visibility information to re-
duce the ambiguity of pixel-aligned feature.

(2) A multi-modal feature fusion method is proposed. To use an-
chor points of SMPL as reference, the feature encoding process
can be done in topology space which is more reasonable com-
pared to Euclidean space.

(3) The whole framework realizes a close coupling between im-
plicit function and parametric model. Therefore, it can benefit
from the performance of the latest model in human shape esti-
mation.

The rest of this paper is organized as follows. In Section 2, we re-
view the relatedwork in human digitization. In Section 3, we present
the detail of the proposed method. In Section 4, we describe imple-
mentation details and experimental results and analysis. Finally, we
summarize our work in Section 5.

2. Related Work

Previous works in human re-construction focus on the predic-
tion of human pose and shape. Though the generated mesh is
hardly clothed, the methods also contribute to clothed human re-
construction based on explicit representation. In this section, we

classify related works according to the form of 3D model represen-
tation.

Explicit representation. Statical mesh is widely used in image-
based clothed human re-construction [KBJM18, ZCL*19]. These
methods constrain the parameter space to be searched by defin-
ing the connection between vertices through pre-defined template
models such as SMPL. Spin [KPBD19] iteratively optimizes the
2D joint position projected from 3D joints in the training and test-
ing stages to provide more accurate SMPL parameter estimation.
GCMR [KPD19] provides global coding from the image for each
vertex on the downsampling mesh. It predicts the vertex position in
current pose through graph convolution and regresses the SMPL pa-
rameters. Lin et al. [LWL21] used transformer to capture the long-
distance relationship. DC-GNet [ZJCL21] models both the positive
and negative dependencies between vertices and introduces mask to
tackle a shape completion task. But all the methods are proposed
to estimate human pose and shape aligned with the observed im-
age without cloth information. Others aim to recovery local details
such as clothes and hair by predicting the relative offset of mesh ver-
tices. Smpl+D [AMB*19] introduces per-vertex offset into SMPL
formula to express high frequency details. Tex2Shape [APMTM19]
predicts deformation displacement through the convolution of UV
map. Li et al. [LWF*21] introduced the deformation representation
suitable for mesh vertices and uses graph convolution to predict the
offset of each vertex, so as to realize clothing modelling.

Related works with point cloud as input also adopt similar meth-
ods to learn displacement mapping for each template mesh ver-
tex [BSTPM20a, MSY*21, MYTB21]. These parametric model-
based methods can realize animation driving for the generated mesh
on the pre-defined skeleton and skin weights. They are also compati-
ble with current graphics tools. But the key limitation is that they can
not express complex and varied clothing structures through an offset
field of the statical template. Therefore, some works try to learn dif-
ferent network parameters [TBTPM20, MSY*21], latent codes in
low dimension [BTTPM19, SMB*20] or embeddings [MYTB21]
for different cloth types. The performance of these methods to
model clothing deformation depends on the distribution of labelled
data and cannot generalize well in a variety of clothing styles.

Implicit surface. Different from explicit modelling, the surface
of 3D model can be defined as an implicit function, which is pa-
rameterized in high-dimensional space, and the implicit represen-
tation is learned through the fitting ability of MLP to any func-
tion. Based on this idea, for monocular image re-construction of
general objects, the target surface is defined on the 0 level-set, and
the signed distance field in 3D space is learned to represent the ob-
ject surface. For any given point, their high-dimensional features are
usually encoded as the concatenation of a unified one [PFS*19] or
local ones [XWC*19] and 3D coordinates. Then, the signed dis-
tance between the query point and the implicit surface is output
through MLP.

Since the implicit function can represent any surface,
PIFu[SHN*19] is proposed, as the first to utilize the pixel-
aligned feature to learn unsigned occupancy fields for clothed
humans. In the following work, PIFuhd [SSSJ20] enhances details
of generated mesh with normal maps and high resolution image
as input, but much more parameters need to be optimized. To
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achieve the limb integrity of the re-constructed model, subsequent
works introduce 3D information to constrain the prediction of the
occupancy field. Geo-PIFu [HCJS20] uses a voxelization layer to
integrate the voxel features generated by coarse human shapes.
S3 [YWM*21] introduces point cloud features and additionally
learns skin weights as well as skeletons to realize animation driving.
StereoPIFu [YWM*21] uses the depth map estimated by binocular
images as auxiliary information to re-construct mesh more accu-
rately. However, when such methods deal with poses excluded in
synthetic datasets, the generated models are mostly missing limbs
or stretched along the Z-axis. We attribute this to the dependency
of such model on the inference of MLP about 3D information. And
using pixel-aligned features without distinguishing visibility results
in feature homogeneity and ambiguity.

