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Abstract
Aiming at obtaining structural information and 3D motion of dynamic scenes, scene flow estimation has been an interest of
research in computer vision and computer graphics for a long time. It is also a fundamental task for various applications such
as autonomous driving. Compared to previous methods that utilize image representations, many recent researches build upon
the power of deep analysis and focus on point clouds representation to conduct 3D flow estimation. This paper comprehensively
reviews the pioneering literature in scene flow estimation based on point clouds. Meanwhile, it delves into detail in learning
paradigms and presents insightful comparisons between the state-of-the-art methods using deep learning for scene flow esti-
mation. Furthermore, this paper investigates various higher-level scene understanding tasks, including object tracking, motion
segmentation, etc. and concludes with an overview of foreseeable research trends for scene flow estimation.
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1. Introduction

A bunch of research works have emerged from autonomous driv-
ing (AD) to support advanced transportation sector. In this context,
understanding the complex environment is vital for automated ve-
hicles to drive safely. A scene flow estimator could intuitively dis-
criminates different motion patterns of moving agents, for example
pedestrians, cyclists, cars, and so on from on-board sensor data. As
shown in Figure 1, scene flow represents the motion field of indi-
vidual objects in a 3D scene [VBR*99]. Scene can be represented
by depth images and point clouds. Methods based on images extract
depth, disparity, and optical information separately to learn the flow
vector. However, image-based methods usually rely on standard
variational formulations and energy minimization [HR20], which
yield limited accuracy and suffers from long runtime. The advent
of affordable 3D sensors, for example LiDARs and RGB-D cam-
eras, simplifies the process of acquiring large-scale 3D point clouds.
With the flourishing demand from industry, leveraging point clouds
as scene representations is becoming a hotspot in recent years.
Deep learning (DL) is a branch of machine learning techniques,
which usually utilizes deep neural networks to solve machine learn-

ing problems. It extracts features automatically and emphasizes on
learning a high-level abstract representations of data [GHH*21].
Learning process can be fully-supervised, weakly-supervised, and
self-supervised. A plethora of deep learning techniques on point
clouds have emerged to solve different classical computer vision
tasks such as 3D shape classification [MWB21, GLMH55], object
detection [ZCL20, QCLG20], object tracking [SHHX18], semantic
scene segmentation [ZZtZX20, HYX*20], and instance segmenta-
tion [JYC*20], to name a few. With the rise of deep learning tech-
niques for scene understanding tasks, deploying deep neural net-
works for scene flow estimation has attracted increasing research
attention.

Thanks to the introduction of large-scale synthetic dataset Fly-
ingThings3D [MIH*16] with ground-truth flow annotations, many
supervised methods are allowed to learn deep hierarchical features
of point clouds and fuse these features to estimate scene flow. This
supervised training strategy outperforms traditional registration al-
gorithms, for example ICP [BM92] and shows great potential to
be applied in real scenarios. To this end, datasets such as KITTI
[MG15], NuScenes [CBL*], and Argoverse [CLS*19] are created,
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Figure 1: Visualization of scene flow for a KITTI example scene.
The source point cloud is shown in blue and the target point cloud
is shown in green. The deformed points are obtained by adding
scene flow vectors (shown in red arrows) to source points, which
are shown in PaleVioletRed.

which contain real scenes scanned from various actual environment.
However, datasets collected by LiDARdo not provide reliable corre-
spondences between consecutive scans. Therefore, a lot of DLmod-
els have performance gap between synthetic dataset and real dataset.
In addition, there are many unexpected occlusions in real scenarios
which will affect the overall accuracy. In spite of recent attempts
that exploit the advantages of DL models, unleashing the full power
of deep neural networks on 3D point cloud understanding is still in
its infancy.

We summarize and categorize current challenges in scene flow
estimation into data challenges and DL models challenges, which
are introduced in the following.

Data challenges.

• Noise. Point cloud, as one of the most popular format of three
dimensional data, is unstructured and noisy. Noise is inevitable
from the scanning and reconstruction process. It will hinder the
feature extraction and misguide the searching of correspondent
points in the neighbourhood.

• Difference in point density. A LiDAR system identifies the posi-
tion of the light energy returns from a target to the LiDAR sensor.
This inherent attribute of the LiDAR sensor leads to unevenly dis-
tributed points underlying a surface. The density decreases dra-
matically as distance from sensors increases. How to address the
diversified point density is still an open problem.

• Big data challenge. Scene represented by point clouds contains
millions of points. For example, in the Argoverse dataset, each
point cloud produced by LiDAR sensor has 107k points at 10 Hz.
Such amount of data increase the burden in processing.

• Diversified motion fields. Background motion and foreground
motion co-exist in a scene. Likewise, large and small motion,
close and far objects, rigid and non-rigid objects co-exist in dy-
namic scenes. The diversity of motion scales poses a great chal-
lenge on discriminating different motion fields.

• Occlusions. Scene points taken at time t, may be occluded in sub-
sequent time steps. Consequently, a few objects will disappear

due to occlusions. The presence of occlusions will significantly
influence the flow estimation accuracy.

• LiDAR challenge. Environment interference is challenging to
data collection using LiDAR. Although LiDAR is not sensitive
to the variations of lighting, it is still struggling with reflective
surfaces and bad weather (e.g. heavy fog, rain, and snow). The
consequence of these imperfections is the loss of object motion
and structure information.

Challenges from DL models.

• Generalization ability. Existing wisdom aims to improve the
performance on a specific dataset but fails to generalize to other
datasets, especially on the generalization from the simulated to
real scenes.

• Transformation challenge. There exist multiple transformations
(e.g. rotations, translations) in real dynamic scenes, which is chal-
lenging for DLmodels to handle effectively. Some objects will be
distorted in the consecutive frames if their transformations are not
strictly aligned.

• Accuracy challenge. It is impossible to obtain 100% accurate
ground-truth scene flow from real scenarios. Due to limited an-
notations for real scenes, it is challenging to achieve satisfactory
accuracy in DL algorithms.

• Efficiency challenge. Real-time processing ability is imperative
for AD entities. However, the computing power and memory
space allocated for processing massive 3D data constructed on
vehicles are limited. Currently, efficient DL model that can pro-
duce real-time large scene perception is still under-explored.

There are a few surveys [YX16, XAZX17] which have thor-
ough analyses of methods for traditional optical flow estimation and
depth estimation. Xiang et al. [XAZX17] reviewed scene flow ap-
plications, including image segmentation, image matching, and fea-
ture extraction. However, they do not provide sufficient quantita-
tive comparisons between different methods and lack the review of
learning based methods. Recently, Liu et al. [LLW*20] and Zhai
et al. [ZXLK21] have presented some learning-based scene flow
estimation literature and compared their performance on various
datasets. Unlike Liu et al. [LLW*20] that only outlined image-based
scene flow estimation methods, Zhai et al. [ZXLK21] cover both the
optical flow (2D) and scene flow (3D) estimation literature and cat-
egorize them into knowledge-driven, data-driven and hybrid-driven
methods. Zhai et al. [ZXLK21] introduce scene flow estimation ap-
proaches according to the dimension of data representation: 2.5D
(image-based) and 3D (point-based). This survey aims to narrow the
gap in this topic. Therefore, we comprehensively review up-to-date
compelling DL models applied in point cloud-based scene flow es-
timation approaches. The main contributions of this paper are sum-
marized as follows:

• Comprehensive review. For the first time, we investigate DL
methods for point cloud-based scene flow estimation. We pro-
vide a comprehensive comparison and insightful analysis on re-
cent deep learning methods (2019–2023), including supervised,
weakly-supervised, and self-supervised scene flow estimation
methods.
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• Review of open challenges. We provide an overview of exist-
ing challenges in scene flow estimation, which is categorized into
data challenge and DL challenge.

• Applications and research directions. We present how the es-
timated scene flow can benefit higher-level scene understanding
tasks. Several promising research directions in 3D scene flow es-
timation are discussed.

2. Problem Statement and Taxonomy

Let P ∈ RN1×3 denotes point cloud at time t with N1 points and Q ∈
RN2×3 represents the point cloud at time t + 1 with N2 points. Scene
flow estimation aims at recovering the 3D motion from point cloud
P captured at the first frame to point cloud Q at the next frame.
Therefore, the target for scene flow estimation is that each point
pi ∈ P should be as near as possible to the corresponding point qi ∈
Q after scene flow recovery. It is noteworthy that due to the sparsity
and unstructured nature of point clouds, the source point cloud and
the target point cloud do not necessarily have the same number of
points or have hard correspondences. Many methods estimate scene
flow vectors for the points in the first point cloud. With this prior
setting, the per-object transformation parameters can be predicted
[GLW*21]. The prominent methods only use point coordinates to
estimate the motion vector. There is also an attempt [LLX21] that
makes use of colour and surface normal as additional clues to find
point correspondences.

Evaluation metrics.. There are four main metrics to evaluate the
predicted scene flow.More detailed equations of the following terms
can be found in [WHWW21].

• 3D End Point Error (EPE3D): it is the average absolute distance
(L2 distance) between the predicted flow vector and ground truth
flow vector in meters.

• Acc3DS: it is the percentage of flow vectors whose EPE3D <

0.05m or the relative error < 5%.
• Acc3DR: it is the percentage of flow vectors whose EPE3D <

0.1m or the relative error < 10%.
• Outliers: if the EPE3D of a point > 0.3m, it is considered as
an outlier. So this metric depicts the percentage of points whose
EPE3D > 0.3m or relative error > 10%.

3. Building Blocks in Scene Flow Estimation

This section summarizes some basic building blocks for scene flow
estimation that comprise the DL pipeline. Learning-based frame-
works for scene flow estimation from point clouds usually consist
of three stages: (1) feature extraction; (2) feature fusion and match-
ing; and (3) flow generation and refinement.

3.1. Feature extraction paradigms

Traditional convolutions are not suitable to irregular point sets. To
enable effective usage of the geometry domain knowledge on point
clouds, point feature learning is an essential step. We introduce the
dominant feature extraction blocks leveraged by scene flow estima-
tion methods in this section.