Hybrid representation. Implicit representation is topology-free
while human mesh template strongly constraints on the integrity
and connection of human parts, thus can provide coarse but enough
reasonable 3D information. Hybrid representation takes advantage
of both. PaMIR [ZYLD21] voxelizes a predicted SMPL mesh to
form corresponding voxel feature with 3D convolution. The hy-
brid aligned feature facilitates the approach to realize better local
detail recovery and re-construction integrity. But the signal con-
versation from mesh to volume leads to quantization errors espe-
cially when the volume is defined in low resolution, thus the prior
form SMPL model is not fully utilized. ARCH [HXL*20] learns
the occupancy field in the canonical pose space of SMLP model,
and then maps back to the original pose space through the defor-
mation field. ARCH++ [HXS*21] learns occupancy fields of two
pose spaces simultaneously. Point cloud encoder is used to solve
the memory limitation of volume, and occupancy consistency con-

straint of two spaces is applied to achieve better re-construction
in the seam part caused by the interaction of limbs. However, this
kind of method needs to map the sampling points to canonical pose
space through the deformation field and skin weight, so the non-
rigid transformation of some clothes can not be represented accu-
rately. And the point cloud encoder acts in Euclidean space which
is different from the manifold space of implicit surface in distance
metric. Loopreg [BSTPM20b] also takes the consistency of two
pose spaces into account and introduces a semi-supervision frame-
work to perform point cloud registration and mesh re-construction.
ICON [XYTB22] only uses local features from the front and back
normal maps to achieve better robustness towards poses. But it fails
with varied cloth style because of the limited representation ability
of completely local geometric feature. Based on hybrid represen-
tation, our method makes full use of SMPL topology as a prior of
the relationship between limbs and realizes a more effective feature
fusion process and neighbourhood perception in topology space.

3. Proposed Method

We aim to infer a clothed human model from the monocular RGB
image. Given the image and corresponding background mask, we
first feed it into a fully convolutional network with feature map
as output and predict SMPL parameters through Pare [KHHB21].
Next, we query the pixel-aligned feature for SMPL vertices by pro-
jection and interpolation and calculate the visibility to filter it. Based
on the pre-defined topology of the human body, we encode the
pixel-aligned feature and geometry feature of vertices jointly using
a graph attention network. Then the hybrid feature is used to predict
occupancy value through MLP. The whole procedure is shown in
Figure 1.

Figure 1: OaIF predicts SMPL body reference with Pare and then obtains the visibility mask from the rendered image of SMPL model in fixed
camera parameter. Pixel-aligned feature can be filtered by the mask and will be jointly encoded with geometry feature in the graph attention
network. A cross attention is applied to query the hybrid feature and occlusion factor for any point. The colours in figure indicate different
feature space. By projection and interpolation, OaIF embeds pixel-aligned feature from 2D pixel grid to topology space.
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3.1. Local feature encoding

Local features such as pixel-aligned feature and voxel-aligned fea-
ture, which fuse information in a certain receptive field, have been
proved by experiments of PIFu-liked approaches to be indispensable
in recovering high-frequency details. They ensure limb integrity and
improve re-construction fidelity in occupancy field prediction based
on the implicit function. This section introduces two local feature
extraction methods used in OaIF.

Pixel-aligned feature. We follow PIFu [SHN*19, SSSJ20] with
stacked hourglass network as the image encoder, which has shown
excellent performance in pose estimation and previous human re-
construction tasks. Given any point pi ∈ R

3, the pixel-aligned fea-
ture can be presented as

f2D(pi, I ) = B(ψμ(I), π (pi)), (1)

where ψμ is the image encoder and B is bilinear interpolation
while π is the weak projection from the world coordinate to image
plane with fixed camera parameters. These operations are continu-
ously differentiable.

Vertex hybrid feature. With a pre-trained network of
Pare [KHHB21], we can infer SMPL model from the input
image as the body shape and pose reference. Since the parametric
model strongly constrains the integrity of human limbs and joint
position, and it provides the topological relationship of each vertex
on human surface, we fuse pixel-aligned feature and geometric
feature of vertex on the basis of the topological structure. Specifi-
cally, based on graph convolution, the normal and coordinates are
encoded as geometrical feature tensors:

Xl+1 = σ (D− 1
2 ÂD− 1

2 XlW l ), (2)

in which Xl ∈ R
Nv×hl is the input of lth layer and the first one

X1 = [V,N ] ∈ R
Nv×6 is the concatenation of normal and coordi-

nates. Â = D− A ∈ R
Nv×Nv is the Laplacian matrix of adjacency

matrix. And D is the diagonal matrix which represents the degree
of each vertex.

We find that encoding the image feature on the surfacemanifold is
a more reasonable choice rather than convolution on a regular image
plane since it fits the curved body structure more properly. Actually,
it is similar to the UV mapping used in Tex2Shape [APMTM19],
which flattens surface as a regular grid. However, the partition op-
eration used in UV brings about discontinuity near seams and re-
arranges the connection of limbs. Thus some priors need to be re-
learned in convolutional network.