3.1.1. Set conv layer

Set conv layer is first proposed in PointNet++ for point cloud clas-
sification and segmentation [QYSG17]. Point feature is indepen-
dently calculated via an MLP (multi layer perceptron) and then ac-
cumulated by max pooling. A set conv layer takes N points pi =
{xi, fi}with its XYZ coordinates xi ∈ R

3 and its feature fi ∈ R
c (i =

1, . . . ,N ) as input. The outputs include a sub-sampled point cloud
with N ′ points and the point-wise feature, where pj = {x′

j, f
′
j}. For

each sub-sampled region (centred at point x′
j) defined by a ball

neighbourhood specified by radius r, the updated local feature is
computed based on a symmetric function defined as

f ′j = MAX{
i| ||xi−x′j ||≤r

}
{
h
(
fi, xi − x′

j

)}
, (1)

where h(·) is a non-linear function (an MLP layer) with concate-
nated fi and point difference xi − x′

j as inputs [QYSG17], andMAX
is the element-wise max pooling operator.

3.2. PointConv feature pyramid

PointConv layer is proposed to learn point features hierarchically.
The PointConv method involves inputting the positions of point
clouds and training an MLP to estimate a weight function. The
method also involves applying an inverse density scale to the learned
weights to adjust for non-uniform sampling. It has been leveraged
bymany scene flow estimationworks. The PointPWC-Net generates
multiple levels of feature representations, with each level computed
through convolution on the previous level. The PointConv operation
is defined as follows:

PointConv(S,W,F )xyz =
∑

(δx,δy,δz)∈G
S
(
δx, δy, δz

)

W
(
δx, δy, δz

)
F

(
x+ δx, y+ δy, z+ δz

)
(2)

where S(δx, δy, δz) denotes the inverse density at a point (δx, δy, δz).
The weight function W (δx, δy, δz) is approximated by MLPs from
3D coordinates (δx, δy, δz) and the inverse density S(δx, δy, δz).
F (x+ δx, y+ δy, z+ δz) represents the feature of a point in the local
regionG centred around point p = (x, y, z). After point convolution,
the feature in a local region is updated.

3.3. Point information fusion and matching

3.3.1. Flow embedding layer

This layer learns to aggregate both feature similarities and spatial
relationships of points to yield embedded features for point mo-
tions [LQG19]. As illustrated in Figure 2, this layer fuses the feature
from source point cloud P: {pi = (xi, fi)}N1i=1 and target point cloud
Q: {qj = (y j, gj )}N2j=1. The flow embedding is computed by

ei = MAX{ j| ||y j−xi||≤r}
{
h
(
fi, gj, y j − xi

)}
. (3)

An improved version of this embedding layer is proposed by Wang
et al. [WWLW21], a weighted embedding strategy that samples
neighbouring points in the second frame for the source point. Mo-
tion embedded based on a patch-to-patch manner involves the larger
receptive field of each point.
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Figure 2: The network architecture of FlowNet3D [LQG19].

Figure 3: The cost volume layer in PointPWC-Net [WWL*20].

3.3.2. Correlation matrix

Another stream of works attempts to find soft correspondences
between source point cloud P and target point cloud Q. Inspired
by optimal transport theory [Vil09], building an optimal transport
could help address one-to-one matching between P and Q [PBM20,
LLX21]. Recently, SCTN [LZGG22] and FlowStep3D [KER21]
adopt a correlation matrix to estimate point correspondences. The
correlation matrix is defined as

M(i, j) = 1 − Fθ (pti)
T · Fθ (qt+1

j )

||Fθ (pti)||2||Fθ (qt+1
j )||2

, (4)

where pti and q
t+1
j represent points from the source and target point

clouds separately. Fθ (·) represents the point feature extraction func-
tion. After obtaining this correlation matrix, scene flow can be pre-
dicted by the Sinkhorn algorithm [PBM20].

3.3.3. Cost volume

Cost volume is widely used in stereo matching, which encodes the
relation between two consecutive frames. In 2D image field, cost
volume is often represented by a 3D tensor. Constructing cost vol-
ume in 3D point clouds is more difficult than in the 2D domain since
point clouds are unordered and possess different sampling densities.
To reduce the computational complexity, Wu et al. [WWL*20] in-
troduce a discretization operation on the cost volume. The matching
cost between point pi and point qj is defined as

Cost(pi, qj ) = h( fi, gj, qj, pi)

= MLP(concat( fi, gj, qj − pi)),
(5)

where concat(·) is the abbreviation of concatenation and fi, gj are
features correspond to point pi, qj. PointPWC-Net [WWL*20] uses

multi-layer perceptron (MLP) to obtain nonlinear relationship be-
tween two points with an additional direction vector represented by
(qj − pi). Based on Equation (5), the cost volume for an individual
point pc is formulated as

CV (pc) =
∑

pi∈Np(pc )
Wp(pi, pc)

∑
q j∈NQ (pi )

WQ(qj, pi)Cost(qj, pi), (6)

where WP and WQ are convolutional weights to compute the costs
from patches in point cloud P to that in point cloud Q. Np(pc) rep-
resents the neighbourhood of point pc and NQ(pi) represents the
neighbourhood of point pi in point cloud Q. So the cost volume
is aggregated in a patch-to-patch matching manner. The pipeline of
constructing a cost volume is depicted in Figure 3.

3.4. Flow generation and refinement

3.4.1. Set upconv layer

In the upsampling step for flow refinement, the set upconv layer
propagates the input set of points into a set of target point coor-
dinates by aggregating the neighbouring point features of the input
points. It shares the same structure with set conv layers and it is flex-
ible and trainable to propagate/summarize features from one point
cloud to another. We refer readers to FlowNet3D [LQG19] for more
details on this layer.

3.4.2. Gated recurrent unit

Recurrent updating mechanism is widely used in scene flow estima-
tion methods [GTY*22, KER21, DZL*22]. The updated scene flow
vector is produced by Gated Recurrent Unit (GRU) with a few set
upconv layers.
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Figure 4: Illustration and summarization of the differences between datasets: Single ShapeNet, Multi ShapeNet [CFG*15], FlyingThings3D
[MIH*16], KITTI Object [MG15], Lyft [HZB*20], Argoverse [CLS*19], and NuScenes [CBL*]. For clarify here, we added two datasets
(NuScenes [CBL*] and Argoverse [CLS*19]) based on the version of [ZvVBM20].

As presented in FlowStep3D [KER21], the hidden state hk is cal-
culated as

zk = σ
(
set−convz([hk−1, xk])

)
,

rk = σ
(
set−convr([hk−1, xk])

)
,

h̃k = tanh
(
set−convh([rk � hk−1, xk])

)
,

hk = (1 − zk )� hk−1 + zk � h̃k,

where � represents Hadamard product and σ (·) is the sigmoid ac-
tivation function. The initial state h0 is calculated by two set conv
layers based on the feature of the source point cloud.

4. Datasets

In this section, we concentrate on point cloud datasets employed in
scene flow estimation. A taxonomic study is presented in terms of
the source of the data, as elaborated in Figure 4.

4.1. Synthetic datasets

• Single ShapeNet is made of one moving object in a single scene
and is fully visible. The geometry information of the object does
not change between frames. Multi ShapeNet extends the com-
plexity of the whole scene by introducing additional objects. Al-
though the geometry of individual object is always kept consis-
tent, the geometry of the scene may unsteadily change. The two
datasets are generated from ShapeNet [CFG*15] where the ob-
jects are represented by point cloud. Each 3D object in the second
frame is yielded through a transformation matrix.

• Flyingthings3D introducesmultiple partial visible objects, which
means different objects may occlude each other, and there are
some objects excluded in the scene. It contains over 35,000 stereo
image pairs with ground truth disparity, optical flow, and scene
flow. The training set consists of 19,640 examples and the test set
has 3824 examples. FlyingThings3D [MIH*16] fills the gap of
datasets lacking ground truth scene flow.

• GTA-SF is proposed by DCA-SRSFE[JLA*22] for synthesizing
real-world scenarios. GTA-SF has 54,287 pairs of consecutive
point clouds with dense annotations. It collects larger-scale and
more realistic point clouds than existing synthetic datasets. An-
other advantage of GTA-SF is the rich variety of scenarios. The

data was collected from downtown areas, highways, streets and
other driving areas along six different routes at outdoor areas.

4.2. Real datasets

As shown in Table 1, we summarize the key properties (e.g. the scale
of point clouds, resolution, annotations, etc.) of real scene datasets
used by current scene flow estimation approaches.

• LiDAR KITTI [GLU12] was originally proposed in 2012 for
stereo matching and optical flow estimation. It also provides 3D
object benchmarks and 3D visual odometry dataset. In the context
of scene flow, there are 150 scenes in total with ground truth.

• KITTI Object [MG15] is a real-world dataset consisting of 200
annotated scenes of LIDAR data collected using a Velodyne 64
LIDAR.

• StereoKITTI [MHG15, MHG18] removes 58 scenes from origi-
nal data (200 train samples and 200 test samples). It contains 142
point cloud pairs for testing. The ground-truth scene flow is gen-
erated via lifting the disparity maps and optical flow to 3D space
[GWW*19].

• SemanticKITTI [BGM*19] is based on the odometry dataset of
the KITTI Vision Benchmark [GLU12] collected in both urban
and rural areas. It provides 21 LiDAR sequences which are split
into 11 (00-10) LiDAR sequences for training and 11 (11-21) for
testing.

• Lyft [KUH*19] contains 22,680 real-scanned scenes with multi-
objects. However, it does not provide any point correspondence
and is a partially visible dataset. So it can only be used in weakly-
supervised methods and used for training.

• Argoverse [CLS*19] is a dataset primarily for autonomous vehi-
cle perception tasks including 3D tracking and motion forecast-
ing. In the spirit of KITTI, a novel format of this dataset, “Argov-
erse Scene Flow” has been created by Pontes et al. [PHL20]. The
point clouds are collected from two Velodyne VLP-32 sensors.
It is noteworthy that the vehicle poses and the 3D object tracks
in the original Argoverse 3D Tracking set are utilized to generate
pseudo scene flow annotations[PHL20]. The whole dataset con-
tains 2691 training samples and 212 test samples.