Through Equation (1), we get the pixel-aligned feature of each
vertex. Concatenated with the geometrical feature, it is forwarded
into graph attention network [VCC*17] to achieve multi-modal fu-
sion. The attention matrix is as follows:

αi j = exp (σ (�aT [hli, h
l
j]))∑

k∈Ni
exp (σ (�aT [hli, h

l
k]))

, (3)

in whichHl = {hli}Ni=1 is hybrid feature in lth layer andH
1 = {[M′′ ·

f2D(V, I ), f3D(V,N )]}Ni . M′′ is a mask to filter pixel-aligned fea-
ture and will be introduced in the next part. Here we choose graph
attention instead of the transformer used in Li et al.[LWF*21] to

model long-distance dependence in the shallow network. This is
mainly because of the fact that cloth wraps around the human body
rather than scatters around. Therefore, the fusion process demands
a constraint of locality supplied by a graph structure.

Vertex visibility mask. In the previous works using pixel align-
ment feature as local coding, queried points with the same coordi-
nates on the image plane share the same feature interpolated fea-
ture value, despite their depth values in 3D space being different.
It would be reasonable if depth information is implicitly encoded in
different channels with a powerful convolutional network. In the ex-
periment, we observe that although this simple assumption provides
feature coding for the sampling points invisible on the image plane,
it causes severe depth ambiguity with a small amount of data used
for training. That is, there are mesh stretching artifacts along the z-
axis direction especially when the pose is beyond those in the train
set. We attribute this to the homogeneity and ambiguity of pixel-
aligned feature. Since it is the most informative part of most mod-
els proposed in PIFu-liked works, the performance of MLP, which
act as an implicit function, is directly influenced by its property. As
Figure 2 shows, inspired by Refs. [LWL21, ZJCL21] using vertex
mask to enhance the robustness of the model in human shape re-
construction, we model the feature fusion as a feature completion
task. Specifically, we render the SMPL model conditioned in fixed
camera parameters and image resolution. The generated image cor-
responds to visible triangle fragments of SMPL mesh, thus we can
obtain visibility for each vertex of SMPL. The visibility M′ mixed
with a random mask can be used to filter pixel-aligned feature:

M′′ = M′ ⊕ R, (4)

Figure 2: Filter the pixel-aligned feature with the visibility mask.
The colour in the lower left indicates depth variation. The red and
green of vertex after visibility test means whether to drop pixel.
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in which ⊕ is xor operation and the random re-masking operation is
to alleviate the influence of misaligned SMPL vertices during train-
ing. For each visible vertex, the mask may drop its feature, and for
the invisible one, the mask may provide its feature. This masking
process makes most invisible points get their image information
from theweighting and transmission of the visible part. It is a similar
task compared with image inpainting but carried out on the surface
manifold rather than a regular pixel grid. With the support of 3D
geometric information and graph structure, the neural network can
make a more reasonable weighting strategy.

Our key idea is that, for clothed human re-construction, the pixel-
aligned feature should be scattered on the visible surface in current
view. To infer about the invisible part, the topology and geometry
priors of parametric model are indispensable.With the help of graph
convolution, this visible information can be spread on the surface
manifold constrained by locality.

Cross attention. To obtain the hybrid feature of any point in
space and retain continuity of calculation on the change of its co-
ordinate, we use cross attention to query feature. Given the pixel-
aligned features f2D(P, I ) of queried points as query matrix, we
assign the hybrid feature of SMPL to key and value matrix:

⎧⎪⎪⎨
⎪⎪⎩

Q = [FQ( f
∗
2D), γ (Z)],

K = [FK (H
L), γ (V )],

V = [FV (H
L), γ (V )],

(5)

where FQ,FK,FV are learnable forward networks, and Att is the gen-
eral attention operation. HL is the output of the graph attention net-
work and f ∗2D is the pixel-aligned feature detached from computa-
tion graph. This detach operation is important to decouple the opti-
mization of image encoder parameters from attention computation.
Thus stacked hourglass network could concentrate image feature in-
ference on visible part. Additionally, we repeat the feature chan-
nels to achieve multihead and the final attention matrix is the mean
of heads.

To distinguish the pixel-aligned features of query points with dif-
ferent depths, we only embed z-axis coordinates as positional en-
coding γ (Z) since x, y values have been implicitly included in the
feature. And 3D coordinates of vertices are used for the key and
value matrix. Here, the Fourier feature embedder γ keeps the same
with NeRF [MST*20]. Thus, the consequent attention matrix can
be used in a dynamic weighting process to query hybrid feature for
arbitary points in R

3:

fh = Att(Q,K,V ) × HL. (6)

Since the attention value indicates how important the vertices are
for queried points in embedding space, we assume that the queried
points which pay more attention to invisible vertices are more in-
visible on the image plane. We product the visibility mask with the
attention matrix to get a floating occlusion factor M for queried
points:

M = Att(Q,K,V ) × M′. (7)

Therefore, taking the visibility of SMPL vertices as a reference,
we realize the occlusion-awareness for any queried point in space

Figure 3: OaIF estimates the occlusion factor for queried points
with SMPL vertices as reference. From left to right: input, occlusion
factor of point, attention weight of point to anchors, front and side
view of re-constructed mesh.

Algorithm 1. Occlusion-aware Feature Encoding.

Require: Image feature map φμ(I ); SMPL vertices coordinates V ,
normals N and adjacency matrix A; Camera parameters K; Queried
points P

Ensure: Occlusion-aware hybrid feature fh(P); Occlusion factor M
1: f2D(P) ← B(φμ(I ), π (P)).
2: f2D(V ) ← B(φμ(I ), π (V )).
3: f3D(V ) ← GCN(V,N ,A).
4: M′ ← Render(V,N ,A,K)
5: M′′ ← M′′ ⊕ R
6: f2D(V ) ← M′′ · f2D(V ) .
7: H ← GAT ( f3D(V ), f2D(V )).
8: Q ← FQ( f2D(P), γ (Z)),K ← FK (H, γ (V )),V ← FV (H, γ (V ))
9: fh(P) ← Att(Q,K,V ) × H,M ← Att(Q,K,V ) × M′

through the attention mechanism as shown in Figure 3 and Algo-
rithm 1.

3.2. Loss function

Given the mixed and pixel-aligned features, we use MLP to regress
the occupancy field as an implicit surface:

Lo = |ô− MLP([M · f2D, fh,M, γ (P )])|2, (8)

in which ô is the ground truth occupancy value. Though the feature
is redundant, we find that while pixel-aligned feature recovers de-
tails, the neighbourhood and global awareness of hybrid features in
topological space can ensure limb integrity and guide the details to
be more reasonable. Due to using the sparsity of the SMPL vertices,
it is easy to bring about relatively smooth hybrid features. We use
sine as activation inMLP, and introduce correspondingmodulator in
skip connection to ensure the implicit function more sensitive with
slight input changes. Additionally, we introduce the real visibility of
sampled points in the rendered image as a regularization. The loss
function can be expressed as follows:

LM = |M − min{exp[α(ZI − Z )], 1}|. (9)
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It should be pointed out that although it is feasible to directly
predict the visibility of sampled points supervised by correspond-
ing labels, the learning process is difficult without 3D information
as prior. Moreover, this is incompatible with the sampling method
used by PIFu, which pre-samples near the surface of the mesh with
Gaussian distribution of offset. A large number of sampled points
for training are located in a small area near the surface inside the
model, which is invisible, but close to the surface. Obviously, the
prediction of such points’ occupancy needs to rely partly on the im-
age information on the surface. Therefore, we infer the visibility of
sampled points by referring to vertices on the human body surface
and take the visibility loss as an extra guiding condition. As pre-
sented in Equation (9), it is designed as a form of depth awareness,
in which ZI is the depth buffer value of the pixel in the rendered
image and Z is the depth of sampled points. We use mesh rasterizer
and point rasterizer, respectively, with the same camera parameter
to get the ground truth fragments. And α controls the influence of
the difference in depth to visibility. Using the float value of visibil-
ity rather than the binary one as supervision can smooth the filtering
operation. Hence the visibility mask here can be interpreted as an
occlusion factor to restrain pixel-aligned feature of points deviated
from the visible surface. The total loss is

L = Lo + λLM. (10)

4. Experiments

In this section, we provide the experiment settings and compar-
isons with state-of-the-art methods. Then we conduct several ab-
lation studies on the proposed method.

4.1. Implementation details

We use the open-source model of Pare [KHHB21] fine-tuned in
Thuman2.0 as a pre-trained model to estimate the SMPL param-
eters. And the loss of silhouette after rendering is applied addition-
ally. For the training of OaIF, we set the batch size to 4 and the epoch
to 10. Adam is used as the optimizer with an initial learning rate of
2e − 4 and decays every 20,000 iterations with a rate of 0.1. To
obtain the ground truth of vertex visibility in the training process,
we use Pytorch3d to render the SMPL model under weak perspec-
tive projection with the predicted camera parameters and query the
visibility of triangular fragments as the mask of corresponding ver-
tices. In the inference stage, we use the body reference optimization
in PaMIR [ZYLD21] to make the current SMPL prediction aligned
with the input image and introduce the 2D joint position estimated
by OpenPose and the silhouette difference based on differentiable
rendering as the loss terms of optimization.