• NuScenes [CBL*] consists of tracking information, map infor-
mation, and LiDAR point clouds sensed by a Velodyne VLP-32
sensor. It is different from the KITTI dataset collected by the
64-beam Velodyne rotating at 10 Hz. This difference leads to a
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Table 1: Open real scene datasets. Avg points per frame is the number of points from all LiDAR returns computed on the released data. Trains and tests represent
the number of training and testing samples in the dataset. Scenes represents the number of scenes captured in the dataset. Resolution is the corresponding image
size of each captured scene. Day&night means the dataset covers data collected day and night.

Name
Avg points
per frame Trains Tests Scenes Resolution Day&Night

Traffic
Conditions Annotation

KITTI2015 [MHG15, MG15] - 150 50 22 (375,1242) ✗ urban, rural 150 frames
LiDAR KITTI [GLU12] 120K - - - - ✗ urban Occlusion labels, 3D labels
StereoKITTI [MHG18, MHG15] - - 142 - - ✗ urban 142 frames
NuScenes [CBL*] 34K 1,513 310 1,000 - � urban 40K frames
Waymo [SKD*20] 117K - - 1,150 (1920, 1280/1040) � urban 230K frames
Argoverse [CLS*19] 107K 2,691 212 113 (2056,2464) ✗ urban 22K frames
Lyft [KUH*19] - 18,900 3,780 22,680 - ✗ urban 46K frames

discrepancy in data sparsity that yields a distribution shift be-
tween KITTI and NuScenes. NuScenes has recorded diverse data
from Boston and Singapore. However, NuScenes does not pro-
vide scene flow annotations, which poses a great challenge in
deep learning based methods to predict accurate scene flow.

• Waymo. The Waymo dataset [SKD*20] includes a large number
of 3D ground truth bounding boxes for LiDARdata and 2D tightly
fitting bounding boxes for camera images, all of which are high
quality and have been manually annotated. It contains 158,081
training and 39,987 validation frames of point clouds with LiDAR
labels [JLA*22], such as vehicles, pedestrians, signs and cyclists.
However, scene flow labels are not included.

4.3. Data preprocessing

LiDAR raw data are usually scanned in large-scale and unevenly
distributed with many irregularly shaped contents. As mentioned
before in Section 1, noise and outliers are inevitably imposed when
collecting LiDAR data. Therefore, the pre-processing step is neces-
sary for dealing with noise, error, as well as outliers. Pre-processing
on point clouds (e.g. ground point removal, down-sampling) is also
a significant step before estimating scene flow. Removing ground
points with inconspicuous features will enable more efficient learn-
ing on point clouds. The most simple method is via thresholding
on the height axis, like in HPLFlowNet [GWW*19]. However, this
approach is a little aggressive and will lead to important informa-
tion loss on some objects. In practice, ground points usually con-
stitute a flat plane with less significant visual cues. There are two
ground segmentation algorithms: RANSAC and GroundSegNet are
proposed to improve the effectiveness of ground points removal.
RANSAC is the abbreviation of Random Sampling and Consensus.
It fits a plane in a set of points and classifies points close to the
plane as ground points [LQG19]. GroundSegNet is originated from
the segmentation branch in PointNet [QSMG17], which is trained
to classify points to the ground or non-ground part [LQG19]. Both
algorithms generate accurate segmentation results on KITTI2015
[MHG15, MG15].

5. Methodology

This section reviews the existing methods from the perspective of
supervision and analyses how the state-of-the-art methods deal with
challenges that exist in scene flow estimation. We roughly catego-
rized them into the following types: supervised, weakly supervised,

and self-supervised methods. And we refer reader to Figure 5 for a
summary of the state-of-the-art learning wisdom of scene flow esti-
mation in the recent few years.

5.1. Supervised methods

Early methods [BMWR19, ZHZ*19] project the point clouds onto
2D cylindrical maps and apply traditional CNNs to train their flow
estimation model. Starting from methods that tackle a large amount
of data, we can identify a core set of the most innovative work on
supervised learning approaches for scene flow estimation. Many su-
pervised learning approaches rely on ground-truth labels of scene
flow. The deep networks are initially trained on synthetic datasets
and then fine-tuned on real data.

FlowNet3D. Liu et al. [LQG19] proposed FlowNet3D by extract-
ing point features from point clouds directly. It has three main lay-
ers for point cloud processing and uses PointNet++ as its back-
bone for feature learning. As shown in Figure 2, the flow embedding
layer aims to aggregate point similarities for scene flow encoding.
FlowNet3D finds soft correspondences between point clouds in two
consecutive frames. The set upconv layer (Section 3.4.1) is used for
flow refinement. The model has shown good results on synthetic
datasets, but has not achieved equivalent performance in real-world
settings due to the difficulty of obtaining point-level supervision
from real-world data.

HALFNet. Wang et al. [WWLW21] proposed a hierarchical at-
tention learning network with two different attentions in each flow
embedding. Especially, a hierarchical attentive flow refinement
module is designed to propagate and refine scene flow layer by
layer. HALFNet [WWLW21] adopts a more-for-less strategy, which
means the number of input points is greater than the number of out-
put points in scene flow estimation. HALFNet has approved its ef-
fectiveness in gaining precise structure information of the scene and
reducing the consumption of GPU memory. It is also noteworthy
that HALFNet uses multiple Euclidean information, which allows
the attentive flow embedded in a patch-to-patch manner. Generally,
HALFNet demonstrates a better generalization ability of the 3D
method than FlowNet3 [ISKB18] in 2D metric (e.g. optical flow)
and achieves reasonable accuracy compared with existing super-
vised methods. However, HALFNet does not train on a large real-
world dataset, which limits its performance on this kind of dataset.
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Figure 5: Chronological overview of the most relevant work on deep learning-based scene flow estimation on 3D Point Clouds.

FESTA. Previous methods, for example FlowNet3D [LQG19] and
MeteorNet [LYB19] apply Farthest Point Sampling (FPS) to ex-
tract point features. However, FPS usually leads to different down-
sampled results from two point clouds that represent the same
manifold [WPL*21]. Hence, it is intractable to estimate accurate
scene flow with the unstable features extracted by FPS. FESTA
[WPL*21] address this issue via the spatial abstraction with atten-
tion (SA2) layer and the temporal abstraction with attention layer. In
the SA2 layer, FESTA utilizes a trainable Aggregate Pooling mod-
ule which is based on the shifted position of points by defining the
attended regions.

PointPWC-Net. Wu et al. proposed PointPWC-Net [WWL*20]
that predicts scene flow via constructing the cost volume at each
feature pyramid level. To capture large motions, PointPWC-Net
proposes a coarse-to-fine strategy that concatenates the feature at
level L with upsampled feature from level L+ 1. The scene flows
are refined by features generated from the cost volume, the upsam-
pled flow, and the source point clouds. However, PointPWC-Net has
some limitations on the KITTI dataset [MG15]. Firstly, it failed to
perform well when the object is a straight line or a plane. In addi-
tion, it is hard to obtain effective correspondences from two con-
secutive frames due to the strong deformation of local shapes. At
last, PointPWC-Net retains the ground points, which may affect the
overall performance. PointConvFormer [WSF22] modifies the fea-
ture learning mechanism via transformers. It explores the computa-
tion of convolutional weights, leveraging the difference in features
between points to recalculate the convolutional weights. Addition-
ally, PointConvFormer uses a sigmoid activation for the attention
weights that outperformed the use of softmax. These insights re-
sulted in improved performance in experiments compared to tradi-
tional Transformer models. PointConvFormer has a 10% improve-
ment of EPE3D on FlyingThings3D dataset than PointPWC-Net.

Res3DSF. Based on the observation that humans are good
at perceiving the surrounding dynamic movement, Res3DSF
[WHWW21] includes a context-aware point feature pyramid mod-

ule together with a residual flow refinement layer for scene flow
estimation. Many previous methods ignored the discrimination of
repetitive patterns in dynamic scenes. Res3DSF incorporates the
contextual structure learning into their 3D spatial feature extraction
layer and learn soft aggregation weights. Res3DSF adopts atten-
tive cost volume to learn flow embeddings from the context-aware
feature pyramid module. These flow embeddings are then refined
by the Three-NN interpolation and multiple MLP layers to acquire
the final complete scene flow. The evaluation results illustrated in
Table 4 indicate the effectiveness of the framework proposed by
Res3DSF [WHWW21]. Res3DSF well addresses the diversity of
motion fields, so that it can estimate long-distance motion.

FLOT. Several studies in graph matching, such as [MGCF19,
NMV17], utilize optimal transport to find correspondences between
two different graphs. Inspired by these works, FLOT [PBM20] casts
the task of scene flow estimation as finding soft correspondences
on a pair of point clouds via solving an optimal transport problem.
FLOT extracts point features through several convolution layers.
The transport cost is then measured by cosine similarity of these
point features. To circumvent the absence of correspondence on
some points, FLOT [PBM20] proposes a mass regularisation to en-
sure that mass is uniformly distributed over all points. A residual
network is proposed to improve flow estimation through linear in-
terpolation. FLOT demonstrates the superiority of the algorithm un-
rolling technique in scene flow estimation. The Sinkhorn algorithm
is iteratively applied to update the cost matrix, resulting in enhanced
scene flow estimation.

SCTN. Different from FLOT [PBM20] which only focuses
on sparse 3D coordinates and applies point-based convolutions
[QYSG17] to learn features, SCTN [LZGG22] introduces a voxel-
based convolution to produce consistent flows in 3D space. SCTN
uses a combination of sparse convolution for feature extraction and
a transformer module for accurate scene flow prediction. It is the
first work to incorporate the transformer with sparse convolution,
which allows it to learn relation-based contextual information on
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point clouds. SCTN uses a correlation matrix to estimate soft cor-
respondences by combining features from both the sparse convo-
lution and the transformer module. Additionally, SCTN proposes a
feature-aware spatial consistency loss to improve its ability to dis-
tinguish different motion fields.