In the network structure, we follow PIFu, using the stacked hour-
glass network with two stacks without intermediate supervision to
reduce the number of parameters. The only difference is that we use
256×256×256 as the dimension of the output feature map to get
better details. Limited by memory size, we use the downsampled
432 SMPL vertices as reference points, and the early graph convo-
lution outputs 32-dimensional geometric features with the coordi-
nates and normal vector of each vertex as input. Thus, the channel
number for the hybrid vertex feature is 288. For positional encoding,
we apply the γ (·) function in NeRF to get 63 channels. The num-

ber of neurons in MLP hidden layers is (608, 1024, 512, 256, 256,
1), in which the input part includes pixel-aligned features, hybrid
features obtained through cross attention, occlusion factor and po-
sitional encoding. The activation function is set as sine [SMB*20]
and the modulars [MGB*21] are used in hidden layer 3, 4 to replace
tensor concatenation in skip connection. We set α = 5 in visibility
loss and λ = 0.2 in total loss to achieve better balance. For the ratio
of random mask, an experimental number of 0.2 works well.

Because of memory size, we only use a shallow GAT network
with three residual modules and set the neighbourhood of the adja-
cency matrix to 2 to achieve larger receptive field. And the GNN to
encode geometry feature of SMPL keeps a vanilla number of ver-
tices of SMPL rather a downsampling one. For faster convergence
in the training stage, we integrate the voxel feature of SMPL model
as the controller of frequency and amplitude in the modulator. This
is also used in PaMIR[ZYLD21] but as an additional global feature
for MLP.

4.2. Data pre-processing

To get the ground truth difference between depth of sampling points
and z-buffer of rendered images as needed supervision, we use
points rasterizer in Pytorch3D to render point clouds and obtain their
depth in current view. There is a maximum number of points that
can be detected in a ray. Thus, a few points may not be assigned a
depth value. We just simply set the same with z-buffer of images
which means they are on the surface and can get the pixel-aligned
feature without filtering. This hardly influences the training process
because we use random mask to achieve better robustness.

For ground truth SMPL parameters, we just select the one pre-
dicted by Pare[KHHB21] with the lowest Chamfer and P2S loss in
different views and fine-tune its shape to fit the scan. It is not the
standard registration procedure andmay lead tomisaligned parts be-
tween the SMPL model and scan just as Figure 4 shows. Most mis-
aligned parts are hands and fingers, so this problem is partly because
of the limited expression ability of SMPL about fingers and may

Figure 4: Some misaligned cases in our data pre-processing. We
simply apply shape estimationmethods based on the rendered image
and fine-tune shape parameters to get the ground truth SMPLmodel.
Thus, it is not completely aligned with scan.
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Table 1: Quantity evaluation on THuman2.0 and 3DPeople. We normalize the coordinates to [0, 1], thus, there is no unit in Chamfer (e-3) and P2S (e-3). But
they also indicate relative performance.

THuman2.0 3DPeople

Method Chamfer P2S Normal Chamfer P2S Normal

Tex2Shape[APMTM19] 2.132 2.075 0.170 3.583 3.031 0.214
PIFu[SHN*19] 1.748 1.695 0.185 3.628 2.763 0.223
PIFuHD[SSSJ20] 1.421 1.335 0.171 3.513 2.720 0.219
PaMIR w gtSMPL[ZYLD21] 0.961 0.891 0.169 3.368 2.309 0.215
Ours 1.372 1.297 0.180 3.603 2.696 0.241
Ours w/o mask 0.789 0.693 0.154 3.129 2.046 0.183
Ours w gtSMPL 0.726 0.659 0.147 2.925 1.814 0.165

cause inaccurate and uncertain hands re-construction as our qual-
itative evaluation shows. In the previous experiments, we present
that OaIF heavily depends on the accuracy of predicted SMPL pa-
rameters. So the performance may be further improved if registered
SMPL or SMPL-Xmodel [PCG*19] can be obtained through exter-
nal tools.

4.3. Evaluation

For THuman2.01 and 3DPeople2 datasets, we take 450 scans as
training data, respectively, and render the image with spherical har-
monic illumination [VRM*17] in 60 uniformly distributed view an-
gles. We pre-sample 50K points with the same sampling strategy as
PIFu, and randomly select 5000 points during training. For the vis-
ibility annotation of sampling points, we use orthogonal projection
to render the point cloud and mesh model in fixed camera param-
eters. Then we obtain the depth value of sampling points at their
corresponding pixels and the depth buffer of mesh with point cloud
and mesh rasterizer, respectively.

We conduct the quantity evaluation on Thuman2.0 and 3DPeo-
ple with 75 and 30 scans, respectively. The models are rendered in
front view and we pre-compute the 2D keypoints using OpenPose
to supervise the body reference optimization during inference. We
compare OaIF against the state of the art methods based on the im-
plicit function. For PaMIR, we use the open-source model, which
is trained in 360 views with about 1000 scans and uses the ground
truth SMPL as coarse body references. We use Pare and GCMR,
respectively, in the inference stage and choose the better one as re-
sults of PaMIR. PIFu and PIFuHD are trained as usual. To align the
world coordinates with ground truth scan, for methods to be com-
pared with, we optimize the scale factor and transformation vector
until the convergence of Chamfer and point to surface distance be-
fore metrics calculation. For the proposed method, we evaluate the
model trained with the prediction of Pare as input. As shown in Ta-
ble 1, it is slightly worse than PaMIR in all metrics, which can be
attributed to the heavy dependence on the accuracy of SMPL param-
eters estimationmentioned before. Embedding pixel-aligned feature

1THuman2.0: https://github.com/ytrock/THuman2.0-Dataset
23DPeople: https://3dpeople.com/en

into SMPL vertex couples our method with the backbone we used.
While when the proposedmethod is trainedwith ground truth SMPL
as initial body reference, OaIF outperforms all the state-of-the-art
methods in all metrics. The Chamfer and P2S indicate better global
integrity and accuracy in re-construction. Though our method filters
pixel-aligned feature with predicted mask, it also performs slightly
better in Normal term which indicates local details. Last, it results
performance decline slightly when visibility mask and Equation (9)
is not explicitly introduced.

We show some test cases of the 3DPeople dataset in Figure 5.
Since our method aims to be occlusion-aware, we mainly focus
on non-standing poses such as sitting (rows 4 and 5) and crouch-
ing (row 6). Tex2Shape[APMTM19], as a representative method of
explicit re-construction, only predicts human shape and cloth dis-
placement, thus we repose the results with SMPL pseudo labels. As
the figure shows, it cannot tackle non-standing poses and tend to out-
put human with obesity when the cloth is loose. Without geometry
prior, PIFu outputs some unnecessary floating lumps whose corre-
sponding pixel-aligned feature is ambiguous and fails to give rea-
sonable results when some limbs are occluded in the image. PaMIR
uses low-resolution voxel feature as additional information which is
vague when the body huddles up. We attribute this to the inductive
bias of the 3D convolutional network. For voxels of different body
parts, they may be closed in Euclidean space while far away on the
human body surface. So in rows 2 and 5, there are unexpected con-
nection structures between legs. Thus our graph attention is more
powerful to deal with this since the multi-modal features are fused
in topology space. Moreover, benefitting from our depth-aware oc-
clusion factor and pixel-aligned feature filtering operation, we re-
duce the stretching artifacts along the z-axis, especially near hands
and feet.

Next, we evaluate the proposed method with images in the wild to
test the generalization ability in Figure 6. Extra background masks
and 2D key points are also pre-computed for PaMIR and OaIF. PIFu
and PIFuhd do not use SMPL prior and cannot generalize well in
wild images. Thus we only present the result of PaMIR, ICON and
OaIF. The PaMIR model is pre-trained with CMR, so we choose a
better result with CMR and Pare as SMPL estimation methods, re-
spectively, for a fair comparison. As for ICON [XYTB22], we use
the public pre-trained model for evaluation. The results show that
ICON leans to re-construct less cloth and there are block artifacts in
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Figure 5: Qualitative comparisons with the state-of-the-art methods based on implicit function. For each column, we show both front (left)
and side (right) views to exemplify the stretching artifacts along the z-axis, especially in non-standing poses. From left to right: input images,
results of Tex2Shape[APMTM19], PIFu [SHN*19], PaMIR [ZYLD21] and OaIF (ours).

some cases due to the limited representation ability of its completely
local feature. Please note that we do not quantitatively evaluate
ICON since they use thousands of scans from AGORA [PHT*21]
for training which may contain our test cases. It can be seen from
our methods how the details in the front view spread to the side with
encoding in topology space. And we effectively reduce the stretch-
ing artifacts.

4.4. Ablation

Feature fusion. We first evaluate the validity of our cross-
attention module. Using vertices or points as a carrier of 3D
prior has been proved feasible in ARCH++ [HXS*21]. It utilizes

PointNet++ [QYSG17] to encode point clouds to get geometry fea-
tures from anchor points and use K-nearest neighbours weighting
to query the feature for any points. Thus we replace cross attention
with the same weighting strategy and also set K = 3. The results
are shown in Figure 7. The re-construction model is filled with
jitters and holes. We attribute this to the discontinuity of argmax
operation when coordinates of queried points change continuously.
And it gets worse near high frequency details. It is strictly required
in implicit representation that encoding should be continuously
differentiable. Therefore, cross attention as a smooth weighting
method is the better solution for the approaches that use anchor
points as a reference. And we can apply any constraints, we want to
the attention matrix. For example, to realize locality in K-nearest,
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Figure 6: Evaluation of images in the wild. With occlusion-aware
encoding for queried points, our method reduces the stretching
artifacts in feet and hands. From left to right: input masked im-
ages in the wild, results of PaMIR [ZYLD21], ICON [XYTB22] and
OaIF (ours).