HCRF-Flow. Rigid and non-rigid motion co-exist in dynamic
scenes, which hinders the estimation of accurate scene flow. In
this setting, methods that only consider point-wise motion tend to
neglect rigid motion in local regions. Therefore, it is indispens-
able to add constraints on the rigidity of the local transformation
in local regions. To this end, HCRF-Flow [LLH*21] leverages a
traditional graphical model: high-order conditional random fields
(CRFs) where DNNs and CRFs work collaboratively to achieve
point-wise motion regression. In particular, HCRF-Flow proposes
a novel position-aware flow estimation module (PAFE) to get the
matching cost. PAFE follows the same architecture of FlowNet3D
[LQG19], which includes set conv layer (Section 3.1.1), flow em-
bedding layer (Section 3.3.1), and set upconv layer (Section 3.4.1).
Armed with a position encoding unit and a pseudo pairing unit,
HCRF-Flow [LLH*21] can dynamically aggregate matching cost.
Furthermore, the continuous CRFs ensures the spatial smoothness
and the local rigidity of the scene flow predictions. Therefore, rigid
motion is well-considered in HCRF-Flow under the constraints of
both point-level and region-level consistency.

PV-RAFT. As mentioned before, PointPWC-Net [WWL*20] uti-
lizes a coarse-to-fine strategy to find point correspondences. How-
ever, it suffers from the error accumulation [WWR*21]. PV-RAFT
[WWR*21] is an innovative approach that builds correlation vol-
umes to address limitations of previous cost-volume based meth-
ods. It is inspired by the recurrent all-pairs field used in 2D opti-
cal flow [TD20]. With voxel correlation features that encodes long-
range point clouds, and point-based features that aggregates fine-
grained local information, PV-RAFT efficiently captures both short-
range and long-range correlations in consecutive point clouds. PV-
RAFT utilizes a Gated Recurrent Unit (GRU) to iteratively update
the predicted scene flow with context features as auxiliary informa-
tion. Besides, PV-RAFT also develops a truncation operation and a
refinement module to further increase the accuracy.

HPLFlowNet. HPLFlowNet [GWW*19] operates on permutohe-
dral lattice points and processes the lattice points by a few Bilateral
Convolutional layers (BCL). This strategy improves feature extrac-
tion globally and shows better performance. HPLFlowNet directly
removes all the occluded points to reduce computational cost. There
are three BCL layers in HPLFlowNet, including DownBCL, Up-
BCL, and CorrBCL. HPLFlowNet also shows great generalization
ability to different point densities. It evaluates on 16,384, 32,768,
65,536 points and the network is able to process up to 86K points
in one pass.

WhatMatters. WhatMatters [WHL*22] follows common prac-
tices to compute point features through the set conv layer (Sec-
tion 3.1.1). To capture reliable match candidates from point clouds
even in a long distance, WhatMatters proposes a novel all-to-all
point mixture module with backward reliability validation. A com-
prehensively analysis on point similarity calculation, designs of

scene flow predictor, input elements of scene flow predictor, and
flow refinement level design showcase what matters in 3D scene
flow network.

FH-Net. FH-Net [DDX*22] deals with multi-scale flows from dif-
ferent layers with a much faster speed. To this end, FH-Net ex-
tracts keypoint features via hierarchical Trans-flow layer. The com-
puted sparse flow is then used to obtain hierarchical flows at dif-
ferent resolutions through an inverse Trans-up layer. FH-Net also
introduces a new data augmentation strategy to enhance the accu-
racy of predicted flow, particularly on complex dynamic objects.
This work sets new standards for performance on the KITTI and
Waymo datasets.

SAFIT. SAFIT [SM22] introduces the concept of relation rea-
soning between object-level and point-level relations. The relation
module captures relational features between objects, which diver-
sifies the feature palette of 3D point cloud and can be combined
with other features to boost the performance of scene flow. This is
different from other methods that only extract geometry or loca-
tion features for individual objects. As presented in SAFIT, the su-
pervised training scheme outperforms FLOT by 3.8%, 22.58% on
preprocessed FlyingThings3D and KITTI dataset [GWW*19]. Be-
sides, SAFIT has 10.90% and 21.82% accuracy improvement over
FLOT on FlyingThings3D andKITTI where occluded points are not
removed [LQG19].

Dynamic3DSA. To facilitate the analysis of point cloud sequences,
four different tasks are integrated into a complete multi-frame 4D
scene analysis approach. Huang et al. [HGH*22] comprehensively
study point cloud registration, motion segmentation, instance seg-
mentation, and piece-wise rigid scene flow estimation. To this end,
it is necessary to separate individual moving objects from the static
background and infer their temporal and spatial properties. Dy-
namic3DSA accumulates 3D points across multiple frames while
representing the scene as a collection of rigid moving agents, fol-
lowed by the reasoning of motion by agents.

Bi-PointFlowNet. Built upon successful bidirectional learning
in time series-based tasks and 2D optical flow estimation, Bi-
PointFlowNet [CK22] develops the first bidirectional model for 3D
scene flow estimation. Bi-PointFlowNet targets at estimating the
optimal non-rigid transformation that represents the best alignment
from the source to the target frame. Previous standard procedure (i.e.
grouping -> concatenation -> MLP -> max-pooling) usually leads
to redundant computations. To address this issue, Bi-PointFlowNet
decomposes theMLPweights in bidirectional flow embedding layer
into three sub-weights. In this way, the local coordinates, the pro-
pogated feature, and the replicated feature of two point clouds can
be transformed to produce a new fused feature vector. The follow-
ing upsampling and warping layer are the same as PointPWC-Net.
Compared to PointPWC-Net [WWL*20], Bi-PointFlowNet reduces
the total operation by 44% and accelerates the inference by 33%.

Est&Pro. Est&Pro [WS22] employs a subnet to predict the occlu-
sion mask, which guides the flow predictor to focus on estimating
the motion flows of non-occluded points. In this way, more valid
matching costs can be calculated. Est&Pro designs a local-adaptive
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cost volume, which addresses the dissimilarity in local structure
caused by sparse depth sensor (LiDAR) sampling. For occluded
points, Est&Pro proposes an uncertainty truncated propagation net-
work to propagate the flows from non-occluded points to those oc-
cluded points. Intuitively, the flow estimator is responsible to the
non-occluded points, while the flow propagation network focuses
on motion flows of the occluded points.

RMS-FlowNet. RMS-FlowNet [BSMS22] employs feature ex-
traction module consists of top-down pathway and bottom-up path-
way. From the beginning level, they apply local-feature-aggregation
and down-sampling to proceed features at each level. Then utilize
up-sampling and transposed convolution to propogate point fea-
tures. Unlike previous hierarchical structure [WWLW21], RMS-
FlowNet proposes a Patch-to-Dilated-Patch flow embedding strat-
egy, which re-computes features generated from previous steps with
new attention scores. This desgin could speed up the model without
sacrificing the accuracy. RMS-FlowNet use a fully supervised loss
function similar to PointPWC-Net. This work bears great improve-
ments to the recent efforts on quicker predictions handling large,
consecutive point clouds containing over 250K points.

To facilitate an inductive summarization on the above methods,
we divide these scene flowmodels by their building blocks, as listed
in Table 2. We also systematically investigate the advantages and
disadvantages of different methods.

5.2. Weakly/Self-supervised methods

There are a lot of supervised methods trained on a synthetic dataset
and fine-tuned on a small set of real data. However, this train-
ing scheme leads to domain gap between the synthetic dataset and
the real-scanned dataset, which makes the trained models perform
poorly in real-world scenes. A handful of works [MOH20, KER21,
JLA*22] have been proposed to handle performance gap between
different datasets by devising self-supervised architectures. Accord-
ing to the backbone used by these self-supervised methods, we di-
vide them into flow embedding based, correspondences based, and
correspondences free methods. Table 3 summarizes the advantages,
deficiencies, and training datasets of these methods.

Just-Go. Mittal et al. [MOH20] utilize nearest neighbour loss
and cycle consistency loss based on the framework of FlowNet3D
[LQG19]. Nearest neighbour loss is formulated as the average Eu-
clidean distance of the transformed point to its nearest neighbour in
the second point cloud. So it regularizes the initial flow to be as close
as possible to the correct scene flow. Cycle consistency loss is cal-
culated through the absolute Euclidean distance between the trans-
formed point from reverse flow and the original point. The combi-
nation of the above two self-supervised losses enables training on
large unlabelled autonomous driving datasets that contain sequential
point cloud data. However, it ignores the local geometrical proper-
ties of point clouds.

Adversarial-SFE. Victor et al. [ZvVBM20] proposed a metric
learning approach for self-supervised scene flow estimation. Un-
like previous self-supervised methods which rely on fine-tuning
and finding correspondence in the input data to search for near-

est neighbours, Adversarial-SFE. [ZvVBM20] utilizes an adversar-
ially learning loss. Hence Adversarial-SFE does not suffer from
the domain shift between synthetic data and real data. More-
over, Adversarial-SFE takes advantage of the permutation invariant
nature of the point cloud. It proposes triplet loss by sampling points
together with cycle consistency loss. Adversarial-SFE computes the
distance between a pair of point clouds on a latent space. The pro-
posed adversarial metric learning consists of four components: (1)
a triplet loss with anchor and positive sampling, (2) a cycle consis-
tency loss, (3) multi-scale triplets for global and local consistency,
and (4) adversarial optimization.

SFGAN. 3D point clouds represent the continuous motion of ob-
jects in real scenarios. Based on this insight, Wang et al. [WJS*22]
utilize generative adversarial networks (GANs) to learn scene flow.
SFGAN [WJS*22] presents a novel strategy via discriminating be-
tween the generated point clouds and the real point clouds. The pre-
dicted scene flow and the source point cloud are incorporated to gen-
erate the fake point cloud identical to the target point cloud. Then
the discriminator discerns the consistency between the real scene
and the synthesized 3D scene (fake point cloud) to enhance the per-
formance of the scene flow generator. The adversarial training on
the generator and discriminator enables SFGAN to specify the con-
sistency of the scene during a period of time.