Figure 7: Replace cross attention (left) with K-nearest neighbour
weighting (right). Because the argmax operation is not continu-
ously differentiable, there are jitters and parts missing on the sur-
face which correspond to the input jumping of MLP.

Table 2: Quantitative results of the ablations of multi-modal fusion and
SMPL estimation.

THuman2.0 3DPeople

Method Chamfer P2S Normal Chamfer P2S Normal

W/o fusion 0.855 0.807 0.166 3.547 2.239 0.208
Ours w CMR 1.081 0.929 0.173 3.403 2.657 0.210

a regularizer in the loss function is enough. We leave this for future
work.

SMPL estimation. As we introduce before, the performance
of OaIF is heavily dependent on the SMPL parameter estimation
method. We evaluate OaIF with CMR [KPD19] used in PaMIR and
Pare [KHHB21] as pose estimator, respectively, on non-standing
pose. The quantitative results of model using CMR are shown in Ta-
ble 2. Since Pare is more robust to varied poses, it outputs more rea-
sonable parameters. As Figure 8 shows, CMR gives wrong predic-
tion on the left leg, while Pare outputs a more correct one. Thus, the
re-constructed geometries using two human shape estimation meth-
ods differ a lot, especially in limbs integrity. For this, each vertex of

Figure 8: Ablation on SMPL estimation method. Our method heav-
ily depends on the semantics alignment between SMPL and the input
image. From left to right: input images, results when CMR [KPD19]
and Pare [KHHB21] are used as SMPL regressor, respectively.

Figure 9: Ablation on multi-modal feature fusion. From left to
right: input image, a cross-section with multi-modal fusion, the
tSNE visualization with multi-modal fusion, a cross-section without
multi-modal fusion and the tSNE visualization without multi-modal
fusion.

SMPL has its own semantics in training and corresponds to the pixel
feature. If miss-aligned pixel features are embedded to vertices, the
error will spread on the surface and further influence the inference of
the hybrid feature and occlusion factor of queried points. We regard
this as a limitation of the proposed method. But clothed human re-
construction from a monocular image, as mentioned at the start, is
very challenging. Shape prior of the parametric model would help a
lot if a powerful enough shape estimation method is available while
this is easier without consideration of cloth and other details.

Hybrid encoding. We then consider the influence of hybrid cod-
ing of 3D geometric features and pixel alignment features on the
re-construction effect. Assuming that there is no interdependence
between the two modal features, we use group convolution as the
feature mapping process in graph attention, which can divide the
feature channels into intervals to avoid their interaction. It performs
worse slightly in all metrics as presented in Table 2. As shown in
Figure 9, the joint encoding of multi-modal features makes the ver-
tex features for arbitrary points more reasonable, which is less am-
biguous for the implicit function. We show the output of last second
hidden layer with the tSNE visualization. There are more obvious
and regular boundaries among the sampling points with different oc-
cupancy. The feature from encoders directly affects the prediction
accuracy of occupancy field, mainly because the encoding process
can improve the feature difference and make the implicit function
based on MLP easier to learn. Please note that we do not present the
quantity evaluation results of ablations on feature fusion and SMPL
estimation method since the accuracy gap is obvious and easy to be
captured in listed rendering images.

Although the previous work based on hybrid representation also
uses multi-modal features, they isolated the features of different
modes from each other in the encoding stage. The features are fur-
ther mapped in the MLP, but for the sampling points, there is no
neighbourhood or global information perception at the same time
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Table 3: Evaluation with different fusion methods. Constrained by memory
size, we use 6890, 1732 and 432 SMPL vertices for GCN, MHSA and GAT,
respectively, which represent different downsampling levels.

THuman2.0 3DPeople

Method Chamfer P2S Normal Chamfer P2S Normal

OaIF w GCN 0.855 0.767 0.149 3.228 2.061 0.176
OaIF w MSA 1.216 1.173 0.184 3.689 2.672 0.227
OaIF w GAT 0.832 0.714 0.154 3.159 2.033 0.178

as feature mapping. This is mainly limited by the fact that the im-
plicit function is defined in the feature space of a single sampled
point rather than the product space of several sampled points. Oth-
erwise, it is required a considerable amount of parameters for the im-
plicit function to learn. Therefore, to realize the multi-modal feature
fusion while preserving the neighbourhood and global information
perception, we propose to use the coding method in topology space
with template or anchors as a reference, and then diffuse the hy-
brid feature to the whole space through continuously differentiable
cross attention.