Self-Point-Flow. Note that each point not only possesses a spatial
position (x, y, z) but also potentially has vectors of attributes, such
as normal, colour, or material reflection. Self-Point-Flow [LLX21]
uses global mass constraints with multiple descriptors to formulate
one-to-one matching with 3D point coordinate, colour, and surface
normal as measures. In the optimal transport module, the sum of
these three individual costs represents the final transport cost in the
entropic regularization term that is solved by the Sinkhorn algo-
rithm. This enables the generation of pseudo labels for real data,
which is generated from the assignment matrix. However, conflict-
ing results that exist on local regions will lead to incomplete pseudo-
label generation. To address this issue, Self-point-Flow builds a
graph through random walk theory that integrates local consistency
to refine the pseudo labels. This algorithm is executed on a fully-
connected undirected subgraph and refined with several random
walk steps. Then, it propagates to directed subgraph without initial
pseudo labels and infers new pseudo labels based on the affinity ma-
trix that describe the nearness between each point in the undirected
subgraph (labelled node set) and directed subgraph (unlabelled node
set).

FlowStep3D. Inspired by RAFT [TD20], FlowStep3D [KER21]
introduces a recurrent structure to unroll scene flow estimation
model with refinement operation. In FlowStep3D, the initial flow
vector is estimated by a global correlation matrix, then the rest of the
flow sequences are updated based on local correlations in the gated
recurrent unit. FlowStep3D adopts several basic layers, for example
set conv layer (Section 3.1.1), flow embedding layer (Section 3.3.1)
in Flownet3D [LQG19]. Two regularization loss weights are
proposed to adjust the regularization. It contributes to the updating
of scene flow during iterations.
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Table 2: Summarization of fully supervised DL architectures for scene flow estimation. FLY3D is the abbreviation of FlyingThings3D. � denotes methods with
open-sourced code.

Methods Highlights Datasets used

Flownet3D� [LQG19] Pros: Pioneer work in using flow embedding layer. Cons: Suffer from occlusion and
non-uniform data; Unable to maintain local geometric smoothness.

KITTI2015,
FLY3D

Feature
embedding
based Methods

Flownet3D++
[WLHJ*20]

Pros: RGB-D data as input; Capable for non-static scenes; Point-to-plane loss;
Geometry-aware; Effective for dynamic reconstruction. Cons: Error accumulated
when iterating.

KITTI2015,
FLY3D

FESTA� [WPL*21] Pros: Point clouds with RGB information as input; Temporal-Spatial attention
mechanism; Occlusion aware. Cons: Poor generalization ability.

LiDAR KITTI,
FLY3D

HALFlow [WWLW21] Pros: More-for-less hierarchical architecture; Double attentive flow embedding;
Good practical application ability on real LiDAR odometry task. Cons: Complex
network structure; Poor efficiency.

StereoKITTI,
FLY3D

HCRF-Flow [LLH*21] Pros: Point-level and region-level constraints; Good generalization ability. Cons:
Time-consuming.

StereoKITTI,
FLY3D

Bi-PointFlowNet�

[CK22]
Pros: High accuracy on both occluded version and non-occluded version of FLY3D
and KITTI.

KITTI2015,
StereoKITTI,
FLY3D

RMS-Flownet[BSMS22] Pros: Hierarchical learning method; Efficient. StereoKITTI,
FLY3D

WhatMatters� [WHL*22] Pros: All-to-all flow embedding layer; Achieved SOTA performance on both
synthetic dataset and real dataset. Cons: Limitations on occluded scenarios.

StereoKITTI,
FLY3D

FH-Net�[DDX*22] Pros: New data-augmentation strategy; Cross-frame feature enhancement; High
inference speed.

KITTI2015,
FLY3D,
Waymo

FLOT� [PBM20] Pros: Simple and efficient; Addressed transformation challenge. Cons:
Annotation-hungry; Poor performance on occluded points.

StereoKITTI,
FLY3D

Correspondences
based Methods

SCTN� [LZGG22] Pros: Pioneer in using a sparse convolution and transformer to exploit the coherent
motions and model point correlations; Spatial feature-aware. Cons:
Annotation-hungry.

KITTI2018,
FLY3D

PV-RAFT� [WWR*21] Pros: Pioneer in integrating point and voxel correlations in recurrent all-pairs field
to estimate scene flow; GRU-based iterative method. Cons: Structure distortion;
High time consumption.

KITTI2015,
FLY3D

SAFIT� [SM22] Pros: Supervised and self-supervised training fashion; Small model size. Cons:
Annotation-hungry.

KITTI2015,
FLY3D,
StereoKITTI

Cost volume
based Methods

PointPWC-Net�

[WWL*20]
Pros: Coarse-to-fine strategy; Supervised and self-supervised training fashion.
Cons: Some objects are out of view; Error accumulation in the early step.

StereoKITTI,
FLY3D

Res3DSF [WHWW21] Pros: Context-aware feature encoding layer and residual flow learning block; Good
at learning long-distance motion and discriminating objects with similar pattern.
Cons: Computation expensive.

KITTI2018,
FLY3D

PointConvFormer�

[WSF22]
Pros: Feature-based attention module; Improved re-weighting mechanism in
calculating convolutional weights. Cons: Poor performance on occlusions.

StereoKITTI,
FLY3D

Est&Pro� [WS22] Pros: Occlusion-aware; Uncertainty guided network. Cons: The overall
performance relies on ground-truth occlusion masks.

KITTI2015,
FLY3D

Other Methods HPLFlowNet�

[GWW*19]
Pros: Efficient; Addressed the difference in density challenge and big data
challenge. Cons: Lack of evaluation on large-scale real dataset: NuScenes.

StereoKITTI,
FLY3D

MoNet [LCL*22] Pros: Variations of motion across frames are captured; Point cloud prediction with
content features; Recurrent neural network; Attention-based motion alignment
module. Cons: Suffer from accuracy challenge.

Argoverse,
LiDAR
KITTI

SFPC. SFPC [PHL20] defines a geometrically interpretable ob-
jective function to optimize the scene flow and provides an al-
ternative strategy with learning as self-supervisory signal. Basi-
cally, the objective function consists of two different terms. The
first term minimizes the 3D distance while the second term is a
graph Laplacian constraint for keeping the nearby points from shift-
ing too much. To explore the underlying topology connection and
context information, SFPC builds an explicit graph on the source
point cloud. Compared with recent methods [WWL*20, MOH20]

that group point features in multi-scales, SFPC presents a new
clue for estimating scene flow without relying on recursive point
features by using an interpretable objective function. SFPC per-
forms well on both synthetic data and real data where the learn-
ing strategy shows optimal speed while the non-learning strategy
gains better robustness. However, SFPC requires more computation
when dealing with larger scale point clouds because a denser point
cloud yields more complicated graph connectivity and searching
space.
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Table 3: Summarization of self-supervised/weakly supervised DL architectures for scene flow estimation based on Point Clouds. FLY3D is the abbreviation of
FlyingThings3D. � denotes methods with open-sourced code.

Methods Highlights Datasets used

Flow embedding
based

Just-Go� [MOH20] Pros: Proposed a nearest neighbour loss and a cycle consistency loss; Addressed
annotation challenge. Cons: Violated the real data distribution; Suffer from
accuracy challenge.

FLY3D, NuScenes,
LiDAR KITTI,
KITTI2018

SFPC [PHL20] Pros: Self supervised learning and non-learning scheme; Applied to point cloud
densification and motion segmentation application. Cons: Suffer from
occlusion challenge and efficiency challenge.

KITTI2015, FLY3D,
Argoverse,
NuScenes

Adversarial-SFE
[ZvVBM20]

Pros: Addressed deep model generalization challenge; Local structures aware.
Cons: Suffer from occlusions.

KITTI Object,
FLY3D, Lyft

SFGAN [WJS*22] Pros: Adversarial learning between the scene flow generator and the point cloud
discriminator. Cons: Suffer from occlusion challenge and LiDAR challenge.

FLY3D, LiDAR
KITTI

OGC� [SY22] Pros: Simultaneous 3D objeccts segmentation and scene flow estimation. FLY3D, KITTI2015
Self-Point-Flow�

[LLX21]
Pros: Combined multiple clues (i.e. colours, surface normal); Addressed
annotation challenge; Good generalization ability. Cons: Suffer from
occlusion challenge.

KITTI2015, FLY3D

Noisy-Pseudo
[LZLG22]

Pros: Monocular RGB images and point clouds as data source; Addressed
annotation challenge and generalization challenge. Cons: Suffer from
efficiency challenge.

FLY3D, StereoKITTI,
LiDAR KITTI

Pseudo-LiDAR�

[JWMW22]
Pros: Solved the LiDAR challenge; Adapted 2D stereo images to 3D scene flow
estimation. Cons: Suffer from data noise and accuracy challenge.

FLY3D, StereoKITTI,
NuScenes,
Argoverse

Correspondences
based

SCOOP� [LAC*22] Pros: A good balance between error reduction and inference time. Cons: Suffer
from occlusion challenge; Computationally expensive due to multiple
optimization objectives.

FLY3D, KITTI2015

RC-SFE [DZL*22] Pros: State-of-the-art weakly supervised; Good generalization ability; Addressed
the transformation challenge. Cons: Sensitive to the accuracy of background
masks; Rely on rigidity assumption; Suffer from occlusions.

SemanticKITTI,
StereoKITTI,
Waymo

RigidFlow [LZL*22] Pros: Enhanced local rigidity in scene flow estimation; Good generalization
ability. Cons: Failed on non-rigid motion; Suffer from occlusions.

StereoKITTI, FLY3D

FlowStep3D� [KER21] Pros: Recurrent architecture for non-rigid scene flow; All-to-all correlation
learning; Addressed big data challenge and annotation challenge. Cons:
Manually set iteration parameters; Suffer from occlusion challenge.

StereoKITTI, FLY3D

RCP [GTY*22] Pros: Addressed the difference in sampling data challenge; Simultaneous scene
flow estimation and point registration. Cons: Suffer from efficiency challenge
and occlusion challenge.

FLY3D, StereoKITTI,
ModelNet40
[WSK*15]

Rigid3DSF� [GLW*21] Pros: Weakly supervised; Addressed big data challenge and LiDAR challenge;
Good performance on different motion fields and occluded points. Cons: The
estimation of ego-motion relies on soft correspondence; Lack of the similarity
measurement of point spatial features.

StereoKITTI,
SemanticKITTI,
FLY3D

DCA-SRSFE� [JLA*22] Pros: Reduced the domain gap between the synthetic dataset and the real dataset;
Avoided shape deformations; Addressed the transformation challenge. Cons:
The predictions on non-rigid objects are not accurate.

GTA-SF, FLY3D,
Waymo, Lyft,
StereoKITTI

Correspondences
free

SLIM �[BEM*21] Pros: Motion-aware; Good generalization to unseen data. Cons: The aggregated
transform matrix is only suitable for stationary points; Suffer from occlusions.

FLY3D,
NuScenes,CARLA,
KITTI2018

Ego-Motion � [TLOP20] Pros: Hybrid training scheme. Cons: Suffer from accuracy and efficiency
challenge.

KITTI2015, FLY3D

Occlusion-G� [OR21b] Pros: Occlusion-weighted cost volume structure; Detection on large motion and
occlusions; Addressed LiDAR challenge. Cons: Poor generalization ability.

KITTI2015, FLY3D

PillarML� [LYY21] Pros: Multi-modal data as input; Accurate motion learning; Good generalization
ability; Efficient. Cons: Multi-resolution features are not aggregated in the
pillar motion.

NuScenes

PillarML. Stemmed from the merits of motion representa-
tion in bird’s eye view (BEV), PillarML [LYY21] organizes
points into different pillars in vertical order and estimate pil-
lar motion by the velocity residing on each pillar. PillarML
[LYY21] consists of LiDAR-based structural consistency, prob-
abilistic motion masking, and a cross-sensor motion regular-

ization module. The pillar motion is estimated from unla-
belled point clouds paired with 2D images. Statistical observa-
tion shows that a self-driving vehicle generates abundant data
but only 5% of the data is usable. Therefore, PillarML utilizes
multi-sensor as sources of data and exploit free signals from
them.
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SLIM. SLIM [BEM*21] removes the annotation requirement con-
straint on realistic data by integrating the self-supervised scene flow
estimation and the motion segmentation framework. SLIM presents
that the motion segmentation signal can be generated by detect-
ing the discrepancy between raw flow predictions and rigid ego-
motion. Compared to existing methods [MOH20,WWL*20], SLIM
leverages arbitrary point densities and does not rely on one-to-one
correspondences. SLIM is upgraded based on RAFT [TD20] and
evaluated on several real datasets: KITTI2018 [MHG18], Nuscenes
[CBL*], CARLA [DRC*17], and KITTI-RL [GLSU13].

Occlusion-G. A dynamic scene contains multiple different objects
that hold their own moving patterns and different 3D object pos-
sess specific complicated geometry, hence making it inefficient for
scene flow estimation by simply removing occluded regions. The
main difficulty of scene flow estimation under occlusion is related
to acquiring the exact magnitude of the occlusion. Occlusion-G
[OR21b] aims to estimate 3D scene flow with occlusions in a self-
supervised way. It uses a cost volume structure same as PointPWC-
Net [WWL*20], but with added occlusion masking operation where
the cost volume of the occluded point is assigned with zero. Be-
sides, Occlusion-G is an occlusion-weighted mechanism that treats
occluded and non-occluded regions separately. Occlusion-G varies
from the previous version [OR21a] in the training stage, where
Occlusion-G is free from ground-truth occlusion labels. The idea
stemmed from using a synthetic target point cloud to predict occlu-
sion.

Noisy-Pseudo. Noisy-Pseudo [LZLG22] is a novel multi-modality
framework that utilizes both RGB images and point clouds to gener-
ate pseudo labels for training scene flow networks. The selection of
pseudo labels depends on the geometric information of point clouds.
The distance between pseudo labels and their nearest point in the
second point cloud tells the reliability of the pseudo label. So that
these inaccurate noisy labels are assigned low confidence to reduce
the negative effect on network training. To refine the confidence
scores of pseudo labels, Noisy-Pseudo updates the confidence score
via a local geometry-aware weighted confidence of all the neigh-
bouring pseudo labels. Additionally, the combination of both 2D
information and 3D information contributes to the self-supervised
learning and leads to good performance on both synthetic data and
real-world LiDAR data. This method highlights the effectiveness of
using multi-sensor data in scene flow estimation.

DCA-SRSFE. Jin et al. [JLA*22] proposed a mean-teacher frame-
work for unsupervised domain adaptation from synthetic data to
real data. DCA-SRSFE [JLA*22] consists of a student model that
uses ground-truth scene flow labels for supervision and a teacher
model updated as the Exponential Moving Average (EMA) of the
student model weights. A deformation regularization module and a
correspondence refinement module are introduced to produce high-
quality pseudo labels. In the deformation regularization module,
a rigid motion between the first point cloud and the warped point
cloud is predicted via Kabsch algorithm [Kab76]. This module en-
courages shape distortion awareness in the student model and pro-
motes adaptive deformations for the target domain. The flow vector
is later improved with surface correspondence by refining local ge-
ometry. DCA-SRSFE is supervised by ground truth flow labels in

the source domain and trained with a consistency loss over the tar-
get domain. The proposed synthetic dataset GTA-SF is a large-scale
dataset with real-world labels. According to the experiments, DCA-
SRSFE has narrowed down the performance gap between synthetic
datasets and real-world scenarios.

RCP. RCP [GTY*22] decomposes scene flow estimation into two
interlaced steps. The first step optimizes 3D flow point-wisely, fol-
lowed by a recurrent network to optimize 3D flow globally. In the
point-wise optimization module, an auxiliary flow vector is calcu-
lated by concatenating the point feature and positional encoding. In
the second optimization step, RCP leverages GRU to update the hid-
den state for the estimation of residual flow vectors. RCP is trained
in both the fully-supervised manner and the self-supervised manner.
RCP also conducts experiments on point cloud registration, where
6-DoF poses are generated by point-to-point costs. The results on
scene flow estimation and point cloud registration have achieved
on-par performances with state-of-the-art methods.

Ego-motion. Inspired by HPLFlowNet [GWW*19], Ego-motion
[TLOP20] uses DownBCL and CorrBCL as building blocks to
regress relative poses from a pair of point clouds. It estimates non-
rigid flow and ego-motion jointly with iterative update module to
refine the rigid transformation. Ego-motion also compares perfor-
mance between fully-supervised, hybrid, and self-supervised train-
ing strategy, which shows that hybrid training scheme performs
better on FlyingThings3D [MIH*16] and KITTI2015 [MHG15,
MG15].

RigidFlow. RigidFlow [LZL*22] introduces local rigidity prior in
self-supervised scene flow learning. Based on the assumption that a
scene is composed of several rigid moving parts, RigidFlow decom-
poses the source point cloud into a collection of local rigid regions.
Different from recent self-supervised works [BEM*21, PHL20] that
utilize local rigidity as regularization terms, RigidFlow enhances
the pseudo label generation module via integrating local rigidity
in region-wise scene flow estimation. With a pre-trained predicted
flow [LLX21], the initial point mapping and rigid transformation
are calculated. Then the rigid transformation and pseudo labels for
each supervoxel is updated accordingly by solving a least-square
problem. This least-square problem aims at calculating rotation ma-
trix and translation vector that aligns independent rigid body from
source to target. After several iterations, all of the optimal pseudo
rigid scene flow from every supervoxel are combined to form the
complete pseudo scene flow.

Pseudo-LiDAR. [JWMW22]. This work can accurately perceives
3D dynamics in 2D images by utilizing a pseudo-LiDARpoint cloud
as a bridge to compensate for the limitations of estimating 3D scene
flow from LiDAR point clouds. Points that do not contribute to the
scene flow preditons are filtered out. In addition, a disparity consis-
tency loss is proposed to boost the self-supervised training.

OGC. OGC [SY22] focuses on making use of inherent object dy-
namics to assist object segmentation. To extract per-point features
and generate object masks, an object segmentation network is first
applied to a single point cloud. Then, a self-supervised network is
utilized to estimate per-point motions from a pair of point clouds.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



Z. Li et al. / Deep Learning for Scene Flow Estimation on Point Clouds: A Survey and Prospective Trends 13 of 22

Due to the challenging moving patterns of different objects, how to
fully utilize object dynamics to assist object segmentation becomes
more tricky. To tackle this problem,OGC introduces three loss terms
to yield effective segmentation supervision. The geometry consis-
tency over dynamic object transformations allows for high-quality
masks learning for given flows. Regularization of geometry smooth-
ness ensures that flow vectors in a local area remain consistent with
the central point. The geometry invariance loss drives the estimated
object masks to be invariant across different views of point clouds.

SCOOP. SCOOP [LAC*22] consists of a self-supervised neural
network and an optimization module that work hybridly to esti-
mate scene flow. In the initialization step of scene flow estimation,
SCOOP focuses on extracting point features to obtain soft corre-
spondences, in which cosine similarity is applied to compute match-
ing cost. In the flow refinement step, two optimization functions,
basically deployed for reducing the error and increasing the consis-
tency of scene flow field. According to the results, SCOOP reduces
errors by over 50% compared to feed-forward models and provides
10 times faster inference time than the Neural Prior work [LKPL21]
relying solely on optimization. Additionally, SCOOP allows for a
unique trade-off between time and performance.

Rigid3DSF. To ease the high demand of supervision in scene flow
estimation problem, Gojcic et al. [GLW*21] proposed a data-driven
method that integrates flow into a higher-level scene abstraction rep-
resented by multi rigid-body motion. Rigid3DSF [GLW*21] con-
nects point-wise flow with other higher level scene understanding
tasks through an object-level deep network. In detail, Rigid3DSF
divides the scene into foreground, background, and abstract rigid
objects as scene components. As such, scene flow in the background
is assigned as ego-motion of sensors and motion prediction in the
foreground can be reasoned on the level of individual object. To ex-
ploit the geometry of the rigid entities, Rigid3DSF introduces an
inductive bias. Rigid3DSF also proposes a new test-time optimiza-
tion to refine the flow predictions. For the training on real dataset un-
der weak supervision, Rigid3DSF uses SemanticKITTI [BGM*19]
without dense scene flow annotations.