We next test OaIFwith different multi-modal feature fusionmeth-
ods for ablation study. For graph attention network (GAT) and graph
convolution network (GCN), we set the receptive field to 16 ver-
tices, thus four residual blocks are stacked with normalized Â2 as
the adjacency matrix. We follow the general transformer settings
for multi-head attention (MSA) without positional encoding since
coordinates information has been encoded by early GCN.

The quantitative results are shown in Table 3, where the best ones
of different matrics are marked in bold. OaIF with MSA underper-
forms in all metrics with large gap than the others constrained by
topology prior. We observe over-smooth attention matrix in train-
ing and inference because of the large number of sequence elements.
This indicates difficulty of modelling long-distance dependency in
our network architecture.

Since the dataset for clothed human re-construction is always lim-
ited in poses and cloth style, we still need the locality as an induc-
tive bias to constrain the learning process. For GAT and GCN, be-
cause the receptive field is enough large to cover back side of hu-
man body, the scale of the used graph does not matter a lot. While
a dynamic weighting process in GAT is more powerful to fuse fea-
tures of different modalities. Thus GAT performs slightly better than
general GCN in most metrics. As for GCN using adjacency matrix
with more vertices, it is efficient to capture local details. Generally
speaking, when enough accurate SMPL parameters can be obtained,
a multi-scale framework should be most suitable for hybrid feature
fusion since it can learn global and local features simultaneously.
This requires changing the 2D encoder to a multi-scale one corre-
spondingly and applying an additional attention module to integrate
features from all scales. We leave this for future work.

4.5. Analysis about SMPL prior

We observe that most stretching artifacts are near body boundary
which is near to background. Since most PIFu-liked methods do not

take background into account and simply mask it with white, sur-
rounding pixel-aligned features are prone to be featureless because
of large receptive field in 2D pixel grid. While OaIF restrains the in-
fluence from background by embedding 2D features to vertices on
SMPL model, this can also reduce z-stretching. We present more
results from two datasets in Figure 10 which can prove our idea.

For those methods without SMPL prior, they always fail to give
reasonable re-construction when the pose is non-standing. That is
because of the inherent ambiguity of pixel-aligned features obtained
from either the image feature map or the predicted normal map.
And the reason why they perform well in standing poses (such as
the third row) is that the limbs are usually orthogonal with view di-
rection. Most limbs of the human body are cylinder-liked, thus the
front side and backside are very similar in feature space when they
are located in the plane orthogonal with the z-axis. Consequently,
when the limbs rotate around the x-axis or y-axis, it becomes hard
for PIFu and PIFuHD to predict the occupancy of points accumu-
lated along the z-axis because of lack of information. This results in
their failure in sitting poses in Figure 10.

As for PaMIR, the voxel feature is integrated as global informa-
tion which is obtained through 3D convolution. Thus, the SMPL
prior is not fully utilized because of the low resolution of volume.
More importantly, the distance metrics of 3D and 2D feature spaces
are defined in Euclidean space. This is unstable for information
transmission and neighbourhood feature weighting as poses change.
While the graph convolution used in OaIF makes the distance be-
tween different body parts constant with varied poses which is im-
portant formethods to generalize well and unify the data distribution
of training and inference.

5. Limitations and Future Work

Although OaIF can improve the feature representation and quality
of re-construction compared to PIFu-liked methods, there are still
several limitations conditioned in current data and method. The oc-
cluded parts of re-constructed clothed human are still over-smooth
and lack of details. Then, the proposed method usually fails to re-
construct accurately for cases out-of-distribution of training sets.
Last, since we introduce SMPL as a prior, the robust of used human
pose and shape estimation method influences a lot. Based on these
limitations, multi-view consistency as a prior in training may be ex-
plored to better recovery occluded geometry in the future work. A
self-supervision framework is also worth being well studied to make
training data sets more complete.

6. Conclusion

We propose an approach to perceive the visibility information of
query points in 3D re-construction based on PIFu-liked methods.
We mainly provide hybrid features and occlusion factor for any
point based on the SMPL reference vertices, which also can be
called anchor points. And the reference point can realize the per-
ception of neighbourhood and long-range information on the topo-
logical manifold, which is more reasonable compared to the pixel
grid. The hybrid coding of multi-modal features can also avoid the
homogenization caused by the depth ambiguity of pixel-aligned fea-
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Figure 10: More qualitative results on THuman2.0 and 3DPeople. Though PIFuHD does not require background removed in training and
inference, we still do that for it and it is obvious unexpected structures near body boundary still exist. From left to right: input images, results
of PIFu [SHN*19],PIFuHD [SSSJ20], PaMIR [ZYLD21] and OaIF (ours).

tures, and closely couple the image feature with the geometric in-
formation of the human body surface. Experiments show that with
occlusion perception, the proposed method generalizes better than
previous methods in pose and perspective.
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