RC-SFE. RC-SFE [DZL*22] is a weakly-supervised scene flow
learning framework based on GRU recurrent network. Apart from
the source point cloud and the target point cloud, RC-SFE also takes
a set of abstraction masks of the source point cloud generated by
a pre-trained segmentation network [GLW*21] as input. To con-
vert the initial point correspondences status and pre-warped scene
flow, RC-SFE applies Kabsch algorithm [Kab76] to obtain transfor-
mations for each segmented abstractions. So the rigid flow is cal-
culated by the abstraction transformations and abstraction masks.
During the updating stage, an GRU-based error awarded optimiza-
tion is utilized to refine the prediction. Compared to previous work
that use indirect constraints into iterative optimization, RC-SFE in-
troduces direct multi-body rigidity constraints to alleviate structure
distortion. After several recurrent updates, an optimal mix of scene
flow and rigid flow are calculated to form the final hybrid scene
flow. However, RC-SFE cannot address the estimation of scene with
many non-rigid parts. Same as Rigid3DSF [GLW*21], RC-SFE re-
lies on the segmentation of background to generate accurate esti-

mation. Dealing with non-rigid motions and occlusions is worthy
of further exploration in the future.

5.3. Quantitative analysis

Results of recent deep learning based methods on different datasets
along with non-learning methods are tabulated in Table 4 and Ta-
ble 5. It is hard to declare which approach is the winner compared to
others as it depends on the datasets and specific data training scheme
they used. We focus on the results generated from the same training
dataset and make the following observations.

5.3.1. Performance on synthetic dataset

1) PointPWC-Net [WWL*20] is optimized during run time with
self-supervised loss through gradient descent. PointPWC-Net
and SFPC [PHL20]) have considerable improvements among
purely non-learning approaches such as non-rigid iterative clos-
est point (NICP) algorithm [ARV07].

2) On synthetic dataset FlyingThings3D [MIH*16], Bi-
PointFlowNet [CK22] and WhatMatters [WHL*22] achieve
the best result compared to other fully-supervised learning
methods.

3) Its worth noting that self-supervised learning approaches have
on-par performance with some fully supervised methods on
synthetic dataset, such as recurrent neural network based
methods: RCP [GTY*22] and FlowStep3D [KER21]. Since
Rigid3DSF [GLW*21] and Ego-motion [TLOP20] contain
weak supervision, they have better results than other self-
supervised methods [LZL*22, GTY*22, LZLG22].

4) SCTN [LZGG22] introduces a transformerwhich learns contex-
tual relations between points. As shown in Table 4, the sparse
convolution-transformer network proposed in SCTN [LZGG22]
is competitive with other methods for improving the accuracy
of scene flow estimation.

5.3.2. Performance on real datasets

1) Res3DSF [WHWW21] outperforms PV-RAFT [WWR*21]
on KITTI2015 dataset. It shows the best performance on
the predominant 3D metrics. Compared to the models that
are trained with full supervision, WhatMatters [WHL*22]
and Bi-PointFlowNet [CK22] achieve better performance than
Rigid3DSF [GLW*21], HCRF-Flow [LLH*21], FlowStep3D
[KER21], and FLOT [PBM20] on StereoKITTI.

2) According to the evaluation results, FlowStep3D [KER21] and
RCP [GTY*22] generalizes well on Stereo KITTI [MHG15,
MHG18]. Besides, Self-Point-Flow [LLX21] improves 70% ac-
curacy over Ego-motion [TLOP20] that only uses geometry in-
formation (point coordinates). DCA-SRFE [JLA*22] success-
fully reaches the best performance on StereoKITTI among other
self-supervised methods. It even achieves on-par performance
with the state-of-the-art methods [GLW*21, GTY*22] trained
under full supervision.

3) The accuracy gap remains between the synthetic dataset and the
real scene dataset. It is also challenging for both supervised and
self-supervised methods.
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Table 4: The quantitative evaluation results on Flyingthings3D [MIH*16]. Self/full indicates the training strategy on FlyingThings3D. Lower values are better
for the error metrics including EPE3D and Outliers. Higher values are better for the accuracy metrics including Acc3DS and Acc3DR. All results are compared
based on the quantitative results provided by original papers.

Dataset Method Sup. EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
Flyingthings3D PointPWCNet [WWL*20] non-learning 0.433 0.062 0.195 -

ICP [BM92] non-learning 0.412 0.169 0.346 -
SFPC [PHL20] non-learning 0.259 0.163 0.416 -
NICP [ARV07] non-learning 0.339 0.141 0.357 -
FlowNet3D [LQG19] full 0.114 0.413 0.770 0.602
PointPWC-Net [WWL*20] full 0.059 0.738 0.928 0.342
FLOT [PBM20] full 0.052 0.732 0.927 0.357
HPLFlowNet [GWW*19] full 0.080 0.614 0.856 0.429
RMS-FlowNet [BSMS22] full 0.056 0.792 0.955 0.324
FlowStep3D [KER21] full 0.046 0.816 0.961 0.217
PointConvFormer [WSF22] full 0.042 0.865 0.966 0.226
SCTN [LZGG22] full 0.038 0.847 0.968 0.268
RCP [GTY*22] full 0.040 0.857 0.964 0.198
HCRF-Flow [LLH*21] full 0.049 0.834 0.951 0.261
PV-RAFT [WWR*21] full 0.046 0.817 0.957 0.292
SAFIT [SM22] full 0.050 0.743 0.932 0.346
HALFlow [WWLW21] full 0.049 0.785 0.947 0.308
Res3DSF [WHWW21] full 0.031 0.914 0.977 0.155
Bi-PointFlowNet [CK22] full 0.028 0.918 0.978 0.143
WhatMatters [WHL*22] full 0.028 0.929 0.981 0.146
Ego-motion [TLOP20] hybrid 0.068 0.670 0.879 0.404
Rigid3DSF [GLW*21] weakly 0.052 0.746 0.936 0.361
PointPWC-Net [WWL*20] self 0.125 0.307 0.655 0.703
SAFIT [SM22] self 0.171 0.213 0.476 0.756
FlowStep3D [KER21] self 0.085 0.536 0.826 0.420
Self-Point-Flow [LLX21] self 0.101 0.423 0.775 0.607
Noisy-pseudo [LZLG22] self 0.068 0.628 0.881 0.438
RCP [GTY*22] self 0.077 0.586 0.860 0.414
RigidFlow [LZL*22] self 0.069 0.596 0.871 0.464

4) Up to now, there are only a few methods that conduct ex-
periments on Waymo [SKD*20] dataset and NuScenes dataset
[CBL*]. We hope this survey would trigger more attempts in
using real datasets to train scene flow estimation network in
the future. We refer readers to the specific papers that provide
results on Waymo [JLA*22, DDX*22], NuScenes [BEM*21,
MOH20], Lyft [ZvVBM20, JLA*22] for more details.

6. Applications

Scene flow is one of the most fundamental visual cues in the hier-
archy of dynamic scene perception. It provides applicable informa-
tion for higher-level tasks. The progress in scene flow estimation
will refurbish the performance of other scene understanding tasks
[GLW*21].

6.1. Point cloud densification

Point clouds are unevenly distributed and sparse. Therefore, some
small objects cannot be well-represented by limited number of
points. To increase the quality of point clouds, a number of point
cloud upsamplingmethods [YLF*18, QAL*21] have been proposed
to generate dense and complete point clouds from the original sparse

point cloud. Recent work (e.g., SFPC [PHL20]) discovered that the
predicted scene flow can be used to densify the point clouds. SFPC
[PHL20] uses five adjacent frames from an Argoverse scene in each
direction to densify the current frame. The visual comparison of
non-rigid densification proposed by SFPC [PHL20] against the orig-
inal sparse point cloud and ICP is shown in Figure 6. This visual
comparison indicates that SFPC recovers more detailed geometry
of objects than ICP.

6.2. Motion segmentation

From pedestrians walking at a constant speed to high-speed vehi-
cles, the issue of detecting objects of interest can be addressed by
segmenting the underlying motions. Intuitively, the segmentation of
different motion fields is conducted through classifying the point
cloud into moving bodies and stationary backgrounds [BEM*21].
Discontinuities in the scene flow are key cues for segmenting a
point cloud into several individual objects with different motion
fields. Recently, SLIM [BEM*21] proposes a self-supervised learn-
ing approach and presents motion segmentation results that illus-
trate the effectiveness of jointly estimating scene flow and seg-
menting motion fields. The performance of SLIM is improved with
self-supervised motion segmentation signal as it achieves a mIoU
score of 59.5% with a sensitivity of 73.1% on KITTI dataset.
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Table 5: The quantitative evaluation results on three versions of KITTI scene flow datasets. Self/full means self-supervised and fully-supervised learning
approach.

Dataset Method Sup. EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
KITTI2015
[MHG15,
MG15]

PointPWCNet [WWL*20] non-learning 0.272 0.170 0.357
ICP [BM92] non-learning 0.409 0.052 0.281
SFPC [PHL20] non-learning 0.093 0.648 0.821
NICP [ARV07] non-learning 0.338 0.221 0.430
FlowNet3D [LQG19] full 0.177 0.374 0.668 0.527
PV-RAFT [WWR*21] full 0.056 0.823 0.937 0.216
Ego-motion [TLOP20] full 0.103 0.488 0.822 0.394
SAFIT [SM22] full 0.048 0.802 0.935 0.218
Res3DSF [WHWW21] full 0.035 0.893 0.962 0.165
Ego-motion [TLOP20] self 0.415 0.221 0.372 0.810
Self-Point-Flow [LLX21] self 0.112 0.538 0.794 0.409
SAFIT [SM22] self 0.132 0.469 0.708 0.437

StereoKITTI
[MHG15,
MHG18]

HPLFlowNet [GWW*19] full 0.117 0.478 0.778 0.410
PointPWCNet [WWL*20] full 0.069 0.728 0.888 0.265
FLOT [PBM20] full 0.056 0.755 0.908 0.242
HALFlow [WWLW21] full 0.062 0.765 0.903 0.249
HCRF-Flow [LLH*21] full 0.053 0.863 0.944 0.178
FlowStep3D [KER21] full 0.055 0.805 0.925 0.149
Rigid3DSF [GLW*21] full 0.042 0.849 0.959 0.208
RMS-FlowNet [BSMS22] full 0.053 0.818 0.938 0.203
RCP [GTY*22] full 0.048 0.849 0.945 0.123
PointConvFormer [WSF22] full 0.048 0.866 0.933 0.173
WhatMatters [WHL*22] full 0.031 0.905 0.958 0.161
Bi-PointFlowNet [CK22] full 0.030 0.920 0.960 0.141
PointPWCNet [WWL*20] self 0.255 0.238 0.496 0.686
FlowStep3D [KER21] self 0.102 0.708 0.839 0.246
OGC [SY22] self 0.067 0.802 0.891 0.226
RCP [GTY*22] self 0.076 0.786 0.892 0.185
RigidFlow [LZL*22] self 0.062 0.724 0.892 0.262
Noisy-Pseudo [LZLG22] self 0.058 0.744 0.898 0.246
DCA-SRSFE [JLA*22] self 0.052 0.794 0.968 0.180

KITTI2018
[MHG18]

SCTN [LZGG22] full 0.037 0.873 0.959 0.179
Just-Go [MOH20] self 0.126 0.320 0.736 -
SFGAN [WJS*22] self 0.098 0.302 0.682 0.558

Figure 6: Application of scene flow approach for point cloud densification, from [PHL20]. The left image is projected from original sparse
point cloud collected in Argoverse scene. Middle image represents the densified frame via Iterative Closest Point (ICP) algorithm. The right
image is the densification from SFPC [PHL20].

6.3. LiDAR odometry task

Finding alignments of point clouds to gather motion information be-
tween two consecutive LiDAR point clouds is called LiDAR odom-
etry. Approaches that employ ICP [BM92, SHT09] involve three

steps: association, transformation, and error evaluation. Yet, it is
time consuming and error-prone. Recently, many deep learning-
based methods [WSZ*19, LW20] make use of feature correspon-
dences and spatial relationships to LiDAR odometry task. Wang
et al. [WWLW21] apply the scene flow to the first point cloud and
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solve the 6-DoF pose transformation matrix in a closed-form. With
accurate estimation of the scene flow from the point cloud in the
first frame to the second frame, HALFNet [WWLW21] obtains bet-
ter results than the ICP-based method on the LiDAR odometry task.
This improvement validates the capability of scene flow to boost the
performance of LiDAR odometry task.

6.4. Object tracking

Self-driving can be divided into four separate parts: detection, ob-
ject tracking, motion forecasting, and motion planning [LYU18].
The objective of object tracking is to identify and locate multi-
ple objects of interest and keep track of their trajectories simul-
taneously. To enhance the robustness of motion prediction, Flow-
Mot [ZKC*20] suggests using the estimated scene flow to com-
pute object-level movement. While most tracking methods adopt a
“track-by-detection” approach and utilize the Kalman Filter to avoid
having to adjust hyperparameters, FlowMot uses scene flow estima-
tion to obtain 3D motion information that is consistent. Recently,
Yang et al. [YJY*22] proposed a novel scene flow based point cloud
feature fusion module that leverages temporal information in dy-
namic 3D point cloud sequences to improve 3D object tracking.
These works demonstrate the potential of scene flow to address the
challenges faced by current object tracking methods that lack gen-
eralization across different datasets.

6.5. 4D vision task

As autonomous vehicles and robotics work in dynamic environ-
ment, which indicates they need to interact with the surrounding en-
vironment in a period of time. Hence continuous movements in dy-
namic scenes can be utilized to extract spatial and temporal informa-
tion, which can be further applied to 4D vision tasks such as 4D se-
mantic segmentation [WLX*22] and 4D acquisition of large scenes.
Scene flow estimation provides such spatio-temporal context in-
formation of points. It also contributes to 4D point clouds (with
additional temporal dimension), where the spatio-temporal neigh-
bourhoods are constructed via the motion of points among several
continuous frames. Mustafa et al. [MH20] apply semantic coher-
ence between multiple frames to improve 4D scene flow estimation,
co-segmentation and reconstruction [GLW*21]. The application of
scene flow in 4D semantic segmentation enables robotic systems
to enhance their robustness by leveraging the temporal information
from previous frames [shi20]. Recently, the automotive industry is
giving increasing attention to 4-Dmillimeter-wave (mmWave) radar
as a rising sensor due to its complementary advantages over LiDAR.
RaFlow [DPD*22] provides a new avenue of estimating scene flow,
which is specifically designed for radar and calculates the scene flow
between two radar point clouds.

7. Potential Research Directions

To address the issue caused by diversified motion fields, there have
been quite a few attempts, for example Rigid3DSF [GLW*21] and
SLIM [BEM*21] that learn background and foreground motions
separately. For the occlusion challenge, Occlusion-G [OR21b],
FESTA [WPL*21], and Est&Pro [WS22] explored different mask-

ing operations to reduce the interference of the occluded points. In
terms of accuracy, the state-of-the-art supervised method (What-
Matters [WHL*22]) improves the accuracy from 41.3% to 92.9%
on the FlyingThings3D dataset. Also, several architectures, such as
SLIM [BEM*21] and SCTN [LZGG22] still cannot afford the bur-
den of processing a large amount of points. The training time dras-
tically increases as the size of point cloud increased.

Here we provide an overview of promising directions for fur-
ther research.

7.1. Multi-source and multi-modality data fusion

2D images contain fine-grained information while 3D point clouds
provides more geometric details. LiDARs and cameras (e.g. RGB-D
camera, monocular camera) are the most common sensors for multi-
modal perception in the literature [FHSR*20]. Despite the interest
in scene understanding via multi-modality data fusion is growing,
only a few papers [LYY21, JWMW22] utilize multi-modality data
in scene flow. The effectiveness of data fusion algorithms is re-
stricted by the representation of spatial-temporal information and
the ability of CNNs to learn. This is a complex issue that deserves
further exploration.

7.2. Multitask learning

An important avenue for future work is to deploy end-to-end multi-
task learning (MTL) pipelines. In the field of visual computing, la-
bels are very limited among all kinds of real datasets, and there is
still a long way to go to train a robust and accurate learner. MTL
which learns task relations from data automatically helps reduce
the manual labelling cost for each learning task. A popular example
is shown in semantic segmentation and depth estimation [ZY22].
From this perspective, extracting the commonalities from several
related tasks for joint learning across tasks is a promising direction
to boost performance. As scene flow is inherently a low-level visual
cue, it can be integrated with other visual components such as ob-
ject locations for higher-level scene understanding tasks. Such joint
learning enables the model to better cope with complex scene data
and improves its self-evolution and self-adaption with multi-task
knowledge. Besides, a multi-task learning strategy can even outper-
form separate models trained independently on each task [CGK18a]
and further improve the robustness [MTL22]. As shown in recent
works [TWZ*18, CGK18b, HH19, JKBC20], there are consider-
able attempts to integrate multiple tasks in a unified architecture.

7.3. Domain adaptation

Most current deep learning networks are data-driven. Many state-
of-the-art DL models have achieved impressive results. However,
those DL models are fine-tuned on a fixed task set. It is still in the
beginning to adapt current DL models to different domains. Since
3D annotations usually depend on the annotations obtained from
the image domain, it is hard to achieve equal accuracy on a larger
dataset. One enlightenment is to use transfer learning. Transfer the
knowledge gained from solving one problem (e.g. depth estima-
tion), and apply it to different but related problem such as scene flow
estimation. From a broader perspective of self driving and robotic
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Figure 7: The architecture of Knowledge Distillation.

navigation, continuous learning, contrastive learning, and lifelong
learning deserve further investigation.

7.4. Semi-supervised learning scheme

Semi-supervised learning is a novel branch of machine learning that
leverages unlabelled data to reduce the usage of manual annota-
tions. Jiang et al. [JSJ*19] introduced a compact network (SENSE)
that shares common encoder features among optical flow, dispar-
ity, occlusion, and semantic segmentation. SENSE [JSJ*19] han-
dles partially labelled data from images very well. To ameliorate
the issue of sparse ground-truth annotations of scene flow, SENSE
applies a distillation loss and a self-supervised loss to the super-
vised losses, which forms their semi-supervised loss. The success
of semi-supervised learning in the field of optical flow estimation
shows that it has the potential to fill the gap between unsupervised
learning and supervised learning.

7.5. Knowledge distillation

Collecting large-scale dynamic scene data requires complex cal-
ibration. In addition, the cost of transforming the original data
into a trainable format is expensive. As a consequence, a labelled
dataset for scene flow estimation is very rare. Therefore, applying
the knowledge distillation model for training small scene flow esti-
mation networks would be a possible solution for data-hungry net-
works. In machine learning, knowledge distillation (KD) is the pro-
cess of compressing the knowledge in a large model into a smaller
one. As shown in Figure 7, the traditional knowledge distillation
model consists of a teacher model and a student model. In many
proposed deep learning models, there are often heavy parameters.
Although it’s commonly accepted that integrating multiple mod-
els and introducing more parameters improves the accuracy of a
model, we have to bear high computational costs in the meanwhile
[MFL*20]. KD allows training smaller models with minimal loss in
performance. Themain innovation of KD is that the student network
is trained not only via the information provided by true labels but
also by observing how the teacher network works with the data. To

our best knowledge, DCA-SRSFE [JLA*22] is the only method that
applies the KD model to point-based scene flow estimation so far.

7.6. Efficiency

Deep learning requires expensive GPUs and lots of machines. How-
ever, memory and computation resources on board are limited.
When it comes to processing large-scale point clouds captured from
outdoor scenes, this limitation makes the accurate estimation of
scene flow more difficult. The design of convolutional kernels and
feature descriptors is the key to balance the efficiency and accu-
racy of processing 3D data. In spite of the significant improvements
of DL models in 3D point cloud learning [QYSG17, WSL*19,
ZFF*21], DL models that achieve real-time perception of surround-
ing dynamics for AVs are still under-explored.

8. Conclusions

This paper reviews the state-of-the-art approaches for scene flow
estimation on point clouds within the scope of deep learning
paradigms. A comprehensive overview of the challenges in this field
is listed. Extensive analyses on supervised, weakly-supervised, and
self-supervised scene flow estimationmethods are presented.Merits
and demerits of these methods are also covered. Moreover, this pa-
per introduces several higher-level scene understanding tasks from
the perspective of scene flow estimation and discusses promising
research directions. We hope this survey will inspire more research
in this field.
